1
|
Zhang Y, Xiong M, Chen Z, Seabra G, Liu J, Li C, Cui L. Design Principle of Heparanase Inhibitors: A Combined In Vitro and In Silico Study. ACS Med Chem Lett 2024; 15:1032-1040. [PMID: 39015272 PMCID: PMC11247634 DOI: 10.1021/acsmedchemlett.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/18/2024] Open
Abstract
Heparanase (HPSE) is an enzyme that cleaves heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs). Overexpression of HPSE is associated with various types of cancer, inflammation, and immune disorders, making it a highly promising therapeutic target. Previously developed HPSE inhibitors that have advanced to clinical trials are polysaccharide-derived compounds or their mimetics; however, these molecules tend to suffer from poor bioavailability, side effects via targeting other saccharide binding proteins, and heterogeneity. Few small-molecule inhibitors have progressed to the preclinical or clinical stages, leaving a gap in HPSE drug discovery. In this study, a novel small molecule that can inhibit HPSE activity was discovered through high-throughput screening (HTS) using an ultrasensitive HPSE probe. Computational tools were employed to elucidate the mechanisms of inhibition. The essential structural features of the hit compound were summarized into a structure-activity relationship (SAR) theory, providing insights into the future design of HPSE small-molecule inhibitors.
Collapse
Affiliation(s)
- Yuzhao Zhang
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Meijun Xiong
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zixin Chen
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Gustavo Seabra
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Jun Liu
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lina Cui
- Department of Medicinal Chemistry,
College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
2
|
Shi J, Onuki Y, Kawanami F, Miyagawa N, Iwasaki F, Tsuda H, Takahashi K, Oku T, Suzuki M, Higashi K, Adachi H, Nishimura Y, Nakajima M, Irimura T, Higashi N. The Uptake of Heparanase into Mast Cells Is Regulated by Its Enzymatic Activity to Degrade Heparan Sulfate. Int J Mol Sci 2024; 25:6281. [PMID: 38892469 PMCID: PMC11173065 DOI: 10.3390/ijms25116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Mast cells take up extracellular latent heparanase and store it in secretory granules. The present study examined whether the enzymatic activity of heparanase regulates its uptake efficiency. Recombinant mouse heparanase mimicking both the latent and mature forms (L-Hpse and M-Hpse, respectively) was internalized into mastocytoma MST cells, peritoneal cell-derived mast cells, and bone marrow-derived mast cells. The internalized amount of L-Hpse was significantly higher than that of M-Hpse. In MST cells, L-Hpse was continuously internalized for up to 8 h, while the uptake of M-Hpse was saturated after 2 h of incubation. L-Hpse and M-Hpse are similarly bound to the MST cell surface. The expression level of cell surface heparan sulfate was reduced in MST cells incubated with M-Hpse. The internalized amount of M-Hpse into mast cells was significantly increased in the presence of heparastatin (SF4), a small molecule heparanase inhibitor that does not affect the binding of heparanase to immobilized heparin. Enzymatically quiescent M-Hpse was prepared with a point mutation at Glu335. The internalized amount of mutated M-Hpse was significantly higher than that of wild-type M-Hpse but similar to that of wild-type and mutated L-Hpse. These results suggest that the enzymatic activity of heparanase negatively regulates the mast cell-mediated uptake of heparanase, possibly via the downregulation of cell surface heparan sulfate expression.
Collapse
Affiliation(s)
- Jia Shi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Yoshiki Onuki
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Fumiya Kawanami
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Naoko Miyagawa
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Fumika Iwasaki
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Haruna Tsuda
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Katsuhiko Takahashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan;
| | - Masato Suzuki
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan (K.H.)
| | - Kyohei Higashi
- Department of Clinical and Analytical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda 278-8510, Chiba, Japan (K.H.)
| | - Hayamitsu Adachi
- Institute of Microbial Chemistry (BIKAKEN), 18-24, Miyamoto, Numazu 410-0301, Shizuoka, Japan;
| | - Yoshio Nishimura
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23, Kamiosaki, Shinagawa-ku 141-0021, Tokyo, Japan;
| | - Motowo Nakajima
- SBI Pharmaceuticals Co., Ltd., 1-6-1, Roppongi, Minato-ku 106-6019, Tokyo, Japan;
| | - Tatsuro Irimura
- Division of Glycobiologics, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku 113-8421, Tokyo, Japan;
| | - Nobuaki Higashi
- Department of Biochemistry, Hoshi University School of Pharmacy, 2-4-41, Ebara, Shinagawa-ku 142-8501, Tokyo, Japan; (J.S.); (Y.O.); (H.T.); (K.T.)
| |
Collapse
|
3
|
Vlodavsky I, Hilwi M, Kayal Y, Soboh S, Ilan N. Impact of heparanase-2 (Hpa2) on cancer and inflammation: Advances and paradigms. FASEB J 2024; 38:e23670. [PMID: 38747803 DOI: 10.1096/fj.202400286r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Maram Hilwi
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Soaad Soboh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
4
|
Wang C, Huang Y, Jia B, Huang Y, Chen J. Heparanase promotes malignant phenotypes of human oral squamous carcinoma cells by regulating the epithelial-mesenchymal transition-related molecules and infiltrated levels of natural killer cells. Arch Oral Biol 2023; 154:105775. [PMID: 37481997 DOI: 10.1016/j.archoralbio.2023.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES The aim of the present study was to explore the functional role of heparanase (HPSE) and investigate the effect of HPSE on epithelial-mesenchymal transition (EMT) and Tumor-infiltrating activated natural killer cells in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS human oral squamous carcinoma (SCC-25) cells were transfected with HPSE-specific small interfering RNA. Cell Counting Kit-8 assay was performed to examine cell proliferation, while flow cytometry was performed to analyze the cell cycle. Scratch assay was conducted to analyze cell migration, followed by Transwell assay to determine cell invasion. Real-Time Polymerase Chain Reaction and Western-blot assays were performed to measure epithelial-mesenchymal transition protein expression. RNA Sequencing analysis and tumor-infiltrating immune cells estimation were performed to elucidate the effect of HPSE on OSCC. RESULTS Knockdown of HPSE expression decreased the proliferation rate of SCC-25 cells resulting in a significant elevation in cell percentage at the Gap phase 0/Gap phase 1 phase by suppressed cell migration and invasion. The E-cadherin messenger RNA and protein expression increased while Snail and Vimentin expression decreased. RNA Sequencing analysis performed between small interfering RNA and negative control groups identified 42 differentially expressed genes, such as syndecan binding protein, RAB11A, member RAS oncogene family, and DDB1 and CUL4 associated factor 15. CONCLUSIONS These results indicated that knockdown of HPSE suppressed SCC-25 cell proliferation, invasion, migration, and epithelial-mesenchymal transition, possibly via syndecan binding protein and RAB11A, member RAS oncogene family. Moreover, HPSE regulates the infiltrated levels of natural killer cells activated, possibly via DDB1 and CUL4 associated factor 15.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Stomatology, Yancheng Third People's Hospital,The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng 224001 China
| | - Yisheng Huang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China
| | - Bo Jia
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China
| | - Yuhua Huang
- Department of Stomatology, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou 510120, China.
| | - Jun Chen
- Stomatological Hospital, Southern Medical University, Guangzhou 510280 China.
| |
Collapse
|
5
|
Zhang Y, Cui L. Discovery and development of small-molecule heparanase inhibitors. Bioorg Med Chem 2023; 90:117335. [PMID: 37257254 PMCID: PMC10884955 DOI: 10.1016/j.bmc.2023.117335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Heparanase-1 (HPSE) is a promising yet challenging therapeutic target. It is the only known enzyme that is responsible for cleavage of heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs), and is the key enzyme involved in the remodeling and degradation of the extracellular matrix (ECM). Overexpression of HPSE is found in various types of diseases, including cancers, inflammations, diabetes, and viral infections. Inhibiting HPSE can restore ECM functions and integrity, making the development of HPSE inhibitors a highly sought-after topic. So far, all HPSE inhibitors that have entered clinical trials belong to the category of HS mimetics, and no small-molecule or drug-like HPSE inhibitors have made similar progress. None of the HS mimetics have been approved as drugs, with some clinical trials discontinued due to poor bioavailability, side effects, and unfavorable pharmacokinetics characteristics. Small-molecule HPSE inhibitors are, therefore, particularly appealing due to their drug-like characteristics. Advances in the chemical spaces and drug design technologies, including the increasing use of in vitro and in silico screening methods, have provided new opportunities in drug discovery. This article aims to review the discovery and development of small-molecule HPSE inhibitors via screening strategies to shed light on the future endeavors in the development of novel HPSE inhibitors.
