1
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Bosteels V, Janssens S. Striking a balance: new perspectives on homeostatic dendritic cell maturation. Nat Rev Immunol 2024:10.1038/s41577-024-01079-5. [PMID: 39289483 DOI: 10.1038/s41577-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Dendritic cells (DCs) are crucial gatekeepers of the balance between immunity and tolerance. They exist in two functional states, immature or mature, that refer to an information-sensing versus an information-transmitting state, respectively. Historically, the term DC maturation was used to describe the acquisition of immunostimulatory capacity by DCs following their triggering by pathogens or tissue damage signals. As such, immature DCs were proposed to mediate tolerance, whereas mature DCs were associated with the induction of protective T cell immunity. Later studies have challenged this view and unequivocally demonstrated that two distinct modes of DC maturation exist, homeostatic and immunogenic DC maturation, each with a distinct functional outcome. Therefore, the mere expression of maturation markers cannot be used to predict immunogenicity. How DCs become activated in homeostatic conditions and maintain tolerance remains an area of intense debate. Several recent studies have shed light on the signals driving the homeostatic maturation programme, especially in the conventional type 1 DC (cDC1) compartment. Here, we highlight our growing understanding of homeostatic DC maturation and the relevance of this process for immune tolerance.
Collapse
Affiliation(s)
- Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Liu J, Li B, Li L, Ming X, Xu ZP. Advances in Nanomaterials for Immunotherapeutic Improvement of Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403024. [PMID: 38773882 DOI: 10.1002/smll.202403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.
Collapse
Affiliation(s)
- Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 000000, China
- GoodMedX Tech Limited Company, Hong Kong SAR, 000000, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
4
|
Elzagallaai AA, Rieder MJ. Pathophysiology of drug hypersensitivity. Br J Clin Pharmacol 2024; 90:1856-1868. [PMID: 36519187 DOI: 10.1111/bcp.15645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
Drug hypersensitivity reactions (DHRs) are type B adverse drug reactions (ADRs) traditionally defined as unpredictable, dose independent and not related to the drug pharmacology. DHRs, also called drug allergy if the immune system involvement is confirmed, represent around one-sixth of all ADRs and can cause major clinical problems due to their vague clinical presentation and irregular time course. Understanding the underlying pathophysiology of DHRs is very important for their diagnosis and management. Multiple layers of evidence exist pointing to the involvement of the immune system in DHRs. Recent data have led to a paradigm shift in our understanding of the exact pathophysiology of these reactions. Numerous hypotheses proposing explanation on how a low molecular weight drug molecule can elicit an immune reaction have been proposed. In addition to the classical "hapten" hypothesis, the reactive metabolite hypothesis, the pharmacological interaction with the immune system (p-i) concept, the danger/injury hypothesis and the altered peptide repertoire hypothesis have been proposed. We here introduce the inflammasome activation hypothesis and the cross-reactivity hypothesis as additional models explaining the pathophysiology of DHRs. Available data supporting these hypotheses are briefly summarized and discussed. We also introduced the cross-reactivity model, which may provide a platform to appreciate the potential role played by other factors leading to the activation of the immune system. We believe that although the drug in question could be the trigger of the reaction, the components of the immune system mediating the reaction do not act in isolation but rather are affected by the proinflammatory milieu occurring at the time of the reaction. This review attempts to summarize the available evidence to further illustrate the pathophysiology of DHRs.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics and Physiology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Gui Z, Al Moussawy M, Sanders SM, Abou-Daya KI. Innate Allorecognition in Transplantation: Ancient Mechanisms With Modern Impact. Transplantation 2024; 108:1524-1531. [PMID: 38049941 PMCID: PMC11188633 DOI: 10.1097/tp.0000000000004847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/06/2023]
Abstract
Through the effective targeting of the adaptive immune system, solid organ transplantation became a life-saving therapy for organ failure. However, beyond 1 y of transplantation, there is little improvement in transplant outcomes. The adaptive immune response requires the activation of the innate immune system. There are no modalities for the specific targeting of the innate immune system involvement in transplant rejection. However, the recent discovery of innate allorecognition and innate immune memory presents novel targets in transplantation that will increase our understanding of organ rejection and might aid in improving transplant outcomes. In this review, we look at the latest developments in the study of innate allorecognition and innate immune memory in transplantation.
Collapse
Affiliation(s)
- Zeping Gui
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Mouhamad Al Moussawy
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Steven M. Sanders
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Khodor I. Abou-Daya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Harjunpää H, Somermäki R, Saldo Rubio G, Fusciello M, Feola S, Faisal I, Nieminen AI, Wang L, Llort Asens M, Zhao H, Eriksson O, Cerullo V, Fagerholm SC. Loss of β2-integrin function results in metabolic reprogramming of dendritic cells, leading to increased dendritic cell functionality and anti-tumor responses. Oncoimmunology 2024; 13:2369373. [PMID: 38915784 PMCID: PMC11195491 DOI: 10.1080/2162402x.2024.2369373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required. We have previously shown that the loss of β2-integrin-mediated adhesion leads to epigenetic reprogramming of bone marrow-derived DCs (BM-DCs), resulting in an increased expression of costimulatory markers (CD86, CD80, and CD40), cytokines (IL-12) and the chemokine receptor CCR7. We now show that the loss of β2-integrin-mediated adhesion of BM-DCs also leads to a generally suppressed metabolic profile, with reduced metabolic rate, decreased ROS production, and lowered glucose uptake in cells. The mRNA levels of glycolytic enzymes and glucose transporters were reduced, indicating transcriptional regulation of the metabolic phenotype. Surprisingly, although signaling through a central regulator of immune cell metabolisms, the mechanistic target of rapamycin (mTOR), was increased in BM-DCs with dysfunctional integrins, rapamycin treatment revealed that mTOR signaling was not involved in suppressing DC metabolism. Instead, bioinformatics and functional analyses showed that the Ikaros transcription factor may be involved in regulating the metabolic profile of non-adhesive DCs. Inversely, we found that induction of metabolic stress through treatment of cells with low levels of an inhibitor of glycolysis, 2-deoxyglucose (2DG), led to increased BM-DC activation. Specifically, 2DG treatment led to increased levels of Il-12 and Ccr7 mRNA, increased production of IL-12, increased levels of cell surface CCR7 and increased in vitro migration and T cell activation potential. Furthermore, 2DG treatment led to increased histone methylation in cells (H3K4me3, H3K27me3), indicating metabolic reprogramming. Finally, metabolic stress induced by 2DG treatment led to improved BM-DC-mediated anti-tumor responses in vivo in a melanoma cancer model, B16-OVA. In conclusion, our results indicate a role for β2-integrin-mediated adhesion in regulating a novel type of metabolic reprogramming of DCs and DC-mediated anti-tumor responses, which may be targeted to enhance DC-mediated anti-tumor responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Heidi Harjunpää
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Riku Somermäki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Guillem Saldo Rubio
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Sara Feola
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Liang Wang
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ove Eriksson
- Biochemistry and Developmental biology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Liu Q, Zhang C, Chen X, Han Z. Modern cancer therapy: cryoablation meets immune checkpoint blockade. Front Oncol 2024; 14:1323070. [PMID: 38384806 PMCID: PMC10881233 DOI: 10.3389/fonc.2024.1323070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Cryoablation, as a minimally invasive technology for the treatment of tumors, destroys target tumors with lethal low temperatures. It simultaneously releases a large number of tumor-specific antigens, pro-inflammatory cytokines, and nucleoproteins, known as "danger signals", activating the body's innate and adaptive immune responses. However, tumor cells can promote the inactivation of immune effector cells by reprogramming immune checkpoints, leading to the insufficiency of these antigens to induce an immune response capable of eradicating the tumor. Immune checkpoint blockers rejuvenate exhausted T cells by blocking immune checkpoints that induce programmed death of T cells, and are therefore considered a promising therapeutic strategy to enhance the immune effects of cryoablation. In this review, we provide a detailed explanation of the immunological mechanisms of cryoablation and articulate the theoretical basis and research progress of the treatment of cancer with cryoablation combined with immune checkpoint blockers. Preliminary data indicates that this combined treatment strategy exhibits good synergy and has been proven to be safe and effective.
