1
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. PLoS Biol 2025; 23:e3002954. [PMID: 39808614 PMCID: PMC11731767 DOI: 10.1371/journal.pbio.3002954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta cycles. Similarly, important information that is distant from the animal's position is represented during hippocampal high-synchrony events (HSEs), which coincide with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found decoding of the pseudo-predator's location during HSEs when hesitating in the nest and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials (LFPs), including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew T. Erickson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cody J. Walters
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Calvin OL, Erickson MT, Walters CJ, Redish AD. Dorsal hippocampus represents locations to avoid as well as locations to approach during approach-avoidance conflict. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584295. [PMID: 38559154 PMCID: PMC10979882 DOI: 10.1101/2024.03.10.584295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Worrying about perceived threats is a hallmark of multiple psychological disorders including anxiety. This concern about future events is particularly important when an individual is faced with an approach-avoidance conflict. Potential goals to approach are known to be represented in the dorsal hippocampus during theta sweeps. Similarly, important non-local information is represented during hippocampal high synchrony events (HSEs), which are correlated with sharp-wave ripples (SWRs). It is likely that potential future threats may be similarly represented. We examined how threats and rewards were represented within the hippocampus during approach-avoidance conflicts in rats faced with a predator-like robot guarding a food reward. We found representations of the pseudo-predator during HSEs when hesitating in the nest, and during theta prior to retreating as the rats approached the pseudo-predator. After the first attack, we observed new place fields appearing at the location of the robot (not the location the rat was when attacked). The anxiolytic diazepam reduced anxiety-like behavior and altered hippocampal local field potentials, including reducing SWRs, suggesting that one potential mechanism of diazepam's actions may be through altered representations of imagined threat. These results suggest that hippocampal representation of potential threats could be an important mechanism that underlies worry and a potential target for anxiolytics.
Collapse
Affiliation(s)
- Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| | | | | | - A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis MN 55455
| |
Collapse
|
3
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
4
|
Replay, the default mode network and the cascaded memory systems model. Nat Rev Neurosci 2022; 23:628-640. [PMID: 35970912 DOI: 10.1038/s41583-022-00620-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
The spontaneous replay of patterns of activity related to past experiences and memories is a striking feature of brain activity, as is the coherent activation of sets of brain areas - particularly those comprising the default mode network (DMN) - during rest. We propose that these two phenomena are strongly intertwined and that their potential functions overlap. In the 'cascaded memory systems model' that we outline here, we hypothesize that the DMN forms the backbone for the propagation of replay, mediating interactions between the hippocampus and the neocortex that enable the consolidation of new memories. The DMN may also independently ignite replay cascades, which support reactivation of older memories or high-level semantic representations. We suggest that transient cortical activations, inducing long-range correlations across the neocortex, are a key mechanism supporting a hierarchy of representations that progresses from simple percepts to semantic representations of causes and, finally, to whole episodes.
Collapse
|
5
|
Numan R. The Prefrontal-Hippocampal Comparator: Volition and Episodic Memory. Percept Mot Skills 2021; 128:2421-2447. [PMID: 34424092 DOI: 10.1177/00315125211041341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review describes recent research that is relevant to the prefrontal-hippocampal comparator model with the following conclusions: 1. Hippocampal area CA1 serves, at least in part, as an associative match-mismatch comparator. 2. Voluntary movement strengthens episodic memories for goal-directed behavior. 3. Hippocampal theta power serves as a prediction error signal during hippocampal dependent tasks. 4. The self-referential component of episodic memory in humans is mediated by the corollary discharge (the efference copy of the action plan developed by prefrontal cortex and transmitted to hippocampus where it is stored as a working memory; CA1 uses this efference copy to compare the expected consequences of action to the actual consequences of action). 5. Impairments in the production or transmission of this corollary discharge may contribute to some of the symptoms of schizophrenia. Unresolved issues and suggestions for future research are discussed.
Collapse
Affiliation(s)
- Robert Numan
- Department of Psychology, Santa Clara University, Santa Clara, California, United States
| |
Collapse
|
6
|
Sane VA. Teaching Principles of Place Cells. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2021; 19:R23-R27. [PMID: 34552444 PMCID: PMC8437367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 06/13/2023]
Abstract
Animals navigate within their surrounding environment to find food, shelter, and mates; this behavior forms one of the most basic means of survival. The vertebrate hippocampus acts as an integration hub for varied dynamic processes such as attention, memory, perception, and decision-making. This ultimately allows an animal to move efficiently in its surroundings in search of food or to escape from predators. Place cells are neurons located within the hippocampus which are triggered in response to an animal entering specific places in its local environment. John O' Keefe first described the firing patterns of these cells in 1976 in a paper published in Experimental Neurology. This was a pioneering effort in combining the efficacy of electrophysiological recordings with the value of behavioral approaches in freely moving animals. The author also presented testable hypotheses of plausible mechanisms governing place cell activation which in turn provided a conceptual scaffold for a diverse range of subsequent work in the field. This is an excellent paper for undergraduate education because it provides the historical context to an important research avenue while simultaneously showing how clear and concise hypotheses can emerge from studying how neural activity correlates with animal behaviour.
