1
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
McDew-White M, Lee E, Premadasa LS, Alvarez X, Okeoma CM, Mohan M. Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels. J Neuroinflammation 2023; 20:62. [PMID: 36890518 PMCID: PMC9993397 DOI: 10.1186/s12974-023-02729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions. METHODS We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV). RESULTS Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents. CONCLUSION This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.
Collapse
Affiliation(s)
- Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA.
| |
Collapse
|
3
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. SIV Infection Regulates Compartmentalization of Circulating Blood Plasma miRNAs within Extracellular Vesicles (EVs) and Extracellular Condensates (ECs) and Decreases EV-Associated miRNA-128. Viruses 2023; 15:622. [PMID: 36992331 PMCID: PMC10059597 DOI: 10.3390/v15030622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Background: This is Manuscript 1 of a two-part Manuscript of the same series. Here, we present findings from our first set of studies on the abundance and compartmentalization of blood plasma extracellular microRNAs (exmiRNAs) into extracellular particles, including blood plasma extracellular vesicles (EVs) and extracellular condensates (ECs) in the setting of untreated HIV/SIV infection. The goals of the study presented in this Manuscript 1 are to (i) assess the abundance and compartmentalization of exmiRNAs in EVs versus ECs in the healthy uninfected state, and (ii) evaluate how SIV infection may affect exmiRNA abundance and compartmentalization in these particles. Considerable effort has been devoted to studying the epigenetic control of viral infection, particularly in understanding the role of exmiRNAs as key regulators of viral pathogenesis. MicroRNA (miRNAs) are small (~20-22 nts) non-coding RNAs that regulate cellular processes through targeted mRNA degradation and/or repression of protein translation. Originally associated with the cellular microenvironment, circulating miRNAs are now known to be present in various extracellular environments, including blood serum and plasma. While in circulation, miRNAs are protected from degradation by ribonucleases through their association with lipid and protein carriers, such as lipoproteins and other extracellular particles-EVs and ECs. Functionally, miRNAs play important roles in diverse biological processes and diseases (cell proliferation, differentiation, apoptosis, stress responses, inflammation, cardiovascular diseases, cancer, aging, neurological diseases, and HIV/SIV pathogenesis). While lipoproteins and EV-associated exmiRNAs have been characterized and linked to various disease processes, the association of exmiRNAs with ECs is yet to be made. Likewise, the effect of SIV infection on the abundance and compartmentalization of exmiRNAs within extracellular particles is unclear. Literature in the EV field has suggested that most circulating miRNAs may not be associated with EVs. However, a systematic analysis of the carriers of exmiRNAs has not been conducted due to the inefficient separation of EVs from other extracellular particles, including ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of SIV-uninfected male Indian rhesus macaques (RMs, n = 15). Additionally, paired EVs and ECs were isolated from EDTA blood plasma of combination anti-retroviral therapy (cART) naïve SIV-infected (SIV+, n = 3) RMs at two time points (1- and 5-months post infection, 1 MPI and 5 MPI). Separation of EVs and ECs was achieved with PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high-resolution separation and retrieval of preparative quantities of sub-populations of extracellular particles. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNAs was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We showed that exmiRNAs in blood plasma are not restricted to any type of extracellular particles but are associated with lipid-based carriers-EVs and non-lipid-based carriers-ECs, with a significant (~30%) proportion of the exmiRNAs being associated with ECs. In the blood plasma of uninfected RMs, a total of 315 miRNAs were associated with EVs, while 410 miRNAs were associated with ECs. A comparison of detectable miRNAs within paired EVs and ECs revealed 19 and 114 common miRNAs, respectively, detected in all 15 RMs. Let-7a-5p, Let-7c-5p, miR-26a-5p, miR-191-5p, and let-7f-5p were among the top 5 detectable miRNAs associated with EVs in that order. In ECs, miR-16-5p, miR-451, miR-191-5p, miR-27a-3p, and miR-27b-3p, in that order, were the top detectable miRNAs in ECs. miRNA-target enrichment analysis of the top 10 detected common EV and EC miRNAs identified MYC and TNPO1 as top target genes, respectively. Functional enrichment analysis of top EV- and EC-associated miRNAs identified common and distinct gene-network signatures associated with various biological and disease processes. Top EV-associated miRNAs were implicated in cytokine-cytokine receptor interactions, Th17 cell differentiation, IL-17 signaling, inflammatory bowel disease, and glioma. On the other hand, top EC-associated miRNAs were implicated in lipid and atherosclerosis, Th1 and Th2 cell differentiation, Th17 cell differentiation, and glioma. Interestingly, infection of RMs with SIV revealed that the brain-enriched miR-128-3p was longitudinally and significantly downregulated in EVs, but not ECs. This SIV-mediated decrease in miR-128-3p counts was validated by specific TaqMan microRNA stem-loop RT-qPCR assay. Remarkably, the observed SIV-mediated decrease in miR-128-3p levels in EVs from RMs agrees with publicly available EV miRNAome data by Kaddour et al., 2021, which showed that miR-128-3p levels were significantly lower in semen-derived EVs from HIV-infected men who used or did not use cocaine compared to HIV-uninfected individuals. These findings confirmed our previously reported finding and suggested that miR-128 may be a target of HIV/SIV. Conclusions: In the present study, we used sRNA sequencing to provide a holistic understanding of the repertoire of circulating exmiRNAs and their association with extracellular particles, such as EVs and ECs. Our data also showed that SIV infection altered the profile of the miRNAome of EVs and revealed that miR-128-3p may be a potential target of HIV/SIV. The significant decrease in miR-128-3p in HIV-infected humans and in SIV-infected RMs may indicate disease progression. Our study has important implications for the development of biomarker approaches for various types of cancer, cardiovascular diseases, organ injury, and HIV based on the capture and analysis of circulating exmiRNAs.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
4
|
Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ 9-THC). Viruses 2023; 15:623. [PMID: 36992332 PMCID: PMC10053514 DOI: 10.3390/v15030623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In this follow-up study, we investigated the abundance and compartmentalization of blood plasma extracellular miRNA (exmiRNA) into lipid-based carriers-blood plasma extracellular vesicles (EVs) and non-lipid-based carriers-extracellular condensates (ECs) during SIV infection. We also assessed how combination antiretroviral therapy (cART), administered in conjunction with phytocannabinoid delta-9-tetrahydrocannabinol (THC), altered the abundance and compartmentalization of exmiRNAs in the EVs and ECs of SIV-infected rhesus macaques (RMs). Unlike cellular miRNAs, exmiRNAs in blood plasma may serve as minimally invasive disease indicators because they are readily detected in stable forms. The stability of exmiRNAs in cell culture fluids and body fluids (urine, saliva, tears, cerebrospinal fluid (CSF), semen, blood) is based on their association with different carriers (lipoproteins, EVs, and ECs) that protect them from the activities of endogenous RNases. Here, we showed that in the blood plasma of uninfected control RMs, significantly less exmiRNAs were associated with EVs compared to the level (30% higher) associated with ECs, and that SIV infection altered the profile of EVs and ECs miRNAome (Manuscript 1). In people living with HIV (PLWH), host-encoded miRNAs regulate both host and viral gene expression, which may serve as indicators of disease or treatment biomarkers. The profile of miRNAs in blood plasma of PLWH (elite controllers versus viremic patients) are different, indicating that HIV may alter host miRNAome. However, there are no studies assessing the effect of cART or other substances used by PLWH, such as THC, on the abundance of exmiRNA and their association with EVs and ECs. Moreover, longitudinal exmiRNA profiles following SIV infection, treatment with THC, cART, or THC+cART remains unclear. Here, we serially analyzed miRNAs associated with blood plasma derived EVs and ECs. Methods: Paired EVs and ECs were separated from EDTA blood plasma of male Indian rhesus macaques (RMs) in five treatment groups, including VEH/SIV, VEH/SIV/cART, THC/SIV, THC/SIV/cART, or THC alone. Separation of EVs and ECs was achieved with the unparalleled nano-particle purification tool ─PPLC, a state-of-the-art, innovative technology equipped with gradient agarose bead sizes and a fast fraction collector that allows high resolution separation and retrieval of preparative quantities of sub-populations of extracellular structures. Global miRNA profiles of the paired EVs and ECs were determined with RealSeq Biosciences (Santa Cruz, CA) custom sequencing platform by conducting small RNA (sRNA)-seq. The sRNA-seq data were analyzed using various bioinformatic tools. Validation of key exmiRNA was performed using specific TaqMan microRNA stem-loop RT-qPCR assays. Results: We investigated the effect of cART, THC, or both cART and THC together on the abundance and compartmentalization of blood plasma exmiRNA in EVs and ECs in SIV-infected RMs. As shown in Manuscript 1 of this series, were in uninfected RMs, ~30% of exmiRNAs were associated with ECs, we confirmed in this follow up manuscript that exmiRNAs were present in both lipid-based carriers-EVs