Collapse
Affiliation(s)
- Qi Liu
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Chunyang Zhang
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuxin Chen
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhihai Han
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Navy Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- College of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
8
|
Teo WY, Lim YYE, Sio YY, Say YH, Reginald K, Chew FT. Atopic dermatitis-associated genetic variants regulate LOC100294145 expression implicating interleukin-27 production and type 1 interferon signaling. World Allergy Organ J 2024; 17:100869. [PMID: 38298829 PMCID: PMC10827559 DOI: 10.1016/j.waojou.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Background Atopic dermatitis (AD) is a complex inflammatory disease with a strong genetic component. A singular approach of genome wide association studies (GWAS) can identify AD-associated genetic variants, but is unable to explain their functional relevance in AD. This study aims to characterize AD-associated genetic variants and elucidate the mechanisms leading to AD through a multi-omics approach. Methods GWAS identified an association between genetic variants at 6p21.32 locus and AD. Genotypes of 6p21.32 locus variants were evaluated against LOC100294145 expression in peripheral blood mononuclear cells (PBMCs). Their influence on LOC100294145 promoter activity was measured in vitro via a dual-luciferase assay. The function of LOC100294145 was then elucidated through a combination of co-expression analyses and gene enrichment with g:Profiler. Mendelian randomization was further used to assess the causal regulatory effect of LOC100294145 on its co-expressed genes. Results Minor alleles of rs116160149 and rs115388857 at 6p21.32 locus were associated with increased AD risk (p = 2.175 × 10-8, OR = 1.552; p = 2.805 × 10-9, OR = 1.55) and higher LOC100294145 expression in PBMCs (adjusted p = 0.182; 8.267 × 10-12). LOC100294145 expression was also found to be increased in those with AD (adjusted p = 3.653 × 10-2). The genotype effect of 6p21.32 locus on LOC100294145 promoter activity was further validated in vitro. Co-expression analyses predicted LOC100294145 protein's involvement in interleukin-27 and type 1 interferon signaling, which was further substantiated through mendelian randomization. Conclusion Genetic variants at 6p21.32 locus increase AD susceptibility through raising LOC100294145 expression. A multi-omics approach enabled the deduction of its pathogenesis model comprising dysregulation of hub genes involved in type 1 interferon and interleukin 27 signaling.
Collapse
Affiliation(s)
- Wei Yi Teo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yee-How Say
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
9
|
Low JT, Brown MC, Reitman ZJ, Bernstock JD, Markert JM, Friedman GK, Waitkus MS, Bowie ML, Ashley DM. Understanding and therapeutically exploiting cGAS/STING signaling in glioblastoma. J Clin Invest 2024; 134:e163452. [PMID: 38226619 PMCID: PMC10786687 DOI: 10.1172/jci163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.
Collapse
Affiliation(s)
| | | | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
10
|
Moriyama M, Noda K, Ito H, Matsushita T, Kurosaka D. Clinical features of newly diagnosed systemic lupus erythematosus after SARS-CoV-2 vaccination. Mod Rheumatol Case Rep 2023; 8:63-68. [PMID: 37348045 DOI: 10.1093/mrcr/rxad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that causes damage to multiple organs. Various factors, including vaccination, have been associated with SLE development. Vaccination for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in 2020, and there are a few reports on the exacerbation of SLE after SARS-CoV-2 vaccination. The influence of SARS-CoV-2 vaccination on SLE development remains unclear. We present the case of a 53-year-old man who developed peritonitis and was subsequently diagnosed with SLE on Day 9 after receiving a third dose of the messenger ribonucleic acid-1273 SARS-CoV-2 vaccine. This case and previous reports have shown that patients who developed SLE after SARS-CoV-2 vaccination are more likely to develop it within 2 weeks of vaccination, especially when they have a higher rate of immunological abnormalities or a family history of autoimmune diseases. Furthermore, these features suggest that type I interferon is involved in the pathogenesis of SLE after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Masayori Moriyama
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Noda
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruyasu Ito
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Matsushita
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Pérez-Baños A, Gleisner MA, Flores I, Pereda C, Navarrete M, Araya JP, Navarro G, Quezada-Monrás C, Tittarelli A, Salazar-Onfray F. Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. Br J Cancer 2023; 129:572-585. [PMID: 37355722 PMCID: PMC10421921 DOI: 10.1038/s41416-023-02327-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.
Collapse
Affiliation(s)
- Amarilis Pérez-Baños
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Araya
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Giovanna Navarro
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Claudia Quezada-Monrás
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile.
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute and Section for Infectious Diseases, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
12
|
Golden JW, Fitzpatrick CJ, Suschak JJ, Clements TL, Ricks KM, Sanchez-Lockhart M, Garrison AR. Induced protection from a CCHFV-M DNA vaccine requires CD8 + T cells. Virus Res 2023; 334:199173. [PMID: 37459918 PMCID: PMC10388194 DOI: 10.1016/j.virusres.2023.199173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a World Health Organization prioritized disease because its broad distribution and severity of disease make it a global health threat. Despite advancements in preclinical vaccine development for CCHF virus (CCHFV), including multiple platforms targeting multiple antigens, a clear definition of the adaptive immune correlates of protection is lacking. Levels of neutralizing antibodies in vaccinated animal models do not necessarily correlate with protection, suggesting that cellular immunity, such as CD8+ T cells, might have an important role in protection in this model. Using a well-established IFN-I antibody blockade mouse model (IS) and a DNA-based vaccine encoding the CCHFV M-segment glycoprotein precursor, we investigated the role of humoral and T cell immunity in vaccine-mediated protection in mice genetically devoid of these immune compartments. We found that in the absence of the B-cell compartment (µMT knockout mice), protection provided by the vaccine was not reduced. In contrast, in the absence of CD8+ T cells (CD8+ knockout mice) the vaccine-mediated protection was significantly diminished. Importantly, humoral responses to the vaccine in CD8+ T-cell knockout mice were equivalent to wild-type mice. These findings indicated that CD8+ T-cell responses are necessary and sufficient to promote protection in mice vaccinated with the M-segment DNA vaccine. Identifying a crucial role of the cellular immunity to protect against CCHFV should help guide the development of CCHFV-targeting vaccines.
Collapse
Affiliation(s)
- Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| | - Collin J Fitzpatrick
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - John J Suschak
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Tamara L Clements
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Keersten M Ricks
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Mariano Sanchez-Lockhart
- Center for Genome Sciences, Molecular Biology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, United States.
| |
Collapse
|
13
|
Elzagallaai AA, Rieder MJ. Novel insights into molecular and cellular aspects of delayed drug hypersensitivity reactions. Expert Rev Clin Pharmacol 2023; 16:1187-1199. [PMID: 38018416 DOI: 10.1080/17512433.2023.2289543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Delayed drug hypersensitivity reactions (DDHRs) represent a major health problem. They are unpredictable and can cause life-long disability or even death. The pathophysiology of DDHRs is complicated, multifactorial, and not well understood mainly due to the lack of validated animal models or in vitro systems. The role of the immune system is well demonstrated but its exact pathophysiology still a matter of debate. AREA COVERED This review summarizes the current understanding of DDHRs pathophysiology and abridges the available new evidence supporting each hypothesis. A comprehensive literature search for relevant publications was performed using PubMed, Google Scholar, and Medline databases with no date restrictions and focusing on the most recent 10 years. EXPERT OPINION Although multiple milestones have been achieved in our understanding of DDHRs pathophysiology as a result of the development of useful experimental models, many questions are yet to be fully answered. A deeper understanding of the mechanistic basis of DDHRs would not only facilitate the development of robust and reliable diagnostic assays for diagnosis, but would also inform therapy by providing specific target(s) for immunomodulation and potentially permit pre-therapeutic risk assessment to pursue the common goal of safe and effective drug therapy.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Department of Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Department of Paediatrics and Physiology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
14
|
Vonderhaar EP, Dwinell MB, Craig BT. Targeted immune activation in pediatric solid tumors: opportunities to complement local control approaches. Front Immunol 2023; 14:1202169. [PMID: 37426669 PMCID: PMC10325564 DOI: 10.3389/fimmu.2023.1202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Surgery or radiation therapy is nearly universally applied for pediatric solid tumors. In many cases, in diverse tumor types, distant metastatic disease is present and evades surgery or radiation. The systemic host response to these local control modalities may lead to a suppression of antitumor immunity, with potential negative impact on the clinical outcomes for patients in this scenario. Emerging evidence suggests that the perioperative immune responses to surgery or radiation can be modulated therapeutically to preserve anti-tumor immunity, with the added benefit of preventing these local control approaches from serving as pro-tumorigenic stimuli. To realize the potential benefit of therapeutic modulation of the systemic response to surgery or radiation on distant disease that evades these modalities, a detailed knowledge of the tumor-specific immunology as well as the immune responses to surgery and radiation is imperative. In this Review we highlight the current understanding of the tumor immune microenvironment for the most common peripheral pediatric solid tumors, the immune responses to surgery and radiation, and current evidence that supports the potential use of immune activating agents in the perioperative window. Finally, we define existing knowledge gaps that limit the current translational potential of modulating perioperative immunity to achieve effective anti-tumor outcomes.