Collapse
Affiliation(s)
- Varun A Sane
- Department of Psychology and Neuroscience, University of St Andrews, St Andrews, UK KY16 9JP
| |
Collapse
|
7
|
Furtunato AMB, Lobão-Soares B, Tort ABL, Belchior H. Specific Increase of Hippocampal Delta Oscillations Across Consecutive Treadmill Runs. Front Behav Neurosci 2020; 14:101. [PMID: 32676013 PMCID: PMC7333663 DOI: 10.3389/fnbeh.2020.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Running speed affects theta (6-10 Hz) oscillations, the most prominent rhythm in the rat hippocampus. Many reports have found a strong positive correlation between locomotion speed and the amplitude and frequency of theta oscillations. However, less is known about how other rhythms such as delta (0.5-4 Hz) and gamma (25-100 Hz) are affected, and how consecutive runs impact oscillatory activity in hippocampal networks. Here, we investigated whether the successive execution of short-term runs modulates local field potentials (LFPs) in the rat hippocampus. To do this, we trained Long-Evans rats to perform voluntary 15-s runs at 30 cm/s on a treadmill placed on the central stem of an eight-shape maze, in which they subsequently performed a spatial alternation task. We bilaterally recorded CA1 LFPs while rats executed at least 35 runs on the treadmill-maze apparatus. Within running periods, we observed progressive increases in delta band power along with decreases in the power of the theta and gamma bands across runs. Concurrently, the inter-hemispheric phase coherence in the delta band significantly increased, while in the theta and gamma bands exhibited no changes. Delta power and inter-hemispheric coherence correlated better with the trial number than with the actual running speed. We observed no significant differences in running speed, head direction, nor in spatial occupancy across runs. Our results thus show that consecutive treadmill runs at the same speed positively modulates the power and coherence of delta oscillations in the rat hippocampus.
Collapse
Affiliation(s)
- Alan M. B. Furtunato
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Lobão-Soares
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Hindiael Belchior
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
- Psychobiology Graduate Program, Federal University of Rio Grande do Norte, Natal, Brazil
- Faculty of Health Sciences of Trairí, Federal University of Rio Grande do Norte, Natal, Brazil
- Center for Memory & Brain, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
9
|
Nitzan N, McKenzie S, Beed P, English DF, Oldani S, Tukker JJ, Buzsáki G, Schmitz D. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway. Nat Commun 2020; 11:1947. [PMID: 32327634 PMCID: PMC7181800 DOI: 10.1038/s41467-020-15787-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Bouts of high frequency activity known as sharp wave ripples (SPW-Rs) facilitate communication between the hippocampus and neocortex. However, the paths and mechanisms by which SPW-Rs broadcast their content are not well understood. Due to its anatomical positioning, the granular retrosplenial cortex (gRSC) may be a bridge for this hippocampo-cortical dialogue. Using silicon probe recordings in awake, head-fixed mice, we show the existence of SPW-R analogues in gRSC and demonstrate their coupling to hippocampal SPW-Rs. gRSC neurons reliably distinguished different subclasses of hippocampal SPW-Rs according to ensemble activity patterns in CA1. We demonstrate that this coupling is brain state-dependent, and delineate a topographically-organized anatomical pathway via VGlut2-expressing, bursty neurons in the subiculum. Optogenetic stimulation or inhibition of bursty subicular cells induced or reduced responses in superficial gRSC, respectively. These results identify a specific path and underlying mechanisms by which the hippocampus can convey neuronal content to the neocortex during SPW-Rs.
Collapse
Affiliation(s)
- Noam Nitzan
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Sam McKenzie
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Daniel Fine English
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA
- School of Neuroscience, College of Science, Virginia Tech, VA, 24061, USA
| | - Silvia Oldani
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - György Buzsáki
- Neuroscience Institute and Department of Neurology New York University Langone Medical Center, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10016, USA.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany.
- Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- Cluster of Excellence NeuroCure, Berlin, Germany.
