1
|
Stockbridge MD. Better language through chemistry: Augmenting speech-language therapy with pharmacotherapy in the treatment of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:261-272. [PMID: 35078604 PMCID: PMC11289691 DOI: 10.1016/b978-0-12-823384-9.00013-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Speech and language therapy is the standard treatment of aphasia. However, many individuals have barriers in seeking this measure of extensive rehabilitation treatment. Investigating ways to augment therapy is key to improving poststroke language outcomes for all patients with aphasia, and pharmacotherapies provide one such potential solution. Although no medications are currently approved for the treatment of aphasia by the United States Food and Drug Administration, numerous candidate mechanisms for pharmaceutical manipulation continue to be identified based on our evolving understanding of the neurometabolic experience of stroke recovery across molecular, cellular, and functional levels of inquiry. This chapter will review evidence for catecholaminergic, glutamatergic, cholinergic, and serotonergic drug therapies and discuss future directions for both candidate drug selection and pharmacotherapy practice in people with aphasia.
Collapse
Affiliation(s)
- Melissa D Stockbridge
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
2
|
La Fountaine MF. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury. Int J Psychophysiol 2018; 132:155-166. [DOI: 10.1016/j.ijpsycho.2017.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 11/14/2017] [Accepted: 11/23/2017] [Indexed: 01/11/2023]
|
3
|
Hydrogen Gas Treatment Improves the Neurological Outcome After Traumatic Brain Injury Via Increasing miR-21 Expression. Shock 2018; 50:308-315. [DOI: 10.1097/shk.0000000000001018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Carlson LJ, Bao GC, Besagar S, Leary JB, Radabaugh HL, Bondi CO, Kline AE. Spontaneous recovery after controlled cortical impact injury is not impeded by intermittent administration of the antipsychotic drug risperidone. Neurosci Lett 2018; 682:69-73. [PMID: 29885446 DOI: 10.1016/j.neulet.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 11/25/2022]
Abstract
Several preclinical studies have reported that daily administration of the antipsychotic drug (APD) risperidone (RISP) impedes recovery after traumatic brain injury (TBI). However, it is not known whether intermittent dosing would produce similar deleterious effects. The relevance of providing APDs intermittently is that not all patients in rehabilitation require daily treatments to manage TBI-induced agitation. Hence, the goal of the current study was to test the hypothesis that intermittent (vs. daily) administration of RISP would be less disturbing to motor and cognitive recovery after TBI. Anesthetized adult male rats were subjected to either a cortical impact of moderate severity or sham injury and then were randomly assigned to groups receiving intraperitoneal injections of vehicle (VEH; 1.0 mL/kg) or RISP (0.45 mg/kg) 1x, 3x, or 7x per week until the completion of behavioral testing, which consisted of motor and cognitive assessments on post-operative days 1-5 and 14-19, respectively. The group receiving RISP 7x week exhibited greater motor and cognitive impairment compared to those receiving RISP 1x or 3x per week, or VEH [p<0.05]. Moreover, no differences were observed between the intermittent RISP groups vs. VEH [p>0.05], which supports the hypothesis. A potential clinical ramification is that RISP may be safe to manage agitation after TBI, but only when used sparingly.
Collapse
Affiliation(s)
- Lauren J Carlson
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Gina C Bao
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Sonya Besagar
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|
5
|
Hylin MJ, Brenneman MM, Corwin JV. Noradrenergic antagonists mitigate amphetamine-induced recovery. Behav Brain Res 2017; 334:61-71. [PMID: 28756213 DOI: 10.1016/j.bbr.2017.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Brain injury, including that due to stroke, leaves individuals with cognitive deficits that can disrupt daily aspect of living. As of now there are few treatments that shown limited amounts of success in improving functional outcome. The use of stimulants such as amphetamine have shown some success in improving outcome following brain injury. While the pharmacological mechanisms for amphetamine are known; the specific processes responsible for improving behavioral outcome following injury remain unknown. Understanding these mechanisms can help to refine the use of amphetamine as a potential treatment or lead to the use of other methods that share the same pharmacological properties. One proposed mechanism is amphetamine's impact upon noradrenaline (NA). In the current, study noradrenergic antagonists were administered prior to amphetamine to pharmacologically block α- and β-adrenergic receptors. The results demonstrated that the blockade of these receptors disrupted amphetamines ability to induce recovery from hemispatial neglect using an established aspiration lesion model. This suggests that amphetamine's ability to ameliorate neglect deficits may be due in part to noradrenaline. These results further support the role of noradrenaline in functional recovery. Finally, the development of polytherapies and combined therapeutics, while promising, may need to consider the possibility that drug interactions can negate the effectiveness of treatment.
Collapse
Affiliation(s)
- M J Hylin
- Neurotrauma and Rehabilitation Laboratory, Department of Psychology, Southern Illinois University, Carbondale, IL, United States.
| | - M M Brenneman
- Department of Psychology, Coastal Carolina University, P.O. Box 261954, Conway, SC, United States
| | - J V Corwin
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
6
|
Saxena S, Hillis AE. An update on medications and noninvasive brain stimulation to augment language rehabilitation in post-stroke aphasia. Expert Rev Neurother 2017; 17:1091-1107. [PMID: 28847186 DOI: 10.1080/14737175.2017.1373020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Aphasia is among the most debilitating outcomes of stroke. Aphasia is a language disorder occurring in 10-30% of stroke survivors. Speech and Language Therapy (SLT) is the gold standard, mainstay treatment for aphasia, but gains from SLT may be incomplete. Pharmaceutical and noninvasive brain stimulation (NIBS) techniques may augment the effectiveness of SLT. Areas covered: Herein reviewed are studies of the safety and efficacy of these adjunctive interventions for aphasia, including randomized placebo-controlled and open-label trials, as well as case series from Pubmed, using search terms 'pharmacological,' 'tDCS' or 'TMS' combined with 'aphasia' and 'stroke.' Expert commentary: Relatively small studies have included participants with a range of aphasia types and severities, using inconsistent interventions and outcome measures. Results to-date have provided promising, but weak to moderate evidence that medications and/or NIBS can augment the effects of SLT for improving language outcomes. We end with recommendations for future approaches to studying these interventions, with multicenter, double-blind, randomized controlled trials.
Collapse
Affiliation(s)
- Sadhvi Saxena
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Argye E Hillis
- a Department of Neurology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
7
|
Abstract
ABSTRACT:Despite much progress in stroke prevention and acute intervention, recovery and rehabilitation have traditionally received relatively little scientific attention. There is now increasing interest in the development of stroke recovery drugs and innovative rehabilitation techniques to promote functional recovery after completed stroke. Experimental work over the past two decades indicates that pharmacologic intervention to enhance recovery may be possible in the subacute stage, days to weeks poststroke, after irreversible injury has occurred. This paper discusses the concept of “rehabilitation pharmacology” and reviews the growing literature from animal studies and pilot clinical trials on noradrenergic pharmacotherapy, a new experimental strategy in stroke rehabilitation. Amphetamine, a monoamine agonist that increases brain norepinephrine levels, is the most extensively studied drug shown to promote recovery of function in animal models of focal brain injury. Further research is needed to investigate the mechanisms and clinical efficacy of amphetamine and other novel therapeutic interventions on the recovery process.
Collapse
|
8
|
Hasbani MJ, Underhill SM, De Erausquin G, Goldberg MP. Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia? Neuroscientist 2016. [DOI: 10.1177/107385840000600208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known of the mechanisms governing functional recovery after ischemic brain injury, and there is no clinical therapy established to restore neurologic function after ischemic injury is complete. Even so, pronounced spontaneous recovery of function is often observed in a subset of patients. Resolution of neurological deficits after ischemia must occur through replacement of lost tissue via production of new neurons, or through changes in the structure, function, or connectivity of surviving neurons. This review focuses on the neuronal synapse as a potential locus for functional recovery. Selective disruption of synaptic elements is a characteristic feature of hypoxic-ischemic brain injury, such as that seen in ischemic stroke or cardiac arrest. Ischemic damage to synapses occurs even in the absence of neuronal loss, and therefore might underlie the clinical disability observed in patients following mild or transient ischemia. We review evidence that recovery of lost synapses occurs after ischemic injury and that this recovery may be a necessary step for restoration of neurological function. The process of synapse loss and recovery can be examined in neuronal cultures and experimental stroke models. Such studies may help to gain a better understanding of the extracellular factors and intracellular cascades that facilitate recovery of synapses, and may result in therapeutic approaches to improve function after cerebral ischemia.
