1
|
Avraham G, Ivry RB. Interference underlies attenuation upon relearning in sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596118. [PMID: 38853972 PMCID: PMC11160603 DOI: 10.1101/2024.05.27.596118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Savings refers to the gain in performance upon relearning a task. In sensorimotor adaptation, savings is tested by having participants adapt to perturbed feedback and, following a washout block during which the system resets to baseline, presenting the same perturbation again. While savings has been observed with these tasks, we have shown that the contribution from implicit sensorimotor adaptation, a process that uses sensory prediction errors to recalibrate the sensorimotor map, is actually attenuated upon relearning (Avraham et al., 2021). In the present study, we test the hypothesis that this attenuation is due to interference arising from the washout block, and more generally, from experience with a different relationship between the movement and the feedback. In standard adaptation studies, removing the perturbation at the start of the washout block results in a salient error signal in the opposite direction to that observed during learning. As a starting point, we replicated the finding that implicit adaptation is attenuated following a washout period in which the feedback now signals a salient opposite error. When we eliminated visual feedback during washout, implicit adaptation was no longer attenuated upon relearning, consistent with the interference hypothesis. Next, we eliminated the salient error during washout by gradually decreasing the perturbation, creating a scenario in which the perceived errors fell within the range associated with motor noise. Nonetheless, attenuation was still prominent. Inspired by this observation, we tested participants with an extended experience with veridical feedback during an initial baseline phase and found that this was sufficient to cause robust attenuation of implicit adaptation during the first exposure to the perturbation. This effect was context-specific: It did not generalize to movements that were not associated with the interfering feedback. Taken together, these results show that the implicit sensorimotor adaptation system is highly sensitive to memory interference from a recent experience with a discrepant action-outcome contingency.
Collapse
Affiliation(s)
- Guy Avraham
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Wang T, Avraham G, Tsay JS, Thummala T, Ivry RB. Advanced feedback enhances sensorimotor adaptation. Curr Biol 2024; 34:1076-1085.e5. [PMID: 38402615 PMCID: PMC10990049 DOI: 10.1016/j.cub.2024.01.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/22/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
It is widely recognized that sensorimotor adaptation is facilitated when feedback is provided throughout the movement compared with when it is provided at the end of the movement. However, the source of this advantage is unclear: continuous feedback is more ecological, dynamic, and available earlier than endpoint feedback. Here, we assess the relative merits of these factors using a method that allows us to manipulate feedback timing independent of actual hand position. By manipulating the onset time of "endpoint" feedback, we found that adaptation was modulated in a non-monotonic manner, with the peak of the function occurring in advance of the hand reaching the target. Moreover, at this optimal time, learning was of similar magnitude as that observed with continuous feedback. By varying movement duration, we demonstrate that this optimal time occurs at a relatively fixed time after movement onset, an interval we hypothesize corresponds to when the comparison of the sensory prediction and feedback generates the strongest error signal.
Collapse
Affiliation(s)
- Tianhe Wang
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Li Ka Shing Center, Berkeley, CA 94720, USA.
| | - Guy Avraham
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Li Ka Shing Center, Berkeley, CA 94720, USA
| | - Jonathan S Tsay
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Li Ka Shing Center, Berkeley, CA 94720, USA
| | - Tanvi Thummala
- Department of Molecular and Cell Biology, University of California Berkeley, Weill Hall, #3200, Berkeley, CA 94720, USA
| | - Richard B Ivry
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94704, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Li Ka Shing Center, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Zhang Y, Rottman BM. Causal learning with delays up to 21 hours. Psychon Bull Rev 2024; 31:312-324. [PMID: 37580453 DOI: 10.3758/s13423-023-02342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Considerable delays between causes and effects are commonly found in real life. However, previous studies have only investigated how well people can learn probabilistic relations with delays on the order of seconds. In the current study we tested whether people can learn a cause-effect relation with delays of 0, 3, 9, or 21 hours, and the study lasted 16 days. We found that learning was slowed with longer delays, but by the end of 16 days participants had learned the cause-effect relation in all four conditions, and they had learned the relation about equally well in all four conditions. This suggests that in real-world situations people may still be fairly accurate at inferring cause-effect relations with delays if they have enough experience. We also discuss ways that delays may interact with other real-world factors that could complicate learning.
Collapse
|
4
|
Ricci M, Kim J, Johansson F. A computational passage-of-time model of the cerebellar Purkinje cell in eyeblink conditioning. Front Comput Neurosci 2023; 17:1108346. [PMID: 36950506 PMCID: PMC10025386 DOI: 10.3389/fncom.2023.1108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
The cerebellar Purkinje cell controlling eyeblinks can learn, remember, and reproduce the interstimulus interval in a classical conditioning paradigm. Given temporally separated inputs, the cerebellar Purkinje cell learns to pause its tonic inhibition of a motor pathway with high temporal precision so that an overt blink occurs at the right time. Most models place the passage-of-time representation in upstream network effects. Yet, bypassing the upstream network and directly stimulating the Purkinje cell's pre-synaptic fibers during conditioning still causes acquisition of a well-timed response. Additionally, while network models are sensitive to variance in the temporal structure of probe stimulation, in vivo findings suggest that the acquired Purkinje cell response is not. Such findings motivate alternative approaches to modeling neural function. Here, we present a proof-of-principle model of the passage-of-time which is internal to the Purkinje cell and is invariant to probe structure. The model is consistent with puzzling findings, accurately recapitulates Purkinje cell firing during classical conditioning and makes testable electrophysiological predictions.
Collapse
Affiliation(s)
- Matthew Ricci
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Junkyung Kim
- Carney Institute for Brain Sciences, Brown University, Providence, RI, United States
| | - Fredrik Johansson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Fredrik Johansson
| |
Collapse
|
5
|
Avraham G, Taylor JA, Breska A, Ivry RB, McDougle SD. Contextual effects in sensorimotor adaptation adhere to associative learning rules. eLife 2022; 11:e75801. [PMID: 36197002 PMCID: PMC9635873 DOI: 10.7554/elife.75801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a tone or light act as conditioned stimuli (CSs) that predict aversive sensations at the cornea (unconditioned stimulus [US]). Here, we ask if a similar framework could be applied to another type of cerebellar-dependent sensorimotor learning - sensorimotor adaptation. Models of sensorimotor adaptation posit that the introduction of an environmental perturbation results in an error signal that is used to update an internal model of a sensorimotor map for motor planning. Here, we take a step toward an integrative account of these two forms of cerebellar-dependent learning, examining the relevance of core concepts from associative learning for sensorimotor adaptation. Using a visuomotor adaptation reaching task, we paired movement-related feedback (US) with neutral auditory or visual contextual cues that served as CSs. Trial-by-trial changes in feedforward movement kinematics exhibited three key signatures of associative learning: differential conditioning, sensitivity to the CS-US interval, and compound conditioning. Moreover, after compound conditioning, a robust negative correlation was observed between responses to the two elemental CSs of the compound (i.e. overshadowing), consistent with the additivity principle posited by theories of associative learning. The existence of associative learning effects in sensorimotor adaptation provides a proof-of-concept for linking cerebellar-dependent learning paradigms within a common theoretical framework.