Collapse
Affiliation(s)
- Emily P. Vonderhaar
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian T. Craig
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
15
|
Kongsomboonvech AK, García-López L, Njume F, Rodriguez F, Souza SP, Rosenberg A, Jensen KDC. Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16. Front Cell Infect Microbiol 2023; 13:1130965. [PMID: 37287466 PMCID: PMC10242045 DOI: 10.3389/fcimb.2023.1130965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR). Methods Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages. Results Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii. Discussion Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Laura García-López
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ferdinand Njume
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Scott P. Souza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Alex Rosenberg
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
16
|
von Glehn F, Pochet N, Thapa B, Raheja R, Mazzola MA, Jangi S, Beynon V, Huang J, Farias AS, Paul A, Santos LMB, Gandhi R, Murugaiyan G, Weiner HL, Baecher-Allan CM. Defective Induction of IL-27-Mediated Immunoregulation by Myeloid DCs in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24098000. [PMID: 37175706 PMCID: PMC10179146 DOI: 10.3390/ijms24098000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
The purpose of this study was to examine whether myeloid dendritic cells (mDCs) from patients with multiple sclerosis (MS) and healthy controls (HCs) become similarly tolerogenic when exposed to IL-27 as this may represent a potential mechanism of autoimmune dysregulation. Our study focused on natural mDCs that were isolated from HCs and MS patient peripheral blood mononuclear cells (PBMCs). After a 24-h treatment with IL-27 ± lipopolysaccharide (LPS), the mDCs were either harvested to identify IL-27-regulated gene expression or co-cultured with naive T-cells to measure how the treated DC affected T-cell proliferation and cytokine secretion. mDCs isolated from HCs but not untreated MS patients became functionally tolerogenic after IL-27 treatment. Although IL-27 induced both HC and untreated MS mDCs to produce similar amounts of IL-10, the tolerogenic HC mDCs expressed PD-L2, IDO1, and SOCS1, while the non-tolerogenic untreated MS mDCs expressed IDO1 and IL-6R. Cytokine and RNA analyses identified two signature blocks: the first identified genes associated with mDC tolerizing responses to IL-27, while the second was associated with the presence of MS. In contrast to mDCs from untreated MS patients, mDCs from HCs and IFNb-treated MS patients became tolerogenic in response to IL-27. The genes differentially expressed in the different donor IL-27-treated mDCs may contain targets that regulate mDC tolerogenic responses.
Collapse
Affiliation(s)
- Felipe von Glehn
- Neuroimmunology Unit-Department of Genetics, Microbiology and Immunology-Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bibek Thapa
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Radhika Raheja
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria A Mazzola
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sushrut Jangi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa Beynon
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Junning Huang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro S Farias
- Neuroimmunology Unit-Department of Genetics, Microbiology and Immunology-Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Anu Paul
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonilda M B Santos
- Neuroimmunology Unit-Department of Genetics, Microbiology and Immunology-Institute of Biology, University of Campinas, Campinas 13083-970, Brazil
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Partners Multiple Sclerosis Center, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MS 02115, USA
| | - Clare M Baecher-Allan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
17
|
Abstract
Immunotherapy has revolutionized the treatment of patients with cancer. However, promoting antitumour immunity in patients with tumours that are resistant to these therapies remains a challenge. Thermal therapies provide a promising immune-adjuvant strategy for use with immunotherapy, mostly owing to the capacity to reprogramme the tumour microenvironment through induction of immunogenic cell death, which also promotes the recruitment of endogenous immune cells. Thus, thermal immunotherapeutic strategies for various cancers are an area of considerable research interest. In this Review, we describe the role of the various thermal therapies and provide an update on attempts to combine these with immunotherapies in clinical trials. We also provide an overview of the preclinical development of various thermal immuno-nanomedicines, which are capable of combining thermal therapies with various immunotherapy strategies in a single therapeutic platform. Finally, we discuss the challenges associated with the clinical translation of thermal immuno-nanomedicines and emphasize the importance of multidisciplinary and inter-professional collaboration to facilitate the optimal translation of this technology from bench to bedside.
Collapse
|
18
|
Miyamoto M, Himeda T, Ishihara K, Okuwa T, Kobayashi D, Nameta M, Karasawa Y, Chunhaphinyokul B, Yoshida Y, Tanaka N, Higuchi M, Komuro A. Theilovirus 3C Protease Cleaves the C-Terminal Domain of the Innate Immune RNA Sensor, Melanoma Differentiation-Associated Gene 5, and Impairs Double-Stranded RNA-Mediated IFN Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:335-347. [PMID: 36525065 DOI: 10.4049/jimmunol.2200565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/09/2022] [Indexed: 01/04/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5), a member of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), has pivotal roles in innate immune responses against many positive-stranded RNA viruses, including picornavirus and coronavirus. Upon engagement with dsRNA derived from viral infection, MDA5 initiates coordinated signal transduction leading to type I IFN induction to restrict viral replication. In this study, we describe a targeted cleavage events of MDA5 by the 3C protease from Theilovirus. Upon ectopic expression of theilovirus 3C protease from Saffold virus or Theiler's murine encephalomyelitis virus but not encephalomyocarditis virus, fragments of cleaved MDA5 were observed in a dose-dependent manner. When enzymatically inactive Theilovirus 3C protease was expressed, MDA5 cleavage was completely abrogated. Mass spectrometric analysis identified two cleavage sites at the C terminus of MDA5, cleaving off one of the RNA-binding domains. The same cleavage pattern was observed during Theilovirus infection. The cleavage of MDA5 by Theilovirus protease impaired ATP hydrolysis, RNA binding, and filament assembly on RNA, resulting in dysfunction of MDA5 as an innate immune RNA sensor for IFN induction. Furthermore, the cleavage-resistant MDA5 mutant against the 3C protease showed an enhanced IFN response during Saffold virus infection, indicating that Theilovirus has a strategy to circumvent the antiviral immune response by cleaving MDA5 using 3C protease. In summary, these data suggest MDA5 cleavage by 3C protease as a novel immune evasive strategy of Theilovirus.
Collapse
Affiliation(s)
- Masahiko Miyamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Toshiki Himeda
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Kazuki Ishihara
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Takako Okuwa
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Daiki Kobayashi
- Omics Unit, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Nameta
- Electron Microscope Core Facility, Niigata University, Niigata, Japan
| | - Yu Karasawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Benyapa Chunhaphinyokul
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University, Niigata, Japan; and
| | - Nobuyuki Tanaka
- Division of Tumor Immunology, Miyagi Cancer Center Research Institute, Medeshima-Shiode, Natori, Miyagi, Japan
| | - Masaya Higuchi
- Department of Microbiology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Akihiko Komuro
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
19
|
Natalini A, Simonetti S, Sher C, D’Oro U, Hayday AC, Di Rosa F. Durable CD8 T Cell Memory against SARS-CoV-2 by Prime/Boost and Multi-Dose Vaccination: Considerations on Inter-Dose Time Intervals. Int J Mol Sci 2022; 23:14367. [PMID: 36430845 PMCID: PMC9698736 DOI: 10.3390/ijms232214367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Facing the COVID-19 pandemic, anti-SARS-CoV-2 vaccines were developed at unprecedented pace, productively exploiting contemporary fundamental research and prior art. Large-scale use of anti-SARS-CoV-2 vaccines has greatly limited severe morbidity and mortality. Protection has been correlated with high serum titres of neutralizing antibodies capable of blocking the interaction between the viral surface protein spike and the host SARS-CoV-2 receptor, ACE-2. Yet, vaccine-induced protection subsides over time, and breakthrough infections are commonly observed, mostly reflecting the decay of neutralizing antibodies and the emergence of variant viruses with mutant spike proteins. Memory CD8 T cells are a potent weapon against viruses, as they are against tumour cells. Anti-SARS-CoV-2 memory CD8 T cells are induced by either natural infection or vaccination and can be potentially exploited against spike-mutated viruses. We offer here an overview of current research about the induction of anti-SARS-CoV-2 memory CD8 T cells by vaccination, in the context of prior knowledge on vaccines and on fundamental mechanisms of immunological memory. We focus particularly on how vaccination by two doses (prime/boost) or more (boosters) promotes differentiation of memory CD8 T cells, and on how the time-length of inter-dose intervals may influence the magnitude and persistence of CD8 T cell memory.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Medical Oncology Department, Campus Bio-Medico University, 00128 Rome, Italy
| | - Carmel Sher
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Adrian C. Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Peter Gorer Department of Immunobiology, King’s College London, London WC2R 2LS, UK
- National Institute for Health and Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London WC2R 2LS, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), 00161 Rome, Italy
| |
Collapse
|
20
|
Iyer P, Chino T, Ojcius DM. Infection of the oral cavity with SARS-CoV-2 variants: Scope of salivary diagnostics. FRONTIERS IN ORAL HEALTH 2022; 3:1001790. [PMID: 36389278 PMCID: PMC9659966 DOI: 10.3389/froh.2022.1001790] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023] Open
Abstract
Coronaviruses, including SARS-CoV-2, have caused pandemics in the past two decades. The most prevalent SARS-CoV-2 variants of concern can re-infect individuals who have been previously infected with other variants or had protection from vaccines targeting the original SARS-CoV-2 variant. Given the high risk of transmission of coronavirus via aerosols produced during dental procedures, it is important to understand the future risk of coronavirus infection for oral health professionals and to diagnose quickly early stages of outbreaks. Testing of saliva for coronavirus may be the least invasive and most convenient method for following the outbreak at the individual and community level. This review will describe strategies for diagnosis of coronavirus in saliva.