- Einstein Center for Neurosciences, Berlin, Germany.
| |
Collapse
|
10
|
Whishaw IQ, Ghasroddashti A, Mirza Agha B, Mohajerani MH. The temporal choreography of the yo-yo movement of getting spaghetti into the mouth by the head-fixed mouse. Behav Brain Res 2019; 381:112241. [PMID: 31655097 DOI: 10.1016/j.bbr.2019.112241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 01/06/2023]
Abstract
There is debate over whether single-handed eating movements, reaching for food and withdrawing the hand to place the food in the mouth, originated in the primate lineage or whether they originated in phylogenetically-earlier Euarchontoglires. Most spontaneous hand use in eating by the laboratory mouse (Mus domestica) involves both hands, and a central question is the extent to which the movements are symmetric. Here we describe an asymmetry of spontaneous single hand use by the head-fixed mouse in making the yo-yo hand movement of removing and replacing a piece of pasta (spaghetti) in the mouth for eating. We also describe the problem/solution of placing into the mouth the end of a held item that protrudes at some distance from the hand. Pasta-eating proceeds in bouts, and a bout starts with raising the hands, which are holding a piece of pasta, to place one end of the pasta in the mouth for biting. A bout ends with lowering the hands, still holding the pasta stem, while the pasta morsel that has been bitten off is chewed. Hand-lowering after the pasta is removed from the mouth is slow, concurrent and symmetric, both when the pasta is held by both hands and when it is held in one hand. Hand-raising to place the pasta in the mouth is fast, consecutive and asymmetric, both when the pasta is held in both hands and when it is held in one hand. Frame-by-frame analyses of the video record combined with kinematic analyses show that a preferred single hand not only directs one end of the pasta to the mouth but also readjusts the trajectory of the pasta if it misses the mouth. The specialized use of a single hand by the mouse, even when the hands are bilaterally engaged, and the corrective asymmetric movements with which one hand adjusts the pasta's trajectory with the other hand playing a supporting role, is discussed in relation to the idea that hand preference, specialization, and dexterity have somatosensory and preprimate origins.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Department of Neuroscience, Canadian Centre of Behavioural Neuroscience, University of Lethbridge, Canada.
| | - Arashk Ghasroddashti
- Department of Neuroscience, Canadian Centre of Behavioural Neuroscience, University of Lethbridge, Canada
| | - Behroo Mirza Agha
- Department of Neuroscience, Canadian Centre of Behavioural Neuroscience, University of Lethbridge, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre of Behavioural Neuroscience, University of Lethbridge, Canada
| |
Collapse
|
11
|
Amemiya S, Redish AD. Hippocampal Theta-Gamma Coupling Reflects State-Dependent Information Processing in Decision Making. Cell Rep 2019; 22:3328-3338. [PMID: 29562187 PMCID: PMC5929482 DOI: 10.1016/j.celrep.2018.02.091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/11/2022] Open
Abstract
During decision making, hippocampal activity encodes information sometimes about present and sometimes about potential future plans. The mechanisms underlying this transition remain unknown. Building on the evidence that gamma oscillations at different frequencies (low gamma [LG], 30–55 Hz; high gamma [HG], 60–90 Hz; and epsilon, 100–140 Hz) reflect inputs from different circuits, we identified how changes in those frequencies reflect different information-processing states. Using a unique noradrenergic manipulation by clonidine, which shifted both neural representations and gamma states, we found that future representations depended on gamma components. These changes were identifiable on each cycle of theta as asymmetries in the theta cycle, which arose from changes within the ratio of LG and HG power and the underlying phases of those gamma rhythms within the theta cycle. These changes in asymmetry of the theta cycle reflected changes in representations of present and future on each theta cycle.
Collapse
Affiliation(s)
- Seiichiro Amemiya
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Dos Santos Lima GZ, Lobao-Soares B, Corso G, Belchior H, Lopes SR, de Lima Prado T, Nascimento G, França ACD, Fontenele-Araújo J, Ivanov PC. Hippocampal and cortical communication around micro-arousals in slow-wave sleep. Sci Rep 2019; 9:5876. [PMID: 30971751 PMCID: PMC6458146 DOI: 10.1038/s41598-019-42100-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/12/2019] [Indexed: 11/09/2022] Open
Abstract
Sleep plays a crucial role in the regulation of body homeostasis and rhythmicity in mammals. Recently, a specific component of the sleep structure has been proposed as part of its homeostatic mechanism, named micro-arousal. Here, we studied the unique progression of the dynamic behavior of cortical and hippocampal local field potentials (LFPs) during slow-wave sleep-related to motor-bursts (micro-arousals) in mice. Our main results comprised: (i) an abrupt drop in hippocampal LFP amplitude preceding micro-arousals which persisted until the end of motor-bursts (we defined as t interval, around 4s) and a similar, but delayed amplitude reduction in cortical (S1/M1) LFP activity occurring at micro-arousal onset; (ii) two abrupt frequency jumps in hippocampal LFP activity: from Theta (6-12 Hz) to Delta (2-4 Hz), also t seconds before the micro-arousal onset, and followed by another frequency jump from Delta to Theta range (5-7 Hz), now occurring at micro-arousal onset; (iii) a pattern of cortico-hippocampal frequency communication precedes micro-arousals: the analysis between hippocampal and cortical LFP fluctuations reveal high coherence during τ interval in a broader frequency band (2-12 Hz), while at a lower frequency band (0.5-2 Hz) the coherence reaches its maximum after the onset of micro-arousals. In conclusion, these novel findings indicate that oscillatory dynamics pattern of cortical and hippocampal LFPs preceding micro-arousals could be part of the regulatory processes in sleep architecture.