Collapse
Affiliation(s)
- Guy Avraham
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Jordan A Taylor
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Assaf Breska
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Max Planck Institute for Biological CyberneticsTübingenGermany
| | - Richard B Ivry
- Department of Psychology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | | |
Collapse
|
6
|
Sun C, Wang C, Xu C. A full-function memristive pavlov associative memory circuit with inter-stimulus interval effect. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Muñoz-Capote A, Gómez-Martínez DG, Rodriguez-Flores T, Robles F, Ramos M, Ramos F. A bioinspired model to motivate learning of appetitive signals’ incentive value under a Pavlovian conditioning approach. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Cárcel L, De la Casa LG. Temporal Factors Modulate Haloperidol-Induced Conditioned Catalepsy. Front Behav Neurosci 2021; 15:713512. [PMID: 34276319 PMCID: PMC8283013 DOI: 10.3389/fnbeh.2021.713512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Repeated pairings of a neutral context and the effects of haloperidol give rise to conditioned catalepsy when the context is subsequently presented in a drug-free test. In order to confirm whether this response is based on Pavlovian processes, we conducted two experiments involving two manipulations that affect conditioning intensity in classical conditioning procedures: time of joint exposure to the conditioned and the unconditioned stimulus, and the length of the inter-stimulus interval (ISI). The results revealed that both an increase in the length of context-drug pairings during conditioning and a reduced ISI between drug administration and context exposure increased conditioned catalepsy. These results are discussed in terms of the temporal peculiarities of those procedures that involve drugs as the unconditioned stimulus along with the role of Pavlovian conditioning in context-dependent catalepsy.
Collapse
Affiliation(s)
- Lucía Cárcel
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| | - Luis G De la Casa
- Laboratory of Animal Behavior and Neuroscience, Department of Experimental Psychology, University of Seville, Seville, Spain
| |
Collapse
|
9
|
Zhao Y, Zeng Y, Qiao G. Brain-inspired classical conditioning model. iScience 2021; 24:101980. [PMID: 33490893 PMCID: PMC7808924 DOI: 10.1016/j.isci.2020.101980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Classical conditioning plays a critical role in the learning process of biological brains, and many computational models have been built to reproduce the related classical experiments. However, these models can reproduce and explain only a limited range of typical phenomena in classical conditioning. Based on existing biological findings concerning classical conditioning, we build a brain-inspired classical conditioning (BICC) model. Compared with other computational models, our BICC model can reproduce as many as 15 classical experiments, explaining a broader set of findings than other models have, and offers better computational explainability for both the experimental phenomena and the biological mechanisms of classical conditioning. Finally, we validate our theoretical model on a humanoid robot in three classical conditioning experiments (acquisition, extinction, and reacquisition) and a speed generalization experiment, and the results show that our model is computationally feasible as a foundation for brain-inspired robot classical conditioning. Classical conditioning (CC) is crucial in biological and embodied robot learning A spiking neural network incorporates existing biological findings of CC in one model BICC can explain a broader set of findings than other existing computational models BICC ensures a robot gets similar biological behavior and speed generalization capability
Collapse
Affiliation(s)
- Yuxuan Zhao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zeng
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Corresponding author
| | - Guang Qiao
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Mollick JA, Hazy TE, Krueger KA, Nair A, Mackie P, Herd SA, O'Reilly RC. A systems-neuroscience model of phasic dopamine. Psychol Rev 2020; 127:972-1021. [PMID: 32525345 PMCID: PMC8453660 DOI: 10.1037/rev0000199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a neurobiologically informed computational model of phasic dopamine signaling to account for a wide range of findings, including many considered inconsistent with the simple reward prediction error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value (LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory projections) and phasic pausing for expected USs (via the lateral habenula). Our model accounts for data supporting the separability of these systems, including individual differences in CS-based (sign-tracking) versus US-based learning (goal-tracking). Both systems use competing opponent-processing pathways representing evidence for and against specific USs, which can explain data dissociating the processes involved in acquisition versus extinction conditioning. Further, opponent processing proved critical in accounting for the full range of conditioned inhibition phenomena, and the closely related paradigm of second-order conditioning. Finally, we show how additional separable pathways representing aversive USs, largely mirroring those for appetitive USs, also have important differences from the positive valence case, allowing the model to account for several important phenomena in aversive conditioning. Overall, accounting for all of these phenomena strongly constrains the model, thus providing a well-validated framework for understanding phasic dopamine signaling. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Jessica A Mollick
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Thomas E Hazy
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Kai A Krueger
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Ananta Nair
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Prescott Mackie
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Seth A Herd
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Randall C O'Reilly
- Department of Psychology and Neuroscience, University of Colorado Boulder
| |
Collapse
|
11
|
De la Casa LG, Cárcel L, Marias M, Ruiz-Salas JC. Haloperidol-based conditioned increase in locomotor activity is disrupted by latent inhibition and extended interstimulus interval. Pharmacol Biochem Behav 2020; 198:173036. [PMID: 32891708 DOI: 10.1016/j.pbb.2020.173036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
Previous research have shown that repeated administration of 0.5 mg/kg of haloperidol in a given context gives rise to an increase in activity when spontaneous locomotor activity is recorded in a drug-free test conducted in such context. In order to confirm whether this type of response is based on processes of a Pavlovian nature, we conducted two experiments involving two manipulations that disrupt conditioning in typical classical conditioning procedures: preexposure of the to-be-conditioned stimulus (latent inhibition), and an increase in the length of the inter-stimulus interval. The results revealed that both manipulations were effective in reducing the conditioned increase of the locomotor response. This kind of conditioning can be explained in terms of the differential effects of low vs. high doses of haloperidol, and the temporal dynamics of conditioned response.
