1
|
Yaqoob H, Ahmad H, Ali SI, Patel N, Arif A. Missense mutations in the CITED2 gene may contribute to congenital heart disease. BMC Cardiovasc Disord 2024; 24:516. [PMID: 39333893 PMCID: PMC11429617 DOI: 10.1186/s12872-024-04035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is a lifelong abnormality present from birth. Multiple studies have shown that mutations in genes involved in heart development could cause congenital heart disease. The CITED2 gene works as a transcription factor in the hypoxic pathway for the development of the heart. Therefore, five CHD types, ventricular septal defect, atrial septal defect, atrioventricular septal defect, tetralogy of fallot, and patent ductus arteriosus, were evaluated by conducting a targeted single nucleotide polymorphism (SNP) analysis of the CITED2 gene variant rs375393125 (T > C). This study aimed to identify the association of CITED2 gene mutations in CHD patients. METHODS Three hundred fifty samples, 250 from patients and 100 from controls, were collected for this genetic analysis. Allele-specific PCR and gel electrophoresis were used to identify the target missense mutations. The genotypic results of the CHDs were further validated through Sanger sequencing. RESULTS The frequency of the homozygous mutant (CC) in CHD patients was 48.4%, and of the heterozygous mutant (TC) genotype was 11.4%; these percentages are higher than controls (1%). The control samples had only one heterozygous TC and no homozygous CC genotype. The chi-square value was obtained at 103.9 with a probability of 0.05, more significant than the significance value of 21.03. The odds ratio was 43.7, which is > 1. The calculated value of ANOVA was 11.6, which was more significant than the F critical value of 3.7. As a result of sequencing, the mutant sample of each selected CHD type was found heterozygous or homozygous, and the results were like those obtained through conventional PCR. CONCLUSION The samples of CHD patients showed mutations. Therefore, the CITED2 gene SNP might be associated with CHD.
Collapse
Affiliation(s)
- Hira Yaqoob
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Hussain Ahmad
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Syed Irtiza Ali
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Najma Patel
- National Institute of Cardiovascular Diseases Pakistan Rafiqui (H.J.), Shaheed Road, Karachi, Pakistan
| | - Afsheen Arif
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
2
|
Cao L, Zhou Y, Gao L, Yin H, Zhang M, Zhang H, Ju P, Dou K, Ai S. Ascorbic Acid Induced the Improved Oxygen Vacancy Defects of Bi 4O 5Br 2 and Its Application on Photoelectrochemical Detection of DNA Demethylase MBD2 with Improved Detection Sensitivity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306365. [PMID: 38009777 DOI: 10.1002/smll.202306365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Indexed: 11/29/2023]
Abstract
Oxygen vacancy defects (OVs) are one of the main strategies for nanomaterials modification to improve the photoactivity, but current methods for fabricating OVs are usually complicated and harsh. It is important to develop simple, rapid, safe, and mild methods to fabricate OVs. By studying the effects of different weak reducing agents, the concentration of the reducing agent and the reaction time on fabrication of OVs, it is found that L-ascorbic acid (AA) gently and rapidly induces the increase of OVs in Bi4O5Br2 at room temperature. The increased OVs not only improve the adsorption of visible light, but also enhance the photocurrent response. Based on this, the preparation of OVs in Bi4O5Br2 is employed to the development of a photoelectrochemical biosensor for the detection of DNA demethylase of methyl-CpG binding domain protein 2 (MBD2). The biosensor shows a wide linear range of 0.1-400 ng mL-1 and a detection limit as low as 0.03 ng mL-1 (3σ). In addition, the effect of plasticizers on MBD2 activity is evaluated using this sensor. This work not only provides a novel method to prepare OVs in bismuth rich materials, but also explores a new novel evaluation tool for studying the ecotoxicological effects of contaminants.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Miao Zhang
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Haowei Zhang
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, P. R. China
| | - Kunpeng Dou
- College of Information Science and Engineering, Ocean University of China, Qingdao, 266061, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, 271018, P. R. China
| |
Collapse
|
3
|