Collapse
Affiliation(s)
- Yuzhao Zhang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
7
|
Whitefield C, Vo Y, Schwartz BD, Hepburn C, Ahmed FH, Onagi H, Banwell MG, Nelms K, Malins LR, Jackson CJ. Complex Inhibitory Mechanism of Glycomimetics with Heparanase. Biochemistry 2023. [PMID: 37368361 DOI: 10.1021/acs.biochem.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heparanase (HPSE) is the only mammalian endo-β-glucuronidase known to catalyze the degradation of heparan sulfate. Dysfunction of HPSE activity has been linked to several disease states, resulting in HPSE becoming the target of numerous therapeutic programs, yet no drug has passed clinical trials to date. Pentosan polysulfate sodium (PPS) is a heterogeneous, FDA-approved drug for the treatment of interstitial cystitis and a known HPSE inhibitor. However, due to its heterogeneity, characterization of its mechanism of HPSE inhibition is challenging. Here, we show that inhibition of HPSE by PPS is complex, involving multiple overlapping binding events, each influenced by factors such as oligosaccharide length and inhibitor-induced changes in the protein secondary structure. The present work advances our molecular understanding of the inhibition of HPSE and will aid in the development of therapeutics for the treatment of a broad range of pathologies associated with enzyme dysfunction, including cancer, inflammatory disease, and viral infections.
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yen Vo
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Brett D Schwartz
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Caryn Hepburn
- Waters Australia Pty Ltd, 38-46 South Street, Rydalmere, New South Wales 2116, Australia
| | - F Hafna Ahmed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hideki Onagi
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Keats Nelms
- Beta Therapeutics Pty. Ltd. Level 6, 121 Marcus Clarke Street, Canberra, Australian Capital Territory 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
8
|
Feng F, Wang LJ, Li JC, Chen TT, Liu L. Role of heparanase in ARDS through autophagy and exosome pathway (review). Front Pharmacol 2023; 14:1200782. [PMID: 37361227 PMCID: PMC10285077 DOI: 10.3389/fphar.2023.1200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most common respiratory disease in ICU. Although there are many treatment and support methods, the mortality rate is still high. The main pathological feature of ARDS is the damage of pulmonary microvascular endothelium and alveolar epithelium caused by inflammatory reaction, which may lead to coagulation system disorder and pulmonary fibrosis. Heparanase (HPA) plays an significant role in inflammation, coagulation, fibrosis. It is reported that HPA degrades a large amount of HS in ARDS, leading to the damage of endothelial glycocalyx and inflammatory factors are released in large quantities. HPA can aggrandize the release of exosomes through syndecan-syntenin-Alix pathway, leading to a series of pathological reactions; at the same time, HPA can cause abnormal expression of autophagy. Therefore, we speculate that HPA promotes the occurrence and development of ARDS through exosomes and autophagy, which leads to a large amount of release of inflammatory factors, coagulation disorder and pulmonary fibrosis. This article mainly describes the mechanism of HPA on ARDS.
Collapse
Affiliation(s)
- Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Liping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Jayatilleke KM, Duivenvoorden HM, Ryan GF, Parker BS, Hulett MD. Investigating the Role of Heparanase in Breast Cancer Development Utilising the MMTV-PyMT Murine Model of Mammary Carcinoma. Cancers (Basel) 2023; 15:cancers15113062. [PMID: 37297024 DOI: 10.3390/cancers15113062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Breast cancer is the second most common human malignancy and is a major global health burden. Heparanase (HPSE) has been widely implicated in enhancing the development and progression of solid tumours, including breast cancer. In this study, the well-established spontaneous mammary tumour-developing MMTV-PyMT murine model was utilised to examine the role of HPSE in breast cancer establishment, progression, and metastasis. The use of HPSE-deficient MMTV-PyMT (MMTV-PyMTxHPSE-/-) mice addressed the lack of genetic ablation models to investigate the role of HPSE in mammary tumours. It was demonstrated that even though HPSE regulated mammary tumour angiogenesis, mammary tumour progression and metastasis were HPSE-independent. Furthermore, there was no evidence of compensatory action by matrix metalloproteinases (MMPs) in response to the lack of HPSE expression in the mammary tumours. These findings suggest that HPSE may not play a significant role in the mammary tumour development of MMTV-PyMT animals. Collectively, these observations may have implications in the clinical setting of breast cancer and therapy using HPSE inhibitors.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hendrika M Duivenvoorden
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Gemma F Ryan
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Belinda S Parker
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark D Hulett
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
10
|
Bláhová M, Štefuca V, Hronská H, Rosenberg M. Maltooligosaccharides: Properties, Production and Applications. Molecules 2023; 28:molecules28073281. [PMID: 37050044 PMCID: PMC10097025 DOI: 10.3390/molecules28073281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Maltooligosaccharides (MOS) are homooligosaccharides that consist of 3-10 glucose molecules linked by α-1,4 glycosidic bonds. As they have physiological functions, they are commonly used as ingredients in nutritional products and functional foods. Many researchers have investigated the potential applications of MOS and their derivatives in the pharmaceutical industry. In this review, we summarized the properties and methods of fabricating MOS and their derivatives, including sulfated and non-sulfated alkylMOS. For preparing MOS, different enzymatic strategies have been proposed by various researchers, using α-amylases, maltooligosaccharide-forming amylases, or glycosyltransferases as effective biocatalysts. Many researchers have focused on using immobilized biocatalysts and downstream processes for MOS production. This review also provides an overview of the current challenges and future trends of MOS production.
Collapse
Affiliation(s)
- Mária Bláhová
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Vladimír Štefuca
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Helena Hronská
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Rosenberg
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
11
|
Ham H, Xu Y, Haller CA, Dai E, Stancanelli E, Liu J, Chaikof EL. Design of an Ultralow Molecular Weight Heparin That Resists Heparanase Biodegradation. J Med Chem 2023; 66:2194-2203. [PMID: 36706244 DOI: 10.1021/acs.jmedchem.2c02118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heparanase, an endo-β-d-glucuronidase produced by a variety of cells and tissues, cleaves the glycosidic linkage between glucuronic acid (GlcA) and a 3-O- or 6-O-sulfated glucosamine, typified by the disaccharide -[GlcA-GlcNS3S6S]-, which is found within the antithrombin-binding domain of heparan sulfate or heparin. As such, all current forms of heparin are susceptible to degradation by heparanase with neutralization of anticoagulant properties. Here, we have designed a heparanase-resistant, ultralow molecular weight heparin as the structural analogue of fondaparinux that does not contain an internal GlcA residue but otherwise displays potent anticoagulant activity. This heparin oligosaccharide was synthesized following a chemoenzymatic scheme and displays nanomolar anti-FXa activity yet is resistant to heparanase digestion. Inhibition of thrombus formation was further demonstrated after subcutaneous administration of this compound in a murine model of venous thrombosis. Thrombus inhibition was comparable to that observed for enoxaparin with a similar effect on bleeding time.