Collapse
Affiliation(s)
- M. Josh Hasbani
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M. Underhill
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel De Erausquin
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Mark P. Goldberg
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion. J Transl Med 2016; 14:101. [PMID: 27118204 PMCID: PMC4847184 DOI: 10.1186/s12967-016-0858-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/10/2016] [Indexed: 11/28/2022] Open
Abstract
Background Vagus nerve stimulation (VNS) has become the most common non-pharmacological treatment for intractable drug-resistant epilepsy. However, the contribution of VNS to neurological rehabilitation following stroke has not been thoroughly examined. Therefore, we investigated the specific role of acute VNS in the recovery of cognitive functioning and the possible mechanisms involved using a cerebral ischemia/reperfusion (I/R) injury model in rats. Methods The I/R-related injury was modeled using occlusion and reperfusion of the middle cerebral artery (MCAO/R) in Sprague–Dawley rats. VNS was concurrently applied to the vagus nerve using a stimulation intensity of 1 mA at a fixed frequency of 20 Hz with a 0.4-ms bipolar pulse width. The stimulation duration and inter-train interval were both 3 s. Next, Morris water maze and shuttle-box behavioral experiments were conducted to assess the effects of VNS on the recovery of learning, memory, and inhibitory avoidance following I/R injury. Intracerebroventricular injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a selective neurotoxin for noradrenergic neurons, was used to evaluate the role of norepinephrine (NE) as a mediator of therapeutic effects of VNS on cognitive recovery. Results Compared with the MCAO/R group, the VNS+MCAO/R group had improved spatial memory as indicated by swimming path lengths and escape latencies in the Morris water maze, and fear memory, as indicated by the avoidance conditioned response rate, mean shock duration, and avoidance time in shuttle-box behavior experiments. Compared with the VNS+MCAO/R group, the DSP-4+VNS+MCAO/R group, which had reduced NE levels in cortical and hippocampal brain regions, showed a reversal of the VNS-induced benefits on spatial and fear memory performance. Conclusions VNS improves spatial and fear memory in a rat model of MCAO/R injury. However, a reduction in NE from the administration of DSP-4 blocks these protective effects, suggesting that NE may contribute to the influence exhibited by VNS on memory performance in rats with cerebral I/R-related injury.
Collapse
|
10
|
Phelps TI, Bondi CO, Ahmed RH, Olugbade YT, Kline AE. Divergent long-term consequences of chronic treatment with haloperidol, risperidone, and bromocriptine on traumatic brain injury-induced cognitive deficits. J Neurotrauma 2015; 32:590-7. [PMID: 25275833 PMCID: PMC4394178 DOI: 10.1089/neu.2014.3711] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Antipsychotic drugs (APDs) are provided in the clinic to manage traumatic brain injury (TBI)-induced agitation and aggression. Experimental TBI studies consistently show that daily administration of the APDs, haloperidol (HAL) and risperidone (RISP), hinder recovery. However, it is unknown how long the adverse effects remain after cessation of treatment. To elucidate this clinically relevant issue, anesthetized male rats were randomly assigned to four TBI (controlled cortical impact) and four sham groups administered HAL (0.5 mg/kg), RISP (0.45 mg/kg), bromocriptine (BRO; 5.0 mg/kg, included as a control for D2 receptor action), or vehicle (VEH; 1 mL/kg) 24 h after surgery and once-daily for 19 days. Motor and cognitive recovery was assessed on days 1-5 and 14-19, respectively, and again at 1 and 3 months after drug withdrawal. No overall group differences were observed for motor function among the TBI groups, although the HAL group showed a greater beam-walk deficit on day 5 versus the VEH and BRO groups. Cognitive recovery was significantly impaired in the HAL and RISP groups during the treatment phase versus VEH and BRO. Further, BRO was superior to VEH (p=0.0042). At 1 month, both groups that received APDs continued to exhibit significant cognitive impairment versus VEH and BRO; at 3 months, only the HAL group was impaired. Moreover, the HAL, RISP, and VEH groups continued to be cognitively deficient versus BRO, which also reduced cortical damage. These data replicate previous reports that HAL and RISP impede cognitive recovery after TBI and expand the literature by revealing that the deleterious effects persist for 3 months after drug discontinuation. BRO conferred cognitive benefits when administered concomitantly with behavioral testing, thus replicating previous findings, and also after cessation demonstrating enduring efficacy.
Collapse
Affiliation(s)
- Thomas I. Phelps
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corina O. Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rashid H. Ahmed
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yewande T. Olugbade
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anthony E. Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Lemmens S, Brône B, Dooley D, Hendrix S, Geurts N. Alpha-adrenoceptor modulation in central nervous system trauma: pain, spasms, and paralysis--an unlucky triad. Med Res Rev 2014; 35:653-77. [PMID: 25546087 DOI: 10.1002/med.21337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many researchers have attempted to pharmacologically modulate the adrenergic system to control locomotion, pain, and spasms after central nervous system (CNS) trauma, although such efforts have led to conflicting results. Despite this, multiple studies highlight that α-adrenoceptors (α-ARs) are promising therapeutic targets because in the CNS, they are involved in reactivity to stressors and regulation of locomotion, pain, and spasms. These functions can be activated by direct modulation of these receptors on neuronal networks in the brain and the spinal cord. In addition, these multifunctional receptors are also broadly expressed on immune cells. This suggests that they might play a key role in modulating immunological responses, which may be crucial in treating spinal cord injury and traumatic brain injury as both diseases are characterized by a strong inflammatory component. Reducing the proinflammatory response will create a more permissive environment for axon regeneration and may support neuromodulation in combination therapies. However, pharmacological interventions are hindered by adrenergic system complexity and the even more complicated anatomical and physiological changes in the CNS after trauma. This review is the first concise overview of the pros and cons of α-AR modulation in the context of CNS trauma.
Collapse
Affiliation(s)
- Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
12
|
Khodaparast N, Hays SA, Sloan AM, Fayyaz T, Hulsey DR, Rennaker RL, Kilgard MP. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke. Neurorehabil Neural Repair 2014; 28:698-706. [PMID: 24553102 PMCID: PMC4134702 DOI: 10.1177/1545968314521006] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation.
Collapse
Affiliation(s)
- Navid Khodaparast
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| | - Seth A Hays
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| | - Andrew M Sloan
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| | - Tabbassum Fayyaz
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| | - Daniel R Hulsey
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, School of Behavioral Brain Sciences, Richardson, TX, USA
| |
Collapse
|
13
|
Jiang X, Huang Y, Lin W, Gao D, Fei Z. Protective effects of hydrogen sulfide in a rat model of traumatic brain injury via activation of mitochondrial adenosine triphosphate–sensitive potassium channels and reduction of oxidative stress. J Surg Res 2013; 184:e27-35. [DOI: 10.1016/j.jss.2013.03.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/28/2023]
|
14
|
Nadeau SE, Lu X, Dobkin B, Wu SS, Dai YE, Duncan PW. A prospective test of the late effects of potentially antineuroplastic drugs in a stroke rehabilitation study. Int J Stroke 2012; 9:449-56. [PMID: 23088350 DOI: 10.1111/j.1747-4949.2012.00920.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/23/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Extensive data, primarily from animal studies, suggest that several classes of drugs may have antineuroplastic effects that could impede recovery from brain injury or reduce the efficacy of rehabilitation. AIMS The Locomotor Experience Applied Post-Stroke trial, a randomized controlled study of 408 subjects that tested the relative efficacy of two rehabilitation techniques on functional walking level at one-year poststroke, provided us the opportunity to prospectively assess the potential antineuroplastic effects of several classes of drug. METHODS Subjects were randomized to receive one of the two rehabilitation therapies at two-months poststroke. Drugs taken were recorded at time of randomization. Outcome was assessed at one-year poststroke. Regression models were used to determine the amount of variance in success in improving functional walking level, gains in walking speed, and declines in lower extremity, upper extremity, and cognitive impairment accounted for by α1 noradrenergic blockers + α2 noradrenergic agonists, benzodiazepines, voltage-sensitive sodium channel anticonvulsants, and α2δ voltage-sensitive calcium channel blockers. RESULTS The maximum variance accounted for by any drug class was 1.66%. Drug effects were not statistically significant when using even our most lenient standard for correction for multiple comparisons. CONCLUSIONS Drugs in the classes we were able to assess do not appear to exert a clinically important effect on outcome over the period between two- and 12 months poststroke. However, the potential antineuroplastic effects of certain drugs remain an incompletely settled scientific question.