and non-lipid-based carriers-ECs, with 29.5 to 35.6% and 64.2 to 70.5 % being associated with EVs and ECs, respectively. Remarkably, the different treatments (cART, THC) have distinct effects on the enrichment and compartmentalization pattern of exmiRNAs. In the VEH/SIV/cART group, 12 EV-associated and 15 EC-associated miRNAs were significantly downregulated. EV-associated miR-206, a muscle-specific miRNA that is present in blood, was higher in the VEH/SIV/ART compared to the VEH/SIV group. ExmiR-139-5p that was implicated in endocrine resistance, focal adhesion, lipid and atherosclerosis, apoptosis, and breast cancer by miRNA-target enrichment analysis was significantly lower in VEH/SIV/cART compared to VEH/SIV, irrespective of the compartment. With respect to THC treatment, 5 EV-associated and 21 EC-associated miRNAs were significantly lower in the VEH/THC/SIV. EV-associated miR-99a-5p was higher in VEH/THC/SIV compared to VEH/SIV, while miR-335-5p counts were significantly lower in both EVs and ECs of THC/SIV compared to VEH/SIV. EVs from SIV/cART/THC combined treatment group have significant increases in the count of eight (miR-186-5p, miR-382-5p, miR-139-5p and miR-652, miR-10a-5p, miR-657, miR-140-5p, miR-29c-3p) miRNAs, all of which were lower in VEH/SIV/cART group. Analysis of miRNA-target enrichment showed that this set of eight miRNAs were implicated in endocrine resistance, focal adhesions, lipid and atherosclerosis, apoptosis, and breast cancer as well as cocaine and amphetamine addiction. In ECs and EVs, combined THC and cART treatment significantly increased miR-139-5p counts compared to VEH/SIV group. Significant alterations in these host miRNAs in both EVs and ECs in the untreated and treated (cART, THC, or both) RMs indicate the persistence of host responses to infection or treatments, and this is despite cART suppression of viral load and THC suppression of inflammation. To gain further insight into the pattern of miRNA alterations in EVs and ECs and to assess potential cause-and-effect relationships, we performed longitudinal miRNA profile analysis, measured in terms of months (1 and 5) post-infection (MPI). We uncovered miRNA signatures associated with THC or cART treatment of SIV-infected macaques in both EVs and ECs. While the number of miRNAs was significantly higher in ECs relative to EVs for all groups (VEH/SIV, SIV/cART, THC/SIV, THC/SIV/cART, and THC) longitudinally from 1 MPI to 5 MPI, treatment with cART and THC have longitudinal effects on the abundance and compartmentalization pattern of exmiRNAs in the two carriers. As shown in Manuscript 1 where SIV infection led to longitudinal suppression of EV-associated miRNA-128-3p, administration of cART to SIV-infected RMs did not increase miR-128-3p but resulted in longitudinal increases in six EV-associated miRNAs (miR-484, miR-107, miR-206, miR-184, miR-1260b, miR-6132). Furthermore, administration of cART to THC treated SIV-infected RMs resulted in a longitudinal decrease in three EV-associated miRNAs (miR-342-3p, miR-100-5p, miR181b-5p) and a longitudinal increase in three EC-associated miRNAs (miR-676-3p, miR-574-3p, miR-505-5p). The longitudinally altered miRNAs in SIV-infected RMs may indicate disease progression, while in the cART Group and the THC Group, the longitudinally altered miRNAs may serve as biomarkers of response to treatment. Conclusions: This paired EVs and ECs miRNAome analyses provided a comprehensive cross-sectional and longitudinal summary of the host exmiRNA responses to SIV infection and the impact of THC, cART, or THC and cART together on the miRNAome during SIV infection. Overall, our data point to previously unrecognized alterations in the exmiRNA profile in blood plasma following SIV infection. Our data also indicate that cART and THC treatment independently and in combination may alter both the abundance and the compartmentalization of several exmiRNA related to various disease and biological processes.
Collapse
Affiliation(s)
- Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
5
|
Kaddour H, McDew-White M, Madeira MM, Tranquille MA, Tsirka SE, Mohan M, Okeoma CM. Chronic delta-9-tetrahydrocannabinol (THC) treatment counteracts SIV-induced modulation of proinflammatory microRNA cargo in basal ganglia-derived extracellular vesicles. J Neuroinflammation 2022; 19:225. [PMID: 36096938 PMCID: PMC9469539 DOI: 10.1186/s12974-022-02586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early invasion of the central nervous system (CNS) by human immunodeficiency virus (HIV) (Gray et al. in Brain Pathol 6:1-15, 1996; An et al. in Ann Neurol 40:611-6172, 1996), results in neuroinflammation, potentially through extracellular vesicles (EVs) and their micro RNAs (miRNA) cargoes (Sharma et al. in FASEB J 32:5174-5185, 2018; Hu et al. in Cell Death Dis 3:e381, 2012). Although the basal ganglia (BG) is a major target and reservoir of HIV in the CNS (Chaganti et al. in Aids 33:1843-1852, 2019; Mintzopoulos et al. in Magn Reson Med 81:2896-2904, 2019), whether BG produces EVs and the effect of HIV and/or the phytocannabinoid-delta-9-tetrahydrocannabinol (THC) on BG-EVs and HIV neuropathogenesis remain unknown. METHODS We used the simian immunodeficiency virus (SIV) model of HIV and THC treatment in rhesus macaques (Molina et al. in AIDS Res Hum Retroviruses 27:585-592, 2011) to demonstrate for the first time that BG contains EVs (BG-EVs), and that BG-EVs cargo and function are modulated by SIV and THC. We also used primary astrocytes from the brains of wild type (WT) and CX3CR1+/GFP mice to investigate the significance of BG-EVs in CNS cells. RESULTS Significant changes in BG-EV-associated miRNA specific to SIV infection and THC treatment were observed. BG-EVs from SIV-infected rhesus macaques (SIV EVs) contained 11 significantly downregulated miRNAs. Remarkably, intervention with THC led to significant upregulation of 37 miRNAs in BG-EVs (SIV-THC EVs). Most of these miRNAs are predicted to regulate pathways related to inflammation/immune regulation, TLR signaling, Neurotrophin TRK receptor signaling, and cell death/response. BG-EVs activated WT and CX3CR1+/GFP astrocytes and altered the expression of CD40, TNFα, MMP-2, and MMP-2 gene products in primary mouse astrocytes in an EV and CX3CR1 dependent manners. CONCLUSIONS Our findings reveal a role for BG-EVs as a vehicle with potential to disseminate HIV- and THC-induced changes within the CNS.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Present Address: Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591 USA
| | - Marina McDew-White
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Miguel M. Madeira
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Malik A. Tranquille
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Stella E. Tsirka
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302 USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651 USA
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524 USA
| |
Collapse
|
6
|
Bahji A, Li Y, Vickers-Smith R, Crystal S, Kerns RD, Gordon KS, Macmadu A, Skanderson M, So-Armah K, Sung ML, Bhondoekhan F, Marshall BDL, Edelman EJ. Self-Reported Cannabis Use and HIV Viral Control among Patients with HIV Engaged in Care: Results from a National Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5649. [PMID: 35565045 PMCID: PMC9101884 DOI: 10.3390/ijerph19095649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
Background: The association between cannabis use and HIV-1 RNA (viral load) among people with HIV (PWH) engaged in care is unclear. Methods: We used data collected from 2002 to 2018 on PWH receiving antiretroviral therapy (ART) enrolled in the Veterans Aging Cohort Study. Generalized estimating equations were used to estimate associations between self-reported past-year cannabis use and detectable viral load (≥500 copies/mL), with and without adjustment for demographics, other substance use, and adherence. Results: Among 2515 participants, 97% were male, 66% were Black, the mean age was 50 years, and 33% had detectable HIV viral load at the first study visit. In unadjusted analyses, PWH with any past-year cannabis use had 21% higher odds of a detectable viral load than those with no past-year use (OR = 1.21; 95% CI, 1.07-1.37). However, there was no significant association between cannabis use and viral load after adjustment. Conclusions: Among PWH engaged in care and receiving ART, cannabis use is associated with decreased adherence in unadjusted analyses but does not appear to directly impact viral control. Future studies are needed to understand other potential risks and benefits of cannabis use among PWH.
Collapse
Affiliation(s)
- Anees Bahji
- Department of Psychiatry, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- British Columbia Centre on Substance Use, Vancouver, BC V6Z 2A9, Canada
- Research in Addiction Medicine Scholars Program, Boston University Medical Center, Boston, MA 02118, USA
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yu Li
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA; (Y.L.); (A.M.); (F.B.); (B.D.L.M.)
| | - Rachel Vickers-Smith
- Department of Epidemiology, University of Kentucky College of Public Health, Lexington, KY 40536, USA;
| | - Stephen Crystal
- Center for Health Services Research, Institute for Health, Rutgers University, Rutgers, NJ 08901, USA;
| | - Robert D. Kerns
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA;
- VA Connecticut Healthcare System, West Haven, CT 06516, USA; (K.S.G.); (M.S.); (M.L.S.)
| | - Kirsha S. Gordon
- VA Connecticut Healthcare System, West Haven, CT 06516, USA; (K.S.G.); (M.S.); (M.L.S.)
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Alexandria Macmadu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA; (Y.L.); (A.M.); (F.B.); (B.D.L.M.)
| | - Melissa Skanderson
- VA Connecticut Healthcare System, West Haven, CT 06516, USA; (K.S.G.); (M.S.); (M.L.S.)
| | - Kaku So-Armah
- Clinical Addiction Research & Education (CARE) Unit, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Minhee L. Sung
- VA Connecticut Healthcare System, West Haven, CT 06516, USA; (K.S.G.); (M.S.); (M.L.S.)
