1
|
Helmold BR, Ahrens A, Fitzgerald Z, Ozdinler PH. Spastin and alsin protein interactome analyses begin to reveal key canonical pathways and suggest novel druggable targets. Neural Regen Res 2025; 20:725-739. [PMID: 38886938 PMCID: PMC11433914 DOI: 10.4103/nrr.nrr-d-23-02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein-protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as "causative" for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration-approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
Collapse
Affiliation(s)
- Benjamin R. Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Angela Ahrens
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary Fitzgerald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Bond C, Hugelier S, Xing J, Sorokina EM, Lakadamyali M. Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. J Cell Biol 2025; 224:e202403116. [PMID: 39485275 PMCID: PMC11533445 DOI: 10.1083/jcb.202403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins; however, whether these proteins are uniformly present on each LEL, or if there are cell-type-dependent LEL subpopulations with unique protein compositions is unclear. We employed quantitative, multiplexed DNA-PAINT super-resolution imaging to examine the distribution of seven key LEL proteins (LAMP1, LAMP2, CD63, Cathepsin D, TMEM192, NPC1, and LAMTOR4). While LAMP1, LAMP2, and Cathepsin D were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type-specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts.
Collapse
Affiliation(s)
- Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiazheng Xing
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena M. Sorokina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Simoes FA, Christoforidou E, Cassel R, Dupuis L, Hafezparast M. Severe dynein dysfunction in cholinergic neurons exacerbates ALS-like phenotypes in a new mouse model. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167540. [PMID: 39428001 DOI: 10.1016/j.bbadis.2024.167540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/12/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Cytoplasmic dynein 1, a motor protein essential for retrograde axonal transport, is increasingly implicated in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). In this study, we developed a novel mouse model that combines the Legs at odd angles (Loa, F580Y) point mutation in the dynein heavy chain with a cholinergic neuron-specific knockout of the dynein heavy chain. This model, for the first time, allows us to investigate the impact of Loa allele exclusivity in these neurons into adulthood. Our findings reveal that this selective increase in dynein dysfunction exacerbated the phenotypes observed in heterozygous Loa mice including pre-wean survival, reduced body weight and grip strength. Additionally, it induced ALS-like pathology in neuromuscular junctions (NMJs) not seen in heterozygous Loa mice. Notably, we also found a previously unobserved significant increase in neurons displaying TDP-43 puncta in both Loa mutants, suggesting early TDP-43 mislocalisation - a hallmark of ALS. The novel model also exhibited a concurrent rise in p62 puncta that did not co-localise with TDP-43, indicating broader impairments in autophagic clearance mechanisms. Overall, this new model underscores the fact that dynein impairment alone can induce ALS-like pathology and provides a valuable platform to further explore the role of dynein in ALS.
Collapse
Affiliation(s)
- Fabio A Simoes
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Eleni Christoforidou
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | | - Luc Dupuis
- University of Strasbourg, INSERM, UMR-S1329, Strasbourg, France
| | - Majid Hafezparast
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom.
| |
Collapse
|
4
|
Xu J, Liang Y, Li N, Dang S, Jiang A, Liu Y, Guo Y, Yang X, Yuan Y, Zhang X, Yang Y, Du Y, Shi A, Liu X, Li D, He K. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism. Nat Cell Biol 2024; 26:1652-1668. [PMID: 39300312 DOI: 10.1038/s41556-024-01499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
Endocytosis and recycling control the uptake and retrieval of various materials, including membrane proteins and lipids, in all eukaryotic cells. These processes are crucial for cell growth, organization, function and environmental communication. However, the mechanisms underlying efficient, fast endocytic recycling remain poorly understood. Here, by utilizing a biosensor and imaging-based screening, we uncover a recycling mechanism that couples endocytosis and fast recycling, which we name the clathrin-associated fast endosomal recycling pathway (CARP). Clathrin-associated tubulovesicular carriers containing clathrin, AP1, Arf1, Rab1 and Rab11, while lacking the multimeric retrieval complexes, are generated at subdomains of early endosomes and then transported along actin to cell surfaces. Unexpectedly, the clathrin-associated recycling carriers undergo partial fusion with the plasma membrane. Subsequently, they are released from the membrane by dynamin and re-enter cells. Multiple receptors utilize and modulate CARP for fast recycling following endocytosis. Thus, CARP represents a previously unrecognized endocytic recycling mechanism with kiss-and-run membrane fusion.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiqun Liu
- National Center for Protein Sciences and Core Facilities of Life Sciences at Peking University, College of Life Sciences, Peking University, Beijing, China
| | - Yuting Guo
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Yang
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yi Yuan
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaran Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
Nagpal S, Swaminathan K, Beaudet D, Verdier M, Wang S, Berger CL, Berger F, Hendricks AG. Optogenetic control of kinesin-1, -2, -3 and dynein reveals their specific roles in vesicular transport. Cell Rep 2024; 43:114649. [PMID: 39159044 DOI: 10.1016/j.celrep.2024.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.
Collapse
Affiliation(s)
- Sahil Nagpal
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | | | - Daniel Beaudet
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Maud Verdier
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada; Department of Biomedical Engineering and Health, Episen, Université Paris-Est Créteil, 94010 Créteil Cedex, France
| | - Samuel Wang
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405-0075, USA
| | - Florian Berger
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada.
| |
Collapse
|
7
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
8
|
Bond C, Hugelier S, Xing J, Sorokina EM, Lakadamyali M. Multiplexed DNA-PAINT Imaging of the Heterogeneity of Late Endosome/Lysosome Protein Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585634. [PMID: 38562776 PMCID: PMC10983937 DOI: 10.1101/2024.03.18.585634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Late endosomes/lysosomes (LELs) are crucial for numerous physiological processes and their dysfunction is linked to many diseases. Proteomic analyses have identified hundreds of LEL proteins, however, whether these proteins are uniformly present on each LEL, or if there are cell-type dependent LEL sub-populations with unique protein compositions is unclear. We employed a quantitative, multiplexed DNA-PAINT super-resolution approach to examine the distribution of six key LEL proteins (LAMP1, LAMP2, CD63, TMEM192, NPC1 and LAMTOR4) on individual LELs. While LAMP1 and LAMP2 were abundant across LELs, marking a common population, most analyzed proteins were associated with specific LEL subpopulations. Our multiplexed imaging approach identified up to eight different LEL subpopulations based on their unique membrane protein composition. Additionally, our analysis of the spatial relationships between these subpopulations and mitochondria revealed a cell-type specific tendency for NPC1-positive LELs to be closely positioned to mitochondria. Our approach will be broadly applicable to determining organelle heterogeneity with single organelle resolution in many biological contexts. Summary This study develops a multiplexed and quantitative DNA-PAINT super-resolution imaging pipeline to investigate the distribution of late endosomal/lysosomal (LEL) proteins across individual LELs, revealing cell-type specific LEL sub-populations with unique protein compositions, offering insights into organelle heterogeneity at single-organelle resolution.
Collapse
|
9
|
Moran SJ, Oglietti R, Smith KC, Macosko JC, Holzwarth G, Lyles DS. Mechanisms of active diffusion of vesicular stomatitis virus inclusion bodies and cellular early endosomes in the cytoplasm of mammalian cells. PLoS One 2024; 19:e0290672. [PMID: 38483897 PMCID: PMC10939199 DOI: 10.1371/journal.pone.0290672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Viral and cellular particles too large to freely diffuse have two different types of mobility in the eukaryotic cell cytoplasm: directed motion mediated by motor proteins moving along cytoskeletal elements with the particle as its load, and motion in random directions mediated by motor proteins interconnecting cytoskeletal elements. The latter motion is referred to as "active diffusion." Mechanisms of directed motion have been extensively studied compared to mechanisms of active diffusion, despite the observation that active diffusion is more common for many viral and cellular particles. Our previous research showed that active diffusion of vesicular stomatitis virus (VSV) ribonucleoproteins (RNPs) in the cytoplasm consists of hopping between traps and that actin filaments and myosin II motors are components of the hop-trap mechanism. This raises the question whether similar mechanisms mediate random motion of larger particles with different physical and biological properties. Live-cell fluorescence imaging and a variational Bayesian analysis used in pattern recognition and machine learning were used to determine the molecular mechanisms of random motion of VSV inclusion bodies and cellular early endosomes. VSV inclusion bodies are membraneless cellular compartments that are the major sites of viral RNA synthesis, and early endosomes are representative of cellular membrane-bound organelles. Like VSV RNPs, inclusion bodies and early endosomes moved from one trapped state to another, but the distance between states was inconsistent with hopping between traps, indicating that the apparent state-to-state movement is mediated by trap movement. Like VSV RNPs, treatment with the actin filament depolymerizing inhibitor latrunculin A increased VSV inclusion body mobility by increasing the size of the traps. In contrast neither treatment with latrunculin A nor depolymerization of microtubules by nocodazole treatment affected the size of traps that confine early endosome mobility, indicating that intermediate filaments are likely major trap components for these cellular organelles.
