1
|
Dzhumashev D, Anton-Joseph S, Morel VJ, Timpanaro A, Bordon G, Piccand C, Aleandri S, Luciani P, Rössler J, Bernasconi M. Rapid liposomal formulation for nucleolin targeting to rhabdomyosarcoma cells. Eur J Pharm Biopharm 2024; 194:49-61. [PMID: 38029941 DOI: 10.1016/j.ejpb.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. More effective and less toxic therapies are urgently needed for high-risk patients. Peptide-guided targeted drug delivery can increase the therapeutic index of encapsulated drugs and improve patients' well-being. To apply this strategy to RMS, we identified the peptide F3 in a screening for peptides binding to RMS cells surface. F3 binds to nucleolin, which is present on the surface of RMS cells and is abundantly expressed at the mRNA level in RMS patients' biopsies compared to healthy tissues. We developed a rapid microfluidic formulation of F3-decorated PEGylated liposomes and remote loading of the chemotherapeutic drug vincristine. Size, surface charge, drug loading and retention of targeted and control liposomes were studied. Enhanced cellular binding and uptake were observed in three different nucleolin-positive RMS cell lines. Importantly, F3-functionalized liposomes loaded with vincristine were up to 11 times more cytotoxic than non-targeted liposomes for RMS cell lines. These results demonstrate that F3-functionalized liposomes are promising for targeted drug delivery to RMS and warrant further in vivo investigations.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Victoria J Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
2
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
3
|
Dzhumashev D, Timpanaro A, Ali S, De Micheli AJ, Mamchaoui K, Cascone I, Rössler J, Bernasconi M. Quantum Dot-Based Screening Identifies F3 Peptide and Reveals Cell Surface Nucleolin as a Therapeutic Target for Rhabdomyosarcoma. Cancers (Basel) 2022; 14:5048. [PMID: 36291832 PMCID: PMC9600270 DOI: 10.3390/cancers14205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to bind to two RMS cell lines, Rh30 and RD, using quantum dots Streptavidin and biotin-peptides conjugates as a model for nanoparticles. Four peptides revealed a very strong binding to RMS cells: NCAM-1-targeting NTP peptide, nucleolin-targeting F3 peptide, and two Furin-targeting peptides, TmR and shTmR. F3 peptide showed the strongest binding to all RMS cell lines tested, low binding to normal control myoblasts and fibroblasts, and efficient internalization into RMS cells demonstrated by the cytoplasmic delivery of the Saporin toxin. The expression of the nucleophosphoprotein nucleolin, the target of F3, on the surface of RMS cell lines was validated by competition with the natural ligand lactoferrin, by colocalization with the nucleolin-binding aptamer AS1411, and by the marked sensitivity of RMS cell lines to the growth inhibitory nucleolin-binding N6L pseudopeptide. Taken together, our results indicate that nucleolin-targeting by F3 peptide represents a potential therapeutic approach for RMS.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Safa Ali
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, F-75013 Paris, France
| | - Ilaria Cascone
- IMRB, INSERM, University Paris Est Creteil, 94010 Creteil, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biothérapie, 94010 Créteil, France
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
4
|
Liu T, Xie Q, Dong Z, Peng Q. Nanoparticles-based delivery system and its potentials in treating central nervous system disorders. NANOTECHNOLOGY 2022; 33. [PMID: 35917704 DOI: 10.1088/1361-6528/ac85f3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have become severe health concern worldwide. The treatment of the CNS diseases is of great challenges due largely to the presence of the blood-brain barrier (BBB). On the one hand, BBB protects brain from the harmful exogenous molecules via inhibiting their entry into the brain. On the other hand, it also hampers the transport of therapeutic drugs into the brain, resulting in the difficulties in treating the CNS diseases. In the past decades, nanoparticles-based drug delivery systems have shown great potentials in overcoming the BBB owing to their unique physicochemical properties, such as small size and specific morphology. In addition, functionalization of nanomaterials confers these nanocarriers controlled drug release features and targeting capacities. These properties make nanocarriers the potent delivery systems for treating the CNS disorders. Herein, we summarize the recent progress in nanoparticles-based systems for the CNS delivery, including the conventional and innovative systems. The prerequisites, drawbacks and challenges of nanocarriers (such as protein corona formation) in the CNS delivery are also discussed.
