1
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. GeroScience 2024; 46:5819-5841. [PMID: 38509416 PMCID: PMC11493911 DOI: 10.1007/s11357-024-01133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Kip D Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
- Department of Internal Medicine, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Larry Wilhelm
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Dongqin Zhu
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jessica Bodie
- Department of Translational Neuroscience, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Kohama SG, Urbanski HF. The aged female rhesus macaque as a translational model for human menopause and hormone therapy. Horm Behav 2024; 166:105658. [PMID: 39531811 PMCID: PMC11602343 DOI: 10.1016/j.yhbeh.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Progress in understanding the causes of physiological and behavioral changes in post-menopausal women is hampered by the paucity of animal models that accurately recapitulate these age-associated changes. Here we evaluate the translational potential of female rhesus macaques (Macaca mulatta). Like women, these long-lived diurnal primates show marked neuroendocrine changes during aging, as well as perturbed sleep-wake cycles and cognitive decline. Furthermore, the brains of old rhesus macaques show some of the same pathological hallmarks of Alzheimer's disease as do humans, including amyloidosis and tauopathology. Importantly, unlike humans, rhesus macaques can be maintained under tightly controlled environmental conditions, such as photoperiod, temperature and diet, and tissues can be collected with zero postmortem interval; this makes them especially suitable for studies aimed at elucidating underlying molecular mechanisms. Recent findings from female macaques are helping to elucidate how sex-steroids influence gene expression within the brain and contribute to the maintenance of cognitive function and amelioration of age-associated pathologies. Taken together, these findings emphasize the translational value of female rhesus macaques as a model for elucidating causal mechanisms that underlie normative and pathological changes in post-menopausal women. They also provide a pragmatic platform upon which to develop safe and effective therapies.
Collapse
Affiliation(s)
- Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
3
|
Heuer SE, Nickerson EW, Howell GR, Bloss EB. Genetic context drives age-related disparities in synaptic maintenance and structure across cortical and hippocampal neuronal circuits. Aging Cell 2024; 23:e14033. [PMID: 38130024 PMCID: PMC10861192 DOI: 10.1111/acel.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 12/23/2023] Open
Abstract
The disconnection of neuronal circuitry through synaptic loss is presumed to be a major driver of age-related cognitive decline. Age-related cognitive decline is heterogeneous, yet whether genetic mechanisms differentiate successful from unsuccessful cognitive decline through maintenance or vulnerability of synaptic connections remains unknown. Previous work using rodent and primate models leveraged various techniques to imply that age-related synaptic loss is widespread on pyramidal cells in prefrontal cortex (PFC) circuits but absent on those in area CA1 of the hippocampus. Here, we examined the effect of aging on synapses on projection neurons forming a hippocampal-cortico-thalamic circuit important for spatial working memory tasks from two genetically distinct mouse strains that exhibit susceptibility (C57BL/6J) or resistance (PWK/PhJ) to cognitive decline during aging. Across both strains, synapse density on CA1-to-PFC projection neurons appeared completely intact with age. In contrast, we found synapse loss on PFC-to-nucleus reuniens (RE) projection neurons from aged C57BL/6J but not PWK/PhJ mice. Moreover, synapses from aged PWK/PhJ mice but not from C57BL/6J exhibited altered morphologies that suggest increased efficiency to drive depolarization in the parent dendrite. Our findings suggest resistance to age-related cognitive decline results in part by age-related synaptic adaptations, and identification of these mechanisms in PWK/PhJ mice could uncover new therapeutic targets for promoting successful cognitive aging and extending human health span.