Kersey AL, Cheng DY, Deo KA, Dubell CR, Wang TC, Jaiswal MK, Kim MH, Murali A, Hargett SE, Mallick S, Lele TP, Singh I, Gaharwar AK. Stiffness assisted cell-matrix remodeling trigger 3D mechanotransduction regulatory programs. Biomaterials 2024; 306:122473. [PMID: 38335719 DOI: 10.1016/j.biomaterials.2024.122473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Engineered matrices provide a valuable platform to understand the impact of biophysical factors on cellular behavior such as migration, proliferation, differentiation, and tissue remodeling, through mechanotransduction. While recent studies have identified some mechanisms of 3D mechanotransduction, there is still a critical knowledge gap in comprehending the interplay between 3D confinement, ECM properties, and cellular behavior. Specifically, the role of matrix stiffness in directing cellular fate in 3D microenvironment, independent of viscoelasticity, microstructure, and ligand density remains poorly understood. To address this gap, we designed a nanoparticle crosslinker to reinforce collagen-based hydrogels without altering their chemical composition, microstructure, viscoelasticity, and density of cell-adhesion ligand and utilized it to understand cellular dynamics. This crosslinking mechanism utilizes nanoparticles as crosslink epicenter, resulting in 10-fold increase in mechanical stiffness, without other changes. Human mesenchymal stem cells (hMSCs) encapsulated in 3D responded to mechanical stiffness by displaying circular morphology on soft hydrogels (5 kPa) and elongated morphology on stiff hydrogels (30 kPa). Stiff hydrogels facilitated the production and remodeling of nascent extracellular matrix (ECM) and activated mechanotransduction cascade. These changes were driven through intracellular PI3AKT signaling, regulation of epigenetic modifiers and activation of YAP/TAZ signaling. Overall, our study introduces a unique biomaterials platform to understand cell-ECM mechanotransduction in 3D for regenerative medicine as well as disease modelling.
Collapse
Affiliation(s)
- Anna L Kersey
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Daniel Y Cheng
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A Deo
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Christina R Dubell
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ting-Ching Wang
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Min Hee Kim
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Murali
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sarah E Hargett
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sumana Mallick
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Irtisha Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, TX 77807, USA; Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX 77843, USA; Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA; Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
5
|
Cao L, Zhou Y, Gao L, Zheng Y, Cui X, Yin H, Wang S, Zhang M, Zhang H, Ai S. Photoelectrochemical biosensor for DNA demethylase detection based on enzymatically induced double-stranded DNA digestion by endonuclease-exonuclease system and Bi 4O 5Br 2-Au/CdS photoactive material. Talanta 2023; 262:124670. [PMID: 37245429 DOI: 10.1016/j.talanta.2023.124670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
A novel photoelectrochemical (PEC) biosensor for the detection of DNA demethylase MBD2 was developed based on Bi4O5Br2-Au/CdS photosensitive material. Bi4O5Br2 was firstly modified with gold nanoparticles (AuNPs), following with the modification onto the ITO electrode with CdS to realize the strong photocurrent response as a result of AuNPs had good conductibility and the matched energy between CdS and Bi4O5Br2. In the presence of MBD2, double-stranded DNA (dsDNA) on the electrode surface was demethylated, which triggered the digestion activity of endonuclease HpaII to cleave dsDNA and induced the further cleavage of the dsDNA fragment by exonuclease III (Exo III), causing the release of biotin labeled dsDNA and inhibiting the immobilization of streptavidin (SA) onto the electrode surface. As a results, the photocurrent was increased greatly. However, in the absence of MBD2, HpaII digestion activity was inhibited by DNA methylation modification, which further caused the failure in the release of biotin, leading to the successful immobilization of SA onto the electrode to realize a low photocurrent. The sensor had a detection of 0.3-200 ng/mL and a detection limit was 0.09 ng/mL (3σ). The applicability of this PEC strategy was assessed by studying the effect of environmental pollutants on MBD2 activity.
Collapse
Affiliation(s)
- LuLu Cao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Lanlan Gao
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China.
| | - Suo Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 271018, Taian, Shandong, People's Republic of China
| |
Collapse
|
6
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
7
|
Tan JH, Ahmad Azahari AHS, Ali A, Ismail NAS. Scoping Review on Epigenetic Mechanisms in Primary Immune Thrombocytopenia. Genes (Basel) 2023; 14:555. [PMID: 36980827 PMCID: PMC10048672 DOI: 10.3390/genes14030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Immune Thrombocytopenia (ITP) is an autoimmune blood disorder that involves multiple pathways responsible for the homeostasis of the immune system. Numerous pieces of literature have proposed the potential of immune-related genes as diagnostic and prognostic biomarkers, which mostly implicate the role of B cells and T cells in the pathogenesis of ITP. However, a more in-depth understanding is required of how these immune-related genes are regulated. Thus, this scoping review aims to collate evidence and further elucidate each possible epigenetics mechanism in the regulation of immunological pathways pertinent to the pathogenesis of ITP. This encompasses DNA methylation, histone modification, and non-coding RNA. A total of 41 studies were scrutinized to further clarify how each of the epigenetics mechanisms is related to the pathogenesis of ITP. Identifying epigenetics mechanisms will provide a new paradigm that may assist in the diagnosis and treatment of immune thrombocytopenia.
Collapse
Affiliation(s)
- Jian Hong Tan
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adli Ali
- Department of Paediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
8
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
9
|
Turpin M, Salbert G. 5-methylcytosine turnover: Mechanisms and therapeutic implications in cancer. Front Mol Biosci 2022; 9:976862. [PMID: 36060265 PMCID: PMC9428128 DOI: 10.3389/fmolb.2022.976862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation at the fifth position of cytosine (5mC) is one of the most studied epigenetic mechanisms essential for the control of gene expression and for many other biological processes including genomic imprinting, X chromosome inactivation and genome stability. Over the last years, accumulating evidence suggest that DNA methylation is a highly dynamic mechanism driven by a balance between methylation by DNMTs and TET-mediated demethylation processes. However, one of the main challenges is to understand the dynamics underlying steady state DNA methylation levels. In this review article, we give an overview of the latest advances highlighting DNA methylation as a dynamic cycling process with a continuous turnover of cytosine modifications. We describe the cooperative actions of DNMT and TET enzymes which combine with many additional parameters including chromatin environment and protein partners to govern 5mC turnover. We also discuss how mathematical models can be used to address variable methylation levels during development and explain cell-type epigenetic heterogeneity locally but also at the genome scale. Finally, we review the therapeutic implications of these discoveries with the use of both epigenetic clocks as predictors and the development of epidrugs that target the DNA methylation/demethylation machinery. Together, these discoveries unveil with unprecedented detail how dynamic is DNA methylation during development, underlying the establishment of heterogeneous DNA methylation landscapes which could be altered in aging, diseases and cancer.
Collapse
Affiliation(s)
- Marion Turpin
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| | - Gilles Salbert
- Sp@rte Team, UMR6290 CNRS, Institute of Genetics and Development of Rennes, Rennes, France
- University of Rennes 1, Rennes, France
| |
Collapse
|
10
|
Targeting HNRNPM Inhibits Cancer Stemness and Enhances Antitumor Immunity in Wnt-activated Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022; 13:1413-1447. [PMID: 35158098 PMCID: PMC8938476 DOI: 10.1016/j.jcmgh.2022.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Cancer stemness and immune evasion are closely associated and play critical roles in tumor development and resistance to immunotherapy. However, little is known about the underlying molecular mechanisms that coordinate this association. METHODS The expressions of heterogeneous nuclear ribonucleoprotein M (HNRNPM) in 240 hepatocellular carcinoma (HCC) samples, public databases, and liver development databases were analyzed. Chromatin immunoprecipitation assays were performed to explore the associations between stem-cell transcription factors and HNRNPM. HNRNPM-regulated alternative splicing (AS) and its binding motif were identified by RNA-seq and RIP-seq. HNRNPM-specific antisense oligonucleotides were developed to explore potential therapeutic targets in HCC. CD8+ T cells that were co-cultured with tumor cells were sorted by flow cytometry assays. RESULTS We identified an elevated oncofetal splicing factor in HCC, HNRNPM, that unifies and regulates the positive association between cancer stemness and immune evasion. HNRNPM knockdown abolished HCC tumorigenesis and diminished cancer stem cell properties in vitro and in vivo. Mechanistically, HNRNPM regulated the AS of MBD2 by binding its flanking introns, whose isoforms played opposing roles. Although MBD2a and MBD2c competitively bound to CpG islands in the FZD3 promoter, MBD2a preferentially increased FZD3 expression and then activated the WNT/β-catenin pathway. Interestingly, FZD3 and β-catenin further provided additional regulation by targeting OCT4 and SOX2. We found that HNRNPM inhibition significantly promoted CD8+ T cell activation and that HNRNPM- antisense oligonucleotides effectively inhibited WNT/β-catenin to enhance anti-programmed cell death protein-1 immunotherapy by promoting CD8+ T cell infiltration. CONCLUSIONS HNRNPM has a tumor-intrinsic function in generating an immunosuppressive HCC environment through an AS-dependent mechanism and demonstrates proof of the concept of targeting HNRNPM in tailoring HCC immunotherapeutic approaches.
Collapse
|
11
|
Liu J, Yao S, Jia J, Chen Z, Yuan Y, He Y, Wasti B, Duan W, Li D, Wang G, Jia A, Sun W, Qiu S, Ma L, Li J, Liu Y, Zheng J, Xiang X, Zhang X, Liu S, He Z, Peng Z, Zhang H, Zhang D, Xiao B. Loss of MBD2 ameliorates LPS‐induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. FASEB J 2022; 36:e22162. [PMID: 35061304 DOI: 10.1096/fj.202100924rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Jiqiang Liu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Shuo Yao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Jingsi Jia
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhifeng Chen
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yu Yuan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Yi He
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Binaya Wasti
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Wentao Duan
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Danhong Li
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Guyi Wang
- Department of Intensive Care Medicine The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Aijun Jia
- Department of the Third Emergency of Yuelushan Hospital District Hunan Provincial People's Hospital Changsha P.R. China
| | - Wenjin Sun
- Department of General Medicine West China Hospital, Sichuan University Chengdu P.R. China
| | - Shuangfa Qiu
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine The Affiliated Hospital of Guilin Medical University Guangxi P.R. China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine Hunan Provincial People's Hospital Changsha P.R. China
| | - Yi Liu
- Department of Respiratory Medicine Zhuzhou City Central Hospital Zhuzhou P.R. China
| | - Jianfei Zheng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xudong Xiang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Xiufeng Zhang
- Department of Respiratory Medicine The Second Affiliated Hospital of Hainan Medical University Haikou P.R. China
| | - Shaokun Liu
- Department of Respiratory Medicine Hunan Center for Evidence‐Based Medicine Research Unit of Respiratory Diseases The Second Xiangya Hospital of Central South University Changsha P.R. China
| | - Zhibiao He
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Zhenyu Peng
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Hongliang Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Dongshan Zhang
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| | - Bing Xiao
- Department of Emergency Medicine The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University Changsha P.R. China
| |
Collapse
|
12
|
Dean W. Pathways of DNA Demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:211-238. [DOI: 10.1007/978-3-031-11454-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Liu Z, Sun L, Cai Y, Shen S, Zhang T, Wang N, Wu G, Ma W, Li ST, Suo C, Hao Y, Jia WD, Semenza GL, Gao P, Zhang H. Hypoxia-Induced Suppression of Alternative Splicing of MBD2 Promotes Breast Cancer Metastasis via Activation of FZD1. Cancer Res 2021; 81:1265-1278. [PMID: 33402389 DOI: 10.1158/0008-5472.can-20-2876] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Metastasis is responsible for the majority of breast cancer-related deaths, however, the mechanisms underlying metastasis in this disease remain largely elusive. Here we report that under hypoxic conditions, alternative splicing of MBD2 is suppressed, favoring the production of MBD2a, which facilitates breast cancer metastasis. Specifically, MBD2a promoted, whereas its lesser known short form MBD2c suppressed metastasis. Activation of HIF1 under hypoxia facilitated MBD