Collapse
Affiliation(s)
- Tianyou Liu
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qinglian Xie
- Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, CHINA
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, CHINA
| |
Collapse
|
5
|
Chemistry of Molecular Imaging: An Overview. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Neuronal mitochondria-targeted micelles relieving oxidative stress for delayed progression of Alzheimer's disease. Biomaterials 2020; 238:119844. [DOI: 10.1016/j.biomaterials.2020.119844] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
|
7
|
Emami MR, Young CS, Ji Y, Liu X, Mokhonova E, Pyle AD, Meng H, Spencer MJ. Polyrotaxane Nanocarriers Can Deliver CRISPR/Cas9 Plasmid to Dystrophic Muscle Cells to Successfully Edit the DMD Gene. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael R. Emami
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
| | - Courtney S. Young
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ying Ji
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Xiangsheng Liu
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Ekaterina Mokhonova
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| | - April D. Pyle
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles Los Angeles CA 90095 USA
| | - Huan Meng
- Division of Nanomedicine, Department of Medicine California NanoSystems Institute University of California, Los Angeles Los Angeles CA 90095 USA
| | - Melissa J. Spencer
- Molecular Biology Institute University of California, Los Angeles Los Angeles CA 90095 USA
- Center for Duchenne Muscular Dystrophy University of California, Los Angeles Los Angeles CA 90095 USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research University of California, Los Angeles Los Angeles CA 90095 USA
- Department of Neurology University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
8
|
Modulation of cell-cell interactions for neural tissue engineering: Potential therapeutic applications of cell adhesion molecules in nerve regeneration. Biomaterials 2019; 197:327-344. [DOI: 10.1016/j.biomaterials.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/08/2018] [Accepted: 01/20/2019] [Indexed: 12/21/2022]
|
9
|
NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders. Neurochem Res 2018; 43:1714-1722. [DOI: 10.1007/s11064-018-2594-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/27/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|
10
|
Vossen LI, Markovsky E, Eldar-Boock A, Tschiche HR, Wedepohl S, Pisarevsky E, Satchi-Fainaro R, Calderón M. PEGylated dendritic polyglycerol conjugate targeting NCAM-expressing neuroblastoma: Limitations and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1169-1179. [PMID: 29471169 DOI: 10.1016/j.nano.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/19/2018] [Accepted: 02/10/2018] [Indexed: 12/17/2022]
Abstract
Neural cell adhesion molecule (NCAM) is found to be a stem-cell marker in several tumor types and its overexpression is known to correlate with increased metastatic capacity. To combine extravasation- and ligand-dependent targeting to NCAM overexpressing-cells in the tumor microenvironment, we developed a PEGylated NCAM-targeted dendritic polyglycerol (PG) conjugate. Here, we describe the synthesis, physico-chemical characterization and biological evaluation of a PG conjugate bearing the mitotic inhibitor paclitaxel (PTX) and an NCAM-targeting peptide (NTP). PG-NTP-PTX-PEG was evaluated for its ability to inhibit neuroblastoma progression in vitro and in vivo as compared to non-targeted derivatives and free drug. NCAM-targeted conjugate inhibited the migration of proliferating endothelial cells, suggesting it would be able to inhibit tumor angiogenesis. The targeting conjugate provided an improved binding and uptake on IMR-32 cells compared to non-targeted control. However, these results did not translate to our in vivo model on orthotopic neuroblastoma bearing mice.
Collapse
Affiliation(s)
- Laura Isabel Vossen
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany
| | - Ela Markovsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Harald Rune Tschiche
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany
| | - Evgeny Pisarevsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, Berlin, Germany.
| |
Collapse
|
11
|
Sridar S, Churchward MA, Mushahwar VK, Todd KG, Elias AL. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring. Acta Biomater 2017; 60:154-166. [PMID: 28735029 DOI: 10.1016/j.actbio.2017.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/01/2017] [Accepted: 07/18/2017] [Indexed: 01/12/2023]
Abstract
The goal of this study is to improve the integration of implanted microdevices with tissue in the central nervous system (CNS). The long-term utility of neuroprosthetic devices implanted in the CNS is affected by the formation of a scar by resident glial cells (astrocytes and microglia), limiting the viability and functional stability of the devices. Reduction in the proliferation of glial cells is expected to enhance the biocompatibility of devices. We demonstrate the modification of polyimide-insulated microelectrodes with a bioactive peptide KHIFSDDSSE. Microelectrode wires were functionalized with (3-aminopropyl) triethoxy silane (APTES); the peptide was then covalently bonded to the APTES. The soluble peptide was tested in 2D mixed cultures of astrocytes and microglia, and reduced the proliferation of both cell types. The interactions of glial cells with the peptide-modified wires was then examined in 3D cell-laden hydrogels by immunofluorescence microscopy. As expected for uncoated wires, the microglia were first attracted to the wire (7days) followed by astrocyte recruitment and hypertrophy (14days). For the peptide-treated wires, astrocytes coated the wires directly (24h), and formed a thin, stable coating without evidence of hypertrophy, and the attraction of microglia to the wire was significantly reduced. The results suggest a mechanism to improve tissue integration by promoting uniform coating of astrocytes on a foreign body while lessening the reactive response of microglia. We conclude that the bioactive peptide KHIFSDDSSE may be effective in improving the biocompatibility of neural interfaces by both reducing acute glial reactivity and generating stable integration with tissue. STATEMENT OF SIGNIFICANCE The peptide KHIFSDDSSE has previously been shown in vitro to both reduce the proliferation of astrocytes, and to increase the adhesion of astrocyte to glass substrates. Here, we demonstrate a method to apply uniform coatings of peptides to microwires, which could readily be generalized to other peptides and surfaces. We then show that when peptide-modified wires are inserted into 3D cell-laden hydrogels, the normal cellular reaction (microglial activation followed by astrocyte recruitment and hypertrophy) does not occur, rather astrocytes are attracted directly to the surface of the wire, forming a relatively thin and uniform coating. This suggests a method to improve tissue integration of implanted devices to reduce glial scarring and ultimately reduce failure of neural interfaces.