Collapse
Affiliation(s)
- Sarah E. Heuer
- The Jackson LaboratoryBar HarborMaineUSA
- Tufts University Graduate School of Biomedical SciencesBostonMassachusettsUSA
| | - Emily W. Nickerson
- The Jackson LaboratoryBar HarborMaineUSA
- Tufts University Graduate School of Biomedical SciencesBostonMassachusettsUSA
| | - Gareth R. Howell
- The Jackson LaboratoryBar HarborMaineUSA
- Tufts University Graduate School of Biomedical SciencesBostonMassachusettsUSA
- Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA
| | - Erik B. Bloss
- The Jackson LaboratoryBar HarborMaineUSA
- Tufts University Graduate School of Biomedical SciencesBostonMassachusettsUSA
- Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA
| |
Collapse
|
4
|
Cervera-Juanes R, Zimmerman KD, Wilhelm L, Zhu D, Bodie J, Kohama SG, Urbanski HF. Modulation of neural gene networks by estradiol in old rhesus macaque females. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572105. [PMID: 38187564 PMCID: PMC10769303 DOI: 10.1101/2023.12.18.572105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
- Center for Precision Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Kip D. Zimmerman
- Center for Precision Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
- Department of Internal Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Larry Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Dongqin Zhu
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Jessica Bodie
- Department of Translational Neuroscience, Atrium Health Wake Forest Baptist, Winston-Salem, NC 27157
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Valk SL, Xu T, Paquola C, Park BY, Bethlehem RAI, Vos de Wael R, Royer J, Masouleh SK, Bayrak Ş, Kochunov P, Yeo BTT, Margulies D, Smallwood J, Eickhoff SB, Bernhardt BC. Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nat Commun 2022; 13:2341. [PMID: 35534454 PMCID: PMC9085871 DOI: 10.1038/s41467-022-29886-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Brain structure scaffolds intrinsic function, supporting cognition and ultimately behavioral flexibility. However, it remains unclear how a static, genetically controlled architecture supports flexible cognition and behavior. Here, we synthesize genetic, phylogenetic and cognitive analyses to understand how the macroscale organization of structure-function coupling across the cortex can inform its role in cognition. In humans, structure-function coupling was highest in regions of unimodal cortex and lowest in transmodal cortex, a pattern that was mirrored by a reduced alignment with heritable connectivity profiles. Structure-function uncoupling in macaques had a similar spatial distribution, but we observed an increased coupling between structure and function in association cortices relative to humans. Meta-analysis suggested regions with the least genetic control (low heritable correspondence and different across primates) are linked to social-cognition and autobiographical memory. Our findings suggest that genetic and evolutionary uncoupling of structure and function in different transmodal systems may support the emergence of complex forms of cognition.
Collapse
Affiliation(s)
- Sofie L. Valk
- grid.419524.f0000 0001 0041 5028Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ting Xu
- grid.428122.f0000 0004 7592 9033Center for the Developing Brain, Child Mind Institute, New York, NY USA
| | - Casey Paquola
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada ,grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Structural and functional organisation of the brain (INM-1), Research Centre Jülich, Jülich, Germany, FZ Jülich, Jülich, Germany
| | - Bo-yong Park
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada ,grid.202119.90000 0001 2364 8385Department of Data Science, Inha University, Incheon, South Korea ,grid.410720.00000 0004 1784 4496Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| | | | - Reinder Vos de Wael
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada
| | - Jessica Royer
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada
| | - Shahrzad Kharabian Masouleh
- grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Şeyma Bayrak
- grid.419524.f0000 0001 0041 5028Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Kochunov
- grid.411024.20000 0001 2175 4264Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA
| | - B. T. Thomas Yeo
- grid.4280.e0000 0001 2180 6431Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore ,grid.32224.350000 0004 0386 9924Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA USA ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
| | - Daniel Margulies
- grid.425274.20000 0004 0620 5939Neuroanatomy and Connectivity Lab, Institut de Cerveau et de la Moelle epiniere, Paris, France
| | - Jonathan Smallwood
- grid.410356.50000 0004 1936 8331Department of Psychology, Queen’s University, Kingston, ON Canada
| | - Simon B. Eickhoff
- grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C. Bernhardt
- grid.14709.3b0000 0004 1936 8649Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC Canada
| |
Collapse
|
6
|