Collapse
Affiliation(s)
- Steven J. Moran
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Ryan Oglietti
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kathleen C. Smith
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Jed C. Macosko
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Douglas S. Lyles
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
10
|
Tirumala NA, Redpath GMI, Skerhut SV, Dolai P, Kapoor-Kaushik N, Ariotti N, Vijay Kumar K, Ananthanarayanan V. Single-molecule imaging of stochastic interactions that drive dynein activation and cargo movement in cells. J Cell Biol 2024; 223:e202210026. [PMID: 38240798 PMCID: PMC10798859 DOI: 10.1083/jcb.202210026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Cytoplasmic dynein 1 (dynein) is the primary minus end-directed motor protein in most eukaryotic cells. Dynein remains in an inactive conformation until the formation of a tripartite complex comprising dynein, its regulator dynactin, and a cargo adaptor. How this process of dynein activation occurs is unclear since it entails the formation of a three-protein complex inside the crowded environs of a cell. Here, we employed live-cell, single-molecule imaging to visualize and track fluorescently tagged dynein. First, we observed that only ∼30% of dynein molecules that bound to the microtubule (MT) engaged in minus end-directed movement, and that too for a short duration of ∼0.6 s. Next, using high-resolution imaging in live and fixed cells and using correlative light and electron microscopy, we discovered that dynactin and endosomal cargo remained in proximity to each other and to MTs. We then employed two-color imaging to visualize cargo movement effected by single motor binding. Finally, we performed long-term imaging to show that short movements are sufficient to drive cargo to the perinuclear region of the cell. Taken together, we discovered a search mechanism that is facilitated by dynein's frequent MT binding-unbinding kinetics: (i) in a futile event when dynein does not encounter cargo anchored in proximity to the MT, dynein dissociates and diffuses into the cytoplasm, (ii) when dynein encounters cargo and dynactin upon MT binding, it moves cargo in a short run. Several of these short runs are undertaken in succession for long-range directed movement. In conclusion, we demonstrate that dynein activation and cargo capture are coupled in a step that relies on the reduction of dimensionality to enable minus end-directed transport in cellulo and that complex cargo behavior emerges from stochastic motor-cargo interactions.
Collapse
Affiliation(s)
| | - Gregory Michael Ian Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Sarah Viktoria Skerhut
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Pritha Dolai
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | | | - Nicholas Ariotti
- Electron Microscopy Unit, University of New South Wales, Sydney, Australia
| | - K. Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular MedicineSchool of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Słońska A, Miedzińska A, Chodkowski M, Bąska P, Mielnikow A, Bartak M, Bańbura MW, Cymerys J. Human Adenovirus Entry and Early Events during Infection of Primary Murine Neurons: Immunofluorescence Studies In Vitro. Pathogens 2024; 13:158. [PMID: 38392896 PMCID: PMC10892902 DOI: 10.3390/pathogens13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Human adenovirus (HAdV) is a common pathogen, which can lead to various clinical symptoms and-in some cases-central nervous system (CNS) dysfunctions, such as encephalitis and meningitis. Although the initial events of virus entry have already been identified in various cell types, the mechanism of neuronal uptake of adenoviruses is relatively little understood. The aim of this study was to investigate early events during adenoviral infection, in particular to determine the connection between cellular coxsackievirus and adenovirus receptor (CAR), clathrin, caveolin, and early endosomal proteins (EEA1 and Rab5) with the entry of HAdVs into primary murine neurons in vitro. An immunofluorescence assay and confocal microscopy analysis were carried out to determine HAdV4, 5, and 7 correlation with CAR, clathrin, caveolin, and early endosomal proteins in neurons. The quantification of Pearson's coefficient between CAR and HAdVs indicated that the HAdV4 and HAdV5 types correlated with CAR and that the correlation was more substantial for HAdV5. Inhibition of clathrin-mediated endocytosis using chlorpromazine limited the infection with HAdV, whereas inhibition of caveolin-mediated endocytosis did not affect virus entry. Thus, the entry of tested HAdV types into neurons was most likely associated with clathrin but not caveolin. It was also demonstrated that HAdVs correlate with the Rab proteins (EEA1, Rab5) present in early vesicles, and the observed differences in the manner of correlation depended on the serotype of the virus. With our research, we strove to expand knowledge regarding the mechanism of HAdV entry into neurons, which may be beneficial for developing potential therapeutics in the future.
Collapse
Affiliation(s)
- Anna Słońska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Aleksandra Miedzińska
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Marcin Chodkowski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland;
| | - Aleksandra Mielnikow
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Michalina Bartak
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Marcin W. Bańbura
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (A.M.); (A.M.); (M.B.); (M.W.B.); (J.C.)
| |
Collapse
|
12
|
Wang L, Li Q, Wen X, Zhang X, Wang S, Qin Q. Dissecting the early and late endosomal pathways of Singapore grouper iridovirus by single-particle tracking in living cells. Int J Biol Macromol 2024; 256:128336. [PMID: 38013078 DOI: 10.1016/j.ijbiomac.2023.128336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
Iridoviruses are large DNA viruses that infect a wide range of invertebrates and lower vertebrates, causing serious threats to ecological security and aquaculture industry worldwide. However, the mechanisms underlying intracellular transport of iridovirus remain unknown. In this study, the transport of Singapore grouper iridovirus (SGIV) in early endosomes (EEs) and late endosomes (LEs) was explored by single-particle tracking technology. SGIV employs EEs to move rapidly from the cell membrane to the nucleus, and this long-range transport is divided into "slow-fast-slow" stages. SGIV within LEs mainly underwent oscillatory movements near the nucleus. Furthermore, SGIV entered newly formed EEs and LEs, respectively, possibly based on the interaction between the viral major capsid protein and Rab5/Rab7. Importantly, interruption of EEs and LEs by the dominant negative mutants of Rab5 and Rab7 significantly inhibited the movement of SGIV, suggesting the important roles of Rab5 and Rab7 in virus transport. In addition, it seems that SGIV needs to enter clathrin-coated vesicles to move from actin to microtubules before EEs carry the virus moving along microtubules. Together, our results for the first time provide a model whereby iridovirus transport depending on EEs and LEs, helping to clarify the mechanism underlying iridovirus infection, and provide a convenient tactic to investigate the dynamic infection of large DNA virus.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Qiang Li
- College of Oceanology and meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaozhi Wen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511464, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China.
| |
Collapse
|
13
|
Zehrbach NM, Dubois F, Turner CE. Paxillin regulates Rab5-mediated vesicle motility through modulating microtubule acetylation. Mol Biol Cell 2023; 34:ar65. [PMID: 37043310 PMCID: PMC10295489 DOI: 10.1091/mbc.e22-10-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
Rab GTPase-mediated vesicle trafficking of cell surface proteins, including integrins, through endocytic and recycling pathways is important in controlling cell-extracellular matrix interactions during cell migration. The focal adhesion adaptor protein, paxillin, plays a central role in regulating adhesion dynamics and was previously shown to promote anterograde vesicle trafficking through modulation of microtubule acetylation via its inhibition of the deacetylase HDAC6. The role of paxillin in retrograde trafficking is unknown. Herein, we identified a role for paxillin in the modulation of the Rab5 GTPase, which is necessary for regulating early endosome dynamics and focal adhesion turnover. Using MDA-MB-231 breast cancer cells and paxillin (-/-) fibroblasts, paxillin was shown to impact Rab5-associated vesicle size and distribution, as well as Rab5 GTPase activity, through its modulation of HDAC6. Using a combination of real-time imaging and particle tracking analysis, paxillin was shown to promote Rab5-associated vesicle motility through inhibition of HDAC6-mediated micro-tubule deacetylation, along with the localization of active integrin to focal adhesions.
Collapse
Affiliation(s)
- Nicholas M. Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Fatemeh Dubois
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
14
|
Korabel N, Taloni A, Pagnini G, Allan V, Fedotov S, Waigh TA. Ensemble heterogeneity mimics ageing for endosomal dynamics within eukaryotic cells. Sci Rep 2023; 13:8789. [PMID: 37258614 DOI: 10.1038/s41598-023-35903-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Transport processes of many structures inside living cells display anomalous diffusion, such as endosomes in eukaryotic cells. They are also heterogeneous in space and time. Large ensembles of single particle trajectories allow the heterogeneities to be quantified in detail and provide insights for mathematical modelling. The development of accurate mathematical models for heterogeneous dynamics has the potential to enable the design and optimization of various technological applications, for example, the design of effective drug delivery systems. Central questions in the analysis of anomalous dynamics are ergodicity and statistical ageing which allow for selecting the proper model for the description. It is believed that non-ergodicity and ageing occur concurrently. However, we found that the anomalous dynamics of endosomes is paradoxical since it is ergodic but shows ageing. We show that this behaviour is caused by ensemble heterogeneity that, in addition to space-time heterogeneity within a single trajectory, is an inherent property of endosomal motion. Our work introduces novel approaches for the analysis and modelling of heterogeneous dynamics.