Collapse
Affiliation(s)
| | - Lucía Cárcel
- Department of Experimental Psychology, Universidad de Sevilla, Seville, Spain
| | - Mélanie Marias
- Department of Experimental Psychology, Universidad de Sevilla, Seville, Spain
| | | |
Collapse
|
12
|
da Silva SP, Williams AM. Translations in Stimulus-Stimulus Pairing: Autoshaping of Learner Vocalizations. Perspect Behav Sci 2020; 43:57-103. [PMID: 32440645 PMCID: PMC7198677 DOI: 10.1007/s40614-019-00228-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Stimulus-stimulus pairing (SSP) is a procedure used by behavior analysis practitioners that capitalizes on respondent conditioning processes to elicit vocalizations. These procedures usually are implemented only after other, more customary methods (e.g., standard echoic training via modeling) have been exhausted. Unfortunately, SSP itself has mixed research support, probably because certain as-yet-unidentified procedural variations are more effective than others. Even when SSP produces (or increases) vocalizations, its effects can be short-lived. Although specific features of SSP differ across published accounts, fundamental characteristics include presentation of a vocal stimulus proximal with presentation of a preferred item. In the present article, we draw parallels between SSP procedures and autoshaping, review factors shown to affect autoshaping, and interpret autoshaping research for suggested SSP tests and applications. We then call for extended use and reporting of SSP in behavior-analytic treatments. Finally, three bridges created by this article are identified: basic-applied, respondent-operant, and behavior analysis with other sciences.
Collapse
|
13
|
Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity. J Neurosci 2017; 37:12153-12166. [PMID: 29118107 DOI: 10.1523/jneurosci.0588-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 11/21/2022] Open
Abstract
Combinatorial expansion by the cerebellar granule cell layer (GCL) is fundamental to theories of cerebellar contributions to motor control and learning. Granule cells (GrCs) sample approximately four mossy fiber inputs and are thought to form a combinatorial code useful for pattern separation and learning. We constructed a spatially realistic model of the cerebellar GCL and examined how GCL architecture contributes to GrC combinatorial diversity. We found that GrC combinatorial diversity saturates quickly as mossy fiber input diversity increases, and that this saturation is in part a consequence of short dendrites, which limit access to diverse inputs and favor dense sampling of local inputs. This local sampling also produced GrCs that were combinatorially redundant, even when input diversity was extremely high. In addition, we found that mossy fiber clustering, which is a common anatomical pattern, also led to increased redundancy of GrC input combinations. We related this redundancy to hypothesized roles of temporal expansion of GrC information encoding in service of learned timing, and we show that GCL architecture produces GrC populations that support both temporal and combinatorial expansion. Finally, we used novel anatomical measurements from mice of either sex to inform modeling of sparse and filopodia-bearing mossy fibers, finding that these circuit features uniquely contribute to enhancing GrC diversification and redundancy. Our results complement information theoretic studies of granule layer structure and provide insight into the contributions of granule layer anatomical features to afferent mixing.SIGNIFICANCE STATEMENT Cerebellar granule cells are among the simplest neurons, with tiny somata and, on average, just four dendrites. These characteristics, along with their dense organization, inspired influential theoretical work on the granule cell layer as a combinatorial expander, where each granule cell represents a unique combination of inputs. Despite the centrality of these theories to cerebellar physiology, the degree of expansion supported by anatomically realistic patterns of inputs is unknown. Using modeling and anatomy, we show that realistic input patterns constrain combinatorial diversity by producing redundant combinations, which nevertheless could support temporal diversification of like combinations, suitable for learned timing. Our study suggests a neural substrate for producing high levels of both combinatorial and temporal diversity in the granule cell layer.
Collapse
|
14
|
Donahoe JW. Behavior analysis and neuroscience: Complementary disciplines. J Exp Anal Behav 2017; 107:301-320. [DOI: 10.1002/jeab.251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022]
|
15
|
Gast A, Langer S, Sengewald MA. Evaluative conditioning increases with temporal contiguity. The influence of stimulus order and stimulus interval on evaluative conditioning. Acta Psychol (Amst) 2016; 170:177-85. [PMID: 27543928 DOI: 10.1016/j.actpsy.2016.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/29/2022] Open
Abstract
Evaluative conditioning (EC) is a change in valence that is due to pairing a conditioned stimulus (CS) with another, typically valent, unconditioned stimulus (US). This paper investigates how basic presentation parameters moderate EC effects. In two studies we tested the effectiveness of different temporal relations of the CS and the US, that is, the order in which the stimuli were presented and the temporal distance between them. Both studies showed that the size of EC effects was independent of the presentation order of CS and US within a stimulus pair. Contrary to classical conditioning effects, EC effects are thus not most pronounced after CS-first presentations. Furthermore, as shown in Experiment 2, EC effects increased in magnitude as the temporal interval between CS and US presentations decreased. Experiment 1 showed largest EC effects in the condition with simultaneous presentations - which can be seen as the condition with the temporally closest presentation. In this Experiment stimuli were presented in two different modalities, which might have facilitated simultaneous processing. In Experiment 2, in which all stimuli were presented visually, this advantage of simultaneous presentation was not found. We discuss practical and theoretical implications of our findings.
Collapse
|
16
|
Weidemann G, Lovibond PF. The role of US recency in the Perruchet effect in eyeblink conditioning. Biol Psychol 2016; 119:1-10. [PMID: 27350540 DOI: 10.1016/j.biopsycho.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
In the Perruchet effect, there is a concurrent dissociation between participants' conditioned responses (CRs) and their expectancy of the unconditioned stimulus (US) across runs of repeated trials. The effect has been taken as evidence for multiple learning processes, but this conclusion follows only if the CR trend is the result of learning. Two experiments examined the role of US recency in generating the observed CR trend. A standard Perruchet condition was compared with a control condition in which US recency was controlled by presenting the US on every trial. The associative contribution was maintained by varying the temporal relationship between the CS and the US. In both experiments the pattern of CRs seen in the Perruchet condition was absent in the control condition, suggesting that the eyeblink trend in the Perruchet effect may be due to a non-associative performance factor such as priming or sensitization arising from recent US presentations.
Collapse
Affiliation(s)
- Gabrielle Weidemann
- School of Social Sciences and Psychology, University of Western Sydney, Sydney, Australia.
| | - Peter F Lovibond
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Bevins RA, Palmatier MI. Extending the Role of Associative Learning Processes in Nicotine Addiction. ACTA ACUST UNITED AC 2016; 3:143-58. [PMID: 15653812 DOI: 10.1177/1534582304272005] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Compulsive smoking is a worldwide public health problem. Although research has confirmed the importance of associative learning processes in nicotine addiction, therapies targeting nicotine-associated cues still have a high relapse rate. Most theories conceptualize nicotine as an ‘outcome’ that reinforces behaviors and/or changes the affective value of stimuli. Albeit important, this view does not capture the complexity of associative processes involved in nicotine addiction. For example, nicotine serves as a conditional stimulus acquiring new appetitive/affective properties when paired with a non-drug reward. Also, nicotine functions as an occasion setter that participates in higher-order associative processes that likely permit a more pervasive influence of conditioned cues that are resistant to typically cue-exposure therapy techniques. Finally, nicotine appears to amplify the salience of other stimuli that have some incentive value resulting in enhanced nicotine selfadministration and conditioned reinforcement processes. Future smoking intervention strategies should take into consideration these additional associative learning processes.