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fiona Bhondoekhan
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA; (Y.L.); (A.M.); (F.B.); (B.D.L.M.)
| | - Brandon D. L. Marshall
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA; (Y.L.); (A.M.); (F.B.); (B.D.L.M.)
| | - E. Jennifer Edelman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Center for Interdisciplinary Research on AIDS, Yale School of Public Health, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Xu C, Yadav-Samudrala BJ, Xu C, Nath B, Mistry T, Jiang W, Niphakis MJ, Cravatt BF, Mukhopadhyay S, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Expression in Transgenic Mice and Suppressed by the Fatty Acid Amide Hydrolase Enzyme Inhibitor PF3845 via Cannabinoid Type-1 Receptor Mechanisms. Cells 2022; 11:857. [PMID: 35269478 PMCID: PMC8909692 DOI: 10.3390/cells11050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background. The endocannabinoid (eCB) system, which regulates physiological and cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocognitive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling. Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our understanding about the role of FAAH inhibition in neuroHIV.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Barkha J. Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Callie Xu
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| | - Bhupendra Nath
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Twisha Mistry
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Micah J. Niphakis
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, Scripps Research Institute, La Jolla, CA 92037, USA; (M.J.N.); (B.F.C.)
| | - Somnath Mukhopadhyay
- Department of Chemistry & Biochemistry, North Carolina Central University, Durham, NC 27707, USA; (B.N.); (T.M.); (S.M.)
| | - Aron H. Lichtman
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (C.X.); (B.J.Y.-S.); (C.X.)
| |
Collapse
|
8
|
McDew-White M, Lee E, Alvarez X, Sestak K, Ling BJ, Byrareddy SN, Okeoma CM, Mohan M. Cannabinoid control of gingival immune activation in chronically SIV-infected rhesus macaques involves modulation of the indoleamine-2,3-dioxygenase-1 pathway and salivary microbiome. EBioMedicine 2022; 75:103769. [PMID: 34954656 PMCID: PMC8715300 DOI: 10.1016/j.ebiom.2021.103769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND HIV/SIV-associated periodontal disease (gingivitis/periodontitis) (PD) represents a major comorbidity affecting people living with HIV (PLWH) on combination anti-retroviral therapy (cART). PD is characterized by chronic inflammation and dysbiosis. Nevertheless, the molecular mechanisms and use of feasible therapeutic strategies to reduce/reverse inflammation and dysbiosis remain understudied and unaddressed. METHODS Employing a systems biology approach, we report molecular, metabolome and microbiome changes underlying PD and its modulation by phytocannabinoids [delta-9-tetrahydrocannabinol (Δ9-THC)] in uninfected and SIV-infected rhesus macaques (RMs) untreated (VEH-untreated/SIV) or treated with vehicle (VEH/SIV) or Δ9-THC (THC/SIV). FINDINGS VEH- untreated/SIV but not THC/SIV RMs showed significant enrichment of genes linked to anti-viral defense, interferon-β, NFκB, RIG-1, and JAK-STAT signaling. We focused on the anti-microbial DUOX1 and immune activation marker IDO1 that were reciprocally regulated in the gingiva of VEH-untreated/SIV RMs. Both proteins localized to the gingival epithelium and CD163+ macrophages, and showed differential expression in the gingiva of THC/SIV and VEH/SIV RMs. Additionally, inflammation-associated miR-21, miR-142-3p, miR-223, and miR-125a-5p showed significantly higher expression in the gingiva of VEH/SIV RMs. In human primary gingival epithelial cells, miR-125a-5p post-transcriptionally downregulated DUOX1 and THC inhibited IDO1 protein expression through a cannabinoid receptor-2 mediated mechanism. Interestingly, THC/SIV RMs showed relatively reduced plasma levels of kynurenine, kynurenate, and the neurotoxic quinolinate compared to VEH/SIV RMs at 5 months post SIV infection (MPI). Most importantly, THC blocked HIV/SIV-induced depletion of Firmicutes and Bacteroidetes, and reduced Gammaproteobacteria abundance in saliva. Reduced IDO1 protein expression was associated with significantly (p<0.05) higher abundance of Prevotella, Lactobacillus (L. salivarius, L. buchneri, L. fermentum, L. paracasei, L. rhamnosus, L. johnsonii) and Bifidobacteria and reduced abundance of the pathogenic Porphyromonas cangingivalis and Porphyromonas macacae at 5MPI. INTERPRETATION The data provides deeper insights into the molecular mechanisms underlying HIV/SIV-induced PD and more importantly, the anti-inflammatory and anti-dysbiotic properties of THC in the oral cavity. Overall, these translational findings suggest that phytocannabinoids may help reduce gingival/systemic inflammation, salivary dysbiosis and potentially metabolic disease/syndrome in PLWH on cART and those with no access to cART or do not suppress the virus under cART. FUNDING Research reported in this publication was supported by the National Institutes of Health Award Numbers R01DA052845 (MM and SNB), R01DA050169 (MM and CO), R01DA042524 and R56DE026930 (MM), and P51OD011104 and P51OD011133. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Collapse
Affiliation(s)
- Marina McDew-White
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Eunhee Lee
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Xavier Alvarez
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Karol Sestak
- PreCliniTria, LLC., Mandeville, LA 70471, United States; Tulane National Primate Research Center, Covington LA 70433, United States
| | - Binhua J Ling
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Chioma M Okeoma
- Department of Pharmacology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794-8651, United States
| | - Mahesh Mohan
- Texas Biomedical Research Institute, Southwest National Primate Research Center, 8715 West Military Road, San Antonio, TX 78227, United States.
| |
Collapse
|
9
|
Confound, Cause, or Cure: The Effect of Cannabinoids on HIV-Associated Neurological Sequelae. Viruses 2021; 13:v13071242. [PMID: 34206839 PMCID: PMC8310358 DOI: 10.3390/v13071242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
The persistence of human immunodeficiency virus-1 (HIV)-associated neurocognitive disorders (HAND) in the era of effective antiretroviral therapy suggests that modern HIV neuropathogenesis is driven, at least in part, by mechanisms distinct from the viral life cycle. Identifying more subtle mechanisms is complicated by frequent comorbidities in HIV+ populations. One of the common confounds is substance abuse, with cannabis being the most frequently used psychoactive substance among people living with HIV. The psychoactive effects of cannabis use can themselves mimic, and perhaps magnify, the cognitive deficits observed in HAND; however, the neuromodulatory and anti-inflammatory properties of cannabinoids may counter HIV-induced excitotoxicity and neuroinflammation. Here, we review our understanding of the cross talk between HIV and cannabinoids in the central nervous system by exploring both clinical observations and evidence from preclinical in vivo and in vitro models. Additionally, we comment on recent advances in human, multi-cell in vitro systems that allow for more translatable, mechanistic studies of the relationship between cannabinoid pharmacology and this uniquely human virus.
Collapse
|
10
|
Effects of daily Δ 9-Tetrahydrocannabinol (THC) alone or combined with cannabidiol (CBD) on cognition-based behavior and activity in adolescent nonhuman primates. Drug Alcohol Depend 2021; 221:108629. [PMID: 33640678 PMCID: PMC8204682 DOI: 10.1016/j.drugalcdep.2021.108629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Daily use of marijuana is rising in adolescents, along with consumption of high potency marijuana products (high % Δ-9-tetrahydrocannabinol or THC). These dual, related trends have opened gaps in understanding the long-term effects of daily consumption of a high dose of THC in adolescents and whether a therapeutic dose of cannabidiol (CBD) modulates THC effects. METHODS Adolescent squirrel monkeys (Saimiri boliviensis) were treated daily for four months with vehicle (n = 4), a high THC dose (1 mg/kg i.m.; n = 4), or THC + CBD (1 mg/kg +3 mg/kg i.m.; n = 4), to investigate whether: (1) a daily high THC dose affects performance in tasks of cognition (repeated acquisition, discrimination reversal); (2) a daily high THC dose affects spontaneous behavior and day/night activity (3) tolerance develops to the behavioral effects of THC; (4) whether CBD modulates THC effects. RESULTS THC impaired performance of adolescent monkeys in a cognitive test initially, but not performance on a task of cognitive flexibility. THC reduced motor activity and increased sedentary behavior, with tolerance developing after weeks of daily treatment. Co-administered with THC, CBD did not modulate THC effects on cognitive performance, activity or tolerance, but prevented THC-induced emesis on the first day of daily treatment. CONCLUSIONS Daily high dosing with THC compromised performance on a task of cognition, and reduced activity in adolescent primates, with tolerance developing within weeks. Whether our observations are relevant to a broader range of cognitive tasks vital for daily function in human adolescents is uncertain.
Collapse
|
11
|
Yadav-Samudrala BJ, Fitting S. Mini-review: The therapeutic role of cannabinoids in neuroHIV. Neurosci Lett 2021; 750:135717. [PMID: 33587986 DOI: 10.1016/j.neulet.2021.135717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/25/2022]
Abstract
In the era of combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with an inflammatory component that specifically targets the brain and causes a high prevalence of HIV-1-associated neurocognitive disorders (HAND). The endocannabinoid (eCB) system has attracted interest as a target for treatment of neurodegenerative disorders, due to the potential anti-inflammatory and neuroprotective properties of cannabinoids, including its potential therapeutic use in HIV-1 neuropathogenesis. In this review, we summarize what is currently known about the structural and functional changes of the eCB system under conditions of HAND. This will be followed by summarizing the current clinical and preclinical findings on the effects of cannabis use and cannabinoids in the context of HIV-1 infection, with specifically focusing on viral load, cognition, inflammation, and neuroprotection. Lastly, we present some potential future directions to better understand the involvement of the eCB system and the role that cannabis use and cannabinoids play in neuroHIV.
Collapse
Affiliation(s)
- Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Towe SL, Meade CS, Cloak CC, Bell RP, Baptiste J, Chang L. Reciprocal Influences of HIV and Cannabinoids on the Brain and Cognitive Function. J Neuroimmune Pharmacol 2020; 15:765-779. [PMID: 32445005 PMCID: PMC7680275 DOI: 10.1007/s11481-020-09921-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/23/2020] [Indexed: 02/03/2023]
Abstract
Globally, cannabis is the most commonly used illicit drug, with disproportionately high use among persons with HIV. Despite advances in HIV care, nearly half of persons living with HIV continue to experience neurocognitive deficits or impairments that may have negative impacts on their daily function. Chronic cannabis use may play a role in the development or exacerbation of these impairments. Here we present a review summarizing existing research detailing the effect of cannabis use associated with the neuropathogenesis of HIV. We examine evidence for possible additive or synergistic effects of HIV infection and cannabis use on neuroHIV in both the preclinical and adult human literatures, including in vitro studies, animal models, clinical neuroimaging research, and studies examining the cognitive effects of cannabis. We discuss the limitations of existing research, including methodological challenges involved with clinical research with human subjects. We identify gaps in the field and propose critical research questions to advance our understanding of how cannabis use affects neuroHIV. Graphical Abstract.