Collapse
Affiliation(s)
- Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK.
| | - Alessandro Taloni
- CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via dei Taurini 19, 00185, Rome, Italy
| | - Gianni Pagnini
- BCAM-Basque Center for Applied Mathematics, Mazarredo 14, 48009, Bilbao, Basque Country, Spain
- Ikerbasque-Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Basque Country, Spain
| | - Viki Allan
- School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Sergei Fedotov
- Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
| | - Thomas Andrew Waigh
- Biological Physics, Department of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
15
|
Hernandez-Perez I, Rubio J, Baumann A, Girao H, Ferrando M, Rebollo E, Aragay AM, Geli MI. Kazrin promotes dynein/dynactin-dependent traffic from early to recycling endosomes. eLife 2023; 12:e83793. [PMID: 37096882 PMCID: PMC10181827 DOI: 10.7554/elife.83793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/24/2023] [Indexed: 04/26/2023] Open
Abstract
Kazrin is a protein widely expressed in vertebrates whose depletion causes a myriad of developmental defects, in part derived from altered cell adhesion and migration, as well as failure to undergo epidermal to mesenchymal transition. However, the primary molecular role of kazrin, which might contribute to all these functions, has not been elucidated yet. We previously identified one of its isoforms, kazrin C, as a protein that potently inhibits clathrin-mediated endocytosis when overexpressed. We now generated kazrin knock-out mouse embryonic fibroblasts to investigate its endocytic function. We found that kazrin depletion delays juxtanuclear enrichment of internalized material, indicating a role in endocytic traffic from early to recycling endosomes. Consistently, we found that the C-terminal domain of kazrin C, predicted to be an intrinsically disordered region, directly interacts with several early endosome (EE) components, and that kazrin depletion impairs retrograde motility of these organelles. Further, we noticed that the N-terminus of kazrin C shares homology with dynein/dynactin adaptors and that it directly interacts with the dynactin complex and the dynein light intermediate chain 1. Altogether, the data indicate that one of the primary kazrin functions is to facilitate endocytic recycling by promoting dynein/dynactin-dependent transport of EEs or EE-derived transport intermediates to the recycling endosomes.
Collapse
Affiliation(s)
- Ines Hernandez-Perez
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Javier Rubio
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Adrian Baumann
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Henrique Girao
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Miriam Ferrando
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Elena Rebollo
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - Anna M Aragay
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| | - María Isabel Geli
- Institute for Molecular Biology of Barcelona (IBMB, CSIC), Baldiri Reixac 15BarcelonaSpain
| |
Collapse
|
16
|
Laniel A, Marouseau É, Nguyen DT, Froehlich U, McCartney C, Boudreault PL, Lavoie C. Characterization of PGua 4, a Guanidinium-Rich Peptoid that Delivers IgGs to the Cytosol via Macropinocytosis. Mol Pharm 2023; 20:1577-1590. [PMID: 36781165 PMCID: PMC9997486 DOI: 10.1021/acs.molpharmaceut.2c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
To investigate the structure-cellular penetration relationship of guanidinium-rich transporters (GRTs), we previously designed PGua4, a five-amino acid peptoid containing a conformationally restricted pattern of eight guanidines, which showed high cell-penetrating abilities and low cell toxicity. Herein, we characterized the cellular uptake selectivity, internalization pathway, and intracellular distribution of PGua4, as well as its capacity to deliver cargo. PGua4 exhibits higher penetration efficiency in HeLa cells than in six other cell lines (A549, Caco-2, fibroblast, HEK293, Mia-PaCa2, and MCF7) and is mainly internalized by clathrin-mediated endocytosis and macropinocytosis. Confocal microscopy showed that it remained trapped in endosomes at low concentrations but induced pH-dependent endosomal membrane destabilization at concentrations ≥10 μM, allowing its diffusion into the cytoplasm. Importantly, PGua4 significantly enhanced macropinocytosis and the cellular uptake and cytosolic delivery of large IgGs following noncovalent complexation. Therefore, in addition to its peptoid nature conferring high resistance to proteolysis, PGua4 presents characteristics of a promising tool for IgG delivery and therapeutic applications.
Collapse
Affiliation(s)
- Andréanne Laniel
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Étienne Marouseau
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Duc Tai Nguyen
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ulrike Froehlich
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claire McCartney
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Christine Lavoie
- Institut de Pharmacologie
de Sherbrooke, Department of Pharmacology and Physiology, Faculty
of Medicine and Health Sciences, Université
de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
17
|
Redpath GMI, Ananthanarayanan V. Endosomal sorting sorted - motors, adaptors and lessons from in vitro and cellular studies. J Cell Sci 2023; 136:292583. [PMID: 36861885 DOI: 10.1242/jcs.260749] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Motor proteins are key players in exerting spatiotemporal control over the intracellular location of membrane-bound compartments, including endosomes containing cargo. In this Review, we focus on how motors and their cargo adaptors regulate positioning of cargoes from the earliest stages of endocytosis and through the two main intracellular itineraries: (1) degradation at the lysosome or (2) recycling back to the plasma membrane. In vitro and cellular (in vivo) studies on cargo transport thus far have typically focussed independently on either the motor proteins and adaptors, or membrane trafficking. Here, we will discuss recent studies to highlight what is known about the regulation of endosomal vesicle positioning and transport by motors and cargo adaptors. We also emphasise that in vitro and cellular studies are often performed at different scales, from single molecules to whole organelles, with the aim to provide a perspective on the unified principles of motor-driven cargo trafficking in living cells that can be learned from these differing scales.
Collapse
Affiliation(s)
- Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, Department of Molecular Medicine, School of Biomedical Sciences, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
18
|
Sharma A. Mitochondrial cargo export in exosomes: Possible pathways and implication in disease biology. J Cell Physiol 2023; 238:687-697. [PMID: 36745675 DOI: 10.1002/jcp.30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023]
Abstract
Exosome biogenesis occurs parallel to multiple endocytic traffic routes. These coexisting routes drive cargo loading in exosomes via overlapping of exosome biogenesis with endosomal pathways. One such pathway is autophagy which captures damaged intracellular organelles or their components in an autophagosome vesicle and route them for lysosomal degradation. However, in case of a noncanonical fusion event between autophagosome and maturing multivesicular body (MVB)-a site for exosome biogenesis, the autophagic cargo is putatively loaded in exosomes and subsequent released out of the cell via formation of an "amphisome" like structure. Similarly, during "mitophagy" or mitochondrial (mt) autophagy, amphisome formation routes mitophagy cargo to exosomes. These mt-cargo enriched exosomes or mt-enREXO are often positive for LC3 protein-an autophagic flux marker, and potent regulators of paracrine signaling with both homeostatic and pathological roles. Here, I review this emerging concept and discuss how intracellular autophagic routes helps in generation of mt-enREXO and utility of these vesicles in paracrine cellular signaling and diagnostic areas.
Collapse
Affiliation(s)
- Aman Sharma
- ExoCan Healthcare Technologies Ltd, Pune, India
| |
Collapse
|
19
|
Shree A, Sinha M, Verma PK. BAR domain is essential for early endosomal trafficking and dynamics in Ascochyta rabiei. 3 Biotech 2023; 13:49. [PMID: 36685317 PMCID: PMC9845463 DOI: 10.1007/s13205-022-03451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/24/2022] [Indexed: 01/19/2023] Open
Abstract
Ascochyta blight disease is a devastating disease caused by the fungal pathogen Ascochyta rabiei that threatens chickpea production around the globe. Endocytic mechanism has a significant role in fungal growth and virulence. The underlying biology of biogenesis of central component of endocytosis viz Rab5 vesicles, is not completely understood. The involvement of F-BAR domain containing protein (ArF-BAR) in various cellular processes that collectively make ArF-BAR as an important virulence determinant. Here, we report that ArF-BAR is involved in biogenesis and motility of early endosome. In the absence of ArF-BAR gene (Δarf-bar), fungal mutants exhibited reduced number of EGFP coated ArRab5 vesicles, along with the considerable reduction in their dynamics. Here, we show that ArF-BAR interacts with clathrin light chain (ArCLC), specifically with its F-BAR domain. These findings suggests the novel role of ArF-BAR in biogenesis and dynamics of early endosome. Additionally, ArF-BAR is involved in clathrin-mediated mechanism of endocytosis which is required for host infection and disease development. Identification of this pathway offers new impending targets for disease intervention in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03451-5.
Collapse
Affiliation(s)
- Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manisha Sinha
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
20
|
Selvapandiyan A, Puri N, Kumar P, Alam A, Ehtesham NZ, Griffin G, Hasnain SE. Zooming in on common immune evasion mechanisms of pathogens in phagolysosomes: potential broad-spectrum therapeutic targets against infectious diseases. FEMS Microbiol Rev 2023; 47:6780197. [PMID: 36309472 DOI: 10.1093/femsre/fuac041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 01/19/2023] Open
Abstract
The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.