Frye BM, Craft S, Register TC, Kim J, Whitlow CT, Barcus RA, Lockhart SN, Sai KKS, Shively CA. Early Alzheimer's disease-like reductions in gray matter and cognitive function with aging in nonhuman primates. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12284. [PMID: 35310523 PMCID: PMC8918111 DOI: 10.1002/trc2.12284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Introduction Age-related neuropathology associated with sporadic Alzheimer's disease (AD) often develops well before the onset of symptoms. Given AD's long preclinical period, translational models are needed to identify early signatures of pathological decline. Methods Using structural magnetic resonance imaging and cognitive assessments, we examined the relationships among age, cognitive performance, and neuroanatomy in 48 vervet monkeys (Chlorocebus aethiops sabaeus) ranging from young adults to very old. Results We found negative associations of age with cortical gray matter volume (P = .003) and the temporal-parietal cortical thickness meta-region of interest (P = .001). Additionally, cortical gray matter volumes predicted working memory at approximately 1-year follow-up (correct trials at the 20s delay [P = .008]; correct responses after longer delays [P = .004]). Discussion Cortical gray matter diminishes with age in vervets in regions relevant to AD, which may increase risk of cognitive impairment. This study lays the groundwork for future investigations to test therapeutics to delay or slow pathological decline.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Jeongchul Kim
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Christopher T. Whitlow
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Department of Internal Medicine/GerontologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Kiran Kumar Solingapuram Sai
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
7
|
Cervera-Juanes R, Darakjian P, Ball M, Kohama SG, Urbanski HF. Effects of estradiol supplementation on the brain transcriptome of old rhesus macaques maintained on an obesogenic diet. GeroScience 2022; 44:229-252. [PMID: 34642852 PMCID: PMC8810962 DOI: 10.1007/s11357-021-00453-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity, the cessation of ovarian steroids with menopause, and age are risk factors for mood disorders, dementia, and Alzheimer's disease (AD). However, immediate hormone therapy (HT) after menopause may have beneficial effects in different brain regions involved in memory and cognition. To more closely replicate the age, endocrine, and metabolic environment of obese postmenopausal women, either on or off HT, middle-aged female rhesus macaques were ovariectomized/hysterectomized (OvH) and maintained on a high-fat, high-sugar, obesogenic Western-style diet (WSD) for 30 months; half of the animals received HT immediately after OvH and half served as placebo controls. RNAseq of the occipital (OC) and prefrontal cortex (PFC), hippocampus (HIP), and amygdala (AMG) identified 293, 379, 505, and 4993 differentially expressed genes (DEGs), respectively. Pathway enrichment analysis identified an activation of neuroinflammation in OC and HIP, but an inhibition in the AMG with HT. Synaptogenesis, circadian rhythm, mitochondrial dysfunction, mTOR, glutamate, serotonin, GABA, dopamine, epinephrine/norepinephrine, glucocorticoid receptor signaling, neuronal NOS, and amyloid processing were exclusively enriched in AMG. As compared to the placebo control group, most of these signaling pathways are downregulated after HT, suggesting a protective effect of HT in OvH females under a WSD. Overall, our results suggest that a chronic obesogenic diet may induce a wide range of alterations in multiple signaling pathways that are linked to age-associated brain pathology and dementia. In these individuals, HT seems to have a protective effect against neuroinflammation, amyloid beta depositions, and tau tangle formation.
Collapse
Affiliation(s)
- Rita Cervera-Juanes
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| | - Priscila Darakjian
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Megan Ball
- Division of Genetics, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
8
|
Flores VA, Pal L, Manson JE. Hormone Therapy in Menopause: Concepts, Controversies, and Approach to Treatment. Endocr Rev 2021; 42:720-752. [PMID: 33858012 DOI: 10.1210/endrev/bnab011] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/22/2022]
Abstract
Hormone therapy (HT) is an effective treatment for menopausal symptoms, including vasomotor symptoms and genitourinary syndrome of menopause. Randomized trials also demonstrate positive effects on bone health, and age-stratified analyses indicate more favorable effects on coronary heart disease and all-cause mortality in younger women (close proximity to menopause) than in women more than a decade past menopause. In the absence of contraindications or other major comorbidities, recently menopausal women with moderate or severe symptoms are appropriate candidates for HT. The Women's Health Initiative (WHI) hormone therapy trials-estrogen and progestin trial and the estrogen-alone trial-clarified the benefits and risks of HT, including how the results differed by age. A key lesson from the WHI trials, which was unfortunately lost in the posttrial cacophony, was that the risk:benefit ratio and safety profile of HT differed markedly by clinical characteristics of the participants, especially age, time since menopause, and comorbidity status. In the present review of the WHI and other recent HT trials, we aim to provide readers with an improved understanding of the importance of the timing of HT initiation, type and route of administration, and of patient-specific considerations that should be weighed when prescribing HT.