Collapse
Affiliation(s)
- Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Christine C Cloak
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Room 1161, Baltimore, MD, 21201, USA
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Julian Baptiste
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Room 1161, Baltimore, MD, 21201, USA
| | - Linda Chang
- Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Room 1161, Baltimore, MD, 21201, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
13
|
Lyu Y, Kopcho S, Mohan M, Okeoma CM. Long-Term Low-Dose Delta-9-Tetrahydrocannbinol (THC) Administration to Simian Immunodeficiency Virus (SIV) Infected Rhesus Macaques Stimulates the Release of Bioactive Blood Extracellular Vesicles (EVs) that Induce Divergent Structural Adaptations and Signaling Cues. Cells 2020; 9:E2243. [PMID: 33036231 PMCID: PMC7599525 DOI: 10.3390/cells9102243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Blood extracellular vesicles (BEVs) carry bioactive cargo (proteins, genetic materials, lipids, licit, and illicit drugs) that regulate diverse functions in target cells. The cannabinoid drug delta-9-tetrahydrocannabinol (THC) is FDA approved for the treatment of anorexia and weight loss in people living with HIV. However, the effect of THC on BEV characteristics in the setting of HIV/SIV infection needs to be determined. Here, we used the SIV-infected rhesus macaque model of AIDS to evaluate the longitudinal effects of THC (THC/SIV) or vehicle (VEH/SIV) treatment in HIV/SIV infection on the properties of BEVs. While BEV concentrations increased longitudinally (pre-SIV (0), 30, and 150 days post-SIV infection (DPI)) in VEH/SIV macaques, the opposite trend was observed with THC/SIV macaques. SIV infection altered BEV membrane properties and cargo composition late in infection, since i) the electrostatic surface properties (zeta potential, ζ potential) showed that RM BEVs carried negative surface charge, but at 150 DPI, SIV infection significantly changed BEV ζ potential; ii) BEVs from the VEH/SIV group altered tetraspanin CD9 and CD81 levels compared to the THC/SIV group. Furthermore, VEH/SIV and THC/SIV BEVs mediated divergent changes in monocyte gene expression, morphometrics, signaling, and function. These include altered tetraspanin and integrin β1 expression; altered levels and distribution of polymerized actin, FAK/pY397 FAK, pERK1/2, cleaved caspase 3, proapoptotic Bid and truncated tBid; and altered adhesion of monocytes to collagen I. These data indicate that HIV/SIV infection and THC treatment result in the release of bioactive BEVs with potential to induce distinct structural adaptations and signaling cues to instruct divergent cellular responses to infection.
Collapse
Affiliation(s)
- Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| | - Mahesh Mohan
- Host Pathogen Interaction, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794-8651, USA; (Y.L.); (S.K.)
| |
Collapse
|
14
|
Saloner R, Fields JA, Marcondes MCG, Iudicello JE, von Känel S, Cherner M, Letendre SL, Kaul M, Grant I. Methamphetamine and Cannabis: A Tale of Two Drugs and their Effects on HIV, Brain, and Behavior. J Neuroimmune Pharmacol 2020; 15:743-764. [PMID: 32929575 DOI: 10.1007/s11481-020-09957-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Rowan Saloner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA. .,Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego , San Diego, CA, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | | - Jennifer E Iudicello
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Sofie von Känel
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Mariana Cherner
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Scott L Letendre
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | - Marcus Kaul
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA.,Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA
| | - Igor Grant
- Department of Psychiatry, HIV Neurobehavioral Research Program, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
15
|
Wang HA, Liang HJ, Ernst TM, Oishi K, Chang L. Microstructural brain abnormalities in HIV+ individuals with or without chronic marijuana use. J Neuroinflammation 2020; 17:230. [PMID: 32758262 PMCID: PMC7409464 DOI: 10.1186/s12974-020-01910-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Cognitive deficits and microstructural brain abnormalities are well documented in HIV-positive individuals (HIV+). This study evaluated whether chronic marijuana (MJ) use contributes to additional cognitive deficits or brain microstructural abnormalities that may reflect neuroinflammation or neuronal injury in HIV+. METHOD Using a 2 × 2 design, 44 HIV+ participants [23 minimal/no MJ users (HIV+), 21 chronic active MJ users (HIV + MJ)] were compared to 46 seronegative participants [24 minimal/no MJ users (SN) and 22 chronic MJ users (SN + MJ)] on neuropsychological performance (7 cognitive domains) and diffusion tensor imaging metrics, using an automated atlas to assess fractional anisotropy (FA), axial (AD), radial (RD), and mean (MD) diffusivities, in 18 cortical and 4 subcortical brain regions. RESULTS Compared to SN and regardless of MJ use, the HIV+ group had lower FA and higher diffusivities in multiple white matter and subcortical structures (p < 0.001-0.050), as well as poorer cognition in Fluency (p = 0.039), Attention/Working Memory (p = 0.009), Learning (p = 0.014), and Memory (p = 0.028). Regardless of HIV serostatus, MJ users had lower AD in uncinate fasciculus (p = 0.024) but similar cognition as nonusers. HIV serostatus and MJ use showed an interactive effect on mean diffusivity in the right globus pallidus but not on cognitive function. Furthermore, lower FA in left anterior internal capsule predicted poorer Fluency across all participants and worse Attention/Working Memory in all except SN subjects, while higher diffusivities in several white matter tracts also predicted lower cognitive domain Z-scores. Lastly, MJ users with or without HIV infection showed greater than normal age-dependent FA declines in superior longitudinal fasciculus, external capsule, and globus pallidus. CONCLUSIONS Our findings suggest that, except in the globus pallidus, chronic MJ use had no additional negative influence on brain microstructure or neurocognitive deficits in HIV+ individuals. However, lower AD in the uncinate fasciculus of MJ users suggests axonal loss in this white matter tract that connects to cannabinoid receptor rich brain regions that are involved in verbal memory and emotion. Furthermore, the greater than normal age-dependent FA declines in the white matter tracts and globus pallidus in MJ users suggest that older chronic MJ users may eventually have lesser neuronal integrity in these brain regions.
Collapse
Affiliation(s)
- Hannah A. Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
| | - Hua-Jun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
| | - Thomas M. Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD 21201 USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Medicine, University of Hawaii, John A. Burns School of Medicine, Honolulu, HI USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
16
|
Alvarez X, Sestak K, Byrareddy SN, Mohan M. Long Term Delta-9-tetrahydrocannabinol Administration Inhibits Proinflammatory Responses in Minor Salivary Glands of Chronically Simian Immunodeficieny Virus Infected Rhesus Macaques. Viruses 2020; 12:v12070713. [PMID: 32630206 PMCID: PMC7412369 DOI: 10.3390/v12070713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HIV/SIV-associated oral mucosal disease/dysfunction (HAOMD) (gingivitis/periodontitis/salivary adenitis) represents a major comorbidity affecting HIV patients on anti-retroviral therapy. Using a systems biology approach, we investigated molecular changes (mRNA/microRNA) underlying HAOMD and its modulation by phytocannabinoids (delta-9-tetrahydrocannabinol (∆9-THC)) in uninfected (n = 5) and SIV-infected rhesus macaques untreated (VEH-untreated/SIV; n = 7) or treated with vehicle (VEH/SIV; n = 3) or ∆9-THC (THC/SIV; n = 3). Relative to controls, fewer mRNAs were upregulated in THC/SIV compared to VEH-untreated/SIV macaques. Gene enrichment analysis showed differential enrichment of biological functions involved in anti-viral defense, Type-I interferon, Toll-like receptor, RIG-1 and IL1R signaling in VEH-untreated/SIV macaques. We focused on the anti-ER-stress anterior gradient-2 (AGR2), epithelial barrier protecting and anti-dysbiotic WAP Four-Disulfide Core Domain-2 (WFDC2) and glucocorticoid-induced anti-inflammatory TSC22D3 (TSC22-domain family member-3) that were significantly downregulated in oropharyngeal mucosa (OPM) of VEH-untreated/SIV macaques. All three proteins localized to minor salivary gland acini and secretory ducts and showed enhanced and reduced expression in OPM of THC/SIV and VEH/SIV macaques, respectively. Additionally, inflammation associated miR-21, miR-142-3p and miR-29b showed significantly higher expression in OPM of VEH-untreated/SIV macaques. TSC22D3 was validated as a target of miR-29b. These preliminary translational findings suggest that phytocannabinoids may safely and effectively reduce oral inflammatory responses in HIV/SIV and other (autoimmune) diseases.
Collapse
Affiliation(s)
- Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Karol Sestak
- PreCliniTria, LLC., Mandeville, LA 70471, USA;
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (S.N.B.); (M.M.)