Collapse
Affiliation(s)
- Hyunok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
| | - Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, CLS-11090, Boston, Massachusetts 02215, United States
- Wyss Institute of Biologically Inspired Engineering at Harvard University; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology; Department of Surgery, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite 9F, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Lebsir N, Zoulim F, Grigorov B. Heparanase-1: From Cancer Biology to a Future Antiviral Target. Viruses 2023; 15:237. [PMID: 36680276 PMCID: PMC9860851 DOI: 10.3390/v15010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are a major constituent of the extracellular matrix (ECM) and are found to be implicated in viral infections, where they play a role in both cell entry and release for many viruses. The enzyme heparanase-1 is the only known endo-beta-D-glucuronidase capable of degrading heparan sulphate (HS) chains of HSPGs and is thus important for regulating ECM homeostasis. Heparanase-1 expression is tightly regulated as the uncontrolled cleavage of HS may result in abnormal cell activation and significant tissue damage. The overexpression of heparanase-1 correlates with pathological scenarios and is observed in different human malignancies, such as lymphoma, breast, colon, lung, and hepatocellular carcinomas. Interestingly, heparanase-1 has also been documented to be involved in numerous viral infections, e.g., HSV-1, HPV, DENV. Moreover, very recent reports have demonstrated a role of heparanase-1 in HCV and SARS-CoV-2 infections. Due to the undenied pro-carcinogenic role of heparanase-1, multiple inhibitors have been developed, some reaching phase II and III in clinical studies. However, the use of heparanase inhibitors as antivirals has not yet been proposed. If it can be assumed that heparanase-1 is implicated in numerous viral life cycles, its inhibition by specific heparanase-acting compounds should result in a blockage of viral infection. This review addresses the perspectives of using heparanase inhibitors, not only for cancer treatment, but also as antivirals. Eventually, the development of a novel class antivirals targeting a cellular protein could help to alleviate the resistance problems seen with some current antiretroviral therapies.
Collapse
Affiliation(s)
- Nadjet Lebsir
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
- Confluence: Sciences et Humanités (EA 1598), UCLy, 10 Place des Archives, 69002 Lyon, France
| | - Fabien Zoulim
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
| |
Collapse
|
13
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Schleyer KA, Liu J, Chen Z, Wang Z, Zhang Y, Zuo J, Ybargollin AJ, Guo H, Cui L. A Universal and Modular Scaffold for Heparanase Activatable Probes and Drugs. Bioconjug Chem 2022; 33:2290-2298. [PMID: 36346913 PMCID: PMC10897860 DOI: 10.1021/acs.bioconjchem.2c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparanase (HPSE) is an endo-β-glucuronidase involved in extracellular matrix remodeling in rapidly healing tissues, most cancers and inflammation, and viral infection. Its importance as a therapeutic target warrants further study, but such is hampered by a lack of research tools. To expand the toolkits for probing HPSE enzymatic activity, we report the design of a substrate scaffold for HPSE comprised of a disaccharide substrate appended with a linker, capable of carrying cargo until being cleaved by HPSE. Here exemplified as a fluorogenic, coumarin-based imaging probe, this scaffold can potentially expand the availability of HPSE-responsive imaging or drug delivery tools using a variety of imaging moieties or other cargo. We show that electronic tuning of the scaffold provides a robust response to HPSE while simplifying the structural requirements of the attached cargo. Molecular docking and modeling suggest a productive probe/HPSE binding mode. These results further support the hypothesis that the reactivity of these HPSE-responsive probes is predominantly influenced by the electron density of the aglycone. This universal HPSE-activatable scaffold will greatly facilitate future development of HPSE-responsive probes and drugs.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Jun Liu
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zixin Chen
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Zhishen Wang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Yuzhao Zhang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alberto Jimenez Ybargollin
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
15
|
Heparanase Increases Podocyte Survival and Autophagic Flux after Adriamycin-Induced Injury. Int J Mol Sci 2022; 23:ijms232012691. [PMID: 36293542 PMCID: PMC9604275 DOI: 10.3390/ijms232012691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
The kidney glomerular filtration barrier (GFB) is enriched with heparan sulfate (HS) proteoglycans, which contribute to its permselectivity. The endoglycosidase heparanase cleaves HS and hence appears to be involved in the pathogenesis of kidney injury and glomerulonephritis. We have recently reported, nonetheless, that heparanase overexpression preserved glomerular structure and kidney function in an experimental model of Adriamycin-induced nephropathy. To elucidate mechanisms underlying heparanase function in podocytes-key GFB cells, we utilized a human podocyte cell line and transgenic mice overexpressing heparanase. Notably, podocytes overexpressing heparanase (H) demonstrated significantly higher survival rates and viability after exposure to Adriamycin or hydrogen peroxide, compared with mock-infected (V) podocytes. Immunofluorescence staining of kidney cryo-sections and cultured H and V podocytes as well as immunoblotting of proteins extracted from cultured cells, revealed that exposure to toxic injury resulted in a significant increase in autophagic flux in H podocytes, which was reversed by the heparanase inhibitor, Roneparstat (SST0001). Heparanase overexpression was also associated with substantial transcriptional upregulation of autophagy genes BCN1, ATG5, and ATG12, following Adriamycin treatment. Moreover, cleaved caspase-3 was attenuated in H podocytes exposed to Adriamycin, indicating lower apoptotic cell death in H vs. V podocytes. Collectively, these findings suggest that in podocytes, elevated levels of heparanase promote cytoprotection.
Collapse
|
16
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
17
|
Takahashi I. Importance of Heparan Sulfate Proteoglycans in Pancreatic Islets and β-Cells. Int J Mol Sci 2022; 23:12082. [PMID: 36292936 PMCID: PMC9603760 DOI: 10.3390/ijms232012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
β-cells in the islets of Langerhans of the pancreas secrete insulin in response to the glucose concentration in the blood. When these pancreatic β-cells are damaged, diabetes develops through glucose intolerance caused by insufficient insulin secretion. High molecular weight polysaccharides, such as heparin and heparan sulfate (HS) proteoglycans, and HS-degrading enzymes, such as heparinase, participate in the protection, maintenance, and enhancement of the functions of pancreatic islets and β-cells, and the demand for studies on glycobiology within the field of diabetes research has increased. This review introduces the roles of complex glycoconjugates containing high molecular weight polysaccharides and their degrading enzymes in pancreatic islets and β-cells, including those obtained in studies conducted by us earlier. In addition, from the perspective of glycobiology, this study proposes the possibility of application to diabetes medicine.
Collapse
Affiliation(s)
- Iwao Takahashi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Morioka 028-3694, Iwate, Japan
| |
Collapse
|
18
|
Mundy C, Chung J, Koyama E, Bunting S, Mahimkar R, Pacifici M. Osteochondroma formation is independent of heparanase expression as revealed in a mouse model of hereditary multiple exostoses. J Orthop Res 2022; 40:2391-2401. [PMID: 34996123 PMCID: PMC9259764 DOI: 10.1002/jor.25260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Hereditary multiple exostoses (HME) is a rare, pediatric disorder characterized by osteochondromas that form along growth plates and provoke significant musculoskeletal problems. HME is caused by mutations in heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. Seemingly paradoxically, osteochondromas were found to contain excessive extracellular heparanase (Hpse) that could further reduce HS levels and exacerbate pathogenesis. To test Hpse roles, we asked whether its ablation would protect against osteochondroma formation in a conditional HME model consisting of mice bearing floxed Ext1 alleles in Agr-CreER background (Ext1f/f ;Agr-CreER mice). Mice were crossed with a new global Hpse-null (Hpse-/- ) mice to produce compound Hpse-/- ;Ext1f/f ;Agr-CreER mice. Tamoxifen injection of standard juvenile Ext1f/f ;Agr-CreER mice elicited stochastic Ext1 ablation in growth plate and perichondrium, followed by osteochondroma formation, as revealed by microcomputed tomography and histochemistry. When we examined companion conditional Ext1-deficient mice lacking Hpse also, we detected no major decreases in osteochondroma number, skeletal distribution, and overall structure by the analytical criteria above. The Ext1 mutants used here closely mimic human HME pathogenesis, but have not been previously tested for responsiveness to treatments. To exclude some innate therapeutic resistance in this stochastic model, tamoxifen-injected Ext1f/f ;Agr-CreER mice were administered daily doses of the retinoid Palovarotene, previously shown to prevent ectopic cartilage and bone formation in other mouse disease models. This treatment did inhibit osteochondroma formation compared with vehicle-treated mice. Our data indicate that heparanase is not a major factor in osteochondroma initiation and accumulation in mice. Possible roles of heparanase upregulation in disease severity in patients are discussed.