Collapse
Affiliation(s)
- Valerie A Flores
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lubna Pal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Frye BM, Craft S, Latimer CS, Keene CD, Montine TJ, Register TC, Orr ME, Kavanagh K, Macauley SL, Shively CA. Aging-related Alzheimer's disease-like neuropathology and functional decline in captive vervet monkeys (Chlorocebus aethiops sabaeus). Am J Primatol 2021; 83:e23260. [PMID: 33818801 PMCID: PMC8626867 DOI: 10.1002/ajp.23260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/05/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Age-related neurodegeneration characteristic of late-onset Alzheimer's disease (LOAD) begins in middle age, well before symptoms. Translational models to identify modifiable risk factors are needed to understand etiology and identify therapeutic targets. Here, we outline the evidence supporting the vervet monkey (Chlorocebus aethiops sabaeus) as a model of aging-related AD-like neuropathology and associated phenotypes including cognitive function, physical function, glucose handling, intestinal physiology, and CSF, blood, and neuroimaging biomarkers. This review provides the most comprehensive multisystem description of aging in vervets to date. This review synthesizes a large body of evidence that suggests that aging vervets exhibit a coordinated suite of traits consistent with early AD and provide a powerful, naturally occurring model for LOAD. Notably, relationships are identified between AD-like neuropathology and modifiable risk factors. Gaps in knowledge and key limitations are provided to shape future studies to illuminate mechanisms underlying divergent neurocognitive aging trajectories and to develop interventions that increase resilience to aging-associated chronic disease, particularly, LOAD.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington-Seattle
| | | | - Thomas C. Register
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
- J. Paul Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
| | - Kylie Kavanagh
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
| | - Shannon L. Macauley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| | - Carol A. Shively
- Department of Pathology/Comparative Medicine, Wake Forest School of Medicine
- Wake Forest Alzheimer’s Disease Research Center
| |
Collapse
|
10
|
Baumgartner NE, Black KL, McQuillen SM, Daniel JM. Previous estradiol treatment during midlife maintains transcriptional regulation of memory-related proteins by ERα in the hippocampus in a rat model of menopause. Neurobiol Aging 2021; 105:365-373. [PMID: 34198140 PMCID: PMC8338908 DOI: 10.1016/j.neurobiolaging.2021.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Previous midlife estradiol treatment, like continuous treatment, improves memory and results in lasting increases in hippocampal levels of estrogen receptor (ER) α and ER-dependent transcription in ovariectomized rodents. We hypothesized that previous and continuous midlife estradiol act to specifically increase levels of nuclear ERα, resulting in transcriptional regulation of proteins that mediate estrogen effects on memory. Ovariectomized middle-aged rats received estradiol or vehicle capsule implants. After 40 days, rats initially receiving vehicle received another vehicle capsule (ovariectomized controls). Rats initially receiving estradiol received either another estradiol (continuous estradiol) or a vehicle (previous estradiol) capsule. One month later, hippocampi were dissected and processed. Continuous and previous estradiol increased levels of nuclear, but not membrane or cytosolic ERα and had no effect on Esr1. Continuous and previous estradiol impacted gene expression and/or protein levels of mediators of estrogenic action on memory including ChAT, BDNF, and PSD-95. Findings demonstrate a long-lasting role for hippocampal ERα as a transcriptional regulator of memory following termination of previous estradiol treatment in a rat model of menopause.
Collapse
Affiliation(s)
- Nina E Baumgartner
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA.
| | - Katelyn L Black
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Shannon M McQuillen
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA; Psychology Department, Tulane University, New Orleans, LA
| |
Collapse
|
11
|
Baumgartner NE, Daniel JM. Estrogen receptor α: a critical role in successful female cognitive aging. Climacteric 2021; 24:333-339. [PMID: 33522313 DOI: 10.1080/13697137.2021.1875426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to potential health risks, current recommendations are that individuals who wish to use hormone therapy to treat menopausal symptoms do so for the shortest period of time possible. In our investigation into how short-term use of estrogens in midlife following loss of ovarian function exerts long-term effects on female cognitive aging in rodents, we discovered a link between the ability of previous exposure to estradiol to enhance memory in the long term and its ability to increase estrogen receptor α (ERα) levels in the hippocampus, a brain area important for memory. Follow-up studies in model systems implicate a role for ERα in enhanced cognitive function independent of ovarian or exogenously administered estrogens. Results are consistent with clinical studies in which brain ERα levels in older women and men are related to cognitive functioning and risk of cognitive decline is associated with polymorphisms in the gene that transcribes ERα. Research in preclinical models reveals mechanisms through which ERα can be activated and affect cognition in the absence of ovarian estrogens, including ligand-independent activation via insulin-like growth factor-1 signaling and activation by brain-derived neuroestrogens. This report reviews preclinical and clinical data that collectively point to the importance of ERα in cognition and highlights the need to differentiate the role of estrogen receptors from their classical ligands as we seek approaches to facilitate successful cognitive aging.