Collapse
Affiliation(s)
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pankaj Kumar
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.,Centre for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Anwar Alam
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India
| | - Nasreen Zafar Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - George Griffin
- Department of Cellular and Molecular Medicine, St. George's University of London, London, SW17 0RE, United Kingdom
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, 110016, India.,Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, 201310, India
| |
Collapse
|
21
|
GPCR/endocytosis/ERK signaling/S2R is involved in the regulation of the internalization, mitochondria-targeting and -activating properties of human salivary histatin 1. Int J Oral Sci 2022; 14:42. [PMID: 35970844 PMCID: PMC9378733 DOI: 10.1038/s41368-022-00181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Human salivary histatin 1 (Hst1) exhibits a series of cell-activating properties, such as promoting cell spreading, migration, and metabolic activity. We recently have shown that fluorescently labeled Hst1 (F-Hst1) targets and activates mitochondria, presenting an important molecular mechanism. However, its regulating signaling pathways remain to be elucidated. We investigated the influence of specific inhibitors of G protein-coupled receptors (GPCR), endocytosis pathways, extracellular signal-regulated kinases 1/2 (ERK1/2) signaling, p38 signaling, mitochondrial respiration and Na+/K+-ATPase activity on the uptake, mitochondria-targeting and -activating properties of F-Hst1. We performed a siRNA knockdown (KD) to assess the effect of Sigma-2 receptor (S2R) /Transmembrane Protein 97 (TMEM97)—a recently identified target protein of Hst1. We also adopted live cell imaging to monitor the whole intracellular trafficking process of F-Hst1. Our results showed that the inhibition of cellular respiration hindered the internalization of F-Hst1. The inhibitors of GPCR, ERK1/2, phagocytosis, and clathrin-mediated endocytosis (CME) as well as siRNA KD of S2R/TMEM97 significantly reduced the uptake, which was accompanied by the nullification of the promoting effect of F-Hst1 on cell metabolic activity. Only the inhibitor of CME and KD of S2R/TMEM97 significantly compromised the mitochondria-targeting of Hst1. We further showed the intracellular trafficking and targeting process of F-Hst1, in which early endosome plays an important role. Overall, phagocytosis, CME, GPCR, ERK signaling, and S2R/TMEM97 are involved in the internalization of Hst1, while only CME and S2R/TMEM97 are critical for its subcellular targeting. The inhibition of either internalization or mitochondria-targeting of Hst1 could significantly compromise its mitochondria-activating property.
Collapse
|
22
|
Fine-tuning cell organelle dynamics during mitosis by small GTPases. Front Med 2022; 16:339-357. [PMID: 35759087 DOI: 10.1007/s11684-022-0926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
During mitosis, the allocation of genetic material concurs with organelle transformation and distribution. The coordination of genetic material inheritance with organelle dynamics directs accurate mitotic progression, cell fate determination, and organismal homeostasis. Small GTPases belonging to the Ras superfamily regulate various cell organelles during division. Being the key regulators of membrane dynamics, the dysregulation of small GTPases is widely associated with cell organelle disruption in neoplastic and non-neoplastic diseases, such as cancer and Alzheimer's disease. Recent discoveries shed light on the molecular properties of small GTPases as sophisticated modulators of a remarkably complex and perfect adaptors for rapid structure reformation. This review collects current knowledge on small GTPases in the regulation of cell organelles during mitosis and highlights the mediator role of small GTPase in transducing cell cycle signaling to organelle dynamics during mitosis.
Collapse
|
23
|
Dai J, Wang J, Yang X, Xu Z, Ruan G. Examining the Cellular Transport Pathway of Fusogenic Quantum Dots Conjugated With Tat Peptide. Front Bioeng Biotechnol 2022; 10:831379. [PMID: 35694230 PMCID: PMC9184739 DOI: 10.3389/fbioe.2022.831379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the underlying transport mechanism of biological delivery is important for developing delivery technologies for pharmaceuticals, imaging agents, and nanomaterials. Recently reported by our group, SDots are a novel class of nanoparticle delivery systems with distinct biointerface features and excellent fusogenic capabilities (i.e., strong ability to interact with the hydrophobic portions of biomembranes). In this study, we investigate the cellular transport mechanism of SDots conjugated with Tat peptide (SDots-Tat) by live-cell spinning-disk confocal microscopy combined with molecular biology methods. Mechanistic studies were conducted on the following stages of cellular transport of SDots-Tat in HeLa cells: cellular entry, endosomal escape, nucleus entry, and intranuclear transport. A key finding is that, after escaping endosomes, SDots-Tat enter the cell nucleus via an importin β-independent pathway, bypassing the usual nucleus entry mechanism used by Tat. This finding implies a new approach to overcome the nucleus membrane barrier for designing biological delivery technologies.
Collapse
Affiliation(s)
- Jie Dai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Jun Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Xuan Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Nanobiotechnology and Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Zixing Xu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.,Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Nanobiotechnology and Nanomedicine Center, Xi'an Jiaotong-Liverpool University, Suzhou, China.,Shenzhen Research Institute of Nanjing University, Nanjing, China.,Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
25
|
Wang S, Liu H, Roberts JB, Wiley AP, Marayati BF, Adams KL, Luessen DJ, Eldeeb K, Sun H, Zhang K, Chen R. Prolonged ethanol exposure modulates constitutive internalization and recycling of 5-HT1A receptors. J Neurochem 2022; 160:469-481. [PMID: 34928513 PMCID: PMC8828711 DOI: 10.1111/jnc.15564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
Alcohol exposure alters the signaling of the serotoninergic system, which is involved in alcohol consumption, reward, and dependence. In particular, dysregulation of serotonin receptor type 1A (5-HT1AR) is associated with alcohol intake and withdrawal-induced anxiety-like behavior in rodents. However, how ethanol regulates 5-HT1AR activity and cell surface availability remains elusive. Using neuroblastoma 2a cells stably expressing human 5-HT1ARs tagged with hemagglutinin at the N-terminus, we found that prolonged ethanol exposure (18 h) reduced the basal surface levels of 5-HT1ARs in a concentration-dependent manner. This reduction is attributed to both enhanced receptor internalization and attenuated receptor recycling. Moreover, constitutive 5-HT1AR internalization in ethanol naïve cells was blocked by concanavalin A (ConA) but not nystatin, suggesting clathrin-dependent 5-HT1AR internalization. In contrast, constitutive 5-HT1AR internalization in ethanol-treated cells was blocked by nystatin but not by ConA, indicating that constitutive 5-HT1AR internalization switched from a clathrin- to a caveolin-dependent pathway. Dynasore, an inhibitor of dynamin, blocked 5-HT1AR internalization in both vehicle- and ethanol-treated cells. Furthermore, ethanol exposure enhanced the activity of dynamin I via dephosphorylation and reduced myosin Va levels, which may contribute to increased internalization and reduced recycling of 5-HT1ARs, respectively. Our findings suggest that prolonged ethanol exposure not only alters the endocytic trafficking of 5-HT1ARs but also the mechanism by which constitutive 5-HT1AR internalization occurs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Haoran Liu
- Department of Biology, Wake Forest University, Winston Salem, NC 27106
| | - Jonté B. Roberts
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Aidan P. Wiley
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | | | - Kristen L. Adams
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Deborah J. Luessen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Khalil Eldeeb
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546
| | - Haiguo Sun
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
| | - Ke Zhang
- Department of Biology, Wake Forest University, Winston Salem, NC 27106
- Center for Molecular Signaling, Wake Forest University, Winston Salem, NC 27106
| | - Rong Chen
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157
- Center for Molecular Signaling, Wake Forest University, Winston Salem, NC 27106
| |
Collapse
|
26
|
Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, Ispierto L, Vilas D, Tolosa E, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. OUP accepted manuscript. Brain Commun 2022; 4:fcac030. [PMID: 35310830 PMCID: PMC8928420 DOI: 10.1093/braincomms/fcac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Zmax = 3.43; θ = 0.00; P < 3.53 × 10−5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients’ fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Pilar Casquero
- Neurology and Neurophysiology Section, Hospital Mateu Orfila, Mahón, Menorca, Spain
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alicia Martinez-Piñeiro
- Neuromuscular and Functional Studies Unit, Neurology Service, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Lourdes Ispierto
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Dolores Vilas
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegenerative Diseases Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona-Can Ruti Campus, Badalona, Barcelona, Spain
- Correspondence to: Dr Antoni Matilla-Dueñas Head of the Neurogenetics Unit Health Sciences Research Institute Germans Trias i Pujol (IGTP) Ctra. de Can Ruti, Camí de les Escoles s/n 08916 Badalona, Barcelona, Spain E-mail:
| |
Collapse
|
27
|
Class III PI3K Biology. Curr Top Microbiol Immunol 2022; 436:69-93. [DOI: 10.1007/978-3-031-06566-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Roles of receptor phosphorylation and Rab proteins in G protein-coupled receptor function and trafficking. Mol Pharmacol 2021; 101:144-153. [PMID: 34969830 DOI: 10.1124/molpharm.121.000429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The G Protein-Coupled Receptors form the most abundant family of membrane proteins and are crucial physiological players in the homeostatic equilibrium, which we define as health. They also participate in the pathogenesis of many diseases and are frequent targets of therapeutic intervention. Considering their importance, it is not surprising that different mechanisms regulate their function, including desensitization, resensitization, internalization, recycling to the plasma membrane, and degradation. These processes are modulated in a highly coordinated and specific way by protein kinases and phosphatases, ubiquitin ligases, protein adaptors, interaction with multifunctional complexes, molecular motors, phospholipid metabolism, and membrane distribution. This review describes significant advances in the study of the regulation of these receptors by phosphorylation and endosomal traffic (where signaling can take place); we revisited the bar code hypothesis and include two additional observations: a) that different phosphorylation patterns seem to be associated with internalization and endosome sorting for recycling or degradation, and b) that, surprisingly, phosphorylation of some G protein-coupled receptors appears to be required for proper receptor insertion into the plasma membrane. Significance Statement G protein-coupled receptor phosphorylation is an early event in desensitization/ signaling switching, endosomal traffic, and internalization. These events seem crucial for receptor responsiveness, cellular localization, and fate (recycling/ degradation) with important pharmacological/ therapeutic implications. Phosphorylation sites vary depending on the cells in which they are expressed and on the stimulus that leads to such covalent modification. Surprisingly, evidence suggests that phosphorylation also seems to be required for proper insertion into the plasma membrane for some receptors.