Collapse
Affiliation(s)
- Sangita Sridar
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Matthew A Churchward
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Vivian K Mushahwar
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB T6G 2E1, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Kathryn G Todd
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2G3, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada
| | - Anastasia L Elias
- Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Alberta Innovates-Health Solutions Interdisciplinary Team in Smart Neural Prostheses (Project SMART), University of Alberta, AB, Canada.
| |
Collapse
|
12
|
Begum MR, Sng JCG. Molecular mechanisms of experience-dependent maturation in cortical GABAergic inhibition. J Neurochem 2017; 142:649-661. [PMID: 28628196 PMCID: PMC5599941 DOI: 10.1111/jnc.14103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Critical periods (CP) in early post-natal life are periods of plasticity during which the neuronal circuitry is most receptive to environmental stimuli. These early experiences translate to a more permanent and sophisticated neuronal connection in the adult brain systems. Multiple studies have pointed to the development of inhibitory circuitry as one of the central factors for the onset of critical periods. We discuss several molecular mechanisms regulating inhibitory circuit maturation and CP, from gene transcription level to protein signaling level. Also, beyond the level of gene sequences, we briefly consider recent information on dynamic epigenetic regulation of gene expression through histone methylation and acetylation and their implication on timed development of the inhibitory circuitry for the onset of CP.
Collapse
Affiliation(s)
- M. Ridzwana Begum
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Judy C. G. Sng
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
13
|
Markovsky E, Vax E, Ben-Shushan D, Eldar-Boock A, Shukrun R, Yeini E, Barshack I, Caspi R, Harari-Steinberg O, Pode-Shakked N, Dekel B, Satchi-Fainaro R. Wilms Tumor NCAM-Expressing Cancer Stem Cells as Potential Therapeutic Target for Polymeric Nanomedicine. Mol Cancer Ther 2017; 16:2462-2472. [DOI: 10.1158/1535-7163.mct-17-0184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 11/16/2022]
|
14
|
Targeting NCAM-expressing neuroblastoma with polymeric precision nanomedicine. J Control Release 2017; 249:162-172. [DOI: 10.1016/j.jconrel.2017.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
|
15
|
Aonurm-Helm A, Jaako K, Jürgenson M, Zharkovsky A. Pharmacological approach for targeting dysfunctional brain plasticity: Focus on neural cell adhesion molecule (NCAM). Pharmacol Res 2016; 113:731-738. [DOI: 10.1016/j.phrs.2016.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 04/08/2016] [Indexed: 11/26/2022]
|
16
|
Nabatov AA, Raginov IS. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells. Infect Agent Cancer 2015; 10:49. [PMID: 26692894 PMCID: PMC4676137 DOI: 10.1186/s13027-015-0043-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Methods Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. Results In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56pos cells. The treatment of CD56pos cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. Conclusions The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56pos cells and protects DC-SIGN expressing dendritic cells against CD56pos cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Collapse
Affiliation(s)
- Alexey A Nabatov
- Science Center, Volga Region State Academy of Physical Culture, Sport and Tourism, 33, Universiade Village, Kazan, 420138 Russia ; Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ivan S Raginov
- Republican Clinical Hospital, 138 Orenburgsky tract, Kazan, 420064 RUSSIA ; Scientific and Educational Center of Pharmaceutics, 18 Kremlyovskaya ul., Kazan, 423000 RUSSIA
| |
Collapse
|
17
|
Georgiadis V, Stephanou A, Townsend PA, Jackson TR. MultiElec: A MATLAB Based Application for MEA Data Analysis. PLoS One 2015; 10:e0129389. [PMID: 26076010 PMCID: PMC4468069 DOI: 10.1371/journal.pone.0129389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
Collapse
Affiliation(s)
- Vassilis Georgiadis
- Institute of Child Health, University College London, London, United Kingdom
| | - Anastasis Stephanou
- Institute of Child Health, University College London, London, United Kingdom
| | - Paul A. Townsend
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Cellular Metabolism, Manchester Cancer Research Centre, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Thomas R. Jackson
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Centre for Cellular Metabolism, Manchester Cancer Research Centre, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Rossi F, van Griensven M. Polymer Functionalization as a Powerful Tool to Improve Scaffold Performances. Tissue Eng Part A 2014; 20:2043-51. [DOI: 10.1089/ten.tea.2013.0367] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Clinic for Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