Collapse
Affiliation(s)
- N E Baumgartner
- Neuroscience Program, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA
| | - J M Daniel
- Neuroscience Program, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA.,Department of Psychology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
12
|
Valk SL, Xu T, Margulies DS, Masouleh SK, Paquola C, Goulas A, Kochunov P, Smallwood J, Yeo BTT, Bernhardt BC, Eickhoff SB. Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness. SCIENCE ADVANCES 2020; 6:eabb3417. [PMID: 32978162 PMCID: PMC7518868 DOI: 10.1126/sciadv.abb3417] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/04/2020] [Indexed: 05/16/2023]
Abstract
The topology of the cerebral cortex has been proposed to provide an important source of constraint for the organization of cognition. In a sample of twins (n = 1113), we determined structural covariance of thickness to be organized along both a posterior-to-anterior and an inferior-to-superior axis. Both organizational axes were present when investigating the genetic correlation of cortical thickness, suggesting a strong genetic component in humans, and had a comparable organization in macaques, demonstrating they are phylogenetically conserved in primates. In both species, the inferior-superior dimension of cortical organization aligned with the predictions of dual-origin theory, and in humans, we found that the posterior-to-anterior axis related to a functional topography describing a continuum of functions from basic processes involved in perception and action to more abstract features of human cognition. Together, our study provides important insights into how functional and evolutionary patterns converge at the level of macroscale cortical structural organization.
Collapse
Affiliation(s)
- Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Daniel S Margulies
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
- Frontlab, Centre National de la Recherche Scientifique Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Shahrzad Kharabian Masouleh
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, Centre for Translational MR Research and N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Qin Y, An D, Xu W, Qi X, Wang X, Chen L, Chen L, Sha S. Estradiol Replacement at the Critical Period Protects Hippocampal Neural Stem Cells to Improve Cognition in APP/PS1 Mice. Front Aging Neurosci 2020; 12:240. [PMID: 32903757 PMCID: PMC7438824 DOI: 10.3389/fnagi.2020.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that there is a critical window for estrogen replacement therapy (ERT) in postmenopausal women with Alzheimer’s disease (AD); however, supporting evidence is lacking. To address this issue, we investigated the effective period for estradiol (E2) treatment using a mouse model of AD. Four-month-old female APPswe/PSEN1dE9 (APP/PS1) mice were ovariectomized (OVX) and treated with E2 for 2 months starting at the age of 4 months (early period), 6 months (mid-period), or 8 months (late period). We then evaluated hippocampal neurogenesis, β-amyloid (Aβ) accumulation, telomerase activity, and hippocampal-dependent behavior. Compared to age-matched wild type mice, APP/PS1 mice with intact ovaries showed increased proliferation of hippocampal neural stem cells (NSCs) at 8 months of age and decreased proliferation of NSCs at 10 months of age; meanwhile, Aβ accumulation progressively increased with age, paralleling the reduced survival of immature neurons. OVX-induced depletion of E2 in APP/PS1 mice resulted in elevated Aβ levels accompanied by elevated p75 neurotrophin receptor (p75NTR) expression and increased NSC proliferation at 6 months of age, which subsequently declined; accelerated reduction of immature neurons starting from 6 months of age, and reduced telomerase activity and worsened memory performance at 10 months of age. Treatment with E2 in the early period post-OVX, rather than in the mid or late period, abrogated these effects, and p75NTR inhibition reduced the overproliferation of NSCs in 6-month-old OVX-APP/PS1 mice. Thus, E2 deficiency in young APP/PS1 mice exacerbates cognitive deficits and depletes the hippocampal NSC pool in later life; this can be alleviated by E2 treatment in the early period following OVX, which prevents Aβ/p75NTR-induced NSC overproliferation and preserves telomerase activity.