Collapse
|
29
|
Gorkhali R, Tian L, Dong B, Bagchi P, Deng X, Pawar S, Duong D, Fang N, Seyfried N, Yang J. Extracellular calcium alters calcium-sensing receptor network integrating intracellular calcium-signaling and related key pathway. Sci Rep 2021; 11:20576. [PMID: 34663830 PMCID: PMC8523568 DOI: 10.1038/s41598-021-00067-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are a target for over 34% of current drugs. The calcium-sensing receptor (CaSR), a family C GPCR, regulates systemic calcium (Ca2+) homeostasis that is critical for many physiological, calciotropical, and noncalciotropical outcomes in multiple organs. However, the mechanisms by which extracellular Ca2+ (Ca2+ex) and the CaSR mediate networks of intracellular Ca2+-signaling and players involved throughout the life cycle of CaSR are largely unknown. Here we report the first CaSR protein–protein interactome with 94 novel putative and 8 previously published interactors using proteomics. Ca2+ex promotes enrichment of 66% of the identified CaSR interactors, pertaining to Ca2+ dynamics, endocytosis, degradation, trafficking, and primarily to protein processing in the endoplasmic reticulum (ER). These enhanced ER-related processes are governed by Ca2+ex-activated CaSR which directly modulates ER-Ca2+ (Ca2+ER), as monitored by a novel ER targeted Ca2+-sensor. Moreover, we validated the Ca2+ex dependent colocalizations and interactions of CaSR with ER-protein processing chaperone, 78-kDa glucose regulated protein (GRP78), and with trafficking-related protein. Live cell imaging results indicated that CaSR and vesicle-associated membrane protein-associated A (VAPA) are inter-dependent during Ca2+ex induced enhancement of near-cell membrane expression. This study significantly extends the repertoire of the CaSR interactome and reveals likely novel players and pathways of CaSR participating in Ca2+ER dynamics, agonist mediated ER-protein processing and surface expression.
Collapse
Affiliation(s)
- Rakshya Gorkhali
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Li Tian
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Bin Dong
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiaonan Deng
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Shrikant Pawar
- Department of Biology, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Duc Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ning Fang
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jenny Yang
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
30
|
Yue L, Li C, Xu M, Wu M, Ding J, Liu J, Zhang X, Yuan Z. Probing the spatiotemporal patterns of HBV multiplication reveals novel features of its subcellular processes. PLoS Pathog 2021; 17:e1009838. [PMID: 34370796 PMCID: PMC8376071 DOI: 10.1371/journal.ppat.1009838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/19/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Through evolution, Hepatitis B Virus (HBV) developed highly intricate mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. Yet a clear picture of viral hitchhiking of cellular processes with spatial resolution is still largely unsolved. Here, by leveraging bDNA-based fluorescence in situ hybridization (FISH) combined with immunofluorescence, we developed a microscopic approach for multiplex detection of viral nucleic acids and proteins, which enabled us to probe some of the key aspects of HBV life cycle. We confirmed the slow kinetics and revealed the high variability of viral replication at single-cell level. We directly visualized HBV minichromosome in contact with acetylated histone 3 and RNA polymerase II and observed HBV-induced degradation of Smc5/6 complex only in primary hepatocytes. We quantified the frequency of HBV pregenomic RNAs occupied by translating ribosome or capsids. Statistics at molecular level suggested a rapid translation phase followed by a slow encapsidation and maturation phase. Finally, the roles of microtubules (MTs) on nucleocapsid assembly and virion morphogenesis were analyzed. Disruption of MTs resulted in the perinuclear retention of nucleocapsid. Meanwhile, large multivesicular body (MVB) formation was significantly disturbed as evidenced by the increase in number and decrease in volume of CD63+ vesicles, thus inhibiting mature virion secretion. In conclusion, these data provided spatially resolved molecular snapshots in the context of specific subcellular activities. The heterogeneity observed at single-cell level afforded valuable molecular insights which are otherwise unavailable from bulk measurements. HBV is a hepatotropic, enveloped virus with a partially double-stranded relaxed circular DNA genome. Studies on the molecular biology of HBV mainly rely on biochemical extraction and bulk quantification methods. Detailed spatiotemporal information on virus components in subcellular context is still lacking. Here, we re-evaluated the reproduction schemes of HBV by fluorescence in situ hybridization (FISH). We visualized cccDNA minichromosome formation in an epigenetic context, identified pgRNA associated with actively translating ribosomes and capsids. Moreover, the active participation of microtubules in nucleocapsid transport and MVB-mediated virion secretion was identified. These observations have broad implications for understanding the HBV replication cycle and may facilitate the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Lei Yue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chang Li
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingzhu Xu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiahui Ding
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaonan Zhang
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, ACT, Australia
- * E-mail: (XZ); (ZY)
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (XZ); (ZY)
| |
Collapse
|
31
|
Chen Q, Liu Y, Ren J, Zhong P, Chen M, Jia D, Chen H, Wei T. Exosomes mediate horizontal transmission of viral pathogens from insect vectors to plant phloem. eLife 2021; 10:64603. [PMID: 34214032 PMCID: PMC8253596 DOI: 10.7554/elife.64603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Numerous piercing-sucking insects can horizontally transmit viral pathogens together with saliva to plant phloem, but the mechanism remains elusive. Here, we report that an important rice reovirus has hijacked small vesicles, referred to as exosomes, to traverse the apical plasmalemma into saliva-stored cavities in the salivary glands of leafhopper vectors. Thus, virions were horizontally transmitted with exosomes into rice phloem to establish the initial plant infection during vector feeding. The purified exosomes secreted from cultured leafhopper cells were enriched with virions. Silencing the exosomal secretion-related small GTPase Rab27a or treatment with the exosomal biogenesis inhibitor GW4869 strongly prevented viral exosomal release in vivo and in vitro. Furthermore, the specific interaction of the 15-nm-long domain of the viral outer capsid protein with Rab5 induced the packaging of virions in exosomes, ultimately activating the Rab27a-dependent exosomal release pathway. We thus anticipate that exosome-mediated viral horizontal transmission is the conserved strategy hijacked by vector-borne viruses.
Collapse
Affiliation(s)
- Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuyan Liu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiping Ren
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Zhong
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Manni Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Gudi R, Palanisamy V, Vasu C. Centrosomal P4.1-associated protein (CPAP) positively regulates endocytic vesicular transport and lysosome targeting of EGFR. Sci Rep 2021; 11:12689. [PMID: 34135376 PMCID: PMC8209166 DOI: 10.1038/s41598-021-91818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Centrosomal P4.1-associated protein (CPAP) plays a critical role in restricting the centriole length in human cells. Here, we report a novel, positive regulatory influence for CPAP on endocytic vesicular transport (EVT) and lysosome targeting of internalized-cell surface receptor EGFR. We observed that higher CPAP levels cause an increase in the abundance of multi-vesicular body (MVB) and EGFR is detectable in CPAP-overexpression induced puncta. The surface and cellular levels of EGFR are higher under CPAP deficiency and lower under CPAP overexpression. While ligand-engagement induced internalization or routing of EGFR into early endosomes is not influenced by cellular levels of CPAP, we found that targeting of ligand-activated, internalized EGFR to lysosome is impacted by CPAP levels. Transport of ligand-bound EGFR from early endosome to late endosome/MVB and lysosome is diminished in CPAP-depleted cells. Moreover, CPAP depleted cells appear to show a diminished ability to form MVB structures upon EGFR activation. These observations suggest a positive regulatory effect of CPAP on EVT of ligand-bound EGFR-like cell surface receptors to MVB and lysosome. Overall, identification of a non-centriolar function of CPAP in endocytic trafficking provides new insights in understanding the non-canonical cellular functions of CPAP.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Viswanathan Palanisamy
- Department of Biochemistry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
33
|
Li G, Hu X, Wu X, Zhang Y. Microtubule-Targeted Self-Assembly Triggers Prometaphase-Metaphase Oscillations Suppressing Tumor Growth. NANO LETTERS 2021; 21:3052-3059. [PMID: 33756080 DOI: 10.1021/acs.nanolett.1c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules are highly strategic targets of cancer therapies. Small molecule antimitotic agents are so far the best chemotherapeutic medication in cancer treatment. However, the high rate of neuropathy and drug resistance limit their clinical usage. Inspired by the multicomponent-targeting feature of molecular self-assembly (MSA) overcoming drug resistance, we synthesized peptide-based rotor molecules that self-assemble in response to the surrounding environment to target the microtubule array. The MSAs self-adjust morphologically in response to the pH change and viscosity variations during Golgi-endosome trafficking, escape trafficking cargos, and eventually bind to the microtubule array physically in a nonspecific manner. Such unrefined nano-bio interactions suppress regional tubulin polymerization triggering atypical prometaphase--metaphase oscillations to inhibit various cancer cells proliferating without inducing obvious neurotoxicity. The MSA also exerts potent antiproliferative effects in the subcutaneous cervix cancer xenograft tumor model equivalent to Cisplatin, better than the classic antimitotic drug Taxol.