Collapse
Affiliation(s)
- Parvati Iyer
- Department of Diagnostic Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Takahiro Chino
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, United States
| |
Collapse
|
21
|
Manjili MH. The adaptation model of immunity: Is the goal of central tolerance to eliminate defective T cells or self-reactive T cells? Scand J Immunol 2022; 96:e13209. [PMID: 36239215 PMCID: PMC9539632 DOI: 10.1111/sji.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
The self-non-self model and the danger model are designed to understand how an immune response is induced. These models are not meant to predict if an immune response may succeed or fail in destroying/controlling its target. However, these immunological models rely on either self-antigens or self-dendritic cells for understanding of central tolerance, which have been discussed by Fuchs and Matzinger in response to Al-Yassin. In an attempt to address some questions that these models are facing when it comes to understanding central tolerance, I propose that the goal of negative selection in the thymus is to eliminate defective T cells but not self-reactive T cells. Therefore, any escape from negative selection could increase lymphopenia because of the depletion of defective naïve T cells outside the thymus, as seen in the elderly.
Collapse
Affiliation(s)
- Masoud H. Manjili
- Department of Microbiology & Immunology, VCU School of MedicineVCU Massey Cancer CenterRichmondVirginiaUSA
| |
Collapse
|
22
|
Up-Regulation of Interleukin-10 in Splenic Immune Response Induced by Serotype A Pasteurellamultocida. Genes (Basel) 2022; 13:genes13091586. [PMID: 36140754 PMCID: PMC9498900 DOI: 10.3390/genes13091586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Pasteurella multocida (P. multocida) is an opportunistic pathogen that is common in livestock and poultry and leads to massive economic losses in the animal husbandry sector. In this study, we challenged mice with P. multocida strain HN02 by intraperitoneal injection and collected spleens to measure bacterial loads. We also performed histopathological analysis by hematoxylin and eosin (H&E) staining. Then we used RNA-sequencing (RNA-seq) to detect the mRNA expression levels in the mouse spleen and quantitative real-time PCR (qRT-PCR) to verify the sequencing data. Finally, we examined the effect of HN02 on anti-inflammatory cytokine interleukin-10 (IL-10) protein expression in the spleen through immunohistochemical analysis. The results showed that compared to those in the control group, the mouse spleens in the challenge group had lesions, and the average bacteria loads was (3.07 ± 1.09) × 106 CFU (colony-forming unit)/g. The RNA-seq results determined 3653 differentially expressed genes (DEGs), and the qRT-PCR analysis revealed immune-related genes consistent with the expression trend in the sequencing data. The number and area of IL-10 positive cells substantially increased to resist inflammation in the challenge group. In conclusion, we analyzed the spleens of mice infected with P. multocida from multiple perspectives, and our findings lay a foundation for subsequent studies on the mechanism of pathogen-host interactions.
Collapse
|
23
|
Martin SJ, Frezza V, Davidovich P, Najda Z, Clancy DM. IL-1 family cytokines serve as 'activity recognition receptors' for aberrant protease activity indicative of danger. Cytokine 2022; 157:155935. [PMID: 35759924 DOI: 10.1016/j.cyto.2022.155935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
Members of the extended IL-1 cytokine family play key roles as instigators of inflammation in numerous infectious and sterile injury contexts and are highly enriched at barrier surfaces such as the skin, lungs and intestinal mucosa. Because IL-1 family cytokines do not possess conventional ER-golgi trafficking and secretory signals, these cytokines are typically released into the extracellular space due to tissue damage resulting in necrosis, or pathogen detection resulting in pyroptosis. The latter feature, in combination with other factors, suggests that IL-1 family cytokines serve as canonical damage-associated molecular patterns (DAMPs), which instigate inflammation in response to tissue damage. However, IL-1 family cytokines also require a proteolytic activation step and diverse intracellular, extracellular and non-self proteases have been identified that are capable of processing and activating members of this family. This suggests that IL-1 family members function as sentinels for aberrant protease activity, which is frequently associated with infection or tissue damage. Here, we overview the diversity of proteases implicated in the activation of IL-1 family cytokines and suggest that this ancient cytokine family may have evolved to complement 'pattern recognition receptors', by serving as 'activity recognition receptors' enabling the detection of aberrant enzyme activity indicative of 'danger'.
Collapse
Affiliation(s)
- Seamus J Martin
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland.
| | - Valentina Frezza
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Pavel Davidovich
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Danielle M Clancy
- Molecular Cell Biology Laboratory, Dept. of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
24
|
Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, Janssen P, Pinney J, van Loo G, Elewaut D, Massie A, Hoste E, Ravichandran KS. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature 2022; 606:776-784. [PMID: 35614212 DOI: 10.1038/s41586-022-04754-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/11/2022] [Indexed: 02/07/2023]
Abstract
Chronic non-healing wounds are a major complication of diabetes, which affects 1 in 10 people worldwide. Dying cells in the wound perpetuate the inflammation and contribute to dysregulated tissue repair1-3. Here we reveal that the membrane transporter SLC7A11 acts as a molecular brake on efferocytosis, the process by which dying cells are removed, and that inhibiting SLC7A11 function can accelerate wound healing. Transcriptomics of efferocytic dendritic cells in mouse identified upregulation of several SLC7 gene family members. In further analyses, pharmacological inhibition of SLC7A11, or deletion or knockdown of Slc7a11 using small interfering RNA enhanced efferocytosis in dendritic cells. Slc7a11 was highly expressed in dendritic cells in skin, and single-cell RNA sequencing of inflamed skin showed that Slc7a11 was upregulated in innate immune cells. In a mouse model of excisional skin wounding, inhibition or loss of SLC7A11 expression accelerated healing dynamics and reduced the apoptotic cell load in the wound. Mechanistic studies revealed a link between SLC7A11, glucose homeostasis and diabetes. SLC7A11-deficient dendritic cells were dependent on aerobic glycolysis using glucose derived from glycogen stores for increased efferocytosis; also, transcriptomics of efferocytic SLC7A11-deficient dendritic cells identified increased expression of genes linked to gluconeogenesis and diabetes. Further, Slc7a11 expression was higher in the wounds of diabetes-prone db/db mice, and targeting SLC7A11 accelerated their wound healing. The faster healing was also linked to the release of the TGFβ family member GDF15 from efferocytic dendritic cells. In sum, SLC7A11 is a negative regulator of efferocytosis, and removing this brake improves wound healing, with important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Sophia Maschalidi
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Burcu N Keçeli
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hannah K L De Cleene
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kim Lecomte
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Renée Van der Cruyssen
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Pinney
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA
| | - Geert van Loo
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Dirk Elewaut
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Ann Massie
- Laboratory of Neuro-Aging and Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Esther Hoste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Department of Microbiology, Immunology, and Cancer Biology, and the Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA. .,Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
25
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
26
|
Li H, Yang YG, Sun T. Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Front Bioeng Biotechnol 2022; 10:889291. [PMID: 35464732 PMCID: PMC9019755 DOI: 10.3389/fbioe.2022.889291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune disease is a chronic inflammatory disease caused by disorders of immune regulation. Antigen-specific immunotherapy has the potential to inhibit the autoreactivity of inflammatory T cells and induce antigen-specific immune suppression without impairing normal immune function, offering an ideal strategy for autoimmune disease treatment. Tolerogenic dendritic cells (Tol DCs) with immunoregulatory functions play important roles in inducing immune tolerance. However, the effective generation of tolerogenic DCs in vivo remains a great challenge. The application of nanoparticle-based drug delivery systems in autoimmune disease treatment can increase the efficiency of inducing antigen-specific tolerance in vivo. In this review, we discuss multiple nanoparticles, with a focus on their potential in treatment of autoimmune diseases. We also discuss how the physical properties of nanoparticles influence their therapeutic efficacy.
Collapse
Affiliation(s)
- He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- Department of Rehabilitation Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
27
|
Guo R, Liu Y, Xu N, Ling G, Zhang P. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. Eur J Pharm Biopharm 2022; 173:103-120. [DOI: 10.1016/j.ejpb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 12/07/2022]
|
28
|
Van Slambrouck J, Van Raemdonck D, Vos R, Vanluyten C, Vanstapel A, Prisciandaro E, Willems L, Orlitová M, Kaes J, Jin X, Jansen Y, Verleden GM, Neyrinck AP, Vanaudenaerde BM, Ceulemans LJ. A Focused Review on Primary Graft Dysfunction after Clinical Lung Transplantation: A Multilevel Syndrome. Cells 2022; 11:cells11040745. [PMID: 35203392 PMCID: PMC8870290 DOI: 10.3390/cells11040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/01/2023] Open
Abstract
Primary graft dysfunction (PGD) is the clinical syndrome of acute lung injury after lung transplantation (LTx). However, PGD is an umbrella term that encompasses the ongoing pathophysiological and -biological mechanisms occurring in the lung grafts. Therefore, we aim to provide a focused review on the clinical, physiological, radiological, histological and cellular level of PGD. PGD is graded based on hypoxemia and chest X-ray (CXR) infiltrates. High-grade PGD is associated with inferior outcome after LTx. Lung edema is the main characteristic of PGD and alters pulmonary compliance, gas exchange and circulation. A conventional CXR provides a rough estimate of lung edema, while a chest computed tomography (CT) results in a more in-depth analysis. Macroscopically, interstitial and alveolar edema can be distinguished below the visceral lung surface. On the histological level, PGD correlates to a pattern of diffuse alveolar damage (DAD). At the cellular level, ischemia-reperfusion injury (IRI) is the main trigger for the disruption of the endothelial-epithelial alveolar barrier and inflammatory cascade. The multilevel approach integrating all PGD-related aspects results in a better understanding of acute lung failure after LTx, providing novel insights for future therapies.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Dirk Van Raemdonck
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Cedric Vanluyten
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arno Vanstapel
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Elena Prisciandaro
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Lynn Willems
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Pulmonary Circulation Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Michaela Orlitová
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Xin Jin
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yanina Jansen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Geert M. Verleden
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Respiratory Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Arne P. Neyrinck
- Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium; (M.O.); (A.P.N.)