Collapse
Affiliation(s)
- Rick A Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588-0308, USA.
| | | |
Collapse
|
18
|
Hoffmann LC, Cicchese JJ, Berry SD. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning. Front Syst Neurosci 2015; 9:50. [PMID: 25918501 PMCID: PMC4394696 DOI: 10.3389/fnsys.2015.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022] Open
Abstract
Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.
Collapse
Affiliation(s)
- Loren C Hoffmann
- Center for Learning and Memory, University of Texas Austin, TX, USA
| | - Joseph J Cicchese
- Department of Psychology and Center for Neuroscience, Miami University Oxford, OH, USA
| | - Stephen D Berry
- Department of Psychology and Center for Neuroscience, Miami University Oxford, OH, USA
| |
Collapse
|
19
|
Hoffmann LC, Cicchese JJ, Berry SD. Hippocampal Theta-Based Brain Computer Interface. BRAIN-COMPUTER INTERFACES 2015. [DOI: 10.1007/978-3-319-10978-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Schreurs BG, Burhans LB. Eyeblink classical conditioning and post-traumatic stress disorder - a model systems approach. Front Psychiatry 2015; 6:50. [PMID: 25904874 PMCID: PMC4389289 DOI: 10.3389/fpsyt.2015.00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Blanchette Rockefeller Neurosciences Institute, West Virginia University , Morgantown, WV , USA ; Department of Physiology and Pharmacology, West Virginia University , Morgantown, WV , USA
| | - Lauren B Burhans
- Blanchette Rockefeller Neurosciences Institute, West Virginia University , Morgantown, WV , USA ; Department of Physiology and Pharmacology, West Virginia University , Morgantown, WV , USA
| |
Collapse
|
21
|
Palmer JHC, Gong P. Associative learning of classical conditioning as an emergent property of spatially extended spiking neural circuits with synaptic plasticity. Front Comput Neurosci 2014; 8:79. [PMID: 25120462 PMCID: PMC4110627 DOI: 10.3389/fncom.2014.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 11/13/2022] Open
Abstract
Associative learning of temporally disparate events is of fundamental importance for perceptual and cognitive functions. Previous studies of the neural mechanisms of such association have been mainly focused on individual neurons or synapses, often with an assumption that there is persistent neural firing activity that decays slowly. However, experimental evidence supporting such firing activity for associative learning is still inconclusive. Here we present a novel, alternative account of associative learning in the context of classical conditioning, demonstrating that it is an emergent property of a spatially extended, spiking neural circuit with spike-timing dependent plasticity and short term synaptic depression. We show that both the conditioned and unconditioned stimuli can be represented by spike sequences which are produced by wave patterns propagating through the network, and that the interactions of these sequences are timing-dependent. After training, the occurrence of the sequence encoding the conditioned stimulus (CS) naturally regenerates that encoding the unconditioned stimulus (US), therefore resulting in association between them. Such associative learning based on interactions of spike sequences can happen even when the timescale of their separation is significantly larger than that of individual neurons. In particular, our network model is able to account for the temporal contiguity property of classical conditioning, as observed in behavioral studies. We further show that this emergent associative learning in our network model is quite robust to noise perturbations. Our results therefore demonstrate that associative learning of temporally disparate events can happen in a distributed way at the level of neural circuits.
Collapse
Affiliation(s)
| | - Pulin Gong
- School of Physics, University of SydneySydney, NSW, Australia
- Sydney Medical School, University of SydneySydney, NSW, Australia
| |
Collapse
|
22
|
Soto FA, Gershman SJ, Niv Y. Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization. Psychol Rev 2014; 121:526-58. [PMID: 25090430 PMCID: PMC4165620 DOI: 10.1037/a0037018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
How do we apply learning from one situation to a similar, but not identical, situation? The principles governing the extent to which animals and humans generalize what they have learned about certain stimuli to novel compounds containing those stimuli vary depending on a number of factors. Perhaps the best studied among these factors is the type of stimuli used to generate compounds. One prominent hypothesis is that different generalization principles apply depending on whether the stimuli in a compound are similar or dissimilar to each other. However, the results of many experiments cannot be explained by this hypothesis. Here, we propose a rational Bayesian theory of compound generalization that uses the notion of consequential regions, first developed in the context of rational theories of multidimensional generalization, to explain the effects of stimulus factors on compound generalization. The model explains a large number of results from the compound generalization literature, including the influence of stimulus modality and spatial contiguity on the summation effect, the lack of influence of stimulus factors on summation with a recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the asymmetrical generalization decrement in overshadowing and external inhibition, and the conditions leading to a reliable external inhibition effect. By integrating rational theories of compound and dimensional generalization, our model provides the first comprehensive computational account of the effects of stimulus factors on compound generalization, including spatial and temporal contiguity between components, which have posed long-standing problems for rational theories of associative and causal learning.
Collapse
Affiliation(s)
- Fabian A. Soto
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
| | - Samuel J. Gershman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Santa Barbara
| | - Yael Niv
- Department of Psychology, Princeton University, Santa Barbara
| |
Collapse
|
23
|
Boulanger Bertolus J, Hegoburu C, Ahers JL, Londen E, Rousselot J, Szyba K, Thévenet M, Sullivan-Wilson TA, Doyère V, Sullivan RM, Mouly AM. Infant rats can learn time intervals before the maturation of the striatum: evidence from odor fear conditioning. Front Behav Neurosci 2014; 8:176. [PMID: 24860457 PMCID: PMC4030151 DOI: 10.3389/fnbeh.2014.00176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/25/2014] [Indexed: 11/24/2022] Open
Abstract
Interval timing refers to the ability to perceive, estimate and discriminate durations in the range of seconds to minutes. Very little is currently known about the ontogeny of interval timing throughout development. On the other hand, even though the neural circuit sustaining interval timing is a matter of debate, the striatum has been suggested to be an important component of the system and its maturation occurs around the third post-natal (PN) week in rats. The global aim of the present study was to investigate interval timing abilities at an age for which striatum is not yet mature. We used odor fear conditioning, as it can be applied to very young animals. In odor fear conditioning, an odor is presented to the animal and a mild footshock is delivered after a fixed interval. Adult rats have been shown to learn the temporal relationships between the odor and the shock after a few associations. The first aim of the present study was to assess the activity of the striatum during odor fear conditioning using 2-Deoxyglucose autoradiography during development in rats. The data showed that although fear learning was displayed at all tested ages, activation of the striatum was observed in adults but not in juvenile animals. Next, we assessed the presence of evidence of interval timing in ages before and after the inclusion of the striatum into the fear conditioning circuit. We used an experimental setup allowing the simultaneous recording of freezing and respiration that have been demonstrated to be sensitive to interval timing in adult rats. This enabled the detection of duration-related temporal patterns for freezing and/or respiration curves in infants as young as 12 days PN during odor fear conditioning. This suggests that infants are able to encode time durations as well as and as quickly as adults while their striatum is not yet functional. Alternative networks possibly sustaining interval timing in infant rats are discussed.