Collapse
Affiliation(s)
- Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xunwu Hu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
34
|
Jin C, Li G, Wu X, Liu J, Wu W, Chen Y, Sasaki T, Chao H, Zhang Y. Robust Packing of a Self‐Assembling Iridium Complex via Endocytic Trafficking for Long‐Term Lysosome Tracking. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chengzhi Jin
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Guanying Li
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yazhou Chen
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Toshio Sasaki
- Imaging Section Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Ye Zhang
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| |
Collapse
|
35
|
Jin C, Li G, Wu X, Liu J, Wu W, Chen Y, Sasaki T, Chao H, Zhang Y. Robust Packing of a Self-Assembling Iridium Complex via Endocytic Trafficking for Long-Term Lysosome Tracking. Angew Chem Int Ed Engl 2021; 60:7597-7601. [PMID: 33448553 DOI: 10.1002/anie.202015913] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2021] [Indexed: 11/10/2022]
Abstract
Live cell imaging of lysosome positioning and motility is critical to studying lysosome status and function for pharmacological interventions. To create a super stable lysosomal probe for long-term live cell imaging, we have designed and synthesized an aromatic-peptide-conjugated cyclometalated iridium(III) complex that emits light via π-π stacking oriented self-assembly in water at extremely low concentration. Through endocytic trafficking, self-assemblies are transformed from nanoparticles into sturdily packed networks that are stabilized in lysosomal acidic environment. Upon short time/low dose treatment of the iridium complex at passage 0, live cell lysosomal tracking is applicable beyond the 14th passage of cells with high labelling rate and a mild decline in luminescence intensity. The illuminated lysosomes are trackable using super-resolution imaging to study their response to cellular processes.
Collapse
Affiliation(s)
- Chengzhi Jin
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yazhou Chen
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Toshio Sasaki
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
36
|
Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Cells 2021; 10:cells10030618. [PMID: 33799570 PMCID: PMC8002179 DOI: 10.3390/cells10030618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The atypical chemokine receptor 3 (ACKR3) belongs to the superfamily of G protein-coupled receptors (GPCRs). Unlike classical GPCRs, this receptor does not activate G proteins in most cell types but recruits β-arrestins upon activation. ACKR3 plays an important role in cancer and vascular diseases. As recruitment of β-arrestins is triggered by phosphorylation of the C-terminal tail of GPCRs, we studied the role of different potential phosphorylation sites within the ACKR3 C-tail to further delineate the molecular mechanism of internalization and trafficking of this GPCR. Methods: We used various bioluminescence and fluorescence resonance energy transfer-based sensors and techniques in Human Embryonic Kidney (HEK) 293T cells expressing WT or phosphorylation site mutants of ACKR3 to measure CXCL12-induced recruitment of β-arrestins and G-protein-coupled receptor kinases (GRKs), receptor internalization and trafficking. Results: Upon CXCL12 stimulation, ACKR3 recruits both β-arrestin 1 and 2 with equivalent kinetic profiles. We identified interactions with GRK2, 3 and 5, with GRK2 and 3 being important for β-arrestin recruitment. Upon activation, ACKR3 internalizes and recycles back to the cell membrane. We demonstrate that β-arrestin recruitment to the receptor is mainly determined by a single cluster of phosphorylated residues on the C-tail of ACKR3, and that residue T352 and in part S355 are important residues for β-arrestin1 recruitment. Phosphorylation of the C-tail appears essential for ligand-induced internalization and important for differential β-arrestin recruitment. GRK2 and 3 play a key role in receptor internalization. Moreover, ACKR3 can still internalize when β-arrestin recruitment is impaired or in the absence of β-arrestins, using alternative internalization pathways. Our data indicate that distinct residues within the C-tail of ACKR3 differentially regulate CXCL12-induced β-arrestin recruitment, ACKR3 trafficking and internalization.
Collapse
|
37
|
Flores-Espinoza E, Meizoso-Huesca A, Villegas-Comonfort S, Reyes-Cruz G, García-Sáinz JA. Effect of docosahexaenoic acid, phorbol myristate acetate, and insulin on the interaction of the FFA4 (short isoform) receptor with Rab proteins. Eur J Pharmacol 2020; 889:173595. [PMID: 32986985 DOI: 10.1016/j.ejphar.2020.173595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022]
Abstract
Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.
Collapse
Affiliation(s)
- Emmanuel Flores-Espinoza
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aldo Meizoso-Huesca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sócrates Villegas-Comonfort
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional, 2508, Col. San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
38
|
Li W, Suarato G, Cathcart JM, Sargunas PR, Meng Y. Design, characterization, and intracellular trafficking of biofunctionalized chitosan nanomicelles. Biointerphases 2020; 15:061003. [PMID: 33187397 PMCID: PMC7666618 DOI: 10.1116/6.0000380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
The hydrophobically modified glycol chitosan (HGC) nanomicelle has received increasing attention as a promising platform for the delivery of chemotherapeutic drugs. To improve the tumor selectivity of HGC, here an avidin and biotin functionalization strategy was applied. The hydrodynamic diameter of the biotin-avidin-functionalized HGC (cy5.5-HGC-B4F) was observed to be 104.7 nm, and the surface charge was +3.1 mV. Confocal and structured illumination microscopy showed that at 0.1 mg/ml, cy5.5-HGC-B4F nanomicelles were distributed throughout the cytoplasm of MDA-MB-231 breast cancer cells after 2 h of exposure without significant cytotoxicity. To better understand the intracellular fate of the nanomicelles, entrapment studies were performed and demonstrated that some cy5.5-HGC-B4F nanomicelles were capable of escaping endocytic vesicles, likely via the proton sponge effect. Quantitative analysis of the movements of endosomes in living cells revealed that the addition of HGC greatly enhanced the motility of endosomal compartments, and the nanomicelles were transported by early and late endosomes from cell periphery to the perinuclear region. Our results validate the importance of using live-cell imaging to quantitatively assess the dynamics and mechanisms underlying the complex endocytic pathways of nanosized drug carriers.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Giulia Suarato
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Jillian M. Cathcart
- Department of Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11794
| | - Paul R. Sargunas
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| | - Yizhi Meng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
39
|
Jeger JL. Endosomes, lysosomes, and the role of endosomal and lysosomal biogenesis in cancer development. Mol Biol Rep 2020; 47:9801-9810. [PMID: 33185829 DOI: 10.1007/s11033-020-05993-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Endosomes and lysosomes are membrane-bound organelles crucial for the normal functioning of the eukaryotic cell. The primary function of endosomes relates to the transportation of extracellular material into the intracellular domain. Lysosomes, on the other hand, are primarily involved in the degradation of macromolecules. Endosomes and lysosomes interact through two distinct pathways: kiss-and-run and direct fusion. In addition to the internalization of particles, endosomes also play an important role in cell signaling and autophagy. Disruptions in either of these processes may contribute to cancer development. Lysosomal proteins, such as cathepsins, can play a role in both tumorigenesis and cancer cell apoptosis. Since endosomal and lysosomal biogenesis and signaling are important components of normal cellular growth and proliferation, proteins involved in these processes are attractive targets for cancer research and, potentially, therapeutics. This literature review provides an overview of the endocytic pathway, endolysosome formation, and the interplay between endosomal/lysosomal biogenesis and carcinogenesis.