Collapse
Affiliation(s)
- Gustavo Zampier Dos Santos Lima
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, USA.
| | - Bruno Lobao-Soares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gilberto Corso
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Hindiael Belchior
- Faculdade de Ciências da Saúde do Trairí, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Thiago de Lima Prado
- Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Janaúba, MG, Brazil
| | - George Nascimento
- Departamento de Engenharia Biomédica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - John Fontenele-Araújo
- Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, USA.
- Division of Sleep Medicine and Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Watson BO. Cognitive and Physiologic Impacts of the Infraslow Oscillation. Front Syst Neurosci 2018; 12:44. [PMID: 30386218 PMCID: PMC6198276 DOI: 10.3389/fnsys.2018.00044] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/06/2018] [Indexed: 11/30/2022] Open
Abstract
Brain states are traditionally recognized via sleep-wake cycles, but modern neuroscience is beginning to identify many sub-states within these larger arousal types. Multiple lines of converging evidence now point to the infraslow oscillation (ISO) as a mediator of brain sub-states, with impacts ranging from the creation of resting state networks (RSNs) in awake subjects to interruptions in neural activity during sleep. This review will explore first the basic characteristics of the ISO in human subjects before reviewing findings in sleep and in animals. Networks of consistently correlated brain regions known as RSNs seen in human functional neuroimaging studies oscillate together at infraslow frequencies. The infraslow rhythm subdivides nonREM in a manner that may correlate with plasticity. The mechanism of this oscillation may be found in the thalamus and may ultimately come from glial cells. Finally, I review the functional impacts of ISOs on brain phenomena ranging from higher frequency oscillations, to brain networks, to information representation and cognitive performance. ISOs represent a relatively understudied phenomenon with wide effects on the brain and behavior.
Collapse
Affiliation(s)
- Brendon O. Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Abstract
Study Objectives: To better understand the distinct activity patterns of the brain during sleep, we observed and investigated periods of diminished oscillatory and population spiking activity lasting for seconds during non-rapid eye movement (non-REM) sleep, which we call “LOW” activity sleep. Methods: We analyzed spiking and local field potential (LFP) activity of hippocampal CA1 region alongside neocortical electroencephalogram (EEG) and electromyogram (EMG) in 19 sessions from four male Long-Evans rats (260–360 g) during natural wake/sleep across the 24-hr cycle as well as data from other brain regions obtained from http://crcns.org.1,2 Results: LOW states lasted longer than OFF/DOWN states and were distinguished by a subset of “LOW-active” cells. LOW activity sleep was preceded and followed by increased sharp-wave ripple activity. We also observed decreased slow-wave activity and sleep spindles in the hippocampal LFP and neocortical EEG upon LOW onset, with a partial rebound immediately after LOW. LOW states demonstrated activity patterns consistent with sleep but frequently transitioned into microarousals and showed EMG and LFP differences from small-amplitude irregular activity during quiet waking. Their likelihood decreased within individual non-REM epochs yet increased over the course of sleep. By analyzing data from the entorhinal cortex of rats,1 as well as the hippocampus, the medial prefrontal cortex, the postsubiculum, and the anterior thalamus of mice,2 obtained from http://crcns.org, we confirmed that LOW states corresponded to markedly diminished activity simultaneously in all of these regions. Conclusions: We propose that LOW states are an important microstate within non-REM sleep that provide respite from high-activity sleep and may serve a restorative function.