Collapse
Affiliation(s)
| | - Chloe Hegoburu
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| | - Jessica L. Ahers
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Elizabeth Londen
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Juliette Rousselot
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| | - Karina Szyba
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Marc Thévenet
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| | - Tristan A. Sullivan-Wilson
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Valérie Doyère
- Centre de Neurosciences Paris-Sud, CNRS UMR 8195, University Paris-SudOrsay, France
| | - Regina M. Sullivan
- Child and Adolescent Psychiatry, Emotional Brain Institute, Nathan Kline Institute, New York University School of MedicineNew York, NY, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, University Lyon1Lyon, France
| |
Collapse
|
24
|
Cerebellar Inhibitory Output Shapes the Temporal Dynamics of Its Somatosensory Inferior Olivary Input. THE CEREBELLUM 2014; 13:452-61. [DOI: 10.1007/s12311-014-0558-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Abstract
Many forms of learning require temporally ordered stimuli. In Pavlovian eyeblink conditioning, a conditioned stimulus (CS) must precede the unconditioned stimulus (US) by at least about 100 ms for learning to occur. Conditioned responses are learned and generated by the cerebellum. Recordings from the cerebellar cortex during conditioning have revealed CS-triggered pauses in the firing of Purkinje cells that likely drive the conditioned blinks. The predominant view of the learning mechanism in conditioning is that long-term depression (LTD) at parallel fiber (PF)-Purkinje cell synapses underlies the Purkinje cell pauses. This raises a serious conceptual challenge because LTD is most effectively induced at short CS-US intervals, which do not support acquisition of eyeblinks. To resolve this discrepancy, we recorded Purkinje cells during conditioning with short or long CS-US intervals. Decerebrated ferrets trained with CS-US intervals ≥150 ms reliably developed Purkinje cell pauses, but training with an interval of 50 ms unexpectedly induced increases in CS-evoked spiking. This bidirectional modulation of Purkinje cell activity offers a basis for the requirement of a minimum CS-US interval for conditioning, but we argue that it cannot be fully explained by LTD, even when previous in vitro studies of stimulus-timing-dependent LTD are taken into account.
Collapse
|
26
|
Thomas BT, Levy WB. Neuronal dynamics during the learning of trace conditioning in a CA3 model of hippocampal function. Cogn Neurodyn 2014; 8:127-41. [PMID: 24624232 DOI: 10.1007/s11571-013-9271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/09/2013] [Accepted: 09/25/2013] [Indexed: 11/26/2022] Open
Abstract
The present article develops quantitative behavioral and neurophysiological predictions for rabbits trained on an air-puff version of the trace-interval classical conditioning paradigm. Using a minimal hippocampal model, consisting of 8,000 primary cells sparsely and randomly interconnected as a model of hippocampal region CA-3, the simulations identify conditions which produce a clear split in the number of trials individual animals should need to learn a criterion response. A trace interval that is difficult to learn, but still learnable by half the experimental population, produces a bimodal population of learners: an early learner group and a late learner group. The model predicts that late learners are characterized by two kinds of CA-3 neuronal activity fluctuations that are not seen in the early learners. As is typical in our minimal hippocampal models, the off-rate constant of the N-methyl-d-aspartate receptor receptor gives a timescale to the model that leads to a temporally quantifiable behavior, the learnable trace interval.
Collapse
Affiliation(s)
- Blake T Thomas
- Informed Simplifications, LLC 520 Panorama Road, Earlysville, VA 22936 USA
| | - William B Levy
- Department of Neurosurgery and Psychology, University of Virginia, Charlottesville, VA 22908 USA
| |
Collapse
|
27
|
On the origin of personal causal theories. Psychon Bull Rev 2013; 2:83-104. [PMID: 24203591 DOI: 10.3758/bf03214413] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/1994] [Accepted: 11/15/1994] [Indexed: 11/08/2022]
Abstract
Detecting the causal relations among environmental events is an important facet of learning. Certain variables have been identified which influence both human causal attribution and animal learning: temporal priority, temporal and spatial contiguity, covariation and contingency, and prior experience. Recent research has continued to find distinct commonalities between the influence these variables have in the two domains, supporting a neo-Humean analysis of the origins of personal causal theories. The cues to causality determine which event relationships will be judged as causal; personal causal theories emerge as a result of these judgments and in turn affect future attributions. An examination of animal learning research motivates further extensions of the analogy. Researchers are encouraged to study real-time causal attributions, to study additional methodological analogies to conditioning paradigms, and to develop rich learning accounts of the acquisition of causal theories.
Collapse
|
28
|
The classically conditioned nictitating membrane response: The CS-US interval function with one trial per day. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03330718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
|
30
|
Effects of forward and backward classical conditioning procedures on a spinal cat hind-limb flexor nerve response. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326829] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Cholesterol and copper affect learning and memory in the rabbit. Int J Alzheimers Dis 2013; 2013:518780. [PMID: 24073355 PMCID: PMC3773440 DOI: 10.1155/2013/518780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022] Open
Abstract
A rabbit model of Alzheimer's disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks.
Collapse
|
32
|
Abstract
The temporal-difference (TD) algorithm from reinforcement learning provides a simple method for incrementally learning predictions of upcoming events. Applied to classical conditioning, TD models suppose that animals learn a real-time prediction of the unconditioned stimulus (US) on the basis of all available conditioned stimuli (CSs). In the TD model, similar to other error-correction models, learning is driven by prediction errors--the difference between the change in US prediction and the actual US. With the TD model, however, learning occurs continuously from moment to moment and is not artificially constrained to occur in trials. Accordingly, a key feature of any TD model is the assumption about the representation of a CS on a moment-to-moment basis. Here, we evaluate the performance of the TD model with a heretofore unexplored range of classical conditioning tasks. To do so, we consider three stimulus representations that vary in their degree of temporal generalization and evaluate how the representation influences the performance of the TD model on these conditioning tasks.