Collapse
|
40
|
Toth AE, Holst MR, Nielsen MS. Vesicular Transport Machinery in Brain Endothelial Cells: What We Know and What We Do not. Curr Pharm Des 2020; 26:1405-1416. [PMID: 32048959 DOI: 10.2174/1381612826666200212113421] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
The vesicular transport machinery regulates numerous essential functions in cells such as cell polarity, signaling pathways, and the transport of receptors and their cargoes. From a pharmaceutical perspective, vesicular transport offers avenues to facilitate the uptake of therapeutic agents into cells and across cellular barriers. In order to improve receptor-mediated transcytosis of biologics across the blood-brain barrier and into the diseased brain, a detailed understanding of intracellular transport mechanisms is essential. The vesicular transport machinery is a highly complex network and involves an array of protein complexes, cytosolic adaptor proteins, and the subcellular structures of the endo-lysosomal system. The endo-lysosomal system includes several types of vesicular entities such as early, late, and recycling endosomes, exosomes, ectosomes, retromer-coated vesicles, lysosomes, trans-endothelial channels, and tubules. While extensive research has been done on the trafficking system in many cell types, little is known about vesicular trafficking in brain endothelial cells. Consequently, assumptions on the transport system in endothelial cells are based on findings in polarised epithelial cells, although recent studies have highlighted differences in the endothelial system. This review highlights aspects of the vesicular trafficking machinery in brain endothelial cells, including recent findings, limitations, and opportunities for further studies.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| | - Mikkel R Holst
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldberg Gade 10, 8000 Aarhus C, Denmark
| |
Collapse
|
41
|
de-Los-Santos-Cocotle G, Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Effects of agonists and phorbol esters on α 1A-adrenergic receptor-Rab protein interactions. Eur J Pharmacol 2020; 885:173423. [PMID: 32750368 DOI: 10.1016/j.ejphar.2020.173423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/29/2022]
Abstract
In a cell line, stably expressing α1A-adrenoceptors fused to the mCherry red fluorescent protein, noradrenaline, methoxamine, and oxymetazoline induced concentration-dependent increases in intracellular calcium. All of these agents increase α1A-adrenoceptor phosphorylation and internalization. Transient co-expression of these receptors with Rab proteins tagged with the enhanced Green Fluorescent Protein was employed to estimate α1A-adrenoceptor-Rab interaction using Förster Resonance Energy Transfer. Noradrenaline and methoxamine increased α1A-adrenoceptor interaction with Rab5 and Rab7 but did not modify it with Rab9. Oxymetazoline induced adrenoceptor interaction with Rab5 and Rab9 and only an insignificant increase in Rab7 signal. Phorbol myristate acetate increased α1A-adrenoceptor interaction with Rab5 and Rab9 but did not modify it with Rab7. The agonists and the active phorbol ester, all of which induce receptor phosphorylation and internalization, favor receptor interaction with Rab5, i.e., association with early endosomes. Cell stimulation with phorbol myristate acetate induced the α1A-adrenoceptors to interact with the late endosomal marker, Rab9, suggesting that the receptors are directed to slow recycling endosomes once they have transited to the Trans-Golgi network to be retrieved to the plasma membrane. The agonists noradrenaline and methoxamine likely induce a faster recycling and might direct some of the adrenoceptors toward degradation and/or very slow recycling to the plasma membrane. Oxymetazoline produced a mixed pattern of interaction with the Rab proteins. These data indicate that α1A-adrenoceptor agonists can trigger different vesicular traffic and receptor fates within the cells.
Collapse
Affiliation(s)
- Gustavo de-Los-Santos-Cocotle
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Martínez-Morales
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional 2508; Col, San Pedro Zacatenco, Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
42
|
Geisslinger F, Müller M, Vollmar AM, Bartel K. Targeting Lysosomes in Cancer as Promising Strategy to Overcome Chemoresistance-A Mini Review. Front Oncol 2020; 10:1156. [PMID: 32733810 PMCID: PMC7363955 DOI: 10.3389/fonc.2020.01156] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/08/2020] [Indexed: 12/24/2022] Open
Abstract
To date, cancer remains a worldwide leading cause of death, with a still rising incidence. This is essentially caused by the fact, that despite the abundance of therapeutic targets and treatment strategies, insufficient response and multidrug resistance frequently occur. Underlying mechanisms are multifaceted and extensively studied. In recent research, it became evident, that the lysosome is of importance in drug resistance phenotypes. While it has long been considered just as cellular waste bag, it is now widely known that lysosomes play an important role in important cellular signaling processes and are in the focus of cancer research. In that regard lysosomes are now considered as so-called "drug safe-houses" in which chemotherapeutics are trapped passively by diffusion or actively by lysosomal P-glycoprotein activity, which prevents them from reaching their intracellular targets. Furthermore, alterations in lysosome to nucleus signaling by the transcription factor EB (TFEB)-mTORC1 axis are implicated in development of chemoresistance. The identification of lysosomes as essential players in drug resistance has introduced novel strategies to overcome chemoresistance and led to innovate therapeutic approaches. This mini review gives an overview of the current state of research on the role of lysosomes in chemoresistance, summarizing underlying mechanisms and treatment strategies and critically discussing open questions and drawbacks.
Collapse
Affiliation(s)
- Franz Geisslinger
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Martin Müller
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Angelika M Vollmar
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Karin Bartel
- Pharmaceutical Biology, Department Pharmacy, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
43
|
Fowler PC, Garcia-Pardo ME, Simpson JC, O'Sullivan NC. NeurodegenERation: The Central Role for ER Contacts in Neuronal Function and Axonopathy, Lessons From Hereditary Spastic Paraplegias and Related Diseases. Front Neurosci 2019; 13:1051. [PMID: 31680803 PMCID: PMC6801308 DOI: 10.3389/fnins.2019.01051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
The hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative conditions whose characteristic feature is degeneration of the longest axons within the corticospinal tract which leads to progressive spasticity and weakness of the lower limbs. Though highly genetically heterogeneous, the majority of HSP cases are caused by mutations in genes encoding proteins that are responsible for generating and organizing the tubular endoplasmic reticulum (ER). Despite this, the role of the ER within neurons, particularly the long axons affected in HSP, is not well understood. Throughout axons, ER tubules make extensive contacts with other organelles, the cytoskeleton and the plasma membrane. At these ER contacts, protein complexes work in concert to perform specialized functions including organelle shaping, calcium homeostasis and lipid biogenesis, all of which are vital for neuronal survival and may be disrupted by HSP-causing mutations. In this article we summarize the proteins which mediate ER contacts, review the functions these contacts are known to carry out within neurons, and discuss the potential contribution of disruption of ER contacts to axonopathy in HSP.
Collapse
Affiliation(s)
- Philippa C Fowler
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - M Elena Garcia-Pardo
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
The Role of Lipopolysaccharide-Induced Extracellular Vesicles in Cardiac Cell Death. BIOLOGY 2019; 8:biology8040069. [PMID: 31547509 PMCID: PMC6955717 DOI: 10.3390/biology8040069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Exosomes play a crucial role in the progression of infectious diseases, as exosome release and biogenesis are affected by external factors, such as pathogenic infections. Pyrogens may aide in the progression of diseases by triggering inflammation, endothelial cell injury, and arterial plaque rupture, all of which can lead to acute coronary disease, resulting in cardiac tissue death and the onset of a cardiac event (CE). To better understand the effects of Gram-negative bacterial infections on exosome composition and biogenesis, we examined exosome characteristics after treatment of AC16 human cardiomyocytes with lipopolysaccharide (LPS), which served as a model system for Gram-negative bacterial infection. Using increasing doses (0, 0.1, 1, or 10 µg) of LPS, we showed that treatment with LPS substantially altered the composition of AC16-derived exosomes. Both the relative size and the quantity (particles/mL) of exosomes were decreased significantly at all tested concentrations of LPS treatment compared to the untreated group. In addition, LPS administration reduced the expression of exosomal proteins that are related to exosomal biogenesis. Conversely, we observed an increase in immunomodulators present after LPS administration. This evaluation of the impact of LPS on cardiac cell death and exosome composition will yield new insight into the importance of exosomes in a variety of physiological and pathological processes as it relates to disease progression, diagnosis, and treatment.
Collapse
|
45
|
Shearer LJ, Petersen NO. Distribution and Co-localization of endosome markers in cells. Heliyon 2019; 5:e02375. [PMID: 31687537 PMCID: PMC6819826 DOI: 10.1016/j.heliyon.2019.e02375] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023] Open
Abstract
Clathrin mediated endocytosis is one pathway for internalization of extracellular nano materials into cells [1, 2]. In this pathway, proteins attached to receptors and the internalized materials are encapsulated in clathrin coated membrane vesicles that subsequently fuse with or transform into intracellular compartments (early and late endosomes) as their contents are being directed to the lysosomes for degradation. The following proteins are commonly used to mark the pathway at various stages: Rab5 (early endosome), Rab7 (late endosome), and LAMP-1 (lysosome). In this work, we studied the distribution and co-localization of these marker proteins in two cell lines (C2C12 and A549) to determine whether these markers are unique for specific endosome types or whether they can co-exist with other markers. We estimate the densities and sizes of the endosomes containing the three markers, as well as the number of marker antibodies attached to each endosome. We determine that the markers are not unique to one endosome type but that the extent of co-localization is different for the two cell types. In fact, we find endosomes that contain all three markers simultaneously. Our results suggest that the use of these proteins as specific markers for specific endosome types should be reevaluated. This was the first successful use of triple image cross correlation spectroscopy to qualitatively and quantitatively study the extent of interaction among three different species in cells and also the first experimental study of three-way interactions of clathrin mediated endocytic markers.
Collapse
Affiliation(s)
- Lindsay J. Shearer
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| | - Nils O. Petersen
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- National Institute for Nanotechnology, National Research Council, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
46
|
Boutchueng-Djidjou M, Faure RL. Network medicine-travelling with the insulin receptor: Encounter of the second type. EClinicalMedicine 2019; 13:14-20. [PMID: 31517259 PMCID: PMC6734015 DOI: 10.1016/j.eclinm.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 07/18/2019] [Indexed: 01/21/2023] Open
Abstract
Important progress has been made in understanding many aspects of insulin action in the last 10 years. Attention will be focused here on the physical protein interaction network of the internalized insulin receptor (IR) and its relationships with the genetic architecture of type 2 diabetes mellitus (T2D). The IR recognizes signals from the outside (circulating insulin) and engages the insulin signaling response. Within seconds, the IR is also involved in insulin internalization and its subsequent degradation in endosomes (physiological clearance of insulin). A T2D disease module sharing functional similarities with insulin secretion in pancreatic islets was recently identified in the close neighborhood of the internalized IR in liver. This module brought a new light on the apparent functional heterogeneity of numerous genes at risk to T2D by linking them to a few noncanonical layers of signaling feedback loops. These findings should be translated into a better understanding of the primary mechanisms of the disease and consequently a more precise sub-classification of T2D, ultimately leading to precision medicine and the development of new therapeutical drugs.