Collapse
Affiliation(s)
- Hiroyuki Miyawaki
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI.,Current address: Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yazan N Billeh
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA
| | - Kamran Diba
- Department of Psychology, Box 413, University of Wisconsin-Milwaukee, Milwaukee, WI
| |
Collapse
|
15
|
Gaffan D, Saunders RC, Gaffan EA, Harrison S, Shields C, Owen MJ. Effects of Fornix Transection upon Associative Memory in Monkeys: Role of the Hippocampus in Learned Action. ACTA ACUST UNITED AC 2018; 36:173-221. [PMID: 6541361 DOI: 10.1080/14640748408402203] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thirty-three monkeys took part in seven experiments designed to elucidate further the effect of fornix transection on learning and memory. In the first experiment the monkeys had to remember whether stimulus objects had previously been paired with reward or no reward, and they had to use this memory to guide choice between stimulus objects at retention tests according to an arbitrary rule which they had learned: to choose objects previously paired with no reward in preference to objects previously paired with reward. Fornix transection produced a severe and permanent impairment in this task. In the second experiment the monkeys also had to remember object-reward associations but the performance rule was more natural: to choose objects previously paired with reward. Here fornix transection had no effect. The third experiment required the monkeys to remember, given a stimulus object, which of two events of equal valence had previously been the outcome of displacing that object. The two events were either a peanut and a sultana or a black penny and a white penny of equal secondary reinforcing value. Performance was unimpaired by fornix transection. The fourth experiment also demonstrated, in a different paradigm, unimpaired recall of sensory events. The fifth experiment demonstrated an impairment following fornix transection in acquisition of simultaneous spatial-visual conditional discriminations; the sixth demonstrated normal learning by fornix-transected monkeys of a successive spatial-visual conditional discrimination and the seventh demonstrated unimpaired acquisition of a simultaneous auditory-visual conditional discrimination. These results, when considered in detail and together, are incompatible with existing hypotheses of hippocampal function. A new hypothesis is discussed.
Collapse
|
16
|
Abstract
The septo–hippocampal pathway adjusts CA1 network excitability to different behavioral states and is crucially involved in theta rhythmogenesis. In the medial septum, cholinergic, glutamatergic and GABAergic neurons form a highly interconnected local network. Neurons of these three classes project to glutamatergic pyramidal neurons and different subsets of GABAergic neurons in the hippocampal CA1 region. From there, GABAergic neurons project back to the medial septum and form a feedback loop between the two remote brain areas. In vivo, the firing of GABAergic medial septal neurons is theta modulated, while theta modulation is not observed in cholinergic neurons. One prominent feature of glutamatergic neurons is the correlation of their firing rates to the animals running speed. The cellular diversity, the high local interconnectivity and different activity patterns of medial septal neurons during different behaviors complicate the functional dissection of this network. New technical advances help to define specific functions of individual cell classes. In this review, we seek to highlight recent findings and elucidate functional implications of the septo-hippocampal connectivity on the microcircuit scale.
Collapse
Affiliation(s)
- Christina Müller
- Neuronal Networks Group, German Center for Neurodegenerative Diseases in the Helmholtz Association (DZNE e.V.), Bonn, Germany.
| | - Stefan Remy
- Neuronal Networks Group, German Center for Neurodegenerative Diseases in the Helmholtz Association (DZNE e.V.), Bonn, Germany.,Department of Epileptology, University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Hulse BK, Lubenov EV, Siapas AG. Brain State Dependence of Hippocampal Subthreshold Activity in Awake Mice. Cell Rep 2017; 18:136-147. [PMID: 28052244 DOI: 10.1016/j.celrep.2016.11.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
Monitoring the membrane potential of individual neurons has uncovered how single-cell properties contribute to network processing across different brain states in neocortex. In contrast, the subthreshold modulation of hippocampal neurons by brain state has not been systematically characterized. To address this, we combined whole-cell recordings from dentate granule cells and CA1 pyramidal neurons with multisite extracellular recordings and behavioral measurements in awake mice. We show that the average membrane potential, amplitude of subthreshold fluctuations, and distance to spike threshold are all modulated by brain state. Furthermore, even within individual states, rapid variations in arousal are reflected in membrane potential fluctuations. These factors produce depolarizing ramps in the membrane potential of hippocampal neurons that precede ripples and mirror transitions to a network regime conducive for ripple generation. These results suggest that there are coordinated shifts in the subthreshold dynamics of individual neurons that underlie the transitions between distinct modes of hippocampal processing.
Collapse
Affiliation(s)
- Brad K Hulse
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Evgueniy V Lubenov
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Athanassios G Siapas
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Division of Engineering and Applied Science, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA; Computation and Neural Systems Program, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA.
| |
Collapse
|
18
|
Papale AE, Zielinski MC, Frank LM, Jadhav SP, Redish AD. Interplay between Hippocampal Sharp-Wave-Ripple Events and Vicarious Trial and Error Behaviors in Decision Making. Neuron 2016; 92:975-982. [PMID: 27866796 DOI: 10.1016/j.neuron.2016.10.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022]
Abstract
Current theories posit that memories encoded during experiences are subsequently consolidated into longer-term storage. Hippocampal sharp-wave-ripple (SWR) events have been linked to this consolidation process during sleep, but SWRs also occur during awake immobility, where their role remains unclear. We report that awake SWR rates at the reward site are inversely related to the prevalence of vicarious trial and error (VTE) behaviors, thought to be involved in deliberation processes. SWR rates were diminished immediately after VTE behaviors and an increase in the rate of SWR events at the reward site predicted a decrease in subsequent VTE behaviors at the choice point. Furthermore, SWR disruptions increased VTE behaviors. These results suggest an inverse relationship between SWRs and VTE behaviors and suggest that awake SWRs and associated planning and memory consolidation mechanisms are engaged specifically in the context of higher levels of behavioral certainty.