Collapse
|
33
|
Campbell AD, Chua R, Inglis JT, Carpenter MG. Startle induces early initiation of classically conditioned postural responses. J Neurophysiol 2012; 108:2946-56. [PMID: 22972964 DOI: 10.1152/jn.01157.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Startling acoustic stimuli (SAS) induce the early release of prepared motor responses. The current study used SAS, in conjunction with a classical conditioning paradigm, to examine advanced motor preparation of conditioned postural responses (PRs). After generalized startle responses were induced, standing posture was perturbed in 2 blocks of 15 Conditioning trials, where in each trial the onset of a nonstartling auditory cue [i.e., a conditioned stimulus (CS)] preceded a leftward support-surface translation. Upon completion of each block, a single trial was conducted. After block 1, a CS-Only trial was used to induce conditioned PRs in the absence of balance perturbations. After block 2, a post-Conditioning Startle trial that involved a CS subsequently followed by a SAS was used to examine motor preparation of conditioned PRs. PRs were quantified in terms of center of pressure displacements, ankle and hip kinematics, as well as surface electromyography of proximal and distal bilateral muscle pairs. Results indicated that repeated experience with cued balance perturbations led to PR conditioning and, more importantly, motor preparation of PRs. Conditioning was evidenced in biomechanical and electromyographic responses observed in CS-Only trials, as well as the progressive changes to evoked response parameters during repeated Conditioning trials. SAS presented in post-Conditioning Startle trials evoked early onsets of biomechanical and electromyographic responses, while preserving relative response parameters that were each distinct from generalized startle responses. These results provide important insight into both the consequences of using cues in dynamic postural control studies and the neural mechanisms governing PRs.
Collapse
Affiliation(s)
- A D Campbell
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
34
|
Bamford SA, Hogri R, Giovannucci A, Taub AH, Herreros I, Verschure PFMJ, Mintz M, Del Giudice P. A VLSI Field-Programmable Mixed-Signal Array to Perform Neural Signal Processing and Neural Modeling in a Prosthetic System. IEEE Trans Neural Syst Rehabil Eng 2012; 20:455-67. [DOI: 10.1109/tnsre.2012.2187933] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Evaluation of bidirectional interstimulus interval (ISI) shift in auditory delay eye-blink conditioning in healthy humans. Learn Behav 2012; 39:358-70. [PMID: 21562779 DOI: 10.3758/s13420-011-0031-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Delay eye-blink conditioning is an associative learning task that can be utilized to probe the functional integrity of the cerebellum and related neural circuits. Typically, a single interstimulus interval (ISI) is utilized, and the amplitude of the conditioned response (CR) is the primary dependent variable. To study the timing of the CR, an ISI shift can be introduced (e.g., shifting the ISI from 350 to 850 ms). In each phase, a conditioned stimulus (e.g., a 400- or 900-ms tone) coterminates with a 50-ms corneal air puff unconditioned stimulus. The ability of a subject to adjust the CR to the changing ISI constitutes a critical timing shift. The feasibility of this procedure was examined in healthy human participants (N = 58) using a bidirectional ISI shift procedure while cortical event-related brain potentials were measured. CR acquisition was faster and the responses better timed when a short ISI was used. After the ISI shift, additional training was necessary to allow asymptotic responding at the new ISI. Interestingly, auditory event-related potentials to the CR were not associated with conditioning measures at either ISI.
Collapse
|
36
|
Wu GY, Yao J, Zhang LQ, Li X, Fan ZL, Yang Y, Sui JF. Reevaluating the role of the medial prefrontal cortex in delay eyeblink conditioning. Neurobiol Learn Mem 2012; 97:277-88. [PMID: 22387661 DOI: 10.1016/j.nlm.2012.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/08/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
It has been proposed that the medial prefrontal cortex (mPFC) is not necessary for delay eyeblink conditioning (DEC). Here, we investigated the involvement of the mPFC in DEC with a soft or loud tone as the conditioned stimulus (CS) by using electrolytic lesions or muscimol inactivation of guinea pig mPFC. Interestingly, when a soft tone was used as a CS, electrolytic lesions of the mPFC significantly retarded acquisition of the conditioned response (CR), and muscimol infusions into mPFC distinctly inhibited the acquisition and expression of CR, but had no significant effect on consolidation of well-learned CR. In contrast, both electrolytic lesions and muscimol inactivation of mPFC produced no significant deficits in the CR when a loud tone was used as the CS, or in the unconditioned response (UR) when a soft or loud tone was used as the CS. These results demonstrate that the mPFC is essential for the DEC with the soft tone CS but not for the DEC with the loud tone CS.
Collapse
Affiliation(s)
- Guang-Yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Hawkins RD, Clark GA, Kandel ER. Cell Biological Studies of Learning in Simple Vertebrate and Invertebrate Systems. Compr Physiol 2011. [DOI: 10.1002/cphy.cp010502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kehoe EJ, Ludvig EA, Sutton RS. Timing in trace conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus): scalar, nonscalar, and adaptive features. Learn Mem 2010; 17:600-4. [PMID: 21075900 DOI: 10.1101/lm.1942210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using interstimulus intervals (ISIs) of 125, 250, and 500 msec in trace conditioning of the rabbit nictitating membrane response, the offset times and durations of conditioned responses (CRs) were collected along with onset and peak latencies. All measures were proportional to the ISI, but only onset and peak latencies conformed to the criterion for scalar timing. Regarding the CR's possible protective overlap of the unconditioned stimulus (US), CR duration increased with ISI, while the peak's alignment with the US declined. Implications for models of timing and CR adaptiveness are discussed.
Collapse
Affiliation(s)
- E James Kehoe
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | |
Collapse
|
39
|
Kreider JC, Mauk MD. Eyelid conditioning to a target amplitude: adding how much to whether and when. J Neurosci 2010; 30:14145-52. [PMID: 20962235 PMCID: PMC2975963 DOI: 10.1523/jneurosci.3473-10.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/21/2010] [Accepted: 08/25/2010] [Indexed: 11/21/2022] Open
Abstract
Conceptual and practical advantages of pavlovian eyelid conditioning facilitate analysis of cerebellar computation and learning. Even so, eyelid conditioning procedures are unrealistic in an important way. The error signal to the olivocerebellar system does not decrease as learning adapts response amplitude or gain. This inherently limits the utility of eyelid conditioning for studies investigating how cerebellar learning mechanisms acquire and store an adaptive response amplitude. We report the development and characterization of a training procedure in which conditioned response amplitude is brought under experimental control with contingencies that more closely parallel natural conditions. In this procedure, the delivery of the unconditioned stimulus (US) is made contingent on conditioned response amplitude: the US is delivered for responses that fail to reach a specified target amplitude and is omitted for responses that meet or exceed the target. We find that rabbits trained with either a tone or with mossy fiber stimulation as the conditioned stimulus learn responses that approach target amplitudes ranging from 2 to 5 mm. Inactivating the interpositus nucleus with muscimol infusions abolished these conditioned responses, indicating that cerebellar involvement in eyelid conditioning is not tied explicitly to the use of pavlovian procedures. Together with previous studies, these data suggest that response amplitude is learned and encoded in the cerebellum during eyelid conditioning. As such, these results provide a foundation for systematic and controlled investigations of the cerebellar mechanisms that learn and encode the proper amplitude of adaptive movements.