Collapse
Affiliation(s)
- Yaoyao Qin
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dong An
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Weixing Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiuting Qi
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Guo H, Liu M, Zhang L, Wang L, Hou W, Ma Y, Ma Y. The Critical Period for Neuroprotection by Estrogen Replacement Therapy and the Potential Underlying Mechanisms. Curr Neuropharmacol 2020; 18:485-500. [PMID: 31976839 PMCID: PMC7457406 DOI: 10.2174/1570159x18666200123165652] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/03/2019] [Accepted: 01/14/2020] [Indexed: 01/13/2023] Open
Abstract
17β-Estradiol (estradiol or E2) is a steroid hormone that has been broadly applied as a neuroprotective therapy for a variety of neurodegenerative and cerebrovascular disorders such as ischemic stroke, Alzheimer's disease, and Parkinson's disease. Several laboratory and clinical studies have reported that Estrogen Replacement Therapy (ERT) had no effect against these diseases in elderly postmenopausal women, and at worst, increased their risk of onset and mortality. This review focuses on the growing body of data from in vitro and animal models characterizing the potential underlying mechanisms and signaling pathways that govern successful neuroprotection by ERT, including the roles of E2 receptors in mediating neuroprotection, E2 genomic regulation of apoptosis- related pathways, membrane-bound receptor-mediated non-genomic signaling pathways, and the antioxidant mechanisms of E2. Also discussed is the current evidence for a critical period of effective treatment with estrogen following natural or surgical menopause and the outcomes of E2 administration within an advantageous time period. The known mechanisms governing the duration of the critical period include depletion of E2 receptors, the switch to a ketogenic metabolic profile by neuronal mitochondria, and a decrease in acetylcholine that accompanies E2 deficiency. Also the major clinical trials and observational studies concerning postmenopausal Hormone Therapy (HT) are summarized to compare their outcomes with respect to neurological disease and discuss their relevance to the critical period hypothesis. Finally, potential controversies and future directions for this field are discussed throughout the review.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqun Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| | - Yulong Ma
- Address correspondence to these authors at the Anesthesia and Operation Center, The First Medical Center to Chinese PLA General Hospital, Beijing 100853, China; Tel: +86 010 66938152; E-mail: and Department of Anesthesiology, The Seventh Medical Center to Chinese PLA General Hospital, Beijing 100700, China; E-mail:
| |
Collapse
|
15
|
Yin W, Borniger JC, Wang X, Maguire SM, Munselle ML, Bezner KS, Tesfamariam HM, Garcia AN, Hofmann HA, Nelson RJ, Gore AC. Estradiol treatment improves biological rhythms in a preclinical rat model of menopause. Neurobiol Aging 2019; 83:1-10. [PMID: 31585360 DOI: 10.1016/j.neurobiolaging.2019.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/14/2023]
Abstract
The perimenopausal transition at middle age is often associated with hot flashes and sleep disruptions, metabolic changes, and other symptoms. Whereas the mechanisms for these processes are incompletely understood, both aging (AG) and a loss of ovarian estrogens play contributing roles. Furthermore, the timing of when estradiol (E) treatment should commence and for how long are key clinical questions in the management of symptoms. Using a rat model of surgical menopause, we determined the effects of regimens of E treatment with differing time at onset and duration of treatment on diurnal rhythms of activity and core temperature and on food intake and body weight. Reproductively mature (MAT, ∼4 months) or AG (∼11 months) female rats were ovariectomized, implanted intraperitoneally with a telemetry device, and given either a vehicle (V) or E subcutaneous capsule implantation. Rats were remotely recorded for 10 days per month for 3 (MAT) or 6 (AG) months. To ascertain whether delayed onset of treatment affected rhythms, a subset of AG-V rats had their capsules switched to E at the end of 3 months. Another set of AG-E rats had their capsules removed at 3 months to determine whether beneficial effects of E would persist. Overall, activity and temperature mesor, robustness, and amplitude declined with AG. Compared to V treatment, E-treated rats showed (1) better maintenance of body weight and food intake; (2) higher, more consolidated activity and temperature rhythms; and (3) higher activity and temperature robustness and amplitude. In the AG arm of the study, switching treatment from V to E or E to V quickly reversed these patterns. Thus, the presence of E was the dominant factor in determining stability and amplitude of locomotor activity and temperature rhythms. As a whole, the results show benefits of E treatment, even with a delay, on biological rhythms and physiological functions.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xutong Wang