- Department of Anesthesiology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Bart M. Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
| | - Laurens J. Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Lung Transplant Unit, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium; (J.V.S.); (D.V.R.); (R.V.); (C.V.); (A.V.); (E.P.); (J.K.); (X.J.); (Y.J.); (G.M.V.); (B.M.V.)
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
29
|
Huang S, Li T, Chen Y, Liu J, Wang Y, Yang C, Wang C, Ju S, Bai Y, Yao W, Xiong B. Microwave ablation combined with anti-PD-1 therapy enhances systemic antitumor immunity in a multitumor murine model of Hepa1-6. Int J Hyperthermia 2022; 39:278-286. [PMID: 35129044 DOI: 10.1080/02656736.2022.2032406] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
30
|
Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022; 282:121425. [DOI: 10.1016/j.biomaterials.2022.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
31
|
Cui TX, Brady AE, Zhang YJ, Fulton CT, Popova AP. Gelsolin Attenuates Neonatal Hyperoxia-Induced Inflammatory Responses to Rhinovirus Infection and Preserves Alveolarization. Front Immunol 2022; 13:792716. [PMID: 35173718 PMCID: PMC8842948 DOI: 10.3389/fimmu.2022.792716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Prematurity and bronchopulmonary dysplasia (BPD) increase the risk of asthma later in life. Supplemental oxygen therapy is a risk factor for chronic respiratory symptoms in infants with BPD. Hyperoxia induces cell injury and release of damage-associated molecular patterns (DAMPs). Cytoskeletal filamentous actin (F-actin) is a DAMP which binds Clec9a, a C-type lectin selectively expressed on CD103+ dendritic cells (DCs). Co-stimulation of Clec9a and TLR3 induces maximal proinflammatory responses. We have shown that neonatal hyperoxia (a model of BPD) increases lung IL-12+Clec9a+CD103+ DCs, pro-inflammatory responses and airway hyperreactivity following rhinovirus (RV) infection. CD103+ DCs and Clec9a are required for these responses. Hyperoxia increases F-actin levels in bronchoalveolar lavage fluid (BALF). We hypothesized that the F-actin severing protein gelsolin attenuates neonatal hyperoxia-induced Clec9a+CD103+ DC-dependent pro-inflammatory responses to RV and preserves alveolarization. We exposed neonatal mice to hyperoxia and treated them with gelsolin intranasally. Subsequently we inoculated the mice with RV intranasally. Alternatively, we inoculated normoxic neonatal mice with BALF from hyperoxia-exposed mice (hyperoxic BALF), RV and gelsolin. We analyzed lung gene expression two days after RV infection. For in vitro studies, lung CD11c+ cells were isolated from C57BL/6J or Clec9agfp-/- mice and incubated with hyperoxic BALF and RV. Cells were analyzed by flow cytometry. In neonatal mice, gelsolin blocked hyperoxia-induced Il12p40, TNF-α and IFN-γ mRNA and protein expression in response to RV infection. Similar effects were observed when gelsolin was co-administered with hyperoxic BALF and RV. Gelsolin decreased F-actin levels in hyperoxic BALF in vitro and inhibited hyperoxia-induced D103lo DC expansion and inflammation in vivo. Gelsolin also attenuated hyperoxia-induced hypoalveolarization. Further, incubation of lung CD11c+ cells from WT and Clec9agfp-/- mice with hyperoxic BALF and RV, showed Clec9a is required for maximal hyperoxic BALF and RV induced IL-12 expression in CD103+ DCs. Finally, in tracheal aspirates from mechanically ventilated human preterm infants the F-actin to gelsolin ratio positively correlates with FiO2, and gelsolin levels decrease during the first two weeks of mechanical ventilation. Collectively, our findings demonstrate a promising role for gelsolin, administered by inhalation into the airway to treat RV-induced exacerbations of BPD and prevent chronic lung disease.
Collapse
Affiliation(s)
- Tracy X. Cui
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E. Brady
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ying-Jian Zhang
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Christina T. Fulton
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | |
Collapse
|
32
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. A dendritic cell-like biomimetic nanoparticle enhances T cell activation for breast cancer immunotherapy. Chem Sci 2021; 13:105-110. [PMID: 35059157 PMCID: PMC8694320 DOI: 10.1039/d1sc03525h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy has remarkably improved the therapeutic effect of melanoma and non-small cell lung cancer in the clinic. Nevertheless, it showed disappointing clinical outcomes for treating immunosuppressive tumors, wherein aggressive T cells are rather limited in tumor sites. Therefore, regulating the behavior of T cells in tumor sites to increase their attack ability for suppressing the immunosuppressive tumor is highly desirable. Inspiringly, we designed a dendritic cell-like biomimetic nanoparticle (DMSNs3@HA) to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors. In this work, anti-CD3 and anti-CD28 were responsible for mimicking dendritic cells to activate T cells, and anti-PD-1 for blocking the pathway of PD-1/PD-L1 to break the immune “brake”, which synergistically regulated the behavior of T cells to attack cancer cells. Experimental results indicated that DMSNs3@HA can effectively activate T cells and improve their immune response to significantly inhibit the growth of breast cancer. Moreover, it also proved that T cell activation combining immune checkpoint blocking induced the “1 + 1 >2” immunotherapy effect against immunosuppressive tumors. We expect that this strategy will provide new insights into tumor immunotherapy by modulating T cell behavior. A dendritic cell-like biomimetic nanoparticle has been designed to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors.![]()
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
33
|
Li X, Li Y, Xu A, Zhou D, Zhang B, Qi S, Chen Z, Wang X, Ou X, Cao B, Qu C, Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 2021; 10:1992104. [PMID: 34676150 PMCID: PMC8525945 DOI: 10.1080/2162402x.2021.1992104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Serum autoantibodies against tumor-associated antigen have important value in the early diagnosis of hepatocellular carcinoma (HCC), but the mechanism of autoantibody production is poorly understood. We previously showed that autoantibodies against the centromere protein F (CENPF) may be useful as an early diagnostic marker for HCC. Here we explored the mechanism of cell apoptosis-based CENPF autoantibody production and verified the correlation of CENPF autoantibody level with HCC development. We demonstrated that CENPF was overexpressed and aberrantly localized throughout the nuclei and cytoplasm in human HCC cells compared with hepatic cells. CENPF overexpression promoted the production of CENPF autoantibodies in a manner that correlated with tumor growth of mouse HCC model. During apoptosis of HCC cells, CENPF protein translocated to apoptotic vesicles and relocalized at the cell surface. Through isolating apoptotic components, we found apoptotic body and blebs with lower CD31 and CD47 expression more effectively induced DC phagocytosis and maturation compared with apoptotic intact cells in vitro, and this DC response was independent of CENPF expression. Moreover, injection of mice with apoptotic bodies and blebs effectively induced an immune response and the production of CENPF-specific antibodies. Our findings provide a first elucidation of mechanisms underlying the CENPF autoantibody production via cell apoptosis-induced CENPF translocation, and demonstrate a direct correlation between CENPF autoantibody levels and HCC progression, suggesting the potential of CENPF autoantibody as an HCC diagnostic marker.
Collapse
Affiliation(s)
- Xiaojin Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunfeng Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Huang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
35
|
Guenther C, Faisal I, Fusciello M, Sokolova M, Harjunpää H, Ilander M, Tallberg R, Vartiainen MK, Alon R, Gonzalez-Granado JM, Cerullo V, Fagerholm SC. β2-Integrin Adhesion Regulates Dendritic Cell Epigenetic and Transcriptional Landscapes to Restrict Dendritic Cell Maturation and Tumor Rejection. Cancer Immunol Res 2021; 9:1354-1369. [PMID: 34561280 DOI: 10.1158/2326-6066.cir-21-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/29/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DC), the classic antigen-presenting cells of the immune system, switch from an adhesive, phagocytic phenotype in tissues, to a mature, nonadhesive phenotype that enables migration to lymph nodes to activate T cells and initiate antitumor responses. Monocyte-derived DCs are used in cancer immunotherapy, but their clinical efficacy is limited. Here, we show that cultured bone marrow-derived DCs (BM-DC) expressing dysfunctional β2-integrin adhesion receptors displayed enhanced tumor rejection capabilities in B16.OVA and B16-F10 melanoma models. This was associated with an increased CD8+ T-cell response. BM-DCs expressing dysfunctional β2-integrins or manipulated to disrupt integrin adhesion or integrin/actin/nuclear linkages displayed spontaneous maturation in ex vivo cultures (increased costimulatory marker expression, IL12 production, and 3D migration capabilities). This spontaneous maturation was associated with an altered DC epigenetic/transcriptional profile, including a global increase in chromatin accessibility and H3K4me3/H3K27me3 histone methylation. Genome-wide analyses showed that H3K4me3 methylation was increased on DC maturation genes, such as CD86, Il12, Ccr7, and Fscn1, and revealed a role for a transcription factor network involving Ikaros and RelA in the integrin-regulated phenotype of DCs. Manipulation of the integrin-regulated epigenetic landscape in wild-type ex vivo-cultured BM-DCs enhanced their functionality in tumor rejection in vivo. Thus, β2-integrin-mediated adhesion to the extracellular environment plays an important role in restricting DC maturation and antitumor responses through regulation of the cellular epigenetic and transcriptional landscape. Targeting β2-integrins could therefore be a new strategy to improve the performance of current DC-based cancer immunotherapies.