Collapse
Affiliation(s)
- Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Yuan F, Yang Y, Zhou H, Quan J, Liu C, Wang Y, Zhang Y, Yu X. Heparanase in cancer progression: Structure, substrate recognition and therapeutic potential. Front Chem 2022; 10:926353. [PMID: 36157032 PMCID: PMC9500389 DOI: 10.3389/fchem.2022.926353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Heparanase, a member of the carbohydrate-active enzyme (CAZy) GH79 family, is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulphate proteoglycans, thus modulating and facilitating remodeling of the extracellular matrix. Heparanase activity is strongly associated with major human pathological complications, including but not limited to tumour progress, angiogenesis and inflammation, which make heparanase a valuable therapeutic target. Long-due crystallographic structures of human and bacterial heparanases have been recently determined. Though the overall architecture of human heparanase is generally comparable to that of bacterial glucuronidases, remarkable differences exist in their substrate recognition mode. Better understanding of regulatory mechanisms of heparanase in substrate recognition would provide novel insight into the anti-heparanase inhibitor development as well as potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Yu
- *Correspondence: Yujing Zhang, ; Xing Yu,
| |
Collapse
|
20
|
Abstract
Enhancers confer precise spatiotemporal patterns of gene expression in response to developmental and environmental stimuli. Over the last decade, the transcription of enhancer RNAs (eRNAs) – nascent RNAs transcribed from active enhancers – has emerged as a key factor regulating enhancer activity. eRNAs are relatively short-lived RNA species that are transcribed at very high rates but also quickly degraded. Nevertheless, eRNAs are deeply intertwined within enhancer regulatory networks and are implicated in a number of transcriptional control mechanisms. Enhancers show changes in function and sequence over evolutionary time, raising questions about the relationship between enhancer sequences and eRNA function. Moreover, the vast majority of single nucleotide polymorphisms associated with human complex diseases map to the non-coding genome, with causal disease variants enriched within enhancers. In this Primer, we survey the diverse roles played by eRNAs in enhancer-dependent gene expression, evaluating different models for eRNA function. We also explore questions surrounding the genetic conservation of enhancers and how this relates to eRNA function and dysfunction. Summary: This Primer evaluates the ideas that underpin developing models for eRNA function, exploring cases in which perturbed eRNA function contributes to disease.
Collapse
Affiliation(s)
- Laura J. Harrison
- Molecular and Cellular Biology, School of Biosciences, Sheffield Institute For Nucleic Acids, The University of Sheffield, Firth Court, Western Bank , Sheffield S10 2TN , UK
| | - Daniel Bose
- Molecular and Cellular Biology, School of Biosciences, Sheffield Institute For Nucleic Acids, The University of Sheffield, Firth Court, Western Bank , Sheffield S10 2TN , UK
| |
Collapse
|
21
|
Whitefield C, Hong N, Mitchell JA, Jackson CJ. Computational design and experimental characterisation of a stable human heparanase variant. RSC Chem Biol 2022; 3:341-349. [PMID: 35382258 PMCID: PMC8905545 DOI: 10.1039/d1cb00239b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Heparanase is the only human enzyme known to hydrolyse heparin sulfate and is involved in many important physiological processes. However, it is also unregulated in many disease states, such as cancer, diabetes and Covid-19. It is thus an important drug target, yet the heterologous production of heparanase is challenging and only possible in mammalian or insect expression systems, which limits the ability of many laboratories to study it. Here we describe the computational redesign of heparanase to allow high yield expression in Escherchia coli. This mutated form of heparanase exhibits essentially identical kinetics, inhibition, structure and protein dynamics to the wild type protein, despite the presence of 26 mutations. This variant will facilitate wider study of this important enzyme and contributes to a growing body of literature that shows evolutionarily conserved and functionally neutral mutations can have significant effects on protein folding and expression. A mutant heparanase that exhibits wild type structure and activity but can be heterologously produced in bacterial protein expression systems.![]()
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nansook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
22
|
Mayfosh AJ, Nguyen TK, Hulett MD. The Heparanase Regulatory Network in Health and Disease. Int J Mol Sci 2021; 22:11096. [PMID: 34681753 PMCID: PMC8541136 DOI: 10.3390/ijms222011096] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) is a structural framework that has many important physiological functions which include maintaining tissue structure and integrity, serving as a barrier to invading pathogens, and acting as a reservoir for bioactive molecules. This cellular scaffold is made up of various types of macromolecules including heparan sulfate proteoglycans (HSPGs). HSPGs comprise a protein core linked to the complex glycosaminoglycan heparan sulfate (HS), the remodeling of which is important for many physiological processes such as wound healing as well as pathological processes including cancer metastasis. Turnover of HS is tightly regulated by a single enzyme capable of cleaving HS side chains: heparanase. Heparanase upregulation has been identified in many inflammatory diseases including atherosclerosis, fibrosis, and cancer, where it has been shown to play multiple roles in processes such as epithelial-mesenchymal transition, angiogenesis, and cancer metastasis. Heparanase expression and activity are tightly regulated. Understanding the regulation of heparanase and its downstream targets is attractive for the development of treatments for these diseases. This review provides a comprehensive overview of the regulators of heparanase as well as the enzyme's downstream gene and protein targets, and implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alyce J. Mayfosh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Tien K. Nguyen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| | - Mark D. Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3083, Australia; (A.J.M.); (T.K.N.)
| |
Collapse
|
23
|
Zhang Y, Li Y, Huang S, Zhang H, Lin Q, Gong T, Sun X, Zhang Z, Zhang L. Enhanced anti-metastatic therapy with down-regulation of heparinase expression by ROS-responsive micellar nanoparticles. NANOSCALE 2021; 13:15267-15277. [PMID: 34477185 DOI: 10.1039/d1nr02964a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metastasis is a major sign of malignant tumors which plays a vital role in cancer-related death. Suppressing metastasis is an important way to improve the survival rate of cancer patients. Herein, multifunctional PEG-LAM-PPS nanoparticles (nPLPs) are fabricated as both nanocarriers and anti-metastatic agents for tumor treatment. In this system, laminarin sulfate (LAM) suppresses metastasis by reducing heparinase and protecting the extracellular matrix; the ROS-sensitive polypropylene sulfide (PPS) improves the release of the loaded drug in the tumor microenvironment. This is the first time that laminarin sulfate has been used as a carrier to inhibit the expression of heparinase and treat melanoma lung metastasis. The blank nanoparticles are excellently safe and showed high anti-metastatic efficacy in melanoma lung metastatic mouse models, reducing metastatic nodules by 60%. They significantly improved the anti-tumor efficacy of the loaded drug doxorubicin, provided ∼33% further reduction of the tumor volume and 50% further reduction of the metastatic nodule number compared with free doxorubicin. Thus, these simple and versatile micellar nanoparticles composed of biocompatible materials offer a promising vehicle for treating invasive solid tumors and metastases.
Collapse
Affiliation(s)
- Yicong Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Yuai Li
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Shiqi Huang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Hanming Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Qing Lin
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Tao Gong
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Xun Sun
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Zhirong Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| | - Ling Zhang
- West China School of Pharmacy, College of Polymer Science and Engineering, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
24
|
Karasneh GA, Kapoor D, Bellamkonda N, Patil CD, Shukla D. Protease, Growth Factor, and Heparanase-Mediated Syndecan-1 Shedding Leads to Enhanced HSV-1 Egress. Viruses 2021; 13:v13091748. [PMID: 34578329 DOI: 10.3390/v13091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) are considered important for the entry of many different viruses. Previously, we demonstrated that heparanase (HPSE), the host enzyme responsible for cleaving HS chains, is upregulated by herpes simplex virus-1 (HSV-1) infection. Higher levels of HPSE accelerate HS removal from the cell surface, facilitating viral release from infected cells. Here, we study the effects of overexpressing HPSE on viral entry, cell-to-cell fusion, plaque formation, and viral egress. We provide new information that higher levels of HPSE reduce syncytial plaque formation while promoting egress and extracellular release of the virions. We also found that transiently enhanced expression of HPSE did not affect HSV-1 entry into host cells or HSV-1-induced cell-to-cell fusion, suggesting that HPSE activation is tightly regulated and facilitates extracellular release of the maturing virions. We demonstrate that an HSPG-shedding agonist, PMA; a protease, thrombin; and a growth factor, EGF as well as bacterially produced recombinant heparinases resulted in enhanced HSV-1 release from HeLa and human corneal epithelial (HCE) cells. Our findings here underscore the significance of syndecan-1 functions in the HSV-1 lifecycle, provide evidence that the shedding of syndecan-1 ectodomain is another way HPSE works to facilitate HSV-1 release, and add new evidence on the significance of various HSPG shedding agonists in HSV-1 release from infected cells.