Collapse
Affiliation(s)
- Andrew E Papale
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Zielinski
- Graduate Program in Neuroscience, Brandeis University, Waltham, MA 02453, USA
| | - Loren M Frank
- HHMI, Kavli Institute for Fundamental Neuroscience, Department of Physiology and Center for Integrative Neuroscience, UCSF, San Francisco, CA 94158, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology and Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
19
|
Numan R. A Prefrontal-Hippocampal Comparator for Goal-Directed Behavior: The Intentional Self and Episodic Memory. Front Behav Neurosci 2015; 9:323. [PMID: 26635567 PMCID: PMC4658443 DOI: 10.3389/fnbeh.2015.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/11/2015] [Indexed: 01/02/2023] Open
Abstract
The hypothesis of this article is that the interactions between the prefrontal cortex and the hippocampus play a critical role in the modulation of goal-directed self-action and the strengthening of episodic memories. We describe various theories that model a comparator function for the hippocampus, and then elaborate the empirical evidence that supports these theories. One theory which describes a prefrontal-hippocampal comparator for voluntary action is emphasized. Action plans are essential for successful goal-directed behavior, and are elaborated by the prefrontal cortex. When an action plan is initiated, the prefrontal cortex transmits an efference copy (or corollary discharge) to the hippocampus where it is stored as a working memory for the action plan (which includes the expected outcomes of the action plan). The hippocampus then serves as a response intention-response outcome working memory comparator. Hippocampal comparator function is enabled by the hippocampal theta rhythm allowing the hippocampus to compare expected action outcomes to actual action outcomes. If the expected and actual outcomes match, the hippocampus transmits a signal to prefrontal cortex which strengthens or consolidates the action plan. If a mismatch occurs, the hippocampus transmits an error signal to the prefrontal cortex which facilitates a reformulation of the action plan, fostering behavioral flexibility and memory updating. The corollary discharge provides the self-referential component to the episodic memory, affording the personal and subjective experience of what behavior was carried out, when it was carried out, and in what context (where) it occurred. Such a perspective can be applied to episodic memory in humans, and episodic-like memory in non-human animal species.
Collapse
Affiliation(s)
- Robert Numan
- Psychology Department, Santa Clara University Santa Clara, CA, USA
| |
Collapse
|
20
|
Long LL, Bunce JG, Chrobak JJ. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus. Front Syst Neurosci 2015; 9:37. [PMID: 25852496 PMCID: PMC4360780 DOI: 10.3389/fnsys.2015.00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.
Collapse
Affiliation(s)
- Lauren L Long
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | - Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University Boston, MA, USA
| | - James J Chrobak
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
21
|
Hippocampal Sequences and the Cognitive Map. SPRINGER SERIES IN COMPUTATIONAL NEUROSCIENCE 2015. [DOI: 10.1007/978-1-4939-1969-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Long LL, Hinman JR, Chen CMA, Stevenson IH, Read HL, Escabi MA, Chrobak JJ. Novel acoustic stimuli can alter locomotor speed to hippocampal theta relationship. Hippocampus 2014; 24:1053-8. [PMID: 24866396 DOI: 10.1002/hipo.22308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 02/04/2023]
Abstract
Hippocampal theta (6-12 Hz) plays a critical role in synchronizing the discharge of action potentials, ultimately orchestrating individual neurons into large-scale ensembles. Alterations in theta dynamics may reflect variations in sensorimotor integration, the flow of sensory input, and/or cognitive processing. Previously we have investigated septotemporal variation in the locomotor speed to theta amplitude relationship as well as how that relationship is systematically altered as a function of novel, physical space. In the present study, we ask, beyond physical space, whether persistent and passive sound delivery can alter septal theta local field potential rhythm dynamics. Results indicate pronounced alterations in the slope of the speed to theta amplitude relationship as a function of sound presentation and location. Further, this reduction in slope habituates across days. The current findings highlight that moment-to-moment alterations in theta amplitude is a rich dynamic index that is quantitatively related to both alterations in motor behavior and sensory experience. The implications of these phenomena are discussed with respect to emergent cognitive functions subserved by hippocampal circuits.
Collapse
Affiliation(s)
- Lauren L Long
- Department of Psychology, University of Connecticut, Storrs, Connecticut
| | | | | | | | | | | | | |
Collapse
|
23
|
Theta dynamics in rat: speed and acceleration across the Septotemporal axis. PLoS One 2014; 9:e97987. [PMID: 24842406 PMCID: PMC4026415 DOI: 10.1371/journal.pone.0097987] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 04/28/2014] [Indexed: 11/25/2022] Open
Abstract
Theta (6–12 Hz) rhythmicity in the local field potential (LFP) reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long) axis of the hippocampus (HPC). The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG) sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions.