Collapse
Affiliation(s)
- Stephen E Nadeau
- Neurology Service and the Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL, USA; Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Protective effects of hydrogen-rich saline in a rat model of traumatic brain injury via reducing oxidative stress. J Surg Res 2012; 178:e9-16. [PMID: 22475349 DOI: 10.1016/j.jss.2011.12.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 11/21/2011] [Accepted: 12/19/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hydrogen gas (H(2)) has been considered as a novel antioxidant to selectively reduce the toxic reactive oxygen species (ROS) such as hydroxyl radical (•OH) without affecting the other signal ROS. Our recent study shows that H(2) inhalation is beneficial to traumatic brain injury (TBI) via reducing oxidative stress. In contrast to H(2), hydrogen-rich saline (HS) may be more suitable for clinical application. The present study was designed to investigate whether HS has a protective effect against TBI via reducing oxidative stress in rats. METHODS TBI model was induced by controlled cortical impact injury. Different dosages of HS were intraperitoneally administered at 5 min after TBI operation. We then measured the brain edema, blood-brain barrier (BBB) breakdown, neurological dysfunction and injury volume in all animals. In addition, the oxidative products and antioxidant enzymes in brain tissues were detected. RESULTS TBI-challenged rats exhibited significant brain injuries characterized by the increase of BBB permeability, brain edema, and lesion volume as well as neurological dysfunction, which were dose-dependently ameliorated by HS treatment. Moreover, we found that HS treatment increased the endogenous antioxidant enzymatic activities and decreased the oxidative product levels in brain tissues of TBI-challenged rats. CONCLUSION Hydrogen-rich saline can exert a protective effect against TBI via reducing oxidative stress. Molecular hydrogen may be a more effective therapeutic strategy for TBI patients.
Collapse
|
16
|
Kumaria A, Tolias CM. Is there a role for vagus nerve stimulation therapy as a treatment of traumatic brain injury? Br J Neurosurg 2012; 26:316-20. [PMID: 22404761 DOI: 10.3109/02688697.2012.663517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper aims to review the current literature on vagus nerve stimulation (VNS) use in animal models of traumatic brain injury (TBI) and explore its potential role in treatment of human TBI. A MEDLINE search yielded four primary papers from the same group that demonstrated VNS mediated improvement following fluid percussion models of TBI in rats, seen as motor and cognitive improvements, reduction of cortical oedema and neuroprotective effects. The underlying mechanisms are elusive and authors attribute these to attenuation of post traumatic seizures, a noradrenergic mechanism and as yet undetermined mechanisms. Reviewing and elaborating on these ideas, we speculate other potential mechanisms including attenuation of peri-infarct depolarisations, attenuation of glutamate mediated excitotoxicity, stabilisation of intracranial pressure, enhancement of synaptic plasticity, upregulation of endogenous neurogenesis and anti-inflammatory effects may have a role. Although this data unequivocally shows that VNS improves outcome from TBI in animal models, it remains to be determined if these findings translate clinically. Further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Wessex Neurological Centre, Southampton, UK.
| | | |
Collapse
|
17
|
Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TDR, Calhoun VD, Raybourn EM, Garcia CM, Wassermann EM. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage 2012; 59:117-28. [PMID: 21094258 PMCID: PMC3387543 DOI: 10.1016/j.neuroimage.2010.11.036] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/07/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022] Open
Abstract
The accurate identification of obscured and concealed objects in complex environments was an important skill required for survival during human evolution, and is required today for many forms of expertise. Here we used transcranial direct current stimulation (tDCS) guided using neuroimaging to increase learning rate in a novel, minimally guided discovery-learning paradigm. Ninety-six subjects identified threat-related objects concealed in naturalistic virtual surroundings used in real-world training. A variety of brain networks were found using functional magnetic resonance imaging (fMRI) data collected at different stages of learning, with two of these networks focused in right inferior frontal and right parietal cortex. Anodal 2.0 mA tDCS performed for 30 min over these regions in a series of single-blind, randomized studies resulted in significant improvements in learning and performance compared with 0.1 mA tDCS. This difference in performance increased to a factor of two after a one-hour delay. A dose-response effect of current strength on learning was also found. Taken together, these brain imaging and stimulation studies suggest that right frontal and parietal cortex are involved in learning to identify concealed objects in naturalistic surroundings. Furthermore, they suggest that the application of anodal tDCS over these regions can greatly increase learning, resulting in one of the largest effects on learning yet reported. The methods developed here may be useful to decrease the time required to attain expertise in a variety of settings.
Collapse
|
18
|
Wong JK, Steward O. One day of motor training with amphetamine impairs motor recovery following spinal cord injury. Exp Neurol 2011; 233:693-707. [PMID: 22078754 DOI: 10.1016/j.expneurol.2011.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/29/2011] [Accepted: 08/08/2011] [Indexed: 11/15/2022]
Abstract
It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury because early training with amphetamine increases lesion severity.
Collapse
Affiliation(s)
- Jamie K Wong
- Department of Neurobiology & Behavior, University of California at Irvine, Irvine, CA 92697, USA
| | | |
Collapse
|
19
|
Brenhouse HC, Andersen SL. Developmental trajectories during adolescence in males and females: a cross-species understanding of underlying brain changes. Neurosci Biobehav Rev 2011; 35:1687-703. [PMID: 21600919 PMCID: PMC3134153 DOI: 10.1016/j.neubiorev.2011.04.013] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 04/14/2011] [Accepted: 04/21/2011] [Indexed: 11/20/2022]
Abstract
Adolescence is a transitional period between childhood and adulthood that encompasses vast changes within brain systems that parallel some, but not all, behavioral changes. Elevations in emotional reactivity and reward processing follow an inverted U shape in terms of onset and remission, with the peak occurring during adolescence. However, cognitive processing follows a more linear course of development. This review will focus on changes within key structures and will highlight the relationships between brain changes and behavior, with evidence spanning from functional magnetic resonance imaging (fMRI) in humans to molecular studies of receptor and signaling factors in animals. Adolescent changes in neuronal substrates will be used to understand how typical and atypical behaviors arise during adolescence. We draw upon clinical and preclinical studies to provide a neural framework for defining adolescence and its role in the transition to adulthood.
Collapse
Affiliation(s)
- Heather C. Brenhouse
- Laboratory of Developmental Neuropharmacology McLean Hospital and Department of Psychiatry, Harvard Medical School
| | - Susan L. Andersen
- Laboratory of Developmental Neuropharmacology McLean Hospital and Department of Psychiatry, Harvard Medical School
| |
Collapse
|
20
|
Andersen SL, Navalta CP. Annual Research Review: New frontiers in developmental neuropharmacology: can long-term therapeutic effects of drugs be optimized through carefully timed early intervention? J Child Psychol Psychiatry 2011; 52:476-503. [PMID: 21309771 PMCID: PMC3115525 DOI: 10.1111/j.1469-7610.2011.02376.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Our aim is to present a working model that may serve as a valuable heuristic to predict enduring effects of drugs when administered during development. Our primary tenet is that a greater understanding of neurodevelopment can lead to improved treatment that intervenes early in the progression of a given disorder and prevents symptoms from manifesting. The immature brain undergoes significant changes during the transitions between childhood, adolescence, and adulthood. Such changes in innervation, neurotransmitter levels, and their respective signaling mechanisms have profound and observable changes on typical behavior, but also increase vulnerability to psychiatric disorders when the maturational process goes awry. Given the remarkable plasticity of the immature brain to adapt to its external milieu, preventive interventions may be possible. We intend for this review to initiate a discussion of how currently used psychotropic agents can influence brain development. Drug exposure during sensitive periods may have beneficial long-term effects, but harmful delayed consequences may be possible as well. Regardless of the outcome, this information needs to be used to improve or develop alternative approaches for the treatment of childhood disorders. With this framework in mind, we present what is known about the effects of stimulants, antidepressants, and antipsychotics on brain maturation (including animal studies that use more clinically-relevant dosing paradigms or relevant animal models). We endeavor to provocatively set the stage for altering treatment approaches for improving mental health in non-adult populations.