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean M Maguire
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Mercedes L Munselle
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Kelsey S Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Haben M Tesfamariam
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra N Garcia
- Psychology Department, The University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Psychology Department, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
16
|
Bliss-Moreau E, Baxter MG. Interest in non-social novel stimuli as a function of age in rhesus monkeys. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182237. [PMID: 31598275 PMCID: PMC6774963 DOI: 10.1098/rsos.182237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Human cognitive and affective life changes with healthy ageing; cognitive capacity declines while emotional life becomes more positive and social relationships are prioritized. This may reflect an awareness of limited lifetime unique to humans, leading to a greater interest in maintaining social relationships at the expense of the non-social world in the face of limited cognitive and physical resources. Alternately, fundamental biological processes common to other primate species may direct preferential interest in social stimuli with increasing age. Inspired by a recent study that described a sustained interest in social stimuli but diminished interest in non-social stimuli in aged Barbary macaques, we carried out a conceptual replication to test whether old rhesus monkeys lost interest in non-social stimuli. Male and female macaques (Macaca mulatta; N = 243) 4-30 years old were tested with a food puzzle outfitted with an activity monitor to evaluate their propensity to manipulate the puzzle in order to free a food reward. We found no indication that aged monkeys were less interested in the puzzle than young monkeys, nor were they less able to solve it.
Collapse
Affiliation(s)
- Eliza Bliss-Moreau
- Department of Psychology, California National Primate Research Center, University of California, Davis, CA, USA
| | - Mark G. Baxter
- Nash Family Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Speth RC, D'Ambra M, Ji H, Sandberg K. A heartfelt message, estrogen replacement therapy: use it or lose it. Am J Physiol Heart Circ Physiol 2018; 315:H1765-H1778. [PMID: 30216118 PMCID: PMC6336974 DOI: 10.1152/ajpheart.00041.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
The issue of cardiovascular and cognitive health in women is complex. During the premenopausal phase of life, women have healthy blood pressure levels that are lower than those of age-matched men, and they have less cardiovascular disease. However, in the postmenopausal stage of life, blood pressure in women increases, and they are increasingly susceptible to cardiovascular disease, cognitive impairments, and dementia, exceeding the incidence in men. The major difference between pre- and postmenopausal women is the loss of estrogen. Thus, it seemed logical that postmenopausal estrogen replacement therapy, with or without progestin, generally referred to as menopausal hormone treatment (MHT), would prevent these adverse sequelae. However, despite initially promising results, a major randomized clinical trial refuted the benefits of MHT, leading to its falling from favor. However, reappraisal of this study in the framework of a "critical window," or "timing hypothesis," has changed our perspective on the benefit-to-risk ratio of MHT, and this review discusses the historical, current, and future approaches to MHT.
Collapse
Affiliation(s)
- Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida
- Department of Pharmacology and Physiology, College of Medicine, Georgetown University , Washington, District of Columbia
| | | | - Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Working memory (WM) is a key process that is integral to many complex cognitive tasks, and it declines significantly with advancing age. This review will survey recent evidence supporting the idea that the functioning of the WM system in women is modulated by circulating estrogens. RECENT FINDINGS In postmenopausal women, increased estrogen concentrations may be associated with improved WM function, which is evident on WM tasks that have a high cognitive load or significant manipulation demands. Experimental studies in rhesus monkeys and human neuroimaging studies support a prefrontal locus for these effects. Defining the basic neurochemical or cellular mechanisms that underlie the ability of estrogens to regulate WM is a topic of current research in both human and animal investigations. An emerging body of work suggests that frontal executive elements of the WM system are influenced by the circulating estrogen concentrations currently available to the CNS and that the effects are region-specific within the frontal cortex. These findings have implications for women's brain health and cognitive aging.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, Social Sciences Center, and Department of Psychiatry, University of Western Ontario, London, ON, N6A 5C2, Canada.
| |
Collapse
|