Collapse
Affiliation(s)
- Ghadah A Karasneh
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 W. Taylor, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 W. Taylor, Chicago, IL 60612, USA
| | - Navya Bellamkonda
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 W. Taylor, Chicago, IL 60612, USA
| | - Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 W. Taylor, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1855 W. Taylor, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Ham HO, Haller CA, Su G, Dai E, Patel MS, Liu DR, Liu J, Chaikof EL. A rechargeable anti-thrombotic coating for blood-contacting devices. Biomaterials 2021; 276:121011. [PMID: 34303154 PMCID: PMC8405571 DOI: 10.1016/j.biomaterials.2021.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022]
Abstract
Despite the potential of anti-thrombogenic coatings, including heparinized surfaces, to improve the performance of blood-contacting devices, the inevitable deterioration of bioactivity remains an important factor in device failure and related thrombotic complications. As a consequence, the ability to restore the bioactivity of a surface coating after implantation of a blood-contacting device provides a potentially important strategy to enhance its clinical performance. Here, we report the regeneration of a multicomponent anti-thrombogenic coating through use of an evolved sortase A to mediate reversible transpeptidation. Both recombinant thrombomodulin and a chemoenzymatically synthesized ultra-low molecular weight heparin were repeatedly and selectively immobilized or removed in a sequential, alternating, or simultaneous manner. The generation of activated protein C (aPC) and inhibition of activated factor X (FXa) was consistent with the molecular composition of the surface. The fabrication of a rechargeable anti-thrombogenic surface was demonstrated on an expanded polytetrafluoroethylene (ePTFE) vascular graft with reconstitution of the surface bound coating 4 weeks after in vivo implantation in a rat model.
Collapse
Affiliation(s)
- Hyun Ok Ham
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Carolyn A Haller
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC, 27599, USA
| | - Erbin Dai
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Madhukar S Patel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, MA, 02138, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 1044, Genetic Medicine Building, Chapel Hill, NC, 27599, USA
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Development of Therapeutic Aptamers Against Cancer Cells. Front Cell Dev Biol 2021; 9:662791. [PMID: 34095130 PMCID: PMC8170048 DOI: 10.3389/fcell.2021.662791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer has become the leading cause of death in recent years. As great advances in medical treatment, emerging therapies of various cancers have been developed. Current treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and targeted therapy. Aptamers are synthetic ssDNA or RNA. They can bind tightly to target molecules due to their unique tertiary structure. It is easy for aptamers to be screened, synthesized, programmed, and chemically modified. Aptamers are emerging targeted drugs that hold great potentials, called therapeutic aptamers. There are few types of therapeutic aptamers that have already been approved by the US Food and Drug Administration (FDA) for disease treatment. Now more and more therapeutic aptamers are in the stage of preclinical research or clinical trials. This review summarized the screening and development of therapeutic aptamers against different types of cancer cells.
Collapse
Affiliation(s)
- Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Zeng
- Department of Biochemistry, University of Victoria, Victoria, BC, Canada
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
27
|
Eustes AS, Campbell RA, Middleton EA, Tolley ND, Manne BK, Montenont E, Rowley JW, Krauel K, Blair A, Guo L, Kosaka Y, Medeiros-de-Moraes IM, Lacerda M, Hottz ED, Neto HCF, Zimmerman GA, Weyrich AS, Petrey A, Rondina MT. Heparanase expression and activity are increased in platelets during clinical sepsis. J Thromb Haemost 2021; 19:1319-1330. [PMID: 33587773 PMCID: PMC8218538 DOI: 10.1111/jth.15266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Heparanase (HPSE) is the only known mammalian enzyme that can degrade heparan sulfate. Heparan sulfate proteoglycans are essential components of the glycocalyx, and maintain physiological barriers between the blood and endothelial cells. HPSE increases during sepsis, which contributes to injurious glyocalyx degradation, loss of endothelial barrier function, and mortality. OBJECTIVES As platelets are one of the most abundant cellular sources of HPSE, we sought to determine whether HPSE expression and activity increases in human platelets during clinical sepsis. We also examined associations between platelet HPSE expression and clinical outcomes. PATIENTS/METHODS Expression and activity of HPSE was determined in platelets isolated from septic patients (n = 59) and, for comparison, sex-matched healthy donors (n = 46) using complementary transcriptomic, proteomic, and functional enzymatic assays. Septic patients were followed for the primary outcome of mortality, and clinical data were captured prospectively for septic patients. RESULTS The mRNA expression of HPSE was significantly increased in platelets isolated from septic patients. Ribosomal footprint profiling, followed by [S35] methionine labeling assays, demonstrated that HPSE mRNA translation and HPSE protein synthesis were significantly upregulated in platelets during sepsis. While both the pro- and active forms of HPSE protein increased in platelets during sepsis, only the active form of HPSE protein significantly correlated with sepsis-associated mortality. Consistent with transcriptomic and proteomic upregulation, HPSE enzymatic activity was also increased in platelets during sepsis. CONCLUSIONS During clinical sepsis HPSE, translation, and enzymatic activity are increased in platelets. Increased expression of the active form of HPSE protein is associated with sepsis-associated mortality.
Collapse
Affiliation(s)
- Alicia S Eustes
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Hospitals and Clinics Pathology, Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Robert A Campbell
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth A Middleton
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Neal D Tolley
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Bhanu K Manne
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Emilie Montenont
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Jesse W Rowley
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Krystin Krauel
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany
| | - Antoinette Blair
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Li Guo
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Yasuhiro Kosaka
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Isabel M Medeiros-de-Moraes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz, Rio de Janeiro and Manaus, Brazil
| | - Marcus Lacerda
- Fundacao de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD) and Fiocruz Manaus, Manaus, Brazil
| | - Eugenio D Hottz
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz, Rio de Janeiro and Manaus, Brazil
- Immunothrombosis Laboratory, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Rio de Janeiro, Brazil
| | - Hugo Castro Faria Neto
- Fundacao de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD) and Fiocruz Manaus, Manaus, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Andrew S Weyrich
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Aaron Petrey
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T Rondina
- Department of Internal Medicine and Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- Department of Internal Medicine and GRECC, George E. Wahlen VAMC, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
29
|
Rodrigues-Junior DM, Pelarin MFDA, Nader HB, Vettore AL, Pinhal MAS. MicroRNA-1252-5p Associated with Extracellular Vesicles Enhances Bortezomib Sensitivity in Multiple Myeloma Cells by Targeting Heparanase. Onco Targets Ther 2021; 14:455-467. [PMID: 33488100 PMCID: PMC7814994 DOI: 10.2147/ott.s286751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) remains an incurable disease, and patient survival requires a better understanding of this malignancy's molecular aspects. Heparanase (HPSE) is highly expressed in aggressive MM cells and related to tumor growth, metastasis, and bortezomib (BTZ) resistance. Thus, targeting HPSE seems to be a promising approach for MM treatment, and because microRNAs (miRNAs) have emerged as potential regulators of HPSE expression, the use of extracellular vesicles (EVs) can allow the efficient delivery of therapeutic miRNAs. METHODS We used prediction algorithms to identify potential miRNAs that regulate negatively HPSE expression. RT-qPCR was performed to assess miRNAs and HPSE expression in MM lines (U266 and RPMI-8226). Synthetic miRNA mimics were electroporated in MM cells to understand the miRNA contribution in HPSE expression, glycosaminoglycans (GAGs) profile, cell proliferation, and cell death induced by BTZ. EVs derived from HEK293T cells were engineered with miRNAs to evaluate their therapeutic potential combined with BTZ. RESULTS It revealed a direct association between BTZ sensitivity, HPSE, and miR-1252-5p expressions. Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE enzymatic activity in MM cells. The higher level of miR-1252-5p was correlated with a reduction of cell viability and higher sensitivity to BTZ. Further, EVs carrying miR-1252-5p increased MM cells' sensitivity to BTZ treatment. CONCLUSION These results showed that miR-1252-5p could negatively regulate HPSE in MM, indicating the use of EVs carrying miR-1252-5p as a potential novel BTZ sensitization approach in MM cells.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Institute of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André Luiz Vettore
- Department of Biological Science, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
30
|