Collapse
Affiliation(s)
- Carla Guenther
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Imrul Faisal
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Maria Sokolova
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Heidi Harjunpää
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mette Ilander
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Robert Tallberg
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Ronen Alon
- Weizmann Institute of Science, Rehovot, Israel
| | - Jose-Maria Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Susanna Carola Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Chen KL, Patel J, Zeidi M, Wysocka M, Bashir MM, Patel B, Maddukuri S, White B, Werth VP. Myeloid Dendritic Cells Are Major Producers of IFN-β in Dermatomyositis and May Contribute to Hydroxychloroquine Refractoriness. J Invest Dermatol 2021; 141:1906-1914.e2. [PMID: 33675790 PMCID: PMC8316264 DOI: 10.1016/j.jid.2020.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Dermatomyositis pathogenesis remains incompletely understood; however, recent work suggests a predominant IFN-1 response. We explored dermatomyositis pathogenesis by quantifying the inflammatory cells in the skin, comparing myeloid with plasmacytoid dendritic cell release of IFN-β, and assessing myeloid dendritic cell (mDC) contribution to hydroxychloroquine refractoriness. Immunohistochemistry was performed to assess cell-type expression in lesional skin biopsies from 12 patients with moderate-to-severe cutaneous dermatomyositis. Immunofluorescence, laser-capture microdissection, and flow cytometry were used to assess mDC release of IFN-β in lesional skin biopsies and blood of patients with dermatomyositis. Immunohistochemistry was utilized to determine whether myeloid or plasmacytoid dendritic cells were increased in hydroxychloroquine nonresponders. CD4+, CD11c+, and CD69+ cells were more populous in lesional skin of patients with dermatomyositis. mDCs colocalized with IFN-β by immunofluorescence and laser-capture microdissection revealed increased IFN-β mRNA expression by mDCs in lesional skin of patients with dermatomyositis. In blood, both mDCs and plasmacytoid dendritic cells were major producers of IFN-β in patients with dermatomyositis, whereas plasmacytoid dendritic cells predominately released IFN-β in healthy controls (P < 0.01). mDCs were significantly increased in the skin of hydroxychloroquine nonresponders compared with that in the skin of responders (P < 0.05). mDCs cells appear to play an important role in dermatomyositis pathogenesis and IFN-β production.
Collapse
Affiliation(s)
- Kristen L Chen
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jay Patel
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Majid Zeidi
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria Wysocka
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Muhammad M Bashir
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Basil Patel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Spandana Maddukuri
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara White
- Corbus Pharmaceuticals Holdings, Inc, Norwood, Massachusetts, USA
| | - Victoria P Werth
- Department of Dermatology, Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
37
|
Ntouros PA, Vlachogiannis NI, Pappa M, Nezos A, Mavragani CP, Tektonidou MG, Souliotis VL, Sfikakis PP. Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol 2021; 229:108765. [PMID: 34089859 PMCID: PMC8171000 DOI: 10.1016/j.clim.2021.108765] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Whether and how an acute immune challenge may affect DNA Damage Response (DDR) is unknown. By studying vaccinations against Influenza and SARS-CoV-2 (mRNA-based) we found acute increases of type-I interferon-inducible gene expression, oxidative stress and DNA damage accumulation in blood mononuclear cells of 9 healthy controls, coupled with effective anti-SARS-CoV-2 neutralizing antibody production in all. Increased DNA damage after SARS-CoV-2 vaccine, partly due to increased oxidative stress, was transient, whereas the inherent DNA repair capacity was found intact. In contrast, in 26 patients with Systemic Lupus Erythematosus, who served as controls in the context of chronic immune activation, we validated increased DNA damage accumulation, increased type-I interferon-inducible gene expression and induction of oxidative stress, however aberrant DDR was associated with deficiencies in nucleotide excision repair pathways. These results indicate that acute immune challenge can indeed activate DDR pathways, whereas, contrary to chronic immune challenge, successful repair of DNA lesions occurs.
Collapse
Affiliation(s)
- Panagiotis A Ntouros
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Adrianos Nezos
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vassilis L Souliotis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
38
|
Tranberg KG. Local Destruction of Tumors and Systemic Immune Effects. Front Oncol 2021; 11:708810. [PMID: 34307177 PMCID: PMC8298109 DOI: 10.3389/fonc.2021.708810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Current immune-based therapies signify a major advancement in cancer therapy; yet, they are not effective in the majority of patients. Physically based local destruction techniques have been shown to induce immunologic effects and are increasingly used in order to improve the outcome of immunotherapies. The various local destruction methods have different modes of action and there is considerable variation between the different techniques with respect to the ability and frequency to create a systemic anti-tumor immunologic effect. Since the abscopal effect is considered to be the best indicator of a relevant immunologic effect, the present review focused on the tissue changes associated with this effect in order to find determinants for a strong immunologic response, both when local destruction is used alone and combined with immunotherapy. In addition to the T cell-inflammation that was induced by all methods, the analysis indicated that it was important for an optimal outcome that the released antigens were not destroyed, tumor cell death was necrotic and tumor tissue perfusion was at least partially preserved allowing for antigen presentation, immune cell trafficking and reduction of hypoxia. Local treatment with controlled low level hyperthermia met these requisites and was especially prone to result in abscopal immune activity on its own.
Collapse
|
39
|
Abstract
Introduction: Innate immunity is armed with interferons (IFNs) that link innate immunity to adaptive immunity to generate long-term and protective immune responses against invading pathogens and tumors. However, regulation of IFN production is crucial because chronic IFN responses can have deleterious effects on both antitumor and antimicrobial immunity in addition to provoking autoinflammatory or autoimmune conditions.Areas covered: Here, we focus on the accumulated evidence on antimicrobial and antitumor activities of type I and II IFNs. We first summarize the intracellular and intercellular mechanisms regulating IFN production and signaling. Then, we discuss the mechanisms modulating the dual nature of IFNs for both antitumor and antimicrobial immune responses. Finally, we review the detrimental role of IFNs for induction of autoinflammation and autoimmunity.Expert opinion: The current evidence suggests that the dual role of IFNs for antimicrobial and antitumor immunity is dependent not only on the timing, administration route, and dose of IFNs but also on the type of pathogen/tumor. Therefore, we think that combinatorial therapies involving IFN-inducing adjuvants and immune-checkpoint blockers may offer therapeutic potential, especially for cancer, whereas infectious, autoinflammatory or autoimmune diseases require fine adjustment of timing, dose, and route of the administration for candidate IFN-based vaccines or immunotherapies.
Collapse
Affiliation(s)
- Burcu Temizoz
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, the University of Tokyo (IMSUT), Tokyo, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan.,Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research (CVAR), National Institutes of Biomedical Innovation, Health and Nutrition (NBIOHN), Osaka, Japan
| |
Collapse
|
40
|
Ren S, Xiong X, You H, Shen J, Zhou P. The Combination of Immune Checkpoint Blockade and Angiogenesis Inhibitors in the Treatment of Advanced Non-Small Cell Lung Cancer. Front Immunol 2021; 12:689132. [PMID: 34149730 PMCID: PMC8206805 DOI: 10.3389/fimmu.2021.689132] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Immune checkpoint blockade (ICB) has become a standard treatment for non-small cell lung cancer (NSCLC). However, most patients with NSCLC do not benefit from these treatments. Abnormal vasculature is a hallmark of solid tumors and is involved in tumor immune escape. These abnormalities stem from the increase in the expression of pro-angiogenic factors, which is involved in the regulation of the function and migration of immune cells. Anti-angiogenic agents can normalize blood vessels, and thus transforming the tumor microenvironment from immunosuppressive to immune-supportive by increasing the infiltration and activation of immune cells. Therefore, the combination of immunotherapy with anti-angiogenesis is a promising strategy for cancer treatment. Here, we outline the current understanding of the mechanisms of vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) signaling in tumor immune escape and progression, and summarize the preclinical studies and current clinical data of the combination of ICB and anti-angiogenic drugs in the treatment of advanced NSCLC.