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Correspondence: (S.N.B.); (M.M.)
| |
Collapse
|
17
|
Fathollahipour S, Koosha M, Tavakoli J, Maziarfar S, Fallah Mehrabadi J. Erythromycin Releasing PVA/sucrose and PVA/honey Hydrogels as Wound Dressings with Antibacterial Activity and Enhanced Bio-adhesion. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:448-464. [PMID: 32922500 PMCID: PMC7462510 DOI: 10.22037/ijpr.2019.1101002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study deals with preparation and characterization of thermally crosslinked PVA-based hydrogels containing honey and sucrose for the purpose of erythromycin delivery. The hydrogels have been characterized and compared by scanning electron microscopy, Fourier transform infrared spectroscopy, and bio-adhesion tests. Swelling measurements showed that addition of sucrose and honey decreased the equilibrium swelling of the hydrogels. Results of release studies showed that the amount of erythromycin, released at the early hours was higher for PVA/sucrose and PVA/honey hydrogels compared to PVA hydrogel while the drug released at later times was highly reduced for PVA/honey hydrogel. Both Peppas-Sahlin and Korsmeyer-Peppas models fitted well to the release data. Fitting Peppas-Sahlin model to the release data showed that at the initial times, release of drug from the hydrogel network was mainly governed by Fickian mechanism; however, at later times the drug is dominantly released by relaxational mechanism due to swelling of the network,. Addition of honey improved the bio-adhesion of PVA/honey hydrogel as compared to PVA/sucrose and pure PVA hydrogel. Results of antibacterial tests showed growth inhibitory action of erythromycin-loaded PVA hydrogels against Pseudomonas aeruginosa and Staphylococcus aureus bacteria. This study indicates that these hybrid hydrogels are capable of being used as functional wound dressings aiming to control the rate of antibiotic delivery to the wound site and prevent the wounds from infection.
Collapse
Affiliation(s)
- Shahrzad Fathollahipour
- Department of Chemical and Biomolecular Engineering, The University of Akron, 200 East Buchtel Common, Akron, OH 44325, USA.
| | - Mojtaba Koosha
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Javad Tavakoli
- Mechanical Engineering Biomechanics and Implants Research Group, The Medical Device Research Institute (MDRI), School of Computer Science Engineering and Mathematics, Sir Eric Neal Building, Flinders University, Adelaide, Australia.
| | - Susan Maziarfar
- Faculty of New Science and Technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
18
|
Parlar A, Arslan SO. CB2 Agonist (AM1241) Improving Effect on Ovalbumin-Induced Asthma in Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19. [PMID: 32922464 PMCID: PMC7462485 DOI: 10.22037/ijpr.2020.15456.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Asthma is a disease characterized by spontaneous contraction of the airways in response to a wide variety of endogenous and exogenous stimuli. Many asthma models are used to mimic the human asthma model in the literature. In order to better understand the role of the cannabinoid (CB) 2 receptor in the ovalbumin (OVA)-induced asthma model, a combination of both selective CB2 agonist (AM1241) and antagonist (AM630) was used to improve inflammatory hypersensitivity and edema in rats. In the present study, it was found that OVA decreased body weight (p < 0.05), increased lung weights (p < 0.05), increased diastolic and systolic blood pressure (p < 0.001), and caused irregularity in pulmonary functions (p < 0.001). Moreover, CB2 agonist was found not to reduce body weight, cause blood pressure and respiratory irregularities (p < 0.05). OVA led to increase in IgE, TNF-α, IL-4, MDA level (p < 0.001), and total WBC count (p < .05). CB2 treatment caused to reduce the number of total WBC and the level of total protein in BALF, to hinder to increase level of MDA, IgE, TNF-α, and IL-4 (p < 0.05) in BALF or serum or lung tissue. But CB2-antagonist treatment prevented the protective effect of CB2 agonist. The aim of this study was to study the role of the CB2 receptor in the OVA induced asthma model, to improve inflammatory hypersensitivity, and edema in the rats. The results suggested that CB2 agonist administration to OVA induced asthmatic rats via anti-asthmatic potential through inhibition of parameters such as IgE, IL-4, TNF-α, microvascular escape, and oxidative stress.
Collapse
Affiliation(s)
- Ali Parlar
- University of Adiyaman, Faculty of Medicine, Department of Pharmacology, Adiyaman, Turkey. ,Corresponding author: E-mail:
| | - Seyfullah Oktay Arslan
- Pharmacology Department, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
19
|
Kumar V, Torben W, Mansfield J, Alvarez X, Vande Stouwe C, Li J, Byrareddy SN, Didier PJ, Pahar B, Molina PE, Mohan M. Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes. Front Immunol 2019; 10:914. [PMID: 31114576 PMCID: PMC6503054 DOI: 10.3389/fimmu.2019.00914] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8). Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Vinay Kumar
- Nektar Therapeutics, South San Francisco, CA, United States
| | - Workineh Torben
- Department of Biological Sciences, LSU, Alexandria, LA, United States
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | | | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC, New Orleans, LA, United States.,LSUHSC Alcohol and Drug Abuse Center, New Orleans, LA, United States
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| |
Collapse
|
20
|
Tolerance to hypothermic and antinoceptive effects of ∆9-tetrahydrocannabinol (THC) vapor inhalation in rats. Pharmacol Biochem Behav 2018; 172:33-38. [PMID: 30031028 DOI: 10.1016/j.pbb.2018.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
Abstract
RATIONALE A reduced effect of a given dose of ∆9-tetrahydrocannabinol (THC) emerges with repeated exposure to the drug. This tolerance can vary depending on THC dose, exposure chronicity and the behavioral or physiological measure of interest. A novel THC inhalation system based on e-cigarette technology has been recently shown to produce the hypothermic and antinociceptive effects of THC in rats. OBJECTIVE To determine if tolerance to these effects can be produced with repeated vapor inhalation. METHODS Groups of male and female Wistar rats were exposed to 30 min of inhalation of the propylene glycol (PG) vehicle or THC (200 mg/mL in PG) two or three times per day for four days. Rectal temperature changes and nociception were assessed after the first exposure on the first and fourth days of repeated inhalation. RESULTS Female, but not male, rats developed tolerance to the hypothermic and antinociceptive effects of THC after four days of twice-daily THC vapor inhalation. Thrice daily inhalation for four days resulted in tolerance in both male and female rats. The plasma THC levels reached after a 30 min inhalation session did not differ between the male and female rats. CONCLUSIONS Repeated daily THC inhalation induces tolerance in female and male rats, providing further validation of the vapor inhalation method for preclinical studies.
Collapse
|
21
|
Jacobs DS, Kohut SJ, Jiang S, Nikas SP, Makriyannis A, Bergman J. Acute and chronic effects of cannabidiol on Δ⁹-tetrahydrocannabinol (Δ⁹-THC)-induced disruption in stop signal task performance. Exp Clin Psychopharmacol 2016; 24:320-330. [PMID: 27690502 PMCID: PMC5119678 DOI: 10.1037/pha0000081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent clinical and preclinical research has suggested that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized. To address this, we investigated the effects of Δ9-THC and CBD independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys (n = 6) performing a stop signal task (SST). Additionally, the development of tolerance to the effects of Δ9-THC on SST performance was evaluated by determining the effects of acutely administered Δ9-THC (0.1-3.2 mg/kg), during a 24-day chronic Δ9-THC treatment period with Δ9-THC alone or in combination with CBD. Results indicate that Δ9-THC (0.032-0.32 mg/kg) dose-dependently decreased go success but did not alter go reaction time (RT) or stop signal RT (SSRT); CBD (0.1-1.0 mg/kg) was without effect on all measures and, when coadministered in a 1:1 dose ratio, did not exacerbate or attenuate the effects of Δ9-THC. When coadministered in a 1:3 dose ratio, CBD (1.0 mg/kg) attenuated the disruptive effects of 0.32 mg/kg Δ9-THC but did not alter the effects of other Δ9-THC doses. Increases in ED50 values for the effects of Δ9-THC on SST performance were apparent during chronic Δ9-THC treatment, with little evidence for modification of changes in sensitivity by CBD. These results indicate that CBD, when combined with Δ9-THC in clinically available dose ratios, does not exacerbate and, under restricted conditions may even attenuate, Δ9-THC's behavioral effects. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Stephen J. Kohut
- Preclinical Pharmacology Laboratory, McLean Hospital,Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Shan Jiang
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Spyros P. Nikas
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | | | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital,Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
22
|
Simon L, Song K, Vande Stouwe C, Hollenbach A, Amedee A, Mohan M, Winsauer P, Molina P. Δ9-Tetrahydrocannabinol (Δ9-THC) Promotes Neuroimmune-Modulatory MicroRNA Profile in Striatum of Simian Immunodeficiency Virus (SIV)-Infected Macaques. J Neuroimmune Pharmacol 2016; 11:192-213. [PMID: 26607731 PMCID: PMC4773048 DOI: 10.1007/s11481-015-9645-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/12/2015] [Indexed: 12/22/2022]
Abstract
Cannabinoid administration before and after simian immunodeficiency virus (SIV)-inoculation ameliorated disease progression and decreased inflammation in male rhesus macaques. Δ9-tetrahydrocannabinol (Δ9-THC) did not increase viral load in brain tissue or produce additive neuropsychological impairment in SIV-infected macaques. To determine if the neuroimmunomodulation of Δ9-THC involved differential microRNA (miR) expression, miR expression in the striatum of uninfected macaques receiving vehicle (VEH) or Δ9-THC (THC) and SIV-infected macaques administered either vehicle (VEH/SIV) or Δ9-THC (THC/SIV) was profiled using next generation deep sequencing. Among the 24 miRs that were differentially expressed among the four groups, 16 miRs were modulated by THC in the presence of SIV. These 16 miRs were classified into four categories and the biological processes enriched by the target genes determined. Our results indicate that Δ9-THC modulates miRs that regulate mRNAs of proteins involved in 1) neurotrophin signaling, 2) MAPK signaling, and 3) cell cycle and immune response thus promoting an overall neuroprotective environment in the striatum of SIV-infected macaques. This is also reflected by increased Brain Derived Neurotrophic Factor (BDNF) and decreased proinflammatory cytokine expression compared to the VEH/SIV group. Whether Δ9-THC-mediated modulation of epigenetic mechanisms provides neuroprotection in other regions of the brain and during chronic SIV-infection remains to be determined.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences, 1901 Perdido Street, Medical Education Building 7205, P7-3, New Orleans, LA, 70112, USA
| | - Keijing Song
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Andrew Hollenbach
- Department of Genetics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Angela Amedee
- Department of Microbiology, Immunology, & Parasitology; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Mahesh Mohan
- Department of Comparative Pathology, Tulane National Primate Research Center, 18703 3 Rivers Rd, Covington, LA, 70433, USA
| | - Peter Winsauer
- Department of Pharmacology; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Patricia Molina
- Department of Physiology, Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences, 1901 Perdido Street, Medical Education Building 7205, P7-3, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Winsauer PJ, Filipeanu CM, Weed PF, Sutton JL. Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats. Front Pharmacol 2015; 6:133. [PMID: 26191005 PMCID: PMC4488627 DOI: 10.3389/fphar.2015.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 06/15/2015] [Indexed: 12/28/2022] Open
Abstract
The effects of hormone status and age on the development of tolerance to Δ(9)-THC were assessed in sham-operated (intact) or ovariectomized (OVX) female rats that received either intraperitoneal saline or 5.6 mg/kg of Δ(9)-THC daily from postnatal day (PD) 75-180 (early adulthood onward) or PD 35-140 (adolescence onward). During this time, the four groups for each age (i.e., intact/saline, intact/THC, OVX/saline, and OVX/THC) were trained in a learning and performance procedure and dose-effect curves were established for Δ(9)-THC (0.56-56 mg/kg) and the cannabinoid type-1 receptor (CB1R) antagonist rimonabant (0.32-10 mg/kg). Despite the persistence of small rate-decreasing and error-increasing effects in intact and OVX females from both ages during chronic Δ(9)-THC, all of the Δ(9)-THC groups developed tolerance. However, the magnitude of tolerance, as well as the effect of hormone status, varied with the age at which chronic Δ(9)-THC was initiated. There was no evidence of dependence in any of the groups. Hippocampal protein expression of CB1R, AHA1 (a co-chaperone of CB1R) and HSP90β (a molecular chaperone modulated by AHA-1) was affected more by OVX than chronic Δ(9)-THC; striatal protein expression was not consistently affected by either manipulation. Hippocampal brain-derived neurotrophic factor expression varied with age, hormone status, and chronic treatment. Thus, hormonal status differentially affects the development of tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning and performance behavior in adolescent, but not adult, female rats. These factors and their interactions also differentially affect cannabinoid signaling proteins in the hippocampus and striatum, and ultimately, neural plasticity.