Collapse
Affiliation(s)
- Susan L. Andersen
- Laboratory for Developmental Neuropharmacology, Department of Psychiatry, McLean Hospital, Harvard Medical School
| | - Carryl P. Navalta
- Program for Behavioral Science, Department of Psychiatry, Children’s Hospital Boston, Harvard Medical School
| |
Collapse
|
21
|
Ji X, Liu W, Xie K, Liu W, Qu Y, Chao X, Chen T, Zhou J, Fei Z. Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 2010; 1354:196-205. [PMID: 20654594 DOI: 10.1016/j.brainres.2010.07.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and disability among the young population. It has been shown that hydrogen gas (H(2)) exerts a therapeutic antioxidant activity by selectively reducing hydroxyl radical (OH, the most cytotoxic ROS). Recently, we have found that H(2) inhalation significantly improved the survival rate and organ damage of septic mice. In the present study, we investigated the effectiveness of H(2) therapy on brain edema, blood-brain barrier (BBB) breakdown, neurological dysfunction and injury volume in TBI-challenged rats. In addition, we investigated the effects of H(2) treatment on the changes of oxidative products and antioxidant enzymes in brain tissue of TBI-challenged rats. Hydrogen treatment was given by exposure to 2% H(2) from 5 min to 5h after sham or TBI operation, respectively. Here, we found that TBI-challenged rats showed significant brain injuries characterized by the increase of BBB permeability, brain edema and lesion volume as well as neurological dysfunction, which was significantly attenuated by 2% H(2) treatment. In addition, we found that the decrease of oxidative products and the increase of endogenous antioxidant enzymatic activities in the brain tissue may be associated with the protective effects of H(2) treatment in TBI-challenged rats. The present study supports that H(2) inhalation may be a more effective therapeutic strategy for patients with TBI.
Collapse
Affiliation(s)
- Xituan Ji
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xiing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ochalski PG, Fellows-Mayle W, Hsieh LB, Srinivas R, Okonkwo DO, Dixon CE, Adelson PD. Flumazenil administration attenuates cognitive impairment in immature rats after controlled cortical impact. J Neurotrauma 2010; 27:647-51. [PMID: 19929186 DOI: 10.1089/neu.2009.1142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that the gamma-aminobutyric acid (GABA)ergic system may be involved in cognitive dysfunction following traumatic brain injury (TBI). We investigated the effect of flumazenil treatment, a benzodiazepine antagonist approved by the U.S. Food and Drug Administration, on learning and memory in the immature rat following experimental brain injury. Post-natal day 17 rats were injured using controlled cortical impact. Systemic treatment with flumazenil at 1, 5, and 10 mg/kg was initiated on post-injury day 1 and administered for 13 days via daily intraperitoneal injections. Morris water maze (MWM) testing was used to measure latency to find a submerged platform and the results from experimental and control animals were compared. We demonstrated a significant dose-dependent improvement in MWM performance in drug-treated animals. This is the first study demonstrating the efficacy of flumazenil in reducing post-TBI cognitive deficits and we propose that these effects may be related to modulation of the GABA(A) receptor.
Collapse
Affiliation(s)
- Pawel G Ochalski
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Beltran EJ, Papadopoulos CM, Tsai SY, Kartje GL, Wolf WA. Long-term motor improvement after stroke is enhanced by short-term treatment with the alpha-2 antagonist, atipamezole. Brain Res 2010; 1346:174-82. [PMID: 20510888 DOI: 10.1016/j.brainres.2010.05.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 12/15/2022]
Abstract
Drugs that increase central noradrenergic activity have been shown to enhance the rate of recovery of motor function in pre-clinical models of brain damage. Less is known about whether noradrenergic agents can improve the extent of motor recovery and whether such improvement can be sustained over time. This study was designed to determine if increasing central noradrenergic tone using atipamezole, an alpha-2 adrenoceptor antagonist, could induce a long-term improvement in motor performance in rats subjected to ischemic brain damage caused by permanent middle cerebral artery occlusion. The importance of pairing physical "rehabilitation" with enhanced noradrenergic activity was also investigated. Atipamezole (1 mg/kg, s.c.) or vehicle (sterile saline) was administered once daily on Days 2-8 post-operatively. Half of each drug group was housed under enriched environment conditions supplemented with daily focused activity sessions while the other half received standard housing with no focused activity. Skilled motor performance in forelimb reaching and ladder rung walking was assessed for 8 weeks post-operatively. Animals receiving atipamezole plus rehabilitation exhibited significantly greater motor improvement in both behavioral tests as compared to vehicle-treated animals receiving rehabilitation. Interestingly, animals receiving atipamezole without rehabilitation exhibited a significant motor improvement in the ladder rung walk test but not the forelimb reaching test. These results suggest that a short-term increase in noradrenergic activity can lead to sustained motor improvement following stroke, especially when paired with rehabilitation.
Collapse
|
24
|
Abstract
The authors describe the case of a 13-year-old boy who exhibited progressive disabling motor restlessness, torticollis, urinary symptoms, and confusion following a fall from a bicycle. The differential diagnosis of this striking symptom complex in this clinical context can be problematic. In this case, the symptoms ultimately appeared most consistent with severe akathisia resulting from a single administration of haloperidol used at an outside hospital to sedate the patient prior to a head CT scan. The literature on akathisia in pediatric patients, and especially in patients following acute head injury, is reviewed, with suggestions for an approach to these symptoms in this clinical setting.
Collapse
Affiliation(s)
- Atman Desai
- Section of Pediatric Surgery (Neurosurgery), Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, New Hampshire 03756, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Abstract
In this review, we discuss the basic mechanisms of neural regeneration and repair and attempt to correlate findings from animal models of stroke recovery with clinical trials for aphasia. Several randomized controlled clinical trials involving manipulation of different neurotransmitter systems, including noradrenergic, dopaminergic, cholinergic, and glutamatergic systems, have shown signals of efficacy. Biological approaches such as anti-Nogo and cell replacement therapy have shown efficacy in preclinical models but have yet to reach proof of concept in the clinic. Finally, noninvasive cortical stimulation techniques have been used in a few small trials and have shown promising results. It appears that the efficacy of all these platforms can be potentiated through coupling with concomitant behavioral intervention. Given this array of potential mechanisms that exist to augment and/or stimulate neural reorganization after stroke, we are optimistic that approaches to aphasia therapy will transition from compensatory models to models in which brain reorganization is the goal.
Collapse
|
27
|
Alpha-methyltyrosine inhibits formation of reactive oxygen species and diminishes apoptosis in PC12 cells. Brain Res 2009; 1296:137-47. [DOI: 10.1016/j.brainres.2009.07.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 12/21/2022]
|
28
|
Abstract
BACKGROUND Pharmacotherapy is commonly given to patients recovering from a stroke to prevent further complications (e.g. recurrent stroke, seizures) or enhance recovery. However, some drugs may have a negative impact on neuroplasticity. OBJECTIVES This review examines currently used drugs that are believed to promote recovery from motor and cognitive disturbances associated with stroke. METHODS Literature regarding the properties, efficacy, safety, and dosing of drugs used to promote recovery after stroke was reviewed. RESULTS The data on pharmacotherapy are insufficient to support a claim of significantly improved rehabilitation outcomes. Moreover, a growing body of evidence indicates that some agents can impair functional reorganization and slow the recovery process. However, a few chemicals are reported to be beneficial for stroke rehabilitation. The most promising are noradrenergic and dopaminergic agents, as well as several growth factors; these should be the future focus of extensive randomized clinical trials. CONCLUSIONS Currently there is no drug with proven efficacy in enhancing poststroke recovery.