Rangarajan S, Richter JR, Richter RP, Bandari SK, Tripathi K, Vlodavsky I, Sanderson RD. Heparanase-enhanced Shedding of Syndecan-1 and Its Role in Driving Disease Pathogenesis and Progression. J Histochem Cytochem 2020; 68:823-840. [PMID: 32623935 PMCID: PMC7711244 DOI: 10.1369/0022155420937087] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023] Open
Abstract
Both heparanase and syndecan-1 are known to be present and active in disease pathobiology. An important feature of syndecan-1 related to its role in pathologies is that it can be shed from the surface of cells as an intact ectodomain composed of the extracellular core protein and attached heparan sulfate and chondroitin sulfate chains. Shed syndecan-1 remains functional and impacts cell behavior both locally and distally from its cell of origin. Shedding of syndecan-1 is initiated by a variety of stimuli and accomplished predominantly by the action of matrix metalloproteinases. The accessibility of these proteases to the core protein of syndecan-1 is enhanced, and shedding facilitated, when the heparan sulfate chains of syndecan-1 have been shortened by the enzymatic activity of heparanase. Interestingly, heparanase also enhances shedding by upregulating the expression of matrix metalloproteinases. Recent studies have revealed that heparanase-induced syndecan-1 shedding contributes to the pathogenesis and progression of cancer and viral infection, as well as other septic and non-septic inflammatory states. This review discusses the heparanase/shed syndecan-1 axis in disease pathogenesis and progression, the potential of targeting this axis therapeutically, and the possibility that this axis is widespread and of influence in many diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Israel Vlodavsky
- The University of Alabama at Birmingham, Birmingham, Alabama, and Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
31
|
Abstract
Heparanase is the only mammalian enzyme that cleaves heparan sulphate, an important component of the extracellular matrix. This leads to the remodelling of the extracellular matrix, whilst liberating growth factors and cytokines bound to heparan sulphate. This in turn promotes both physiological and pathological processes such as angiogenesis, immune cell migration, inflammation, wound healing and metastasis. Furthermore, heparanase exhibits non-enzymatic actions in cell signalling and in regulating gene expression. Cancer is underpinned by key characteristic features that promote malignant growth and disease progression, collectively termed the 'hallmarks of cancer'. Essentially, all cancers examined to date have been reported to overexpress heparanase, leading to enhanced tumour growth and metastasis with concomitant poor patient survival. With its multiple roles within the tumour microenvironment, heparanase has been demonstrated to regulate each of these hallmark features, in turn highlighting the need for heparanase-targeted therapies. However, recent discoveries which demonstrated that heparanase can also regulate vital anti-tumour mechanisms have cast doubt on this approach. This review will explore the myriad ways by which heparanase functions as a key regulator of the hallmarks of cancer and will highlight its role as a major component within the tumour microenvironment. The dual role of heparanase within the tumour microenvironment, however, emphasises the need for further investigation into defining its precise mechanism of action in different cancer settings.
Collapse
Affiliation(s)
- Krishnath M Jayatilleke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Plenty Road & Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
32
|
陈 晓, 叶 蕊, 戴 大, 伍 玉, 俞 远, 程 斌. [Heparanase promotes trans-endothelial migration of hepatocarcinoma cells by inducing apoptosis of microvascular endothelial cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1065-1071. [PMID: 32895190 PMCID: PMC7429165 DOI: 10.12122/j.issn.1673-4254.2020.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the effect of heparanase (HPSE) on apoptosis of microvascular endothelial cells (MVECs) and trans-endothelial migration of hepatocellular carcinoma (HCC) cells. METHODS A HCC cell line with high HPSE expression was selected by real-time quantitative PCR (qRT-PCR) and Western blotting and transefected with a lentiviral vector containing an interfering RNA sequence of HPSE. Transwell migration assay was performed to detect the trans-endothelial migration (TEM) rate of the transfected HCC cells across human umbilical vein endothelial cells (HUVECs). In a Transwell indirect co-culture system, the effect of HPSE silencing in the HCC cells was determined on apoptosis of HUVECs in vitro. A nude mouse model of HCC was used to verify the effect of HPSE on apoptosis of MVECs and liver metastasis of the tumor. RESULTS HCCLM3 cell line highly expressing HPSE was selected for the experiment. Transfection of the HCC cells with the lentiviral vector for HPSE interference the HCC cells resulted in significantly lowered TEM rate as compared with the cells transfected with the control vector (P < 0.01). In the indirect co-culture system, the survival rate of HUVECs co-cultured with HCCLM3 cells with HPSE interference was significantly higher and their apoptotic index was significantly lower than those in the control group (P < 0.05). Ultrastructural observation showed no obvious apoptosis of HUVECs co-cultured with HCCLM3 cells with HPSE interference but revealed obvious apoptotic changes in the control group. In the animal experiment, the tumor formation rate in the liver was 100% (6/6) in the control group, significantly higher than that in RNAi group (33.3%, 2/6) (P < 0.05). Under optical microscope, necrosis and apoptosis of the MVECs was detected in the liver of the control mice, while the endothelial cells remained almost intact in RNAi group. CONCLUSIONS HPSE promotes the metastasis of HCC cells by inducing apoptosis of MVECs.
Collapse
Affiliation(s)
- 晓鹏 陈
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 蕊 叶
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 大飞 戴
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 玉海 伍
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 远林 俞
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - 斌 程
- />皖南医学院弋矶山医院肝胆一科,安徽 芜湖 241001First Department of Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
33
|
Khanna M, Parish CR. Heparanase: Historical Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:71-96. [PMID: 32274707 DOI: 10.1007/978-3-030-34521-1_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparanase is an endo-β-glucuronidase that cleaves at a limited number of internal sites the glycosaminoglycan heparan sulfate (HS). Heparanase enzymatic activity was first reported in 1975 and by 1983 evidence was beginning to emerge that the enzyme was a facilitator of tumor metastasis by cleaving HS chains present in blood vessel basement membranes and, thereby, aiding the passage of tumor cells through blood vessel walls. Due to a range of technical difficulties, it took another 16 years before heparanase was cloned and characterized in 1999 and a further 14 years before the crystal structure of the enzyme was solved. Despite these substantial deficiencies, there was steady progress in our understanding of heparanase long before the enzyme was fully characterized. For example, it was found as early as 1984 that activated T cells upregulate heparanase expression, like metastatic tumor cells, and the enzyme aids the entry of T cells and other leukocytes into inflammatory sites. Furthermore, it was discovered in 1989 that heparanase releases pre-existing growth factors and cytokines associated with HS in the extracellular matrix (ECM), the liberated growth factors/cytokines enhancing angiogenesis and wound healing. There were also the first hints that heparanase may have functions other than enzymatic activity, in 1995 it being reported that under certain conditions the enzyme could act as a cell adhesion molecule. Also, in the same year PI-88 (Muparfostat), the first heparanase inhibitor to reach and successfully complete a Phase III clinical trial was patented.Nevertheless, the cloning of heparanase (also known as heparanase-1) in 1999 gave the field an enormous boost and some surprises. The biggest surprise was that there is only one heparanase encoding gene in the mammalian genome, despite earlier research, based on substrate specificity, suggesting that there are at least three different heparanases. This surprising conclusion has remained unchanged for the last 20 years. It also became evident that heparanase is a family 79 glycoside hydrolase that is initially produced as a pro-enzyme that needs to be processed by proteases to form an enzymatically active heterodimer. A related molecule, heparanase-2, was also discovered that is enzymatically inactive but, remarkably, recently has been shown to inhibit heparanase-1 activity as well as acting as a tumor suppressor that counteracts many of the pro-tumor properties of heparanase-1.The early claim that heparanase plays a key role in tumor metastasis, angiogenesis and inflammation has been confirmed by many studies over the last 20 years. In fact, heparanase expression is enhanced in all major cancer types, namely carcinomas, sarcomas, and hematological malignancies, and correlates with increased metastasis and poor prognosis. Also, there is mounting evidence that heparanase plays a central role in the induction of inflammation-associated cancers. The enzymatic activity of heparanase has also emerged in unexpected situations, such as in the spread of HS-binding viruses and in Type-1 diabetes where the destruction of intracellular HS in pancreatic insulin-producing beta cells precipitates diabetes. But the most extraordinary recent discoveries have been with the realization that heparanase can exert a range of biological activities that are independent of its enzymatic function, most notably activation of several signaling pathways and being a transcription factor that controls methylation of histone tails. Collectively, these data indicate that heparanase is a truly multifunctional protein that has the additional property of cleaving HS chains and releasing from ECM and cell surfaces hundreds of HS-binding proteins with a plethora of functional consequences. Clearly, there are many unique features of this intriguing molecule that still remain to be explored and are highlighted in this Chapter.