Collapse
Affiliation(s)
| | - Michael D. Mauk
- Center for Learning and Memory
- Section of Neurobiology, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
40
|
Chatlosh DL, Wasserman EA. Delayed temporal discrimination in pigeons: A comparison of two procedures. J Exp Anal Behav 2010; 47:299-309. [PMID: 16812483 PMCID: PMC1348313 DOI: 10.1901/jeab.1987.47-299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A within-subjects comparison was made of pigeons' performance on two temporal discrimination procedures that were signaled by differently colored keylight samples. During stimulus trials, a peck on the key displaying a slanted line was reinforced following short keylight samples, and a peck on the key displaying a horizontal line was reinforced following long keylight samples, regardless of the location of the stimuli on those two choice keys. During position trials, a peck on the left key was reinforced following short keylight samples and a peck on the right key was reinforced following long keylight samples, regardless of which line stimulus appeared on the correct key. Thus, on stimulus trials, the correct choice key could not be discriminated prior to the presentation of the test stimuli, whereas on position trials, the correct choice key could be discriminated during the presentation of the sample stimulus. During Phase 1, with a 0-s delay between sample and choice stimuli, discrimination learning was faster on position trials than on stimulus trials for all 4 birds. During Phase 2, 0-, 0.5-, and 1.0-s delays produced differential loss of stimulus control under the two tasks for 2 birds. Response patterns during the delay intervals provided some evidence for differential mediation of the two delayed discriminations. These between-task differences suggest that the same processes may not mediate performance in each.
Collapse
|
41
|
Abstract
This paper summarizes developments in the field of classical conditioning. Attention is paid to four common misconceptions of what is classical conditioning. First, classical conditioning does not ensue as a simple result of temporal pairing of conditioned and unconditioned stimuli. Rather, conditioned reacting occurs if and to the degree that the subject is able to predict the occurrence of one stimulus from the presence of another one. Second, what is learned during classical conditioning is not necessarily a response to a cue, but rather a probabilistic relationship between various stimuli. Third, classical conditioning is not only manifested in responses mediated by the autonomic nervous system, but also in immunological parameters, in motoric behaviour and in evaluative judgments. Fourth, the nature of the conditioned and the unconditioned stimulus is (often) not a matter of indifference: particular combinations of CS and US produce more powerful conditioning effects than do other combinations. In the second part of the paper, the potential relevance of these developments is illustrated. Discussions are included about anxiety, addictions and food aversions/conditioned nausea.
Collapse
|
42
|
Vogel RW, Amundson JC, Lindquist DH, Steinmetz JE. Eyeblink conditioning during an interstimulus interval switch in rabbits (Oryctolagus cuniculus) using picrotoxin to disrupt cerebellar cortical input to the interpositus nucleus. Behav Neurosci 2009; 123:62-74. [PMID: 19170431 DOI: 10.1037/a0014082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of the cerebellar cortex in eyeblink classical conditioning remains unclear. Experimental manipulations that disrupt the normal function impair learning to various degrees, and task parameters may be important factors in determining the severity of impairment. This study examined the role of cerebellar cortex in eyeblink conditioning under conditioned stimulus?unconditioned stimulus intervals known to be optimal or nonoptimal for learning. Using infusions of picrotoxin to the interpositus nucleus of the rabbit cerebellum, the authors pharmacologically disrupted input from the cerebellar cortex while training with an interstimulus interval (ISI)-switch procedure. One group of rabbits (Oryctolagus cuniculus) was 1st trained with a 250-ms ISI (optimal) and then switched to a 750-ms ISI (nonoptimal). A 2nd group was trained in the opposite order. The most striking effect was that picrotoxin-treated rabbits initially trained with a 250-ms ISI learned comparably to controls, but those initially trained with a 750-ms ISI were severely impaired. These results suggest that functional input from cerebellar cortex becomes increasingly important for the interpositus nucleus to learn delay eyeblink conditioning as the ISI departs from an optimal interval.
Collapse
Affiliation(s)
- Richard W Vogel
- Department of Psychological and Brain Sciences, Indiana University, Indiana, USA
| | | | | | | |
Collapse
|
43
|
Lindquist DH, Vogel RW, Steinmetz JE. Associative and non-associative blinking in classically conditioned adult rats. Physiol Behav 2008; 96:399-411. [PMID: 19071146 DOI: 10.1016/j.physbeh.2008.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/10/2008] [Accepted: 11/13/2008] [Indexed: 11/18/2022]
Abstract
Over the last several years, a growing number of investigators have begun using the rat in classical eyeblink conditioning experiments, yet relatively few parametric studies have been done to examine the nature of conditioning in this species. We report here a parametric analysis of classical eyeblink conditioning in the adult rat using two conditioned stimulus (CS) modalities (light or tone) and three interstimulus intervals (ISI; 280, 580, or 880 ms). Rats trained at the shortest ISI generated the highest percentage of conditioned eyeblink responses (CRs) by the end of training. At the two longer ISIs, rats trained with the tone CS produced unusually high CR percentages over the first few acquisition sessions, relative to rats trained with the light CS. Experiment 2 assessed non-associative blink rates in response to presentations of the light or tone, in the absence of the US, at the same ISI durations used in paired conditioning. Significantly more blinks occurred with longer than shorter duration lights or tones. A higher blink rate was also recorded at all three durations during the early tone-alone sessions. The results suggest that early in classical eyeblink conditioning, rats trained with a tone CS may emit a high number of non-associative blinks, thereby inflating the CR frequency reported at this stage of training.
Collapse
Affiliation(s)
- Derick H Lindquist
- Univesity of Kansas, Department of Molecular Biosciences, Lawrence, KS 66045, United States.
| | | | | |
Collapse
|
44
|
Halverson HE, Poremba A, Freeman JH. Medial auditory thalamus inactivation prevents acquisition and retention of eyeblink conditioning. Learn Mem 2008; 15:532-8. [PMID: 18626096 PMCID: PMC2505321 DOI: 10.1101/lm.1002508] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or muscimol infusions into the MATN contralateral to the trained eye before each of four conditioning sessions with an auditory CS. Rats were then given four additional sessions without infusions to assess savings from the initial training. All rats were then given a retention test with a muscimol infusion followed by a recovery session. Muscimol infusions through cannula placements within 0.5 mm of the MGm prevented acquisition of eyeblink conditioned responses (CRs) and also blocked CR retention. Cannula placements more than 0.5 mm from the MATN did not completely block CR acquisition and had a partial effect on CR retention. The primary and secondary effects of MATN inactivation were examined with 2-deoxy-glucose (2-DG) autoradiography. Differences in 2-DG uptake in the auditory thalamus were consistent with the cannula placements and behavioral results. Differences in 2-DG uptake were found between groups in the ipsilateral auditory cortex, basilar pontine nuclei, and inferior colliculus. Results from this experiment indicate that the MATN contralateral to the trained eye and its projection to the pontine nuclei are necessary for acquisition and retention of eyeblink CRs to an auditory CS.