Collapse
Affiliation(s)
- Anna Członkowska
- Institute of Psychiatry and Neurology, 2nd Dept of Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland.
| | | |
Collapse
|
29
|
Mysiw WJ, Bogner JA, Corrigan JD, Fugate LP, Clinchot DM, Kadyan V. The impact of acute care medications on rehabilitation outcome after traumatic brain injury. Brain Inj 2009; 20:905-11. [PMID: 17062422 DOI: 10.1080/02699050600743972] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To examine the impact of medications with known central nervous system (CNS) mechanisms of action, given during the acute care stages after traumatic brain injury (TBI), on the extent of cognitive and motor recovery during inpatient rehabilitation. DESIGN Retrospective extraction of data utilizing an inception cohort of moderate and severe TBI survivors. METHODS The records of 182 consecutive moderate and severe TBI survivors admitted to a single, large, Midwestern level I trauma centre and subsequently transferred for acute inpatient rehabilitation were abstracted for the presence of 11 categories of medication, three measures of injury severity (worst 24 hour Glasgow Coma Scale, worst pupillary response, intra-cranial hypertension), three measures of outcome (Function Independence Measure (FIM) Motor and Cognitive scores at both rehabilitation admission and discharge and duration of post-traumatic amnesia (PTA)). MAIN OUTCOME AND RESULTS The narcotics, benzodiazepines and neuroleptics were the most common categories of CNS active medications (92%, 67% and 43%, respectively). The three categories of medications appeared to have no significant outcome on the FIM outcome variables. The neuroleptics affected cognitive recovery with almost 7 more days required to clear PTA in the neuroleptic treated group. The presence of benzodiazepines did tend to obscure the impact of neuroleptics on PTA duration but the negative impact of neuroleptics on PTA duration remained significant. CONCLUSIONS The results suggest that the use of neuroleptics during the acute care stage of recovery has a negative impact on recovery of cognitive function at discharge from inpatient rehabilitation. Due to the paucity of subjects with hemiplegia in this cohort, conclusions could not be drawn as to the impact of acute care medications on motor recovery.
Collapse
Affiliation(s)
- W Jerry Mysiw
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Goldstein LB. Stroke recovery and rehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2009; 94:1327-1337. [PMID: 18793903 DOI: 10.1016/s0072-9752(08)94066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Larry B Goldstein
- Duke Center for Cerebrovascular Disease and Durham VA Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Hoffman AN, Cheng JP, Zafonte RD, Kline AE. Administration of haloperidol and risperidone after neurobehavioral testing hinders the recovery of traumatic brain injury-induced deficits. Life Sci 2008; 83:602-7. [PMID: 18801378 DOI: 10.1016/j.lfs.2008.08.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/12/2008] [Accepted: 08/15/2008] [Indexed: 11/29/2022]
Abstract
AIMS Agitation and aggression are common behavioral sequelae of traumatic brain injury (TBI). The management of these symptoms is critical for effective patient care and therefore antipsychotics are routinely administered even though the benefits vs. risks of this approach on functional outcome after TBI are unclear. A recent study from our group revealed that both haloperidol and risperidone impaired recovery when administered prior to testing. However, the results may have been confounded by drug-induced sedation. Hence, the current study reevaluated the behavioral effects of haloperidol and risperidone when provided after daily testing, thus circumventing the potential sedative effect. MAIN METHODS Fifty-four isoflurane-anesthetized male rats received a cortical impact or sham injury and then were randomly assigned to three TBI and three sham groups that received haloperidol (0.5 mg/kg), risperidone (0.45 mg/kg), or vehicle (1.0 mL/kg). Treatments began 24 h after surgery and were administered (i.p.) every day thereafter for 19 days. Motor and cognitive function was assessed on post-operative days 1-5 and 14-19, respectively. Hippocampal CA(1)/CA(3) neurons and cortical lesion volume were quantified at 3 weeks. KEY FINDINGS Only risperidone delayed motor recovery, but both antipsychotics impaired spatial learning relative to vehicle (p<0.05). Neither swim speed nor histological outcomes were affected. No differences were observed between the haloperidol and risperidone groups in any task. SIGNIFICANCE These data support our previous finding that chronic haloperidol and risperidone hinder the recovery of TBI-induced deficits, and augment those data by demonstrating that the effects are not mediated by drug-induced sedation.
Collapse
Affiliation(s)
- Ann N Hoffman
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | | | | | | |
Collapse
|
32
|
Reversal of noradrenergic depletion and lipid peroxidation in the pons after brain injury correlates with motor function recovery in rats. Neurosci Lett 2008; 443:32-6. [PMID: 18662743 DOI: 10.1016/j.neulet.2008.07.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/13/2008] [Accepted: 07/18/2008] [Indexed: 11/23/2022]
Abstract
Functional impairment after brain injury (BI) has been attributed to the inhibition of regions that are related to the injured site. Therefore, noradrenaline (NA) is thought to play a critical role in recovery from motor injury. However, the mechanism of this recovery process has not been completely elucidated. Moreover, the locus coeruleus (LC) projects from the pons through the rat sensorimotor cortex, and injury axotomizes LC fibers, depressing NA function. This was tested by measuring lipid peroxidation (LP) in the pons after sensorimotor cortex injury. Depression of function in the pons would be expected to alter areas receiving pontine efferents. Male Wistar rats were divided into three groups: control (n=16), injured (n=10) and recovering (n=16), and they were evaluated using a beam-walking assay between 2 and 20 days after cortical injury. We performed measures of NA and LP in both sides of the pons and cerebellum. We found a decrease of NA in the pons and the cerebellum, and a concomitant increase in the motor deficit and LP in the pons of injured animals. Recovering rats had NA and LP levels that were very similar to those observed in control rats. These observations suggest that the mechanism of remote inhibition after BI involves lipid peroxidation, and that the NA decrease found in the cerebellum of injured animals is mediated by a noradrenergic depression in the pons, or in areas receiving NA projections from the pons.
Collapse
|
33
|
Darbar A, Stevens RT, Siddiqui AH, McCasland JS, Hodge CJ. Pharmacological modulation of cortical plasticity following kainic acid lesion in rat barrel cortex. J Neurosurg 2008; 109:108-16. [PMID: 18590439 DOI: 10.3171/jns/2008/109/7/0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The brain shows remarkable capacity for plasticity in response to injury. To maximize the benefits of current neurological treatment and to minimize the impact of injury, the authors examined the ability of commonly administered drugs, dextroamphetamine (D-amphetamine) and phenytoin, to positively or negatively affect the functional recovery of the cerebral cortex following excitotoxic injury. METHODS Previous work from the same laboratory has demonstrated reorganization of whisker functional responses (WFRs) in the rat barrel cortex after excitotoxic lesions were created with kainic acid (KA). In the present study, WFRs were mapped using intrinsic optical signal imaging before and 9 days after creation of the KA lesions. During the post-lesion survival period, animals were either treated with intraperitoneal D-amphetamine, phenytoin, or saline or received no treatment. Following the survival period, WFRs were again measured and compared with prelesion data. RESULTS The findings suggest that KA lesions cause increases in WFR areas when compared with controls. Treatment with D-amphetamine further increased the WFR area (p < 0.05) while phenytoin-treated rats showed decreases in WFR areas. There was also a statistically significant difference (p < 0.05) between the D-amphetamine and phenytoin groups. CONCLUSIONS These results show that 2 commonly used drugs, D-amphetamine and phenytoin, have opposite effects in the functional recovery/plasticity of injured cerebral cortex. The authors' findings emphasize the complex nature of the cortical response to injury and have implications for understanding the biology of the effects of different medications on eventual functional brain recovery.