Collapse
Affiliation(s)
- Peter J. Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Catalin M. Filipeanu
- Department of Pharmacology, Howard University College of MedicineWashington, DC, USA
| | - Peter F. Weed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| | - Jessie L. Sutton
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center New OrleansNew Orleans, LA, USA
| |
Collapse
|
24
|
Tahamtan A, Tavakoli-Yaraki M, Rygiel TP, Mokhtari-Azad T, Salimi V. Effects of cannabinoids and their receptors on viral infections. J Med Virol 2015; 88:1-12. [DOI: 10.1002/jmv.24292] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Alireza Tahamtan
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry; Faculty of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Tomasz P. Rygiel
- Department of Immunology; Medical University of Warsaw; Center of Biostructure Research; Warsaw Poland
| | - Talat Mokhtari-Azad
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Salimi
- Departmentof Virology; School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
25
|
Molina PE, Amedee AM, Winsauer P, Nelson S, Bagby G, Simon L. Behavioral, Metabolic, and Immune Consequences of Chronic Alcohol or Cannabinoids on HIV/AIDs: Studies in the Non-Human Primate SIV Model. J Neuroimmune Pharmacol 2015; 10:217-32. [PMID: 25795088 PMCID: PMC4470723 DOI: 10.1007/s11481-015-9599-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
HIV-associated mortality has been significantly reduced with antiretroviral therapy (ART), and HIV infection has become a chronic disease that frequently coexists with many disorders, including substance abuse (Azar et al. Drug Alcohol Depend 112:178-193, 2010; Phillips et al. J Gen Int Med 16:165, 2001). Alcohol and drugs of abuse may modify host-pathogen interactions at various levels including behavioral, metabolic, and immune consequences of HIV infection, as well as the ability of the virus to integrate into the genome and replicate in host cells. Identifying mechanisms responsible for these interactions is complicated by many factors, such as the tissue specific responses to viral infection, multiple cellular mechanisms involved in inflammatory responses, neuroendocrine and localized responses to infection, and kinetics of viral replication. An integrated physiological analysis of the biomedical consequences of chronic alcohol and drug use or abuse on disease progression is possible using rhesus macaques infected with simian immunodeficiency virus (SIV), a relevant model of HIV infection. This review will provide an overview of the data gathered using this model to show that chronic administration of two of the most commonly abused substances, alcohol and cannabinoids (Δ(9)-Tetrahydrocannabinol; THC), affect host-pathogen interactions.
Collapse
Affiliation(s)
- Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, School of Medicine, 1901 Perdido Street, New Orleans, LA, 70112, USA,
| | | | | | | | | | | |
Collapse
|
26
|
Chen W, Crawford RB, Kaplan BLF, Kaminski NE. Modulation of HIVGP120 Antigen-Specific Immune Responses In Vivo by Δ9-Tetrahydrocannabinol. J Neuroimmune Pharmacol 2015; 10:344-55. [PMID: 25900076 DOI: 10.1007/s11481-015-9597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/04/2015] [Indexed: 11/25/2022]
Abstract
Approximately 25 % of HIV patients use marijuana for its putative therapeutic benefit; however, it is unknown how cannabinoids affect the immune status of HIV patients. Previously, a surrogate in vitro mouse model was established, which induced CD8(+) T cell proliferation and gp120-specific IFNγ production. ∆(9)-Tetrahydrocannabinol (THC), the predominant psychoactive compound in marijuana, suppressed or enhanced the responses depending on the magnitude of cellular activation. The purpose of the current study was to investigate whether THC produced similar effects in vivo and therefore a mouse model to induce HIVgp120-specific immune responses was established. A gp120-expressing plasmid, pVRCgp120, or a vector plasmid, pVRC2000, was injected intramuscularly into mice, which were also dosed with THC orally. The gp120-specific IFNγ and IL-2 responses were detected when splenocytes were restimulated with gp120-derived peptide 81 (IIGDIRQAHCNISRA), which was identified as being immunodominant. Various cellular populations were activated in response to pVRCgp120 stimulation followed by peptide restimulation, as evidenced by increased expression levels of activation markers (e.g., CD69, CD80, and major histocompatibility complex II [MHC II]). The IFNγ response and cellular activation were enhanced by THC in C57Bl/6 wild type (WT) mice but suppressed or not affected by THC in cannabinoid receptor 1 (CB1) and 2 (CB2) knockout (CB1 (-/-)CB2 (-/-)) mice. Furthermore, CB1 (-/-)CB2 (-/-) mice exhibited augmented IFNγ production when compared to WT mice in the absence of THC. Collectively, our findings demonstrate that under certain conditions, THC enhances HIV antigen-specific immune responses, which occurs through CB1/CB2-dependent and -independent mechanisms.
Collapse
MESH Headings
- Animals
- Dronabinol/pharmacology
- Female
- HIV Envelope Protein gp120/pharmacology
- HIV Envelope Protein gp120/physiology
- Histocompatibility Antigens Class II/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/immunology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/immunology
Collapse
Affiliation(s)
- Weimin Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | | | | |
Collapse
|
27
|
Effects of Cannabinoids on T-cell Function and Resistance to Infection. J Neuroimmune Pharmacol 2015; 10:204-16. [PMID: 25876735 DOI: 10.1007/s11481-015-9603-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 02/08/2023]
Abstract
This review examines the effects of cannabinoids on immune function, with a focus on effects on T-cells, as well as on resistance to infection. The paper considers the immune modulating capacity of marijuana, of ∆(9)-THC extracted from the marijuana plant, and synthetic cannabinoids. Of particular interest are synthetic compounds that are CB2 receptor (CB2R) selective agonists. As the CB2R is principally expressed on cells of the immune system, agonists that target this receptor, and not CB1 (which is mainly expressed on neurons), have the possibility of altering immune function without psychoactive effects. The overall conclusion of the studies discussed in this review is that cannabinoids that bind to the CB2 receptor, including ∆(9)-THC and CB2 selective agonists are immunosuppressive. The studies provide objective evidence for potentially beneficial effects of marijuana and ∆(9)-THC on the immune system in conditions where it is desirable to dampen immune responses. Evidence is also reviewed supporting the conclusion that these same compounds can sensitize to some infections through their immunosuppressive activities, but not to others. An emerging area of investigation that is reviewed is evidence to support the conclusion that CB2 selective agonists are a new class of immunosuppressive and anti-inflammatory compounds that may have exceptional beneficial effects in a variety of conditions, such as autoimmune diseases and graft rejection, where it is desirable to dampen the immune response without psychoactive effects.