Collapse
Affiliation(s)
| | - Amy Poremba
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| | - John H. Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
45
|
Burgos JE, Flores C, García Ó, Díaz C, Cruz Y. A simultaneous procedure facilitates acquisition under an optimal interstimulus interval in artificial neural networks and rats. Behav Processes 2008; 78:302-9. [DOI: 10.1016/j.beproc.2008.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
46
|
Hakimian S, Norris SA, Greger B, Keating JG, Anderson CH, Thach WT. Time and frequency characteristics of Purkinje cell complex spikes in the awake monkey performing a nonperiodic task. J Neurophysiol 2008; 100:1032-40. [PMID: 18497368 DOI: 10.1152/jn.90277.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A number of studies have been interpreted to support the view that the inferior olive climbing fibers send periodic signals to the cerebellum to time and pace behavior. In a direct test of this hypothesis in macaques performing nonperiodic tasks, we analyzed continuous recordings of complex spikes from the lateral cerebellar hemisphere. We found no periodicity outside of a 100-ms relative refractory period.
Collapse
Affiliation(s)
- Shahin Hakimian
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Freeman JH, Halverson HE, Hubbard EM. Inferior colliculus lesions impair eyeblink conditioning in rats. Learn Mem 2007; 14:842-6. [PMID: 18086827 PMCID: PMC2151021 DOI: 10.1101/lm.716107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/12/2007] [Indexed: 11/24/2022]
Abstract
The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the cerebellum through its projection to the medial auditory thalamus. The medial auditory thalamus is necessary for eyeblink conditioning in rats and projects to the lateral pontine nuclei, which then project to the cerebellar nuclei and cortex. The current experiment examined the role of the inferior colliculus in auditory eyeblink conditioning. Rats were given bilateral or unilateral (contralateral to the conditioned eye) lesions of the inferior colliculus prior to 10 d of delay eyeblink conditioning with a tone CS. Rats with bilateral or unilateral lesions showed equivalently impaired acquisition. The extent of damage to the contralateral inferior colliculus correlated with several measures of conditioning. The findings indicate that the contralateral inferior colliculus provides auditory input to the cerebellum that is necessary for eyeblink conditioning.
Collapse
Affiliation(s)
- John H Freeman
- Department of Psychology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
48
|
Wetmore DZ, Mukamel EA, Schnitzer MJ. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. J Neurophysiol 2007; 100:2328-47. [PMID: 17671105 PMCID: PMC2576199 DOI: 10.1152/jn.00344.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
Collapse
Affiliation(s)
- Daniel Z Wetmore
- Department of Physics, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA 94305-5435, USA
| | | | | |
Collapse
|
49
|
Lepora NF, Mavritsaki E, Porrill J, Yeo CH, Evinger C, Dean P. Evidence from retractor bulbi EMG for linearized motor control of conditioned nictitating membrane responses. J Neurophysiol 2007; 98:2074-88. [PMID: 17615135 DOI: 10.1152/jn.00210.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Classical conditioning of nictitating membrane (NM) responses in rabbits is a robust model learning system, and experimental evidence indicates that conditioned responses (CRs) are controlled by the cerebellum. It is unknown whether cerebellar control signals deal directly with the complex nonlinearities of the plant (blink-related muscles and peripheral tissues) or whether the plant is linearized to ensure a simple relation between cerebellar neuronal firing and CR profile. To study this question, the retractor bulbi muscle EMG was recorded with implanted electrodes during NM conditioning. Pooled activity in accessory abducens motoneurons was estimated from spike trains extracted from the EMG traces, and its temporal profile was found to have an approximately Gaussian shape with peak amplitude linearly related to CR amplitude. The relation between motoneuron activity and CR profiles was accurately fitted by a first-order linear filter, with each spike input producing an exponentially decaying impulse response with time constant of order 0.1 s. Application of this first-order plant model to CR data from other laboratories suggested that, in these cases also, motoneuron activity had a Gaussian profile, with time-of-peak close to unconditioned stimulus (US) onset and SD proportional to the interval between conditioned stimulus and US onsets. These results suggest that for conditioned NM responses the cerebellum is presented with a simplified "virtual" plant that is a linearized version of the underlying nonlinear biological system. Analysis of a detailed plant model suggests that one method for linearising the plant would be appropriate recruitment of motor units.
Collapse
Affiliation(s)
- N F Lepora
- Department of Psychology, University of Sheffield, Sheffield, UK
| | | | | | | | | | | |
Collapse
|
50
|
Kimpo RR, Raymond JL. Impaired motor learning in the vestibulo-ocular reflex in mice with multiple climbing fiber input to cerebellar Purkinje cells. J Neurosci 2007; 27:5672-82. [PMID: 17522312 PMCID: PMC6672772 DOI: 10.1523/jneurosci.0801-07.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A unique feature of the cerebellar architecture is that Purkinje cells in the cerebellar cortex each receive input from a single climbing fiber. In mice deficient in the gamma isoform of protein kinase C (PKCgamma-/- mice), this normal architecture is disrupted so that individual Purkinje cells receive input from multiple climbing fibers. These mice have no other known abnormalities in the cerebellar circuit. Here, we show that PKCgamma-/- mice are profoundly impaired in vestibulo-ocular reflex (VOR) motor learning. The PKCgamma-/- mice exhibited no adaptive increases or decreases in VOR gain at training frequencies of 2 or 0.5 Hz. This impairment was present across a broad range of peak retinal slip speeds during training. We compare the results for VOR motor learning with previous studies of the performance of PKCgamma-/- mice on other cerebellum-dependent learning tasks. Together, the results suggest that single climbing fiber innervation of Purkinje cells is critical for some, but not all, forms of cerebellum-dependent learning, and this may depend on the region of the cerebellum involved, the organization of the relevant neural circuits downstream of the cerebellar cortex, as well as the timing requirements of the learning task.
Collapse
Affiliation(s)
- Rhea R. Kimpo
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jennifer L. Raymond
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| |
Collapse
|