Collapse
Affiliation(s)
- Aneela Darbar
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | |
Collapse
|
34
|
Griesbach GS, Hovda DA, Gomez-Pinilla F, Sutton RL. Voluntary exercise or amphetamine treatment, but not the combination, increases hippocampal brain-derived neurotrophic factor and synapsin I following cortical contusion injury in rats. Neuroscience 2008; 154:530-40. [PMID: 18479829 DOI: 10.1016/j.neuroscience.2008.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 02/07/2023]
Abstract
Prior work has shown that d-amphetamine (AMPH) treatment or voluntary exercise improves cognitive functions after traumatic brain injury (TBI). In addition, voluntary exercise increases levels of brain-derived neurotrophic factor (BDNF). The current study was conducted to determine how AMPH and exercise treatments, either alone or in combination, affect molecular events that may underlie recovery following controlled cortical impact (CCI) injury in rats. We also determined if these treatments reduced injury-induced oxidative stress. Following a CCI or sham injury, rats received AMPH (1 mg/kg/day) or saline treatment via an ALZET pump and were housed with or without access to a running wheel for 7 days. CCI rats ran significantly less than sham controls, but exercise level was not altered by drug treatment. On day 7 the hippocampus ipsilateral to injury was harvested and BDNF, synapsin I and phosphorylated (P) -synapsin I proteins were quantified. Exercise or AMPH alone significantly increased BDNF protein in sham and CCI rats, but this effect was lost with the combined treatment. In sham-injured rats synapsin I increased significantly after AMPH or exercise, but did not increase after combined treatment. Synapsin levels, including the P-synapsin/total synapsin ratio, were reduced from sham controls in the saline-treated CCI groups, with or without exercise. AMPH treatment significantly increased the P-synapsin/total synapsin ratio after CCI, an effect that was attenuated by combining AMPH with exercise. Exercise or AMPH treatment alone significantly decreased hippocampal carbonyl groups on oxidized proteins in the CCI rats, compared with saline-treated sedentary counterparts, but this reduction in a marker of oxidative stress was not found with the combination of exercise and AMPH treatment. These results indicate that, whereas exercise or AMPH treatment alone may induce plasticity and reduce oxidative stress after TBI, combining these treatments may cancel each other's therapeutic effects.
Collapse
Affiliation(s)
- G S Griesbach
- Division of Neurosurgery, Department of Surgery, David Geffen School of Medicine at UCLA, Box 957039, Los Angeles, CA 90095-7039, USA.
| | | | | | | |
Collapse
|
35
|
Reid WM, Hamm RJ. Post-Injury Atomoxetine Treatment Improves Cognition following Experimental Traumatic Brain Injury. J Neurotrauma 2008; 25:248-56. [DOI: 10.1089/neu.2007.0389] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wendy M. Reid
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J. Hamm
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
36
|
Clough RW, Neese SL, Sherill LK, Tan AA, Duke A, Roosevelt RW, Browning RA, Smith DC. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation. Neuroscience 2007; 147:286-93. [PMID: 17543463 DOI: 10.1016/j.neuroscience.2007.04.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/23/2007] [Accepted: 04/27/2007] [Indexed: 11/16/2022]
Abstract
Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. Two hours following FPI, VNS was initiated. Behavioral testing, using both beam walk and locomotor placing tasks, was conducted at 1 and 2 days following FPI. Edema was measured 48 h post-FPI by the customary method of region-specific brain weights before and after complete dehydration. Results of this study replicated that VNS initiated at 2 h after FPI: 1) effectively facilitated the recovery of vestibulomotor function at 2 days after FPI assessed by beam walk performance (P<0.01); and 2) tended to improve locomotor placing performance at the same time point (P=0.18). Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema.
Collapse
Affiliation(s)
- R W Clough
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901-6503, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kline AE, Massucci JL, Zafonte RD, Dixon CE, DeFeo JR, Rogers EH. Differential effects of single versus multiple administrations of haloperidol and risperidone on functional outcome after experimental brain trauma. Crit Care Med 2007; 35:919-24. [PMID: 17255872 PMCID: PMC3051270 DOI: 10.1097/01.ccm.0000256722.88854.c0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Antipsychotics are routinely administered to patients with traumatic brain injury, even though the benefits vs. risks of this approach on behavioral recovery are unclear. To clarify the issue, the present study evaluated the effect of single and multiple administrations of haloperidol and risperidone on functional outcome after traumatic brain injury. DESIGN Prospective and randomized study in rodents. SETTING Experimental research laboratory at the University of Pittsburgh. SUBJECTS A total of 60 adult male Sprague-Dawley rats weighing 300-325 g. INTERVENTIONS Anesthetized rats received either a cortical impact or sham injury and then were randomly assigned to five traumatic brain injury groups (0.045 mg/kg, 0.45 mg/kg, or 4.5 mg/kg risperidone; 0.5 mg/kg haloperidol; or 1 mL/kg vehicle) or three sham groups (4.5 mg/kg risperidone, 0.5 mg/kg haloperidol, or 1 mL/kg vehicle). The experiment consisted of three phases. In the first phase, a single treatment was provided (intraperitoneally) 24 hrs after surgery, and motor and cognitive function was assessed on postoperative days 1-5 and 14-18, respectively. During the second phase, after completion of the initial behavioral tasks, the same rats were treated once daily for 5 days and behavior was reevaluated. During the third phase, treatments were discontinued, and 3 days later, the rats were assessed one final time. MEASUREMENTS AND MAIN RESULTS Time (seconds) to maintain beam balance, traverse an elevated beam, and to locate a submerged platform in a Morris water maze was recorded. Neither motor nor cognitive performance was affected after a single treatment, regardless of group assignment (p > .05). In contrast, both behavioral deficits reoccurred after daily treatments of risperidone (4.5 mg/kg) and haloperidol (p < .05). The cognitive deficits persisted even after a 3-day washout period during the third phase. CONCLUSIONS These data suggest that although single or multiple low doses of risperidone and haloperidol may be innocuous to subsequent recovery after traumatic brain injury, chronic high-dose treatments are detrimental.