Collapse
|
24
|
Takahashi M, Nishida H, Redish AD, Lauwereyns J. Theta phase shift in spike timing and modulation of gamma oscillation: a dynamic code for spatial alternation during fixation in rat hippocampal area CA1. J Neurophysiol 2014; 111:1601-14. [PMID: 24478159 DOI: 10.1152/jn.00395.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although hippocampus is thought to perform various memory-related functions, little is known about the underlying dynamics of neural activity during a preparatory stage before a spatial choice. Here we focus on neural activity that reflects a memory-based code for spatial alternation, independent of current sensory and motor parameters. We recorded multiple single units and local field potentials in the stratum pyramidale of dorsal hippocampal area CA1 while rats performed a delayed spatial-alternation task. This task includes a 1-s fixation in a nose-poke port between selecting alternating reward sites and so provides time-locked enter-and-leave events. At the single-unit level, we concentrated on neurons that were specifically active during the 1-s fixation period, when the rat was ready and waiting for a cue to pursue the task. These neurons showed selective activity as a function of the alternation sequence. We observed a marked shift in the phase timing of the neuronal spikes relative to the theta oscillation, from the theta peak at the beginning of fixation to the theta trough at the end of fixation. The gamma-band local field potential also changed during the fixation period: the high-gamma power (60-90 Hz) decreased and the low-gamma power (30-45 Hz) increased toward the end. These two gamma components were observed at different phases of the ongoing theta oscillation. Taken together, our data suggest a switch in the type of information processing through the fixation period, from externally cued to internally generated.
Collapse
|
25
|
A stereotaxic map of brainstem areas critical for locomotor responses in a novel environment. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03336677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Chlorpromazine reduces avoidance performance deficit in rats with dorsomedial thalamic lesions. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03335192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
The effect of medial thalamic lesions on acquisition of a go, no-go, tone-light discrimination task. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03333311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
|
29
|
|
30
|
The effects of hippocampal electrographic seizures on one-way active avoidance and visual discrimination in rats: State-dependent effects. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03332472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
The use of intramaze stimuli in the attenuation of the problem-solving deficit of septal animals. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03332179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
|
33
|
|
34
|
Dorsomedial thalamic lesions and amphetamine: Acquisition and retention of a visual pattern discrimination escape task. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Hippocampal unit response during temporal single alternation of classical conditioning with rewarding brain stimulation in the rat. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Deficient acquisition and retention of single-alternation go, no-go in rats with medial thalamic lesions. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326925] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
The effects of increased acetylcholine levels during feeding on subsequent acquisition and extinction of barpressing. ACTA ACUST UNITED AC 2013. [DOI: 10.3758/bf03326936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
|
39
|
Ahn S, Rubchinsky LL, Lapish CC. Dynamical Reorganization of Synchronous Activity Patterns in Prefrontal Cortex-Hippocampus Networks During Behavioral Sensitization. Cereb Cortex 2013; 24:2553-61. [DOI: 10.1093/cercor/bht110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Kowalczyk T, Bocian R, Konopacki J. The generation of theta rhythm in hippocampal formation maintainedin vitro. Eur J Neurosci 2012; 37:679-99. [DOI: 10.1111/ejn.12091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Tomasz Kowalczyk
- Department of Neurobiology; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska Str. No 141/143; 90-236; Lodz; Poland
| | - Renata Bocian
- Department of Neurobiology; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska Str. No 141/143; 90-236; Lodz; Poland
| | - Jan Konopacki
- Department of Neurobiology; Faculty of Biology and Environmental Protection; University of Lodz; Pomorska Str. No 141/143; 90-236; Lodz; Poland
| |
Collapse
|
41
|
Wikenheiser AM, Redish AD. The balance of forward and backward hippocampal sequences shifts across behavioral states. Hippocampus 2012; 23:22-9. [PMID: 22736562 DOI: 10.1002/hipo.22049] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 11/08/2022]
Abstract
Place cell firing patterns in the rat hippocampus are often organized as sequences. Sequences falling within cycles of the theta (6-10 Hz) local field potential (LFP) oscillation represent segments of ongoing behavioral trajectories. Sequences expressed during sharp wave ripple (SWR) complexes represent spatial trajectories through the environment, in both the same direction as actual trajectories (forward sequences) and in an ordering opposite that of behavior (backward sequences). Although hippocampal sequences could fulfill unique functional roles depending on the direction of the sequence and the animal's state when the sequence occurs, quantitative comparisons of sequence direction across behavioral and physiological states within the same experiment, employing consistent methodology, are lacking. Here, we used cross-correlation and Bayesian decoding to measure the direction of hippocampal sequences in rats during active behavior, awake rest and slow-wave sleep. During pretask sleep, few sequences were detected in either direction. Sequences within theta cycles during active behavior were overwhelmingly forward. Sequences during quiescent moments of behavior were both forward and backward, in equal proportion. During postbehavior sleep, sequences were again expressed in both directions, but significantly more forward than backward sequences were detected. The shift in the balance of sequence direction could reflect changing functional demands on the hippocampal network across behavioral and physiological states.