19
|
Klementiev B, Li S, Korshunova I, Dmytriyeva O, Pankratova S, Walmod PS, Kjær LK, Dahllöf MS, Lundh M, Christensen DP, Mandrup-Poulsen T, Bock E, Berezin V. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist. J Neuroinflammation 2014; 11:27. [PMID: 24490798 PMCID: PMC3923439 DOI: 10.1186/1742-2094-11-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide. Methods We investigated the binding of Ilantide to IL-1 receptor type I (IL-1RI) using surface plasmon resonance, the inhibition of Il-1β-induced activation of nuclear factor κB (NF-κB) in HEK-Blue cells that contained an IL-1β-sensitive reporter, the secretion of TNF-α in macrophages, protection against IL-1-induced apoptosis in neonatal pancreatic islets, and the penetration of Ilantide through the blood–brain barrier using competitive enzyme-linked immunosorbent assay (ELISA). We studied the effects of the peptide on social behavior and memory in rat models of lipopolysaccharide (LPS)- and amyloid-induced neuroinflammation, respectively, and its effect in a rat model of experimental autoimmune enchephalomyelitis. Results Ilantide bound IL-1RI, inhibited the IL-1β-induced activation of NF-κB, and inhibited the secretion of TNF-α in vitro. Ilantide protected pancreatic islets from apoptosis in vitro and reduced inflammation in an animal model of arthritis. The peptide penetrated the blood–brain barrier. It reduced the deficits in social activity and memory in LPS- and amyloid-treated animals and delayed the development of experimental autoimmune enchephalomyelitis. Conclusions These findings indicate that Ilantide is a novel and potent IL-1RI antagonist that is able to reduce inflammatory damage in the central nervous system and pancreatic islets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Vladimir Berezin
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
20
|
Special issue dedicated to Elisabeth Bock. Neurochem Res 2013; 38:1089-91. [PMID: 23636805 DOI: 10.1007/s11064-013-1056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Mie M, Sasaki S, Kobatake E. Construction of a bFGF-tethered multi-functional extracellular matrix protein through coiled-coil structures for neurite outgrowth induction. Biomed Mater 2013; 9:015004. [DOI: 10.1088/1748-6041/9/1/015004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 2013; 38:1163-73. [PMID: 23494903 DOI: 10.1007/s11064-013-1007-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Neural cell adhesion molecules (NCAMs) are complexes of transmembranal proteins critical for cell-cell interactions. Initially recognized as key players in the orchestration of developmental processes involving cell migration, cell survival, axon guidance, and synaptic targeting, they have been shown to retain these functions in the mature adult brain, in relation to plastic processes and cognitive abilities. NCAMs are able to interact among themselves (homophilic binding) as well as with other molecules (heterophilic binding). Furthermore, they are the sole molecule of the central nervous system undergoing polysialylation. Most interestingly polysialylated and non-polysialylated NCAMs display opposite properties. The precise contributions each of these characteristics brings in the regulations of synaptic and cellular plasticity in relation to cognitive processes in the adult brain are not yet fully understood. With the aim of deciphering the specific involvement of each interaction, recent developments led to the generation of NCAM mimetic peptides that recapitulate identified binding properties of NCAM. The present review focuses on the information such advances have provided in the understanding of NCAM contribution to cognitive function.
Collapse
|
23
|
Neural cell adhesion molecules in brain plasticity and disease. Mult Scler Relat Disord 2012; 2:13-20. [PMID: 25877450 DOI: 10.1016/j.msard.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 12/14/2022]
Abstract
Neural cell adhesion molecule (NCAM) has been studied extensively. But it is only in recent times that interest in this molecule has shifted to conditions such as Alzheimer's disease, Multiple Sclerosis and Schizophrenia, focusing on its role in neurodegeneration and abnormal neurodevelopment. NCAM is important in neurite outgrowth, long-term potentiation in the hippocampus and synaptic plasticity. Reduced as well as increased levels in NCAM have been linked to pathology in the brain suggesting that a shift in the equilibrium may be the key. Hence, increasing our understanding of the role of NCAM in health and disease should clear some of the ambiguity surrounding the molecule and even lead to newer potential therapeutic targets. This review consolidates our current understanding of NCAM, focusing on the consequences of dysregulation, its role in neurodegenerative and neurodevelopmental disorders, and the future of NCAM plus potential options for therapy.