Collapse
Affiliation(s)
- Mayank Khanna
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
34
|
Chhabra M, Ferro V. PI-88 and Related Heparan Sulfate Mimetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:473-491. [PMID: 32274723 DOI: 10.1007/978-3-030-34521-1_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heparan sulfate mimetic PI-88 (muparfostat) is a complex mixture of sulfated oligosaccharides that was identified in the late 1990s as a potent inhibitor of heparanase. In preclinical animal models it was shown to block angiogenesis, metastasis and tumor growth, and subsequently became the first heparanase inhibitor to enter clinical trials for cancer. It progressed to Phase III trials but ultimately was not approved for use. Herein we summarize the preparation, physicochemical and biological properties of PI-88, and discuss preclinical/clinical and structure-activity relationship studies. In addition, we discuss the PI-88-inspired development of related HS mimetic heparanase inhibitors with improved properties, ultimately leading to the discovery of PG545 (pixatimod) which is currently in clinical trials.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
35
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
36
|
Tatsumi Y, Miyake M, Shimada K, Fujii T, Hori S, Morizawa Y, Nakai Y, Anai S, Tanaka N, Konishi N, Fujimoto K. Inhibition of Heparanase Expression Results in Suppression of Invasion, Migration and Adhesion Abilities of Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21113789. [PMID: 32471161 PMCID: PMC7313018 DOI: 10.3390/ijms21113789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 01/15/2023] Open
Abstract
Heparan sulfate proteoglycan syndecan-1, CD138, is known to be associated with cell proliferation, adhesion, and migration in malignancies. We previously reported that syndecan-1 (CD138) may contribute to urothelial carcinoma cell survival and progression. We investigated the role of heparanase, an enzyme activated by syndecan-1 in human urothelial carcinoma. Using human urothelial cancer cell lines, MGH-U3 and T24, heparanase expression was reduced with siRNA and RK-682, a heparanase inhibitor, to examine changes in cell proliferation activity, induction of apoptosis, invasion ability of cells, and its relationship to autophagy. A bladder cancer development mouse model was treated with RK-682 and the bladder tissues were examined using immunohistochemical analysis for Ki-67, E-cadherin, LC3, and CD31 expressions. Heparanase inhibition suppressed cellular growth by approximately 40% and induced apoptosis. The heparanase inhibitor decreased cell activity in a concentration-dependent manner and suppressed invasion ability by 40%. Inhibition of heparanase was found to suppress autophagy. In N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer mice, treatment with heparanase inhibitor suppressed the progression of cancer by 40%, compared to controls. Immunohistochemistry analysis showed that heparanase inhibitor suppressed cell growth, and autophagy. In conclusion, heparanase suppresses apoptosis and promotes invasion and autophagy in urothelial cancer.
Collapse
Affiliation(s)
- Yoshihiro Tatsumi
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Keiji Shimada
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Tomomi Fujii
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Shunta Hori
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Satoshi Anai
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (K.S.); (T.F.); (N.K.)
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, 840 Shijo-cho, Nara 634-8522, Japan; (Y.T.); (M.M.); (S.H.); (Y.M.); (Y.N.); (S.A.); (N.T.)
- Correspondence: ; Tel.: +81-744-22-3051 (ext. 2338)
| |
Collapse
|
37
|
Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32274710 DOI: 10.1007/978-3-030-34521-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Heparanase is the principal enzyme that degrades heparan sulfate (HS) in both physiological (HS turnover) and pathological (tumor metastasis, inflammation) cell conditions, catalysing the hydrolysis of the β-1-4 glycosidic bond in -GlcUA-β(1-4)-GlcNX-. Despite efforts to define the minimum trisaccharide sequence that allows glycans to be recognized by heparanase, a rigorous "molecular code" by which the enzyme reads and degrades HS chains has not been identified. The X-ray diffraction model of heparanase, resolved by Wu et al (2015), revealed a complex between the trisaccharide GlcNS6S-GlcUA-GlcNS6S and heparanase. Efforts are ongoing to better understand how HS mimetics longer than three residues are recognized by heparanase before being hydrolyzed or inhibit the enzyme. It is also important to consider the flexibility of the enzyme active site, a feature that opens up the development of heparanase inhibitors with structures significantly different from HS or heparin. This chapter reviews the state-of-the-art knowledge about structural aspects of heparanase activities in terms of substrate recognition, mechanism of hydrolysis, and inhibition.
Collapse
|
38
|
Heparanase-The Message Comes in Different Flavors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:253-283. [DOI: 10.1007/978-3-030-34521-1_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Heparanase 2 and Urofacial Syndrome, a Genetic Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:807-819. [DOI: 10.1007/978-3-030-34521-1_35] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Opposing Effects of Heparanase and Heparanase-2 in Head & Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:847-856. [PMID: 32274741 DOI: 10.1007/978-3-030-34521-1_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the most common cancer in the head and neck and is the sixth most common neoplasm worldwide. SCCHN has a high propensity to lymph node metastases, especially cancer of the pharynx. Prognosis of patients with SCCHN is severely influenced by the status of metastatic cervical lymph nodes and survival rates drop down to half when patients are presented with a metastatic node. The clinical relevance of heparanase as a prognostic marker in SCCHN was reported in several publications. Low levels of heparanase in SCCHN tumor cells was correlated with prolonged disease-free and overall survival. Furthermore, nuclear localization of heparanase predicts a favorable outcome compared to cytoplasmic localization. Heparanase staining was positively correlated with lymphatic vessel density and lymph node metastasis associated with the elevation of vascular endothelial growth factor C (VEGF-C). Heparanase ability to enhance phosphorylation of epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3) were postulated to serve as critical molecular mechanisms by which heparanase facilitates tumor growth.Heparanase-2 (HPA2) is a close homolog of heparanase that lacks intrinsic HS-degrading activity but retains the capacity to bind HS with high affinity. HPA2 expression was markedly elevated in SCCHN patients, correlating with prolonged follow-up time to recurrence and inversely correlating with patients' N-stage. HPA2 appears to inhibit tumor dissemination, suggesting that HPA2 functions as a tumor suppressor. Thus, Heparanase and Heparanase-2 seem to exert opposing effects on SCCHN.
Collapse
|
41
|
Simeonovic CJ, Popp SK, Brown DJ, Li FJ, Lafferty ARA, Freeman C, Parish CR. Heparanase and Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:607-630. [PMID: 32274728 DOI: 10.1007/978-3-030-34521-1_24] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-β-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.
Collapse
Affiliation(s)
- Charmaine J Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | - Sarah K Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Debra J Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Fei-Ju Li
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Antony R A Lafferty
- Department of Paediatrics, The Canberra Hospital, Woden, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Craig Freeman
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Yang C, Gao L, Shao M, Cai C, Wang L, Chen Y, Li J, Fan F, Han Y, Liu M, Linhardt RJ, Yu G. End-functionalised glycopolymers as glycosaminoglycan mimetics inhibit HeLa cell proliferation. Polym Chem 2020. [DOI: 10.1039/d0py00384k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel glycopeptide mimetic, prepared by end-functionalised conjugation of iRGD peptide on a glycopolymer, could effectively enter HeLa cells and inhibit signalling pathways involved in tumour cell proliferation.
Collapse
|
43
|
Heparanase – Discovery and Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:61-69. [DOI: 10.1007/978-3-030-34521-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Vlodavsky I, Sanderson RD, Ilan N. Non-Anticoagulant Heparins as Heparanase Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:493-522. [PMID: 32274724 PMCID: PMC7142274 DOI: 10.1007/978-3-030-34521-1_20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chapter will review early and more recent seminal contributions to the discovery and characterization of heparanase and non-anticoagulant heparins inhibiting its peculiar enzymatic activity. Indeed, heparanase displays a unique versatility in degrading heparan sulfate chains of several proteoglycans expressed in all mammalian cells. This endo-β-D-glucuronidase is overexpressed in cancer, inflammation, diabetes, atherosclerosis, nephropathies and other pathologies. Starting from known low- or non-anticoagulant heparins, the search for heparanase inhibitors evolved focusing on structure-activity relationship studies and taking advantage of new chemical-physical analytical methods which have allowed characterization and sequencing of polysaccharide chains. New methods to screen heparanase inhibitors and to evaluate their mechanism of action and in vivo activity in experimental models prompted their development. New non-anticoagulant heparin derivatives endowed with anti-heparanase activity are reported. Some leads are under clinical evaluation in the oncology field (e.g., acute myeloid leukemia, multiple myeloma, pancreatic carcinoma) and in other pathological conditions (e.g., sickle cell disease, malaria, labor arrest).