Collapse
Affiliation(s)
- Andrew M Wikenheiser
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
42
|
Barry C, Heys JG, Hasselmo ME. Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells. Front Neural Circuits 2012; 6:5. [PMID: 22363266 PMCID: PMC3282552 DOI: 10.3389/fncir.2012.00005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/02/2012] [Indexed: 12/01/2022] Open
Abstract
Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. Recent experimental results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modeling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations impinging on entorhinal stellate cells, the frequency of which is modulated by acetylcholine. Here we propose that increased cholinergic signaling in response to environmental novelty triggers grid expansion by reducing the frequency of the oscillations. Furthermore, we argue that cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between expanded grid cells and other spatial inputs to the hippocampus, such as boundary vector cells. Indeed, a further source of mismatch is likely to occur between grid cells of different native scales which may expand by different relative amounts.
Collapse
Affiliation(s)
- Caswell Barry
- Department of Psychology, Center for Memory and Brain, Boston University, BostonMA, USA
- Institute of Neurology, University College LondonLondon, UK
| | - James G. Heys
- Department of Psychology, Center for Memory and Brain, Boston University, BostonMA, USA
| | - Michael E. Hasselmo
- Department of Psychology, Center for Memory and Brain, Boston University, BostonMA, USA
| |
Collapse
|
43
|
Lapish CC, Chiang J, Wang JZ, Phillips AG. Oscillatory power and synchrony in the rat forebrain are altered by a sensitizing regime of D-amphetamine. Neuroscience 2011; 203:108-21. [PMID: 22209854 DOI: 10.1016/j.neuroscience.2011.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
Repeated injections of psychostimulants, such as D-amphetamine (D-AMPH), provide a well-validated model of progressive cellular and systems-level alterations in brain function and behavior associated with addiction. The present study employed quantitative measures of both power spectral density and synchrony from local field potentials (LFPs) recorded simultaneously from the prefrontal cortex (PFC), parietal cortex (PAR), and hippocampus (HPC) in awake, behaving rats to assess changes in oscillations during different stages of D-AMPH-induced sensitization. The induction and development of sensitization altered the power of multiple frequency bands in a brain region-specific manner, whereas no changes were observed in animals treated with chronic saline. Specifically, the induction of sensitization to D-AMPH was accompanied by alterations in delta (2-5 Hz) and theta (5-11 Hz) oscillations similar to those observed in EEG recordings from addicted individuals describing craving and hedonic experience of the drug. Sensitization was also related to increased theta coherence between the PFC and HPC, along with suppression of cross-frequency correlations between theta and fast-gamma (65-100 Hz) in both the HPC and the PFC. Collectively, the present findings indicated the induction of a state in which the timing and synchronizing effects of oscillations are altered by sensitization to D-AMPH and are especially pronounced in the PFC. Furthermore, numerous LFP-derived measures were characterized that may serve as objective physiological correlates of pathological states observed in addiction.
Collapse
Affiliation(s)
- C C Lapish
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
Abstract
AbstractWe examine two different descriptions of the behavioral functions of the hippocampal system. One emphasizes spatially organized behaviors, especially those using cognitive maps. The other emphasizes memory, particularly working memory, a short-term memory that requires iexible stimulus-response associations and is highly susceptible to interference. The predictive value of the spatial and memory descriptions were evaluated by testing rats with damage to the hippocampal system in a series of experiments, independently manipulating the spatial and memory characteristics of a behavioral task. No dissociations were found when the spatial characteristics of the stimuli to be remembered were changed; lesions produced a similar deficit in both spatial and nonspatial test procedures, indicating that the hippocampus was similarly involved regardless of the spatial nature of the task. In contrast, a marked dissociation was found when the memory requirements were altered. Rats with lesions were able to perform accurately in tasks that could be solved exclusively on the basis of reference memory. They performed at chance levels and showed no signs of recovery even with extensive postoperative training in tasks that required working memory. In one experiment all the characteristics of the reference memory and working memory procedures were identical except the type of memory required. Consequently, the behavioral dissociation cannot be explained by differences in attention, motivation, response inhibition, or the type of stimuli to be remembered. As a result of these experiments we propose that the hippocampus is selectively involved in behaviors that require working memory, irrespective of the type of material (spatial or nonspatial) that is to be processed by that memory.
Collapse
|
49
|
Behavioral analysis of the hippocampal syndrome. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00063974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
|