Collapse
Affiliation(s)
- Martial Boutchueng-Djidjou
- Départment of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec City G1V4G2, Canada
| | - Robert L. Faure
- Centre de Recherche du CHU de Québec, Laboratoire de Biologie Cellulaire, local T3-55 2705, Boulevard Laurier Québec, QC, G1V4G2
| |
Collapse
|
47
|
Kim H, Oh H, Oh YS, Bae J, Hong NH, Park SJ, Ahn S, Lee M, Rhee S, Lee SH, Jun Y, Kim SH, Huh YH, Song WK. SPIN90, an adaptor protein, alters the proximity between Rab5 and Gapex5 and facilitates Rab5 activation during EGF endocytosis. Exp Mol Med 2019; 51:1-14. [PMID: 31358736 PMCID: PMC6802610 DOI: 10.1038/s12276-019-0284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
During ligand-mediated receptor endocytosis, the small GTPase Rab5 functions in vesicle fusion and trafficking. Rab5 activation is known to require interactions with its guanine nucleotide-exchange factors (GEFs); however, the mechanism regulating Rab5 interactions with GEFs remains unclear. Here, we show that the SH3-adapter protein SPIN90 participates in the activation of Rab5 through the recruitment of both Rab5 and its GEF, Gapex5, to endosomal membranes during epidermal growth factor (EGF)-mediated endocytosis. SPIN90 strongly interacts with the inactive Rab5/GDI2 complex through its C-terminus. In response to EGF signaling, extracellular signal-regulated kinase (ERK)-mediated phosphorylation of SPIN90 at Thr-242 enables SPIN90 to bind Gapex5 through its N-terminal SH3 domain. Gapex5 is a determinant of Rab5 membrane targeting, while SPIN90 mediates the interaction between Gapex5 and Rab5 in a phosphorylation-dependent manner. Collectively, our findings suggest that SPIN90, as an adaptor protein, simultaneously binds inactive Rab5 and Gapex5, thereby altering their spatial proximity and facilitating Rab5 activation.
Collapse
Affiliation(s)
- Hwan Kim
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Hyejin Oh
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Young Soo Oh
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jeomil Bae
- 0000 0004 1784 4496grid.410720.0Center for Vascular Research, Institute for Basic Science, Daejeon, 34141 Republic of Korea
| | - Nan Hyung Hong
- 0000 0001 2180 1622grid.270240.3Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Su Jung Park
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Suyeon Ahn
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Miriam Lee
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Sangmyung Rhee
- 0000 0001 0789 9563grid.254224.7Department of Life Science, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sung Haeng Lee
- 0000 0000 9475 8840grid.254187.dDepartment of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 61452 Republic of Korea
| | - Youngsoo Jun
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Sung Hyun Kim
- 0000 0001 2171 7818grid.289247.2Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Yun Hyun Huh
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Woo Keun Song
- 0000 0001 1033 9831grid.61221.36Cell Logistics and Silver Health Research Center, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
48
|
Thrombin Preconditioning Boosts Biogenesis of Extracellular Vesicles from Mesenchymal Stem Cells and Enriches Their Cargo Contents via Protease-Activated Receptor-Mediated Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122899. [PMID: 31197089 PMCID: PMC6627943 DOI: 10.3390/ijms20122899] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023] Open
Abstract
We investigated the role of protease-activated receptor (PAR)-mediated signaling pathways in the biogenesis of human umbilical cord blood-derived mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) and the enrichment of their cargo content after thrombin preconditioning. Immunoblot analyses showed that MSCs expressed two PAR subtypes: PAR-1 and PAR-3. Thrombin preconditioning significantly accelerated MSC-derived EV biogenesis more than five-fold and enriched their cargo contents by more than two-fold via activation of Rab5, early endosomal antigen (EEA)-1, and the extracellular signal regulated kinase (ERK)1/2 and AKT signaling pathways. Blockage of PAR-1 with the PAR-1-specific antagonist, SCH79797, significantly suppressed the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways and subsequently increased EV production and enriched EV cargo contents. Combined blockage of PAR-1 and PAR-3 further and significantly inhibited the activation of Rab5, EEA-1, and the ERK1/2 and AKT pathways, accelerated EV production, and enriched EV cargo contents. In summary, thrombin preconditioning boosted the biogenesis of MSC-derived EVs and enriched their cargo contents largely via PAR-1-mediated pathways and partly via PAR-1-independent, PAR-3-mediated activation of Rab5, EEA-1, and the ERK1/2 and AKT signaling pathways.
Collapse
|
49
|
Toth AE, Nielsen SSE, Tomaka W, Abbott NJ, Nielsen MS. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 2019; 16:14. [PMID: 31142333 PMCID: PMC6542060 DOI: 10.1186/s12987-019-0134-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Brain endothelial cell-based in vitro models are among the most versatile tools in blood–brain barrier research for testing drug penetration to the central nervous system. Transcytosis of large pharmaceuticals across the brain capillary endothelium involves the complex endo-lysosomal system. This system consists of several types of vesicle, such as early, late and recycling endosomes, retromer-positive structures, and lysosomes. Since the endo-lysosomal system in endothelial cell lines of in vitro blood–brain barrier models has not been investigated in detail, our aim was to characterize this system in different models. Methods For the investigation, we have chosen two widely-used models for in vitro drug transport studies: the bEnd.3 mouse and the hCMEC/D3 human brain endothelial cell line. We compared the structures and attributes of their endo-lysosomal system to that of primary porcine brain endothelial cells. Results We detected significant differences in the vesicular network regarding number, morphology, subcellular distribution and lysosomal activity. The retromer-positive vesicles of the primary cells were distinct in many ways from those of the cell lines. However, the cell lines showed higher lysosomal degradation activity than the primary cells. Additionally, the hCMEC/D3 possessed a strikingly unique ratio of recycling endosomes to late endosomes. Conclusions Taken together our data identify differences in the trafficking network of brain endothelial cells, essentially mapping the endo-lysosomal system of in vitro blood–brain barrier models. This knowledge is valuable for planning the optimal route across the blood–brain barrier and advancing drug delivery to the brain. Electronic supplementary material The online version of this article (10.1186/s12987-019-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| | - Simone S E Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Weronika Tomaka
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| |
Collapse
|
50
|
Zhang L, Tian XY, Chan CKW, Bai Q, Cheng CK, Chen FM, Cheung MSH, Yin B, Yang H, Yung WY, Chen Z, Ding F, Leung KCF, Zhang C, Huang Y, Lau JYW, Choi CHJ. Promoting the Delivery of Nanoparticles to Atherosclerotic Plaques by DNA Coating. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13888-13904. [PMID: 30516979 DOI: 10.1021/acsami.8b17928] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Many nanoparticle-based carriers to atherosclerotic plaques contain peptides, lipoproteins, and sugars, yet the application of DNA-based nanostructures for targeting plaques remains infrequent. In this work, we demonstrate that DNA-coated superparamagnetic iron oxide nanoparticles (DNA-SPIONs), prepared by attaching DNA oligonucleotides to poly(ethylene glycol)-coated SPIONs (PEG-SPIONs), effectively accumulate in the macrophages of atherosclerotic plaques following an intravenous injection into apolipoprotein E knockout (ApoE-/-) mice. DNA-SPIONs enter RAW 264.7 macrophages faster and more abundantly than PEG-SPIONs. DNA-SPIONs mostly enter RAW 264.7 cells by engaging Class A scavenger receptors (SR-A) and lipid rafts and traffic inside the cell along the endolysosomal pathway. ABS-SPIONs, nanoparticles with a similarly polyanionic surface charge as DNA-SPIONs but bearing abasic oligonucleotides also effectively bind to SR-A and enter RAW 264.7 cells. Near-infrared fluorescence imaging reveals evident localization of DNA-SPIONs in the heart and aorta 30 min post-injection. Aortic iron content for DNA-SPIONs climbs to the peak (∼60% ID/g) 2 h post-injection (accompanied by profuse accumulation in the aortic root), but it takes 8 h for PEG-SPIONs to reach the peak aortic amount (∼44% ID/g). ABS-SPIONs do not appreciably accumulate in the aorta or aortic root, suggesting that the DNA coating (not the surface charge) dictates in vivo plaque accumulation. Flow cytometry analysis reveals more pronounced uptake of DNA-SPIONs by hepatic endothelial cells, splenic macrophages and dendritic cells, and aortic M2 macrophages (the cell type with the highest uptake in the aorta) than PEG-SPIONs. In summary, coating nanoparticles with DNA is an effective strategy of promoting their systemic delivery to atherosclerotic plaques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wing-Yin Yung
- Department of Chemistry , Hong Kong Baptist University , Kowloon, Hong Kong China
| | | | - Fei Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai , China
| | - Ken Cham-Fai Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon, Hong Kong China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai , China
| | | | | | | |
Collapse
|