Collapse
Affiliation(s)
- Anthony E. Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260
- Psychology, University of Pittsburgh, Pittsburgh, PA 15260
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260
- Corresponding author: Anthony E. Kline, Ph.D. Departments of Physical Medicine & Rehabilitation and Psychology Associate Director of Rehabilitation Research, Safar Center for Resuscitation Research University of Pittsburgh 3471 Fifth Ave., Suite 201 Pittsburgh, PA 15213 Phone: 412-648-6237 or 412-383-2806 Fax: 412-624-0943
| | - Jaime L. Massucci
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260
- Neurological Surgery University of Pittsburgh, Pittsburgh, PA 15260
| | - Ross D. Zafonte
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15260
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260
- Neurological Surgery University of Pittsburgh, Pittsburgh, PA 15260
| | - Judith R. DeFeo
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260
| | - Emily H. Rogers
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
38
|
Kline AE, Wagner AK, Westergom BP, Malena RR, Zafonte RD, Olsen AS, Sozda CN, Luthra P, Panda M, Cheng JP, Aslam HA. Acute treatment with the 5-HT(1A) receptor agonist 8-OH-DPAT and chronic environmental enrichment confer neurobehavioral benefit after experimental brain trauma. Behav Brain Res 2006; 177:186-94. [PMID: 17166603 PMCID: PMC1850378 DOI: 10.1016/j.bbr.2006.11.036] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 11/13/2006] [Accepted: 11/21/2006] [Indexed: 11/24/2022]
Abstract
Acute treatment with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) or chronic environmental enrichment (EE) hasten behavioral recovery after experimental traumatic brain injury (TBI). The aim of this study was to determine if combining these interventions would confer additional benefit. Anesthetized adult male rats received either a cortical impact or sham injury followed 15min later by a single intraperitoneal injection of 8-OH-DPAT (0.5mg/kg) or saline vehicle (1.0mL/kg) and then randomly assigned to either enriched or standard (STD) housing. Behavioral assessments were conducted utilizing established motor and cognitive tests on post-injury days 1-5 and 14-18, respectively. Hippocampal CA(1)/CA(3) neurons were quantified at 3 weeks. Both 8-OH-DPAT and EE attenuated CA(3) cell loss. 8-OH-DPAT enhanced spatial learning in a Morris water maze (MWM) as revealed by differences between the TBI+8-OH-DPAT+STD and TBI+VEHICLE+STD groups (P=0.0014). EE improved motor function as demonstrated by reduced time to traverse an elevated narrow beam in both the TBI+8-OH-DPAT+EE and TBI+VEHICLE+EE groups versus the TBI+VEHICLE+STD group (P=0.0007 and 0.0016, respectively). EE also facilitated MWM learning as evidenced by both the TBI+8-OH-DPAT+EE and TBI+VEHICLE+EE groups locating the escape platform quicker than the TBI+VEHICLE+STD group (P's<0.0001). MWM differences were also observed between the TBI+8-OH-DPAT+EE and TBI+8-OH-DPAT+STD groups (P=0.0004) suggesting that EE enhanced the effect of 8-OH-DPAT. However, there was no difference between the TBI+8-OH-DPAT+EE and TBI+VEHICLE+EE groups. These data replicate previous results from our laboratory showing that both a single systemic administration of 8-OH-DPAT and EE improve recovery after TBI and extend those findings by elucidating that the combination of treatments in this particular paradigm did not confer additional benefit. One explanation for the lack of an additive effect is that EE is a very effective treatment and thus there is very little room for 8-OH-DPAT to confer additional statistically significant improvement.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
There are complex relationships among behavioral experience, brain morphology, and functional recovery of an animal before and after brain injury. A large series of experimental studies have shown that exogenous manipulation of central neurotransmitter levels can directly affect plastic changes in the brain and can modulate the effects of experience and training. These complex relationships provide a formidable challenge for studies aimed at understanding neurotransmitter effects on the recovery process. Experiments delineating norepinephrine-modulated locomotor recovery after injury to the cerebral cortex illustrate the close relationships among neurotransmitter levels, brain plasticity, and behavioral recovery. Understanding the neurobiological processes underlying recovery, and how they might be manipulated, may lead to novel strategies for improving recovery from stroke-related gait impairment in humans.
Collapse
Affiliation(s)
- Larry B Goldstein
- Department of Medicine (Neurology), Duke Center for Cerebrovascular Disease, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Smith DC, Tan AA, Duke A, Neese SL, Clough RW, Browning RA, Jensen RA. Recovery of Function after Vagus Nerve Stimulation Initiated 24 Hours after Fluid Percussion Brain Injury. J Neurotrauma 2006; 23:1549-60. [PMID: 17020489 DOI: 10.1089/neu.2006.23.1549] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent evidence from our laboratory demonstrated in laboratory rats that stimulation of the vagus nerve (VNS) initiated 2 h after lateral fluid percussion brain injury (FPI) accelerates the rate of recovery on a variety of behavioral and cognitive tests. VNS animals exhibited a level of performance comparable to that of sham-operated uninjured animals by the end of a 2-week testing period. The effectiveness of VNS was further evaluated in the present study in which initiation of stimulation was delayed until 24 h post-injury. Rats were subjected to a moderate FPI and tested on the beam walk, skilled forelimb reaching, locomotor placing, forelimb flexion and Morris water maze tasks for 2 weeks following injury. VNS (30 sec trains of 0.5 mA, 20.0-Hz biphasic pulses) was initiated 24 h post-injury and continued at 30-min intervals for the duration of the study, except for brief periods when the animals were detached for behavioral assessments. Consistent with our previous findings when stimulation was initiated 2 h post-injury, VNS animals showed significantly faster rates of recovery compared to controls. By the last day of testing (day 14 post-injury), the FPI-VNS animals were performing significantly better than the FPI-no-VNS animals and were not significantly different from shams in all motor and sensorimotor tasks. Performance in the Morris water maze indicated that the VNS animals acquired the task more rapidly on days 11-13 post-injury. On day 14, the FPI-VNS animals did not differ in the latency to find the platform from sham controls, whereas the injured controls did; however, the FPI-VNS animals and injured controls were not significantly different. Despite the lack of significant histological differences between the FPI groups, VNS, when initiated 24 h following injury, clearly attenuated the ensuing behavioral deficits and enhanced acquisition of the cognitive task. The results are discussed with respect to the norepinephrine hypothesis.
Collapse
Affiliation(s)
- Douglas C Smith
- Brain and Cognitive Sciences Program, Department of Psychology, Southern Illinois University, Carbondale, Illinois 62901-6502, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Tombari D, Ricciardi MC, Bonaffini N, Pasquini M, Cecconi M, Di Piero V, Lenzi GL. Functional MRI, drugs, and poststroke recovery. Clin Exp Hypertens 2006; 28:301-7. [PMID: 16833038 DOI: 10.1080/10641960600549348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stroke is the first cause of disability in industrialized countries. Thus, understanding the mechanisms of poststroke recovery appears to be crucial in improving motor performance and reducing disability in stroke patients. Strategies through which brain restores lost functions after ischemic lesions are numerous. The mechanisms underlying poststroke recovery, known as cerebral plasticity, are so far hypothetical. However, functional magnetic resonance imaging (fMRI) studies recently have provided new insights in to stroke recovery. This article sketches out the mechanisms that are thought to underly recovery and focuses on fMRI experimental studies that have investigated the influence of a number of drugs on functional recovery. Functional MRI is a valuable tool in understanding functional recovery and may help to disclose new therapeutical approaches.
Collapse
Affiliation(s)
- D Tombari
- Dept. of Neurological Sciences, University of Rome "La Sapienza," Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Foster DJ, Good DC, Fowlkes A, Sawaki L. Atomoxetine Enhances a Short-Term Model of Plasticity in Humans. Arch Phys Med Rehabil 2006; 87:216-21. [PMID: 16442975 DOI: 10.1016/j.apmr.2005.08.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To evaluate the role of 2 noradrenergic drugs in modulating use-dependent plasticity in humans. DESIGN Double-blind, randomized, and placebo-controlled crossover design. SETTING A laboratory in a hospital. PARTICIPANTS A convenience sample of 10 healthy subjects. INTERVENTION An established paradigm that measures motor memory as a short-term model of use-dependent plasticity. Subjects attended 3 sessions, separated by at least 1 week to allow drug washout. Subjects received atomoxetine (Strattera), venlafaxine (Effexor), or placebo. MAIN OUTCOME MEASURE Increase in the proportion of movements into the training target zone (TTZ), an indicator of enhanced plasticity. RESULTS Atomoxetine, but not venlafaxine, significantly increased movements into the TTZ. CONCLUSIONS These results support a role for norepinephrine in enhancing cortical plasticity and suggest potential benefits in using these drugs for improving motor recovery after stroke.