Collapse
|
24
|
Bojesen KB, Clausen O, Rohde K, Christensen C, Zhang L, Li S, Køhler L, Nielbo S, Nielsen J, Gjørlund MD, Poulsen FM, Bock E, Berezin V. Nectin-1 binds and signals through the fibroblast growth factor receptor. J Biol Chem 2012; 287:37420-33. [PMID: 22955284 DOI: 10.1074/jbc.m112.345215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nectins belong to a family of immunoglobulin (Ig)-like cell-adhesion molecules comprising four members, nectin-1 through nectin-4. Nectins are involved in formation of the mechanical adhesive puncta adherentia junctions of synapses. Nectins share the same overall structural topology with an extracellular region containing three Ig modules, a transmembrane region, and a cytoplasmic region. In nectin-1, the first and second Ig module in the extracellular region are necessary for the trans-interaction with nectin-3 and formation of cis-dimers, respectively. The function of the third Ig module of nectin-1 remains unknown. We here report the structure in solution of the third, membrane-proximal Ig module of mouse nectin-1 (nectin-1 Ig3) solved by means of nuclear magnetic resonance (NMR) spectroscopy. It belongs to the C1 set of the Ig superfamily. Nectin-1 Ig3 was produced as a recombinant protein and induced neurite outgrowth in primary cultures of hippocampal and cerebellar granule neurons, an effect abolished by treatment with the fibroblast growth factor receptor (FGFR) inhibitor SU5402, or by transfection with a dominant-negative FGFR1 construct. We showed by surface plasmon resonance (SPR) analysis that nectin-1 Ig3 directly interacted with various isoforms of FGFR. Nectin-1 Ig3 induced phosphorylation of FGFR1c in the same manner as the whole nectin-1 ectodomain, and promoted survival of cerebellar granule neurons induced to undergo apoptosis. Finally, we constructed a peptide, nectide, by employing in silico modeling of various FGFR ligand-binding sites. Nectide mimicked all the effects of nectin-1 Ig3. We suggest that FGFR is a downstream signaling partner of nectin-1.
Collapse
Affiliation(s)
- Kirsten B Bojesen
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, Blegdamsvej 3C, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 05/21/2023]
Abstract
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-generation nanoparticles that actively participate in the tumor targeting process is underway. Lipid nanoparticles functionalized with targeting peptides are among the most often studied. The goal of this article is to review the recently published literature of targeted nanoparticles to highlight successful designs that improved in vivo tumor therapy, and to discuss the current challenges of designing these nanoparticles for effective in vivo performance.
Collapse
Affiliation(s)
- Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
26
|
Pollscheit J, Glaubitz N, Haller H, Horstkorte R, Bork K. Phosphorylation of serine 774 of the neural cell adhesion molecule is necessary for cyclic adenosine monophosphate response element binding protein activation and neurite outgrowth. J Neurosci Res 2012; 90:1577-82. [DOI: 10.1002/jnr.23038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 01/16/2012] [Accepted: 01/20/2012] [Indexed: 12/21/2022]
|
27
|
Skaper SD. Neuronal growth-promoting and inhibitory cues in neuroprotection and neuroregeneration. Methods Mol Biol 2012; 846:13-22. [PMID: 22367797 DOI: 10.1007/978-1-61779-536-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During development of the nervous system, neurons extend axons over considerable distances in a highly stereospecific fashion in order to innervate their targets in an appropriate manner. This involves the recognition, by the axonal growth cone, of guidance cues that determine the pathway taken by the axons. These guidance cues can act to promote and/or repel growth cone advance. The directed growth of axons is partly governed by cell adhesion molecules (CAMs) on the neuronal growth cone that bind to CAMs on the surface of other axons or nonneuronal cells. In vitro assays have established the importance of the CAMs ((neural cell adhesion molecule NCAM), N-cadherin, and L1) in promoting axonal growth over cells. Compelling evidence implicates the fibroblast growth factor receptor tyrosine kinase as the primary signal transduction molecule in the CAM pathway. CAMs are important constituents of synapses, and they appear to play important and diverse roles in regulating synaptic plasticity associated with learning and memory. Synthetic NCAM peptide mimetics corresponding to the binding site of NCAM for the fibroblast growth factor receptor promote synaptogenesis, enhance presynaptic function, and facilitate memory consolidation. Dimeric versions of functional binding motifs of N-cadherin behave as N-cadherin agonists, promoting both neuritogenesis and neuronal cell survival. Negative extracellular signals that physically direct neurite growth have also been described. The latter include the myelin inhibitory proteins, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein. Potentiation of outgrowth-promoting signals, together with antagonism of myelin proteins or their convergent receptor, NgR, and its second messenger pathways, may provide new opportunities in the rational design of treatments for acute brain injury and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmacology and Anesthesiology, University of Padova, Padova, Italy.