Collapse
|
28
|
Chandra LC, Kumar V, Torben W, Vande Stouwe C, Winsauer P, Amedee A, Molina PE, Mohan M. Chronic administration of Δ9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques. J Virol 2015; 89:1168-81. [PMID: 25378491 PMCID: PMC4300675 DOI: 10.1128/jvi.01754-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/30/2014] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED Recreational and medical use of cannabis among human immunodeficiency virus (HIV)-infected individuals has increased in recent years. In simian immunodeficiency virus (SIV)-infected macaques, chronic administration of Δ9-tetrahydrocannabinol (Δ9-THC) inhibited viral replication and intestinal inflammation and slowed disease progression. Persistent gastrointestinal disease/inflammation has been proposed to facilitate microbial translocation and systemic immune activation and promote disease progression. Cannabinoids including Δ9-THC attenuated intestinal inflammation in mouse colitis models and SIV-infected rhesus macaques. To determine if the anti-inflammatory effects of Δ9-THC involved differential microRNA (miRNA) modulation, we profiled miRNA expression at 14, 30, and 60 days postinfection (days p.i.) in the intestine of uninfected macaques receiving Δ9-THC (n=3) and SIV-infected macaques administered either vehicle (VEH/SIV; n=4) or THC (THC/SIV; n=4). Chronic Δ9-THC administration to uninfected macaques significantly and positively modulated intestinal miRNA expression by increasing the total number of differentially expressed miRNAs from 14 to 60 days p.i. At 60 days p.i., ∼28% of miRNAs showed decreased expression in the VEH/SIV group compared to none showing decrease in the THC/SIV group. Furthermore, compared to the VEH/SIV group, THC selectively upregulated the expression of miR-10a, miR-24, miR-99b, miR-145, miR-149, and miR-187, previously been shown to target proinflammatory molecules. NOX4, a potent reactive oxygen species generator, was confirmed as a direct miR-99b target. A significant increase in NOX4+ crypt epithelial cells was detected in VEH/SIV macaques compared to the THC/SIV group. We speculate that miR-99b-mediated NOX4 downregulation may protect the intestinal epithelium from oxidative stress-induced damage. These results support a role for differential miRNA induction in THC-mediated suppression of intestinal inflammation. Whether similar miRNA modulation occurs in other tissues requires further investigation. IMPORTANCE Gastrointestinal (GI) tract disease/inflammation is a hallmark of HIV/SIV infection. Previously, we showed that chronic treatment of SIV-infected macaques with Δ9-tetrahydrocannabinol (Δ9-THC) increased survival and decreased viral replication and infection-induced gastrointestinal inflammation. Here, we show that chronic THC administration to SIV-infected macaques induced an anti-inflammatory microRNA expression profile in the intestine at 60 days p.i. These included several miRNAs bioinformatically predicted to directly target CXCL12, a chemokine known to regulate lymphocyte and macrophage trafficking into the intestine. Specifically, miR-99b was significantly upregulated in THC-treated SIV-infected macaques and confirmed to directly target NADPH oxidase 4 (NOX4), a reactive oxygen species generator known to damage intestinal epithelial cells. Elevated miR-99b expression was associated with a significantly decreased number of NOX4+ epithelial cells in the intestines of THC-treated SIV-infected macaques. Overall, our results show that selective upregulation of anti-inflammatory miRNA expression contributes to THC-mediated suppression of gastrointestinal inflammation and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Lawrance C Chandra
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Workineh Torben
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Peter Winsauer
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Angela Amedee
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- LSUHSC Alcohol and Drug Abuse Center, New Orleans, Louisiana, USA Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, USA
| |
Collapse
|
29
|
Amedee AM, Nichols WA, LeCapitaine NJ, Stouwe CV, Birke LL, Lacour N, Winsauer PJ, Molina PE. Chronic Δ⁹-tetrahydrocannabinol administration may not attenuate simian immunodeficiency virus disease progression in female rhesus macaques. AIDS Res Hum Retroviruses 2014; 30:1216-25. [PMID: 25113915 DOI: 10.1089/aid.2014.0108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persons living with HIV/AIDS (PLWHA) frequently use cannabinoids, either recreationally by smoking marijuana or therapeutically (delta-9-tetrahydrocannabinol; Δ(9)-THC dronabinol). Previously, we demonstrated that chronic Δ(9)-THC administration decreases early mortality in male simian immunodeficiency virus (SIV)-infected macaques. In this study, we sought to examine whether similar protective effects resulted from chronic cannabinoid administration in SIV-infected female rhesus macaques. Clinical and viral parameters were evaluated in eight female rhesus macaques that received either Δ(9)-THC (0.18-0.32 mg/kg, intramuscularly, twice daily) or vehicle (VEH) starting 28 days prior to intravenous inoculation with SIVmac251. SIV disease progression was assessed by changes in body weight, mortality, viral levels in plasma and mucosal sites, and lymphocyte subsets. In contrast to our results in male animals, chronic Δ(9)-THC did not protect SIV-infected female rhesus macaques from early mortality. Markers of SIV disease, including viral load and CD4(+)/CD8(+) ratio, were not altered by Δ(9)-THC compared to control females; however, females that received chronic Δ(9)-THC did not gain as much weight as control animals. In addition, Δ(9)-THC administration increased total CXCR4 expression in both peripheral and duodenal CD4(+) and CD8(+) T lymphocytes prior to SIV inoculation. Although protection from early mortality was not evident, chronic Δ(9)-THC did not affect clinical markers of SIV disease progression. The contrasting effects of chronic Δ(9)-THC in males versus females remain to be explained, but highlight the need for further studies to explore the sex-dependent effects of Δ(9)-THC and other cannabinoids on the HIV disease course and their implications for virus transmission.
Collapse
Affiliation(s)
- Angela M. Amedee
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Whitney A. Nichols
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicole J. LeCapitaine
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Leslie L. Birke
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nedra Lacour
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter J. Winsauer
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
30
|
Molina PE, Amedee AM, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer PJ, Vande Stouwe C, McGoey RR, Auten MW, LaMotte L, Chandra LC, Birke LL. Modulation of gut-specific mechanisms by chronic δ(9)-tetrahydrocannabinol administration in male rhesus macaques infected with simian immunodeficiency virus: a systems biology analysis. AIDS Res Hum Retroviruses 2014; 30:567-78. [PMID: 24400995 DOI: 10.1089/aid.2013.0182] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our studies have demonstrated that chronic Δ(9)-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques. Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression. We used a systems approach to examine the duodenal immune environment in 4- to 6-year-old male rhesus monkeys inoculated intravenously with SIVMAC251 after 17 months of chronic THC administration (0.18-0.32 mg/kg, intramuscularly, twice daily). Duodenal tissue samples excised from chronic THC- (N=4) and vehicle (VEH)-treated (N=4) subjects at ∼5 months postinoculation showed lower viral load, increased duodenal integrin beta 7(+)(β7) CD4(+) and CD8(+) central memory T cells, and a significant preferential increase in Th2 cytokine expression. Gene array analysis identified six genes that were differentially expressed in intestinal samples of the THC/SIV animals when compared to those differentially expressed between VEH/SIV and uninfected controls. These genes were identified as having significant participation in (1) apoptosis, (2) cell survival, proliferation, and morphogenesis, and (3) energy and substrate metabolic processes. Additional analysis comparing the duodenal gene expression in THC/SIV vs. VEH/SIV animals identified 93 differentially expressed genes that participate in processes involved in muscle contraction, protein folding, cytoskeleton remodeling, cell adhesion, and cell signaling. Immunohistochemical staining showed attenuated apoptosis in epithelial crypt cells of THC/SIV subjects. Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.
Collapse
Affiliation(s)
- Patricia E. Molina
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Angela M. Amedee
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicole J. LeCapitaine
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jovanny Zabaleta
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Mahesh Mohan
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter J. Winsauer
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Robin R. McGoey
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthew W. Auten
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lynn LaMotte
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Lawrance C. Chandra
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Leslie L. Birke
- Departments of Physiology, Pharmacology, and Medicine, and Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
31
|
Le Foll B, Trigo JM, Sharkey KA, Le Strat Y. Cannabis and Δ9-tetrahydrocannabinol (THC) for weight loss? Med Hypotheses 2013; 80:564-7. [PMID: 23410498 DOI: 10.1016/j.mehy.2013.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/09/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
Obesity is one of the highest preventable causes of morbidity and mortality in the developed world [1]. It has been well known for a long time that exposure to cannabis produces an increase of appetite (a phenomenon referred to as the 'munchies'). This phenomenon led to an exploration of the role of the endocannabinoid system in the regulation of obesity and associated metabolic syndrome. This effort subsequently led to the development of a successful therapeutic approach for obesity that consisted of blocking the cannabinoid CB1 receptors using ligands such as Rimonabant in order to produce weight loss and improve metabolic profile [2]. Despite being efficacious, Rimonabant was associated with increased rates of depression and anxiety and therefore removed from the market. We recently discovered that the prevalence of obesity is paradoxically much lower in cannabis users as compared to non-users and that this difference is not accounted for by tobacco smoking status and is still present after adjusting for variables such as sex and age. Here, we propose that this effect is directly related to exposure to the Δ(9)-tetrahydrocannabinol (THC) present in cannabis smoke. We therefore propose the seemingly paradoxical hypothesis that THC or a THC/cannabidiol combination drug may produce weight loss and may be a useful therapeutic for the treatment of obesity and its complications.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Wright MJ, Vandewater SA, Parsons LH, Taffe MA. Δ(9)Tetrahydrocannabinol impairs reversal learning but not extra-dimensional shifts in rhesus macaques. Neuroscience 2013; 235:51-8. [PMID: 23333671 DOI: 10.1016/j.neuroscience.2013.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/19/2012] [Accepted: 01/05/2013] [Indexed: 11/24/2022]
Abstract
Expansion of medical marijuana use in the US and the recently successful decriminalization of recreational marijuana in two States elevates interest in the specific cognitive effects of Δ(9)tetrahydrocannabinol (Δ(9)THC), the major psychoactive constituent of marijuana. Controlled laboratory studies in nonhuman primates provide mixed evidence for specific effects of Δ(9)THC in learning and memory tasks, with a suggestion that frontal-mediated tasks may be the most sensitive. In this study, adult male rhesus monkeys were trained on tasks which assess reversal learning, extradimensional attentional shift learning and spatial delayed-response. Subjects were challenged with 0.1-0.5mg/kg Δ(9)THC, i.m., in randomized order and evaluated on the behavioral measures. Peak plasma levels of Δ(9)THC were observed 30min after 0.2mg/kg (69±29ng/ml) and 60min after 0.5mg/kg (121±23ng/ml) was administered and behavioral effects on a bimanual motor task persisted for up to 2h after injection. An increase in errors-to-criterion (ETC) associated with reversal learning was further increased by Δ(9)THC in a dose-dependent manner. The increase in ETC associated with extradimensional shifts was not affected by Δ(9)THC. Spatial delayed-response performance was impaired by Δ(9)THC in a retention-interval-dependent manner. Overall the pattern of results suggests a more profound effect of Δ(9)THC on tasks mediated by orbitofrontal (reversal learning) versus dorsolateral (extradimensional shifts) prefrontal mechanisms.