Collapse
Affiliation(s)
- Donald J Foster
- Department of Neurology, Program in Rehabilitation, Wake Forest University, School of Medicine, Winston Salem, NC 27157, USA
| | | | | | | |
Collapse
|
43
|
Smith DC, Modglin AA, Roosevelt RW, Neese SL, Jensen RA, Browning RA, Clough RW. Electrical stimulation of the vagus nerve enhances cognitive and motor recovery following moderate fluid percussion injury in the rat. J Neurotrauma 2005; 22:1485-502. [PMID: 16379585 PMCID: PMC1769332 DOI: 10.1089/neu.2005.22.1485] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intermittent, chronically delivered electrical stimulation of the vagus nerve (VNS) is an FDA-approved procedure for the treatment of refractory complex/partial epilepsy in humans. Stimulation of the vagus has also been shown to enhance memory storage processes in laboratory rats and human subjects. Recent evidence suggests that some of these effects of VNS may be due to the activation of neurons in the nucleus locus coeruleus resulting in the release of norepinephrine (NE) throughout the neuraxis. Because antagonism of NE systems has been shown to delay recovery of function following brain damage, it is possible that enhanced release of NE in the CNS may facilitate recovery of function. To evaluate this hypothesis the lateral fluid percussion injury (LFP) model of traumatic brain injury was used and a variety of motor and cognitive behavioral tests were employed to assess recovery in pre-trained stimulated, control, and sham-injured laboratory rats. Two hours following moderate LFP, vagus nerve stimulation (30.0-sec trains of 0.5 mA, 20.0 Hz, biphasic pulses) was initiated. Stimulation continued in each animal's home cage at 30-min intervals for a period of 14 days, with the exception of brief periods when the animals were disconnected for behavioral assessments. Motor behaviors were evaluated every other day following LFP and tests included beam walk, locomotor placing, and skilled forelimb reaching. In each measure an enhanced rate of recovery and /or level of final performance was observed in the VNS-LFP animals compared to nonstimulated LFP controls. Behavior in the Morris water maze was assessed on days 11-14 following injury. Stimulated LFP animals showed significantly shorter latencies to find the hidden platform than did controls. Despite these behavioral effects, neurohistological examination did not reveal significant differences in lesion extent, density of fluorojade positive neurons, reactive astrocytes or numbers of spared neurons in the CA3 subarea of the hippocampus, at least at the one time point studied 15 days post-injury. These results support the idea that vagus nerve stimulation enhances the neural plasticity that underlies recovery of function following brain damage and provides indirect support for the hypothesis that enhanced NE release may mediate the effect. Importantly, since VNS facilitated both the rate of recovery and the extent of motor and cognitive recovery, these findings suggest that electrical stimulation of the vagus nerve may prove to be an effective non-pharmacological treatment for traumatic brain injury.
Collapse
Affiliation(s)
- Douglas C Smith
- Brain & Cognitive Sciences Program, Department of Psychology, Southern Illinois University School of Medicine, Carbondale, IL 62901-6502, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Miller CM, Vespa P. Intensive care of the acute stroke patient. Tech Vasc Interv Radiol 2005; 8:92-102. [PMID: 16194757 DOI: 10.1053/j.tvir.2005.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Advances in the diagnosis, monitoring, and treatment of stroke have led to the development of specialized units capable of employing new technologies for acute stroke care. This new approach to treatment of the stroke patient has resulted in improved clinical outcomes and a better understanding of the factors that contribute to neurological recovery. Intensive monitoring after treatment, management of medical comorbidities, anticipation of known complications, and prompt treatment of a worsening condition each contribute toward this higher standard of care. While improved outcomes are associated with care in a dedicated stroke unit, many of the therapies employed have not been rigidly tested in randomized controlled trials. The stroke unit creates a unique environment for research and holds an academic responsibility to continue to validate its treatment and explore innovative therapies for treatment of acute stroke. The goal of this article is to discuss the current care of the acute stroke patient and to introduce novel therapies currently being investigated.
Collapse
Affiliation(s)
- Chad M Miller
- UCLA Medical Center, Division of Neurosurgery, Department of Neurology, Los Angeles, California 90095-7039, USA.
| | | |
Collapse
|
45
|
Wu TS, Garmel GM. Improved neurological function after Amantadine treatment in two patients with brain injury. J Emerg Med 2005; 28:289-292. [PMID: 15769570 DOI: 10.1016/j.jemermed.2004.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 09/03/2004] [Accepted: 11/17/2004] [Indexed: 10/25/2022]
Abstract
This article presents two cases of functional recovery in patients with brain injury after treatment with Amantadine, a dopaminergic stimulant. Also presented is a review of current data available concerning dopaminergic therapy after traumatic brain injury.
Collapse
Affiliation(s)
- Teresa S Wu
- Stanford/Kaiser Emergency Medicine Residency Program, Stanford, California
| | - Gus M Garmel
- Kaiser Permanente Medical Center, Santa Clara, California
| |
Collapse
|
46
|
Luhmann HJ, Huston JP, Hasenöhrl RU. Contralateral increase in thigmotactic scanning following unilateral barrel-cortex lesion in mice. Behav Brain Res 2005; 157:39-43. [PMID: 15617769 DOI: 10.1016/j.bbr.2004.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 06/08/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
Adult C57BL/6 mice received uni- or bilateral cryogenic or sham-lesions over the barrel field and their exploratory behaviour was assessed in an open field between 1 and 7 days post-lesion. Bilateral cortical lesions produced a short-lasting increase in thigmotactic scanning with both sides of the face on the first day of testing. Mice with a unilateral barrel-cortex lesion showed more contralateral wall scanning with a recovery to behavioural symmetry after 5-7 days. Furthermore, the increase in contralateral thigmotaxis was most pronounced in animals with damage to the left barrel field, indicative of a lateralization of the lesion-induced behavioural changes. The cortical lesions did not influence locomotor activity and the rate of habituation to the open field (habituation 'learning'). Referring to recent electrophysiological findings, we hypothesize that the lesion established a lateralized source of increased neuronal excitability within the affected barrel-cortex, leading to more behaviour with its corresponding vibrissae. Alternatively, if the lesion results in contralateral 'neglect' in terms of input, the increased scanning with the affected vibrissae may reflect an attempt of the system to compensate for this with an increase in usage.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology and Pathophysiology, University of Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | | | | |
Collapse
|
47
|
Andersen SL, Navalta CP. Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int J Dev Neurosci 2004; 22:423-40. [PMID: 15380841 DOI: 10.1016/j.ijdevneu.2004.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 12/13/2022] Open
Abstract
Childhood is a time filled with wondrous changes, as brain plasticity permits experiences to shape the immature brain to meet the demands of the environment. Change occurs at various levels--from neuroanatomy, including within a given region and its connectivity to other regions, to the function of neurotransmitter systems and their reactivity to pharmacological agents in the short- and long-term. The nature and degree to which drug exposure influences the final adult topography is influenced greatly by the maturational phase of these critical factors. Moreover, evidence is slowly emerging that suggests that the long-term effects of drug exposure are delayed and expressed once the vulnerable system reaches maturation (i.e., typically during adulthood). This phenomenon is known as neuronal imprinting and occurs when the effects of drug exposure outlast the drug itself. Thus, understanding the persistent effects critically depends on the window of observation. Embracing this concept should influence how we conduct preclinical assessments of developmental drug exposure, and ultimately how we conduct clinical assessments of drug efficacy, effectiveness, and safety for the treatment of childhood psychiatric disorders. In this article, we present a model to provide a heuristic framework for making predictions about imprinted effects of childhood drug exposure. We then review epidemiological data on attention deficit hyperactivity disorder (ADHD) and childhood depression, prescription practices, and what is known regarding the long-term consequences of drug exposure in these populations. We conclude with a discussion of the current status of preclinical studies on juvenile stimulant exposure.
Collapse
Affiliation(s)
- Susan L Andersen
- Department of Psychiatry, McLean Hospital and Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|
48
|
Affiliation(s)
- Ross Zafonte
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, and the UPMC Health System, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
49
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
50
|
Dombovy ML. Understanding stroke recovery and rehabilitation: Current and emerging approaches. Curr Neurol Neurosci Rep 2004; 4:31-5. [PMID: 14683625 DOI: 10.1007/s11910-004-0008-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although stroke is the third leading cause of death in the United States, it is the significant disability among survivors that has the greatest impact on healthcare and society. It is currently accepted that comprehensive rehabilitation programs improve outcome following stroke. We are now trying to discern which specific therapeutic approaches work and which do not. Years of animal research have resulted in a better understanding of what occurs in the brain following stroke and how the brain may reorganize in response to treatment. Repetitive use of the involved extremities appears key to optimal behavioral recovery and optimal brain reorganization. The advent of technology such as functional magnetic resonance imaging and transcortical magnetic stimulation has allowed the study of brain reorganization following stroke and rehabilitation in humans. Certain drugs also appear to influence neuroplasticity after stroke. Timing of therapy and drug delivery appears crucial; the optimal "critical period" has not yet been clearly identified. New approaches are slow to reach widespread adoption. Neural transplantation combined with repetitive training approaches produces behavioral recovery in animals and offers hope for the future.
Collapse
Affiliation(s)
- Mary L Dombovy
- Department of Physical Medicine and Rehabilitation, Unity Health System, University of Rochester, 89 Genesee Street, Rochester, NY 14611, USA.
| |
Collapse
|