| |
Collapse
|
28
|
Eggers K, Werneburg S, Schertzinger A, Abeln M, Schiff M, Scharenberg MA, Burkhardt H, Mühlenhoff M, Hildebrandt H. Polysialic acid controls NCAM signals at cell–cell contacts to regulate focal adhesion independent from FGF receptor activity. J Cell Sci 2011; 124:3279-91. [DOI: 10.1242/jcs.084863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The polysialic acid (polySia) modification of the neural cell adhesion molecule NCAM is a key regulator of cell migration. Yet its role in NCAM-dependent or NCAM-independent modulation of motility and cell–matrix adhesion is largely unresolved. Here, we demonstrate that loss of polySia attenuates tumour cell migration and augments the number of focal adhesions in a cell–cell contact- and NCAM-dependent manner. In the presence or absence of polySia, NCAM never colocalised with focal adhesions but was enriched at cell–cell contacts. Focal adhesion of polySia- and NCAM-negative cells was enhanced by incubation with soluble NCAM or by removing polySia from heterotypic contacts with polySia–NCAM-positive cells. Focal adhesion was compromised by the src-family kinase inhibitor PP2, whereas loss of polySia or exposure to NCAM promoted the association of p59Fyn with the focal adhesion scaffolding protein paxillin. Unlike other NCAM responses, NCAM-induced focal adhesion was not prevented by inhibiting FGF receptor activity and could be evoked by NCAM fragments comprising immunoglobulin domains three and four but not by the NCAM fibronectin domains alone or by an NCAM-derived peptide known to interact with and activate FGF receptors. Together, these data indicate that polySia regulates cell motility through NCAM-induced but FGF-receptor-independent signalling to focal adhesions.
Collapse
Affiliation(s)
- Katinka Eggers
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Sebastian Werneburg
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andrea Schertzinger
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Markus Abeln
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Miriam Schiff
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Hannelore Burkhardt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
29
|
Conzelmann N, Schneider A. A screen for peptide agonists of the G-CSF receptor. BMC Res Notes 2011; 4:194. [PMID: 21676239 PMCID: PMC3132715 DOI: 10.1186/1756-0500-4-194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/15/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Granulocyte-colony stimulating factor (G-CSF) is one of the most important pharmacologically used proteins. Potential uses beyond the stimulation of neutrophilic granulocytes are the treatment of CNS disorders. Disadvantages of the G-CSF protein as a drug are its moderate plasma half-life time and considerable production costs. We therefore conducted a screen for peptide agonists derived from the sequence of human G-CSF. FINDINGS Despite of the high sensitivity of our screening system we could not detect any positive hits in a single peptide approach. In a multiplex approach using a permutation of any combination of 10 different peptides we could also not detect a positive block. CONCLUSIONS We conclude that larger coherent parts of the protein or dimerising peptides may be needed to achieve activation of the receptor.
Collapse
Affiliation(s)
- Nadine Conzelmann
- SYGNIS Bioscience, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | |
Collapse
|
30
|
Bisaz R, Schachner M, Sandi C. Causal evidence for the involvement of the neural cell adhesion molecule, NCAM, in chronic stress-induced cognitive impairments. Hippocampus 2010; 21:56-71. [DOI: 10.1002/hipo.20723] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Tei L, Barge A, Geninatti Crich S, Pagliarin R, Negri V, Ramella D, Cravotto G, Aime S. Target visualization by MRI using the avidin/biotin amplification route: synthesis and testing of a biotin-Gd-DOTA monoamide trimer. Chemistry 2010; 16:8080-7. [PMID: 20533461 DOI: 10.1002/chem.201000508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To design efficient targeting strategies in magnetic resonance (MR) molecular imaging applications, the formation of supramolecular adducts between (strept)avidin ((S)Av) and tribiotinylated Gd-DOTA-monoamide complexes (DOTA=1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) was explored. Two compounds based on the trivalent core of tris(2-aminoethyl)amine each containing three biotin molecules and one (L1) or three (L2) DOTA-monoamide (DOTAMA) ligands were synthesized. In these tribiotinylated derivatives the biotins are spaced far enough apart to allow the formation of the supramolecular adduct with the protein and to host the chelating units in between the (S)Av layers. Size exclusion HPLC analyses indicated complete formation of very high molecular weight polymers (>2 MDa) with (S)Av in solution. A (1)H NMR spectroscopy relaxometric study on the obtained polymeric adducts showed a marked increase of the relaxivity at 35-40 MHz as a consequence of the lengthening of the tumbling time due to the formation of Gd-chelates/(S)Av polymers. The most efficient Gd(3)L2/(S)Av polymeric system was used for a test in cell cultures. The target is represented by a neural cell adhesion molecule (NCAM), which is overexpressed in Kaposi's sarcoma cells and tumor endothelial cells (TEC) and that is efficiently recognized by a biotinylated tetrameric peptide (C3d-Bio). In vitro experiments showed that only cells incubated with both C3d-Bio and Gd(3)L2/SAv polymer were hyperintense with respect to the control. Relaxation rates of cell pellets incubated with Gd(3)L2/SAv alone were not significantly different from the untreated cells demonstrating the absence of a specific binding.