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
45
|
Vlodavsky I, Sanderson RD, Ilan N. Forty Years of Basic and Translational Heparanase Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:3-59. [PMID: 32274705 PMCID: PMC7142273 DOI: 10.1007/978-3-030-34521-1_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes key developments in the heparanase field obtained 20 years prior to cloning of the HPSE gene and nearly 20 years after its cloning. Of the numerous publications and review articles focusing on heparanase, we have selected those that best reflect the progression in the field as well as those we regard important accomplishments with preference to studies performed by scientists and groups that contributed to this book. Apart from a general 'introduction' and 'concluding remarks', the abstracts of these studies are presented essentially as published along the years. We apologize for not being objective and not being able to include some of the most relevant abstracts and references, due to space limitation. Heparanase research can be divided into two eras. The first, initiated around 1975, dealt with identifying the enzyme, establishing the relevant assay systems and investigating its biological activities and significance in cancer and other pathologies. Studies performed during the first area are briefly introduced in a layman style followed by the relevant abstracts presented chronologically, essentially as appears in PubMed. The second era started in 1999 when the heparanase gene was independently cloned by 4 research groups [1-4]. As expected, cloning of the heparanase gene boosted heparanase research by virtue of the readily available recombinant enzyme, molecular probes, and anti-heparanase antibodies. Studies performed during the second area are briefly introduced followed by selected abstracts of key findings, arranged according to specific topics.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
46
|
Hardak E, Peled E, Crispel Y, Ghanem S, Attias J, Asayag K, Kogan I, Nadir Y. Heparan sulfate chains contribute to the anticoagulant milieu in malignant pleural effusion. Thorax 2019; 75:143-152. [DOI: 10.1136/thoraxjnl-2018-212964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 10/21/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
Abstract
BackgroundWhile malignant pleural effusion (MPE) is a common and significant cause of morbidity in patients with cancer, current treatment options are limited. Human heparanase, involved in angiogenesis and metastasis, cleaves heparan sulfate (HS) side chains on the cell surface.AimsTo explore the coagulation milieu in MPE and infectious pleural effusion (IPE) focusing on the involvement of heparanase.MethodsSamples of 30 patients with MPE and 44 patients with IPE were evaluated in comparison to those of 33 patients with transudate pleural effusions, using heparanase ELISA, heparanase procoagulant activity assay, thrombin and factor Xa chromogenic assays and thromboelastography. A cell proliferation assay was performed. EMT-6 breast cancer cells were injected to the pleural cavity of mice. A peptide inhibiting heparanase activity was administered subcutaneously.ResultsLevels of heparanase, factor Xa and thrombin were significantly higher in exudate than transudate. Thromboelastography detected almost no thrombus formation in the whole blood, mainly on MPE addition. This effect was completely reversed by bacterial heparinase. Direct measurement revealed high levels of HS chains in pleural effusions. Higher proliferation was observed in tumour cell lines incubated with exudate than with transudate and it was reduced when bacterial heparinase was added. The tumour size in the pleural cavity of mice treated with the heparanase inhibitor were significantly smaller compared with control (p=0.005).ConclusionsHS chains released by heparanase form an anticoagulant milieu in MPE, preventing local thrombosis and enabling tumour cell proliferation. Inhibition of heparanase might provide a therapeutic option for patients with recurrent MPE.
Collapse
|
47
|
Coombe DR, Gandhi NS. Heparanase: A Challenging Cancer Drug Target. Front Oncol 2019; 9:1316. [PMID: 31850210 PMCID: PMC6892829 DOI: 10.3389/fonc.2019.01316] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Heparanase has been viewed as a promising anti-cancer drug target for almost two decades, but no anti-heparanase therapy has yet reached the clinic. This endoglycosidase is highly expressed in a variety of malignancies, and its high expression is associated with greater tumor size, more metastases, and a poor prognosis. It was first described as an enzyme cleaving heparan sulfate chains of proteoglycans located in extracellular matrices and on cell surfaces, but this is not its only function. It is a multi-functional protein with activities that are enzymatic and non-enzymatic and which take place both outside of the cell and intracellularly. Knowledge of the crystal structure of heparanase has assisted the interpretation of earlier structure-function studies as well as in the design of potential anti-heparanase agents. This review re-examines the various functions of heparanase in light of the structural data. The functions of the heparanase variant, T5, and structure and functions of heparanase-2 are also examined as these heparanase related, but non-enzymatic, proteins are likely to influence the in vivo efficacy of anti-heparanase drugs. The anti-heparanase drugs currently under development predominately focus on inhibiting the enzymatic activity of heparanase, which, in the absence of inhibitors with high clinical efficacy, prompts a discussion of whether this is the best approach. The diversity of outcomes attributed to heparanase and the difficulties of unequivocally determining which of these are due to its enzymatic activity is also discussed and leads us to the conclusion that heparanase is a valid, but challenging drug target for cancer.
Collapse
Affiliation(s)
- Deirdre R Coombe
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Song T, Spillmann D. Transcriptomic analysis reveals cell apoptotic signature modified by heparanase in melanoma cells. J Cell Mol Med 2019; 23:4559-4568. [PMID: 31044520 PMCID: PMC6584584 DOI: 10.1111/jcmm.14349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 01/12/2023] Open
Abstract
Heparanase has been implicated in many pathological conditions, especially inflammation and cancer, attributed to its degradation of heparan sulfate, a crucial component maintaining the integrity of the extracellular matrix. By silencing the heparanase gene (HPSE) in MDA-MB-435s melanoma cells, we investigated the impact of this protein on gene transcription. Transcriptome sequencing yielded a list of 279 differentially expressed genes, of which 140 were up-regulated and 239 down-regulated. The 140 up-regulated genes were classified into a substantial set of gene ontology defined functions, for example, positive regulation of cell death, apoptotic process, response to cytokine, while 239 down-regulated genes classify only into the two categories: nucleosome and nucleosome assembly. Our focus was drawn to an array of 28 pro-apoptotic genes regulated by heparanase: real-time PCR experiments further validated up-regulation of EGR1, TXNIP, AXL, CYR61, LIMS2 and TNFRSF12A by at least 1.5-fold, among which EGR1, CYR61, and TNFRSF12A were confirmed on protein level. We demonstrated significantly increased apoptotic cells by TUNEL staining upon HPSE silencing, mediated by activation of caspase 3/PARP1 pathway. The pro-apoptotic gene expression and observation of apoptosis were extended to another melanoma cell line, MV3 cells, thus consolidating the anti-apoptosis effect of heparanase in melanoma cells.
Collapse
Affiliation(s)
- Tianyi Song
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Dorothe Spillmann
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
49
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
50
|
Asperti M, Denardo A, Gryzik M, Arosio P, Poli M. The role of heparin, heparanase and heparan sulfates in hepcidin regulation. VITAMINS AND HORMONES 2019; 110:157-188. [PMID: 30798810 DOI: 10.1016/bs.vh.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepcidin is considered the major regulator of systemic iron homeostasis in human and mice, and its expression in the liver is mainly regulated at a transcriptional level. Central to its regulation are the bone morphogenetic proteins, particularly BMP6, that are heparin binding proteins. Heparin was found to inhibit hepcidin expression and BMP6 activity in hepatic cell lines and in mice, suggesting that endogenous heparan sulfates are involved in the pathway of hepcidin expression. This was confirmed by the study of cells and mice overexpressing heparanase, the enzyme that hydrolyzes heparan sulfates, and by cellular models with altered heparan sulfates. The evidences supporting the role of heparan sulfate in hepcidin expression are summarized in this chapter and open the way for new understanding in hepcidin expression and its control in pathological condition.
Collapse
Affiliation(s)
- Michela Asperti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Denardo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Magdalena Gryzik
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|