Collapse
Affiliation(s)
- Sijia Ren
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, China
| | - Xinxin Xiong
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hua You
- Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianfei Shen
- Taizhou Hospital, Zhejiang University School of Medicine, Taizhou, China
- *Correspondence: Jianfei Shen, ; Penghui Zhou,
| | - Penghui Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jianfei Shen, ; Penghui Zhou,
| |
Collapse
|
41
|
Abou-Daya KI, Oberbarnscheidt MH. Innate allorecognition in transplantation. J Heart Lung Transplant 2021; 40:557-561. [PMID: 33958265 DOI: 10.1016/j.healun.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Successful allogeneic transplantation has been made possible by suppressing activation of the adaptive immune system. Current immunosuppressive therapy prevents rejection by targeting T and B cells. Despite this effective treatment, it is the innate immune system, which includes dendritic cells, monocytes, natural killer cells, that is responsible for the initiation of the adaptive immune response. Recent work has described that the innate immune system is capable of recognizing allogeneic nonself and some of the mechanisms of innate allorecognition have been uncovered. Better understanding of the role of the innate immune system in initiation and maintenance of the allo-immune response has potential to lead to better treatment strategies for transplant patients, prolonging allograft survival. Here, we review advances in our understanding of innate allorecognition in transplantation.
Collapse
Affiliation(s)
- Khodor I Abou-Daya
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin H Oberbarnscheidt
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Razim A, Pyclik M, Pacyga K, Górska S, Xu J, Olszewski MA, Gamian A, Myc A. Silicone Oil-Based Nanoadjuvants as Candidates for a New Formulation of Intranasal Vaccines. Vaccines (Basel) 2021; 9:vaccines9030234. [PMID: 33800507 PMCID: PMC7999606 DOI: 10.3390/vaccines9030234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/05/2023] Open
Abstract
Many conventional vaccines are administered via a needle injection, while most pathogens primarily invade the host via mucosal surfaces. Moreover, protective IgA antibodies are insufficiently induced by parenteral vaccines. Mucosal immunity induces both local and systemic response to pathogens and typically lasts for long periods of time. Therefore, vaccination via mucosal routes has been increasingly explored. However, mucosal vaccines require potent adjuvants to become efficacious. Despite many efforts to develop safe and robust adjuvants for mucosal vaccines, only a few have been approved for use in human formulations. The aim of our study was to design, develop and characterize new silicone oil-based nanoadjuvant candidates for intranasal vaccines with potential to become mucosal adjuvants. We have developed an array of nanoadjuvant candidates (NACs), based on well-defined ingredients. NAC1, 2 and 3 are based on silicone oil, but differ in the used detergents and organic solvents, which results in variations in their droplet size and zeta potential. NACs' cytotoxicity, Tumor Necrosis Factor α (TNF-α) induction and their effect on antigen engulfment by immune cells were tested in vitro. Adjuvant properties of NACs were verified by intranasal vaccination of mice together with ovalbumin (OVA). NACs show remarkable stability and do not require any special storage conditions. They exhibit bio-adhesiveness and influence the degree of model protein engulfment by epithelial cells. Moreover, they induce high specific anti-OVA IgG antibody titers after two intranasal administrations. Nanoadjuvant candidates composed of silicone oil and cationic detergents are stable, exhibit remarkable adjuvant properties and can be used as adjuvants for intranasal immunization.
Collapse
Affiliation(s)
- Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
- Correspondence:
| | - Marcelina Pyclik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Katarzyna Pacyga
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.P.); (K.P.); (S.G.)
| | - Jintao Xu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA; (J.X.); (M.A.O.)
- Research Service, Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Michal A. Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA; (J.X.); (M.A.O.)
- Research Service, Department of Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
| | - Andrzej Myc
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.G.); (A.M.)
- MNIMBS, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Aaes TL, Vandenabeele P. The intrinsic immunogenic properties of cancer cell lines, immunogenic cell death, and how these influence host antitumor immune responses. Cell Death Differ 2021; 28:843-860. [PMID: 33214663 PMCID: PMC7937679 DOI: 10.1038/s41418-020-00658-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/30/2023] Open
Abstract
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.
Collapse
Affiliation(s)
- Tania Løve Aaes
- grid.11486.3a0000000104788040Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Vandenabeele
- grid.5342.00000 0001 2069 7798Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ,Cancer Research Institute Ghent (CRIG), Ghent, Belgium ,grid.11486.3a0000000104788040Unit of Molecular Signaling and Cell Death, VIB Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
44
|
Yang Y, Liu L, Guo Z, Li L, Shao Y, Song M, Sun B. Investigation and assessment of neutrophil dysfunction early after severe burn injury. Burns 2021; 47:1851-1862. [PMID: 33820675 DOI: 10.1016/j.burns.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/09/2021] [Accepted: 02/11/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Extensive burn injury results in a complex immune response that is associated with mortality and prognosis. Studies on acquired immune and the development of sepsis in burn patients have been reported. However, one of the main cells in innate immune, neutrophil dysfunction in the burn shock stage has not been thoroughly characterized. METHODS Neutrophil chemotaxis, expression of neutrophil surface markers (P2X1 receptor, [P2RX1]), degranulation (myeloperoxidase [MPO], heparin-binding protein [HBP], matrix metalloproteinase-9 [MMP-9] and neutrophil elastase [NE]), oxidative burst capacity, neutrophil extracellular trap (NET) generation, phagocytosis and apoptosis were measured in 18 patients with major burns (≥30% total body surface area [TBSA]) within 48 h after burn injury. In addition, circulating neutrophils and vascular permeability in mice model with 30% TBSA third-degree burns were also observed and investigated. RESULTS Neutrophil functions were reduced considerably in burn shock stage, which was characterized by decreased chemotaxis, phagocytosis and abnormal bactericidal function. Increased release of heparin-binding protein (HBP) and the expression of P2RX1 on the neutrophil surface are related to fluid leakage and decreased chemotaxis during burn shock stage, respectively. The combination of HBP concentration in plasma and P2RX1 expression on neutrophils gives a better prediction of neutrophil dysfunction in burn-injured patients. CONCLUSION Neutrophil dysfunction plays a key role in the development of burn injury. Targeting the restoration of neutrophil function may be a feasible therapeutic intervention to help reduce fluid loss during shock and the severity of subsequent infection.
Collapse
Affiliation(s)
- Yunxi Yang
- School of Medicine, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Lu Liu
- School of Medicine, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Zaiwen Guo
- School of Medicine, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Linbin Li
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Mingming Song
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China.
| |
Collapse
|
45
|
Cui TX, Fulton CT, Brady AE, Zhang YJ, Goldsmith AM, Popova AP. Lung CD103 +dendritic cells and Clec9a signaling are required for neonatal hyperoxia-induced inflammatory responses to rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2021; 320:L193-L204. [PMID: 33112186 PMCID: PMC7948088 DOI: 10.1152/ajplung.00334.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022] Open
Abstract
Premature infants, especially those with bronchopulmonary dysplasia (BPD), develop recurrent severe respiratory viral illnesses. We have shown that hyperoxic exposure of immature mice, a model of BPD, increases lung IL-12-producing Clec9a+ CD103+ dendritic cells (DCs), pro-inflammatory responses, and airway hyperreactivity following rhinovirus (RV) infection. However, the requirement for CD103+ DCs and Clec9a, a DAMP receptor that binds necrotic cell cytoskeletal filamentous actin (F-actin), for RV-induced inflammatory responses has not been demonstrated. To test this, 2-day-old C57BL/6J, CD103+ DC-deficient Batf3-/- or Clec9agfp-/- mice were exposed to normoxia or hyperoxia for 14 days. Also, selected mice were treated with neutralizing antibody against CD103. Immediately after hyperoxia, the mice were inoculated with RV intranasally. We found that compared with wild-type mice, hyperoxia-exposed Batf3-/- mice showed reduced levels of IL-12p40, IFN-γ, and TNF-α, fewer IFN-γ-producing CD4+ T cells, and decreased airway responsiveness following RV infection. Similar effects were observed in anti-CD103-treated and Clec9agfp-/- mice. Furthermore, hyperoxia increased airway dead cell number and extracellular F-actin levels. Finally, studies in preterm infants with respiratory distress syndrome showed that tracheal aspirate CLEC9A expression positively correlated with IL12B expression, consistent with the notion that CLEC9A+ cells are responsible for IL-12 production in humans as well as mice. We conclude that CD103+ DCs and Clec9a are required for hyperoxia-induced pro-inflammatory responses to RV infection. In premature infants, Clec9a-mediated activation of CD103+ DCs may promote pro-inflammatory responses to viral infection, thereby driving respiratory morbidity.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Basic-Leucine Zipper Transcription Factors/physiology
- Dendritic Cells/immunology
- Female
- Humans
- Hyperoxia/physiopathology
- Infant, Newborn
- Infant, Premature/immunology
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Lectins, C-Type/physiology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Picornaviridae Infections/complications
- Picornaviridae Infections/virology
- Pneumonia/immunology
- Pneumonia/virology
- Receptors, Immunologic/physiology
- Repressor Proteins/physiology
- Respiratory Distress Syndrome, Newborn/immunology
- Respiratory Distress Syndrome, Newborn/metabolism
- Respiratory Distress Syndrome, Newborn/pathology
- Rhinovirus/isolation & purification
Collapse
Affiliation(s)
- Tracy X Cui
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christina T Fulton
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexander E Brady
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Ying-Jian Zhang
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Adam M Goldsmith
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Antonia P Popova
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
46
|
First Report of Genetic Variability of Erysipelothrix sp. Strain 2 in Turkeys Associated to Vero Cells Morphometric Alteration. Pathogens 2021; 10:pathogens10020141. [PMID: 33535396 PMCID: PMC7912226 DOI: 10.3390/pathogens10020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
Erysipelas is a disease caused by the Erysipelothrix genus, whose main species is the E. rhusiopathiae, the causative agent of animal erysipelas and human erysipeloid. We isolated Erysipelothrix sp. strain 2 (ES2) from turkey's organs during an outbreak in Brazilian commercial and breeder flocks with sepsis and high mortality levels. We studied 18 flocks, accounting for 182 samples, being eight flocks (84 samples) as ES2 positive with individuals demonstrating clinical symptoms and high mortality. We obtained the genetic variability of 19 samples with PFGE and found two clones, both from the same flock but different samples, and two clusters. Interestingly, we found 15 strains with high genetic variability among and within flocks. We have found a positive association between the proximity of ES2 positive turkey flocks and commercial swine sites through epidemiological analysis. We infected Vero cells with two different isolates and three distinct concentrations of ES2. After performing the morphometry, we recorded enlargement of the nucleus and nucleolus. Moreover, we performed fluorescence assays that resulted in apoptotic and necrotic cells. We demonstrated that ES2 could multiply in the extracellular medium and invade and survive inside Vero cells. For the first time, our finds show that ES2 may have similar behavior as E. rhusiopathiae as a facultative intracellular microorganism, which may represent a hazard for humans.