Collapse
Affiliation(s)
- Lorenzo Tei
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale Amedeo Avogadro, Viale T. Michel 11, 15121 Alessandria, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Køhler LB, Christensen C, Rossetti C, Fantin M, Sandi C, Bock E, Berezin V. Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning. Eur J Cell Biol 2010; 89:817-27. [DOI: 10.1016/j.ejcb.2010.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/22/2010] [Accepted: 07/12/2010] [Indexed: 02/03/2023] Open
|
33
|
Honoring Dr. Elisabeth Bock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:423-6. [PMID: 20017037 DOI: 10.1007/978-1-4419-1170-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
34
|
Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, Aime S, Camussi G. Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi's sarcoma. Cancer Res 2010; 70:2180-90. [PMID: 20215497 DOI: 10.1158/0008-5472.can-09-2821] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Specific targeting of tumors by combined delivery of drugs and of imaging agents represents an attractive strategy for treatment of cancer. The aim of the present study was to investigate whether neural cell adhesion molecule (NCAM)-targeted liposomes may enhance drug delivery and allow magnetic resonance imaging (MRI) in a severe combined immunodeficient mouse model of NCAM-positive Kaposi's sarcoma. NCAM-binding peptide-coated liposomes loaded with both doxorubicin and a lipophilic gadolinium (Gd) derivative were generated. NCAM-targeted liposomes induced an enhanced in vitro doxorubicin internalization within Kaposi's cells as detected by MRI with respect to untargeted polyethylene glycol liposomes. Internalization resulted in enhanced apoptosis. In vivo weekly administration of NCAM-targeted liposomes containing 5 mg/kg doxorubicin for 4 consecutive weeks induced a significant reduction of tumor mass and vascularization and enhanced cell necrosis and apoptosis with respect to untargeted liposomes. These effects were associated with an enhanced concentration of doxorubicin within the tumor and a reduced systemic toxicity of doxorubicin. By electron microscopy, NCAM-targeted liposomes were detected mainly within tumor cells whereas the untargeted liposomes were mainly accumulated in the extracellular space. Gd-labeled liposomes allowed the MRI visualization of drug delivery in the tumor region. The intensity of MRI signal was partially hampered by the "quenching" of the attainable relaxation enhancement on endosomal entrapment of the Gd-labeled liposomes. In conclusion, targeting NCAM may be a suitable strategy for specific drug delivery and imaging by liposomes in NCAM-expressing tumors. Moreover, treatment with NCAM-targeted liposomes showed enhanced therapeutic effect and reduced toxicity with respect to untargeted liposomes.
Collapse
Affiliation(s)
- Cristina Grange
- Department of Internal Medicine and Center for Molecular Imaging, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Køhler LB, Soroka V, Korshunova I, Berezin V, Bock E. A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival. J Neurosci Res 2010; 88:2165-76. [DOI: 10.1002/jnr.22380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
NCAM in long-term potentiation and learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:257-70. [PMID: 20017028 DOI: 10.1007/978-1-4419-1170-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Synthetic NCAM-derived ligands of the fibroblast growth factor receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:355-72. [PMID: 20017033 DOI: 10.1007/978-1-4419-1170-4_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Signaling pathways involved in NCAM-induced neurite outgrowth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:151-68. [PMID: 20017021 DOI: 10.1007/978-1-4419-1170-4_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
|
40
|
Peptides modeled after the α-domain of metallothionein induce neurite outgrowth and promote survival of cerebellar granule neurons. Eur J Cell Biol 2009; 88:433-43. [DOI: 10.1016/j.ejcb.2009.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 01/15/2023] Open
|
41
|
Williams B, Dwyer DS. Structure-based discovery of low molecular weight compounds that stimulate neurite outgrowth and substitute for nerve growth factor. J Neurochem 2009; 110:1876-84. [PMID: 19627449 DOI: 10.1111/j.1471-4159.2009.06291.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Olanzapine, an atypical antipsychotic drug, was previously shown to protect neuronal cells against nutrient deprivation and to enhance neurite outgrowth. In an effort to identify small molecules with greater potency, the structure of olanzapine was used as a template to search commercially available chemical inventories for compounds with similar features. These compounds were evaluated for their ability to protect cells against glutamine deprivation and low-serum conditions. Positive compounds, 'hits' from initial screening, were then tested for stimulation of neurite outgrowth, alone and in combination with suboptimum concentrations of nerve growth factor (NGF). Numerous neuroprotective compounds (mw < 550 Da) were identified that significantly stimulated neurite outgrowth in PC12 cells. These included 4', 6'-diamidino-2-phenylindole, a nuclear stain; staurosporine, an antibiotic and kinase inhibitor; and 2-phenylamino-adenosine, an adenosine analog. The small molecules were comparable with NGF, and in fact, replaced NGF in outgrowth assays. Pharmacophore analysis of the hits led to the design and synthesis of an active compound, LSU-D84, which represented an initial lead for drug discovery efforts.
Collapse
Affiliation(s)
- Britney Williams
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | |
Collapse
|
42
|
Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library. Biopolymers 2009; 91:201-6. [DOI: 10.1002/bip.21117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Burgess A, Saini S, Weng YQ, Aubert I. Stimulation of choline acetyltransferase by C3d, a neural cell adhesion molecule ligand. J Neurosci Res 2009; 87:609-16. [DOI: 10.1002/jnr.21888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Kiselyov VV, Li S, Berezin V, Bock E. Insight into the structural mechanism of the bi-modal action of an NCAM mimetic, the C3 peptide. Neurosci Lett 2009; 452:224-7. [PMID: 19348728 DOI: 10.1016/j.neulet.2009.01.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 12/01/2022]
Abstract
C3, a synthetic peptide binding to the Ig1 module of the neural cell adhesion molecule (NCAM) has previously been identified and shown to inhibit NCAM homophilic binding and NCAM-mediated activation of the fibroblast growth factor (FGF) receptor (FGFR). However, C3 can also stimulate signalling on its own in a way similar to NCAM. Here we show that in the absence of NCAM, C3 can bind and activate FGFR, whereas in the presence of NCAM, C3 inhibits the NCAM-stimulated FGFR activation without activating FGFR on its own. Several competing models of FGFR activation by NCAM have been previously proposed. In one of them, the FGFR Ig2-Ig3 modules are involved in binding to NCAM, whereas in another - the FGFR "acid box" region mediates the interaction. The bi-modal effect of C3 can be explained in the context of the former model and is not consistent with the latter, thus providing evidence in support of the former model.
Collapse
Affiliation(s)
- Vladislav V Kiselyov
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
45
|
|
46
|
Berezin V. WITHDRAWN: Special Issue Honoring Dr. Elisabeth Bock. Neurochem Res 2008. [PMID: 18709550 DOI: 10.1007/s11064-008-9821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Affiliation(s)
- Vladimir Berezin
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen N, Denmark,
| |
Collapse
|
47
|
Röckle I, Seidenfaden R, Weinhold B, Mühlenhoff M, Gerardy-Schahn R, Hildebrandt H. Polysialic acid controls NCAM-induced differentiation of neuronal precursors into calretinin-positive olfactory bulb interneurons. Dev Neurobiol 2008; 68:1170-84. [DOI: 10.1002/dneu.20649] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Sakai A, Asada M, Seno N, Suzuki H. Involvement of neural cell adhesion molecule signaling in glial cell line-derived neurotrophic factor-induced analgesia in a rat model of neuropathic pain. Pain 2008; 137:378-388. [PMID: 17967506 DOI: 10.1016/j.pain.2007.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 08/20/2007] [Accepted: 09/24/2007] [Indexed: 11/16/2022]
Abstract
Since neuropathic pain is resistant to conventional analgesics such as opiates and non-steroidal anti-inflammatory drugs, the development of new types of drugs for its treatment has been awaited. Several key molecules associated with nociception have been suggested as potential targets for new analgesics. Glial cell line-derived neurotrophic factor (GDNF) has a variety of functions affecting the survival and development of specified neural cell populations, mediated via transmission of intracellular signals through binding to its high-affinity receptor, GFR*1, and subsequent activation of a tyrosine receptor kinase, RET, neural cell adhesion molecule (NCAM), or other signaling molecules. GDNF also exhibits analgesic effects in rodent models of neuropathic pain, although the underlying mechanisms are still largely unknown, including the intracellular signal transduction involved. We report here that NCAM signaling plays a role in mediating the analgesic effect of GDNF in rats with chronic constrictive injury (CCI). We found that NCAM was expressed in intrinsic neurons in the spinal dorsal horn and in dorsal root ganglion neurons with small cell bodies. Reduction of NCAM expression by NCAM antisense oligodeoxynucleotide administration to CCI rats abolished the analgesic effect of GDNF without affecting RET signaling activation. An NCAM mimetic peptide, C3d, partially reduced the chronic pain induced by CCI. These findings suggest that NCAM signaling plays a critical role in the analgesic effect of GDNF and that development of new drugs activating GDNF-NCAM signaling may represent a new strategy for the relief of intractable pain.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan Pharmaceutical Research Center, Kyowa Hakko Kogyo Co., Shizuoka 411-8731, Japan
| | | | | | | |
Collapse
|
49
|
|
50
|
SKAPER STEPHEND. Neuronal Growth-Promoting and Inhibitory Cues in Neuroprotection and Neuroregeneration. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00045.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|