Collapse
Affiliation(s)
- M J Wright
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
33
|
Taffe MA. Δ⁹Tetrahydrocannabinol impairs visuo-spatial associative learning and spatial working memory in rhesus macaques. J Psychopharmacol 2012; 26:1299-306. [PMID: 22526684 PMCID: PMC3560534 DOI: 10.1177/0269881112443743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabis remains the most commonly abused illicit drug and is rapidly expanding in quasi-licit use in some jurisdictions under medical marijuana laws. Effects of the psychoactive constituent Δ⁹tetrahydrocannabinol (Δ⁹THC) on cognitive function remain of pressing concern. Prior studies in monkeys have not shown consistent evidence of memory-specific effects of Δ⁹THC on recognition tasks, and it remains unclear to what extent Δ⁹THC causes sedative versus specific cognitive effects. In this study, adult male rhesus monkeys were trained on tasks which assess spatial working memory, visuo-spatial associative memory and learning as well as motivation for food reward. Subjects were subsequently challenged with 0.1-0.3 mg/kg Δ⁹THC, i.m., in randomized order and evaluated on the behavioral measures. The performance of both vsPAL and SOSS tasks was impaired by Δ⁹THC in a dose and task-difficulty dependent manner. It is concluded that Δ⁹THC disrupts cognition in a way that is consistent with a direct effect on memory. There was evidence for interference with spatial working memory, visuo-spatial associative memory and incremental learning in the latter task. These results and the lack of specific effect of Δ⁹THC in prior visual recognition studies imply a sensitivity of spatial memory processing and/or working memory to endocannabinoid perturbation.
Collapse
Affiliation(s)
- Michael A Taffe
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
34
|
Rempel V, Volz N, Hinz S, Karcz T, Meliciani I, Nieger M, Wenzel W, Bräse S, Müller CE. 7-Alkyl-3-benzylcoumarins: a versatile scaffold for the development of potent and selective cannabinoid receptor agonists and antagonists. J Med Chem 2012; 55:7967-77. [PMID: 22916707 DOI: 10.1021/jm3008213] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of 7-alkyl-3-benzylcoumarins was designed, synthesized, and tested at cannabinoid CB(1) and CB(2) receptors in radioligand binding and cAMP accumulation studies. 7-Alkyl-3-benzylcoumarins were found to constitute a versatile scaffold for obtaining potent CB receptor ligands with high potency at either CB(1) or CB(2) and a broad spectrum of efficacies. Fine-tuning of compound properties was achieved by small modifications of the substitution pattern. The most potent compounds of the present series include 5-methoxy-3-(2-methylbenzyl)-7-pentyl-2H-chromen-2-one (19a, PSB-SB-1201), a selective CB(1)antagonist (K(i) CB(1) 0.022 μM), 5-methoxy-3-(2-methoxybenzyl)-7-pentyl-2H-chromen-2-one (21a, PSB-SB-1202), a dual CB(1)/CB(2)agonist (CB(1)K(i) 0.032 μM, EC(50) 0.056 μM; CB(2)K(i) 0.049 μM, EC(50) 0.014 μM), 5-hydroxy-3-(2-hydroxybenzyl)-7-(2-methyloct-2-yl)-2H-chromen-2-one (25b, PSB-SB-1203), a dual CB(1)/CB(2) ligand that blocks CB(1) but activates CB(2) receptors (CB(1)K(i) 0.244 μM; CB(2)K(i) 0.210 μM, EC(50) 0.054 μM), and 7-(1-butylcyclopentyl)-5-hydroxy-3-(2-hydroxybenzyl)-2H-chromen-2-one (27b, PSB-SB-1204), a selective CB(2) receptor agonist (CB(1)K(i) 1.59 μM; CB(2)K(i) 0.068 μM, EC(50) 0.048 μM).
Collapse
Affiliation(s)
- Viktor Rempel
- Pharmaceutical Chemistry I, Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen W, Kaplan BLF, Pike ST, Topper LA, Lichorobiec NR, Simmons SO, Ramabhadran R, Kaminski NE. Magnitude of stimulation dictates the cannabinoid-mediated differential T cell response to HIVgp120. J Leukoc Biol 2012; 92:1093-102. [PMID: 22899554 DOI: 10.1189/jlb.0212082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Approximately 25% of immunocompromised HIV patients smoke marijuana for its putative therapeutic benefit. The goal of these studies was to test the hypothesis that marijuana-derived cannabinoids have immunomodulatory effects on HIV antigen-specific T cell effector function. A surrogate mouse model to induce polyclonal T cell responses against HIV(gp120) was established. THC, a marijuana-derived cannabinoid, suppressed or enhanced mouse CD8(+) T cell proliferation and the gp120-specific CTL response depending on the magnitude of the IFN-γ response. To determine the molecular mechanisms by which cannabinoids differentially modulate T cell responses, P/I or anti-CD3/CD28 antibodies were used for stimulation, and another marijuana-derived cannabinoid, CBD, was also investigated. THC or CBD suppressed or enhanced IFN-γ and IL-2 production by mouse splenocytes under optimal or suboptimal stimulation, respectively. Similar differential effects of cannabinoids on cytokine production were also observed on nuclear translocation of NFAT and with human PBMCs in response to P/I stimulation. However, THC and CBD elevated intracellular calcium, regardless of the stimulation level with P/I, suggesting that the cannabinoid-induced calcium increase provides an appropriate signal for activation in suboptimally stimulated T cells but an anergic-like signal as a result of excessive calcium in optimally stimulated T cells. Overall, these data demonstrate differential modulation by cannabinoids of a HIV antigen-specific response and identify a possible mechanism responsible for this effect.
Collapse
Affiliation(s)
- Weimin Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Molina PE, Amedee A, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer P, Vande Stouwe C. Cannabinoid neuroimmune modulation of SIV disease. J Neuroimmune Pharmacol 2011; 6:516-27. [PMID: 21830069 DOI: 10.1007/s11481-011-9301-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/25/2011] [Indexed: 01/05/2023]
Abstract
Marijuana is one of the most commonly used and abused drugs. Δ-9-tetrahydrocannabinol (Δ-9-THC), the primary psychoactive component in marijuana, is FDA-approved to ameliorate AIDS-associated wasting. Because cannabinoid receptors are expressed on cells of the immune system, it is possible that chronic Δ-9-THC use may impact HIV disease progression. Until recently, longitudinal, controlled, systems-approach studies on the effects of cannabinoids on disease progression were lacking. Data from our controlled studies in non-human primates show chronic Δ-9-THC administration prior to and during simian immunodeficiency virus (SIV) infection ameliorates disease progression, attenuates viral load and tissue inflammation, significantly reducing morbidity and mortality of SIV-infected macaques. Identification of possible mechanisms responsible for this modulation of disease progression is complicated due to the multiplicity of cannabinoid-mediated effects, tissue-specific responses to the viral infection, multiple cellular mechanisms involved in inflammatory responses, coordinated neuroendocrine and localized responses to infection, and kinetics of viral replication. Emerging results from our studies reveal that the overall mechanisms mediating the protective effects of cannabinoids involve novel epigenomic regulatory mechanisms in need of systematic investigation. Here, we review the evidence supporting an immunomodulatory role for cannabinoids and its impact on disease progression with focus on HIV/SIV infection.
Collapse
Affiliation(s)
- Patricia E Molina
- Department of Physiology, LSUHSC at New Orleans, 1901 Perdido Street, Medical Education Building, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Chronic Δ-9-tetrahydrocannabinol administration increases lymphocyte CXCR4 expression in rhesus macaques. J Neuroimmune Pharmacol 2011; 6:540-5. [PMID: 21484257 DOI: 10.1007/s11481-011-9277-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/21/2011] [Indexed: 01/13/2023]
Abstract
Cannabinoids have been reported to produce various immunomodulatory effects, which could potentially impact the host response to bacterial or viral infection. We have recently demonstrated that chronic Δ-9-tetrahydrocannabinol (THC; 0.32 mg/kg i.m., BID) decreased early mortality in rhesus macaques infected with simian immunodeficiency virus (SIV). However, the possibility that prolonged THC administration affects lymphocyte counts, phenotype, and proliferation indices has not been addressed. We examined expression of proliferative and phenotypic markers in circulating lymphocytes of male young adult rhesus macaques chronically-treated with THC (i.m. twice daily 0.32 mg/kg) for 12 months. Chronic THC administration did not alter lymphocyte subtypes, naïve and memory subsets, proliferation, or apoptosis of T lymphocytes when compared to time-matched vehicle-treated controls. However, chronic THC increased T lymphocyte CXCR4 expression on both CD4+ and CD8+ T lymphocytes compared to control. These results show that chronic THC administration produces changes in T cell phenotype, which can potentially contribute to host immunomodulation to infectious challenges.
Collapse
|