Collapse
|
47
|
Bernal JA, García-Campos J, Marco-LLedó J, Andrés M. Gouty Involvement of Foot and Ankle: Beyond Flares. REUMATOLOGIA CLINICA 2021; 17:106-112. [PMID: 32067922 DOI: 10.1016/j.reuma.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
The foot and ankle are common locations of deposition of monosodium urate (MSU) crystals, as indicated by the clinical manifestations presented by patients with gout, which are not limited to the acute inflammation of the big toe. We present a narrative literature review aimed to update the gout involvement of foot and ankle and how it affects the quality of life. Cumulative reports indicate that gout, even at the non-tophaceous stage, could cause pain, gait impairment and limit the mobility at lower limbs. These patients may present difficulties in some activities of daily living such as choosing footwear, thus leading to an impaired quality of life. Gout is a curable disease by dissolving MSU crystals but remains unclear how this could modify some of these foot and ankle manifestations, especially when structural damage has already occurred. Furthermore, a collaboration between rheumatologists and podiatrists seems helpful to understand, relieve these symptoms and improve the quality of life in gouty patients.
Collapse
Affiliation(s)
- José-Antonio Bernal
- Sección de Reumatología, Hospital Marina Baixa, Villajoyosa, Alicante, Spain.
| | - Jonatan García-Campos
- Departamento de Ciencias del Comportamiento y Salud, Universidad Miguel Hernández, Alicante, Spain
| | - Javier Marco-LLedó
- Departamento de Ciencias del Comportamiento y Salud, Universidad Miguel Hernández, Alicante, Spain
| | - Mariano Andrés
- Sección de Reumatología, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante, Alicante, Spain; Departamento de Medicina Clínica, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
48
|
Huang Y, Wu X, Gui L, Jiang Y, Tu L, Li X, Jiang B, Wang Y, Zheng X, Wei Q, Li Q, Ou J, Chen Z, Xie Y, Lin Z, Liao Z, Fang L, Qiu M, Cao S, Gu J. Age-Specific Imbalance of Circulating Tfh Cell Subsets and Its Association With Gout-Targeted Kidney Impairment. Front Immunol 2021; 11:625458. [PMID: 33505406 PMCID: PMC7829215 DOI: 10.3389/fimmu.2020.625458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Gout is a chronic disease characterized by the deposition of monosodium urate (MSU) crystals in tissue. Study with a focus on adaptive immune response remains to be understood although innate immune response has been reported extensively in gout etiology. Our study attempted to investigate the association of gout-related immune cell imbalance with clinical features and comorbidity with renal impairment and the implicated pathogenesis via the assessment of T and B cell subsets in different activity phases or with immune effects combined with the analyses of clinical parameters. Methods Fifty-eight gout patients and 56 age- and sex-matched healthy individuals were enrolled. To learn the roles of circulating T cells, a lymphocyte profile incorporating 32 T cell subsets was tested from isolated freshly peripheral blood monocyte cells (PBMCs) with multiple-color flow cytometry. Furthermore, the collected clinical features of participants were used to analyze the characteristics of these differential cell subsets. Stratified on the basis of the level of creatinine (Cr, enzymatic method), all patients were categorized into Crlow (Cr ≤ 116 μmol/L) and Crhi (Cr > 116 μmol/L) groups to exploit whether these gout-associated T cell subsets were functional in gout-targeted kidney dysfunction. The differentiation of B cells was investigated in gout patients. Results Our results show that CD 4+ T cells, Th2 cells, and Tc2 cells were upregulated, whereas Tc17 cells were downregulated. Tfh cells skewed toward the polarization of Tfh2 cells. Specifically, Tfh2 cells increased, but Tfh1 cells decreased, accompanied with aging for gout patients, suggesting that age might trigger the skewing of Tfh1/Tfh2 cell subsets to influence gout development. Moreover, Tfh2 cells were connected to renal dysfunction as well. No alterations of B cell subsets were observed in patients when compared to controls. Conclusions Our data demonstrate age-specific dysfunctions of Tfh1/2 cells in gout occurrence, and Tfh2 cell upregulation is associated with gout-targeted renal dysfunction. However, Tfh2 cells may function in auto-inflammatory gout independent of helping B differentiation, and an in-depth study remains to be conducted.
Collapse
Affiliation(s)
- Yefei Huang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyu Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lian Gui
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yutong Jiang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liudan Tu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Li
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Boxiong Jiang
- Medical Examination Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yina Wang
- VIP Medical Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuqi Zheng
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiuxia Li
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiayong Ou
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zena Chen
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ya Xie
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhiming Lin
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Linkai Fang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minli Qiu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuangyan Cao
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
49
|
Blaauboer A, Sideras K, van Eijck CHJ, Hofland LJ. Type I interferons in pancreatic cancer and development of new therapeutic approaches. Crit Rev Oncol Hematol 2020; 159:103204. [PMID: 33387625 DOI: 10.1016/j.critrevonc.2020.103204] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has emerged as a new treatment strategy for cancer. However, its promise in pancreatic cancer has not yet been realized. Understanding the immunosuppressive tumor microenvironment of pancreatic cancer, and identifying new therapeutic targets to increase tumor-specific immune responses, is necessary in order to improve clinical outcomes. Type I interferons, e.g. IFN-α and -β, are considered as an important bridge between the innate and adaptive immune system. Thereby, type I IFNs induce a broad spectrum of anti-tumor effects, including immunologic, vascular, as well as direct anti-tumor effects. While IFN therapies have been around for a while, new insights into exogenous and endogenous activation of the IFN pathway have resulted in new IFN-related cancer treatment strategies. Here, we focus on the pre-clinical and clinical evidence of novel ways to take advantage of the type I IFN pathway, such as IFN based conjugates and activation of the STING and RIG-I pathways.
Collapse
Affiliation(s)
- Amber Blaauboer
- Department of Surgery, Rotterdam, The Netherlands; Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Leo J Hofland
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
50
|
Lee YJ, Han Y, Joo HG. Bordetella bronchiseptica is a potent and safe adjuvant that enhances the antigen-presenting capability of dendritic cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:47-52. [PMID: 31908574 PMCID: PMC6940501 DOI: 10.4196/kjpp.2020.24.1.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that Bordetella bronchiseptica (B. bronchiseptica) antigen (Ag) enhances the Mycoplasma hyopneumoniae Ag-specific immune response. The focus of this study was whether acellular bacterin of B. bronchiseptica could be used as an adjuvant to increase antigen-presenting capability of dendritic cells (DCs) by increasing the level of activation. The metabolic activity of DCs was increased by B. bronchiseptica, similar to lipopolysaccharide (LPS). Flow cytometry analysis revealed that B. bronchiseptica increases the expression of major histocompatibility complex class-2, cluster of differentiation (CD)40, CD54, and CD86 which are closely related to DC-mediated immune responses. B. bronchiseptica enhanced the production of cytokines related to adaptive immune responses. Furthermore, the survival rate of B. bronchiseptica-injected groups was 100% at 15 and 20 mg/kg doses, whereas that of LPS-injected groups was only 20%, 0% at 15 and 20 mg/kg doses respectively, and so B. bronchiseptica is likely to be safer than LPS. Taken together, these results indicate that B. bronchiseptica can be used as an adjuvant to enhance the antigen-presenting capability of DCs. B. bronchiseptica is a candidate for producing vaccines, especially in case of DC-mediating efficacy and safety demands. This study provides researchers and clinicians with valuable information regarding the usage of B. bronchiseptica as a safe bacteria-derived immunostimulating agent for developing efficient vaccines.
Collapse
Affiliation(s)
- You-Jeong Lee
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Yong Han
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea
| | - Hong-Gu Joo
- College of Veterinary Medicine, Jeju National University, Jeju 63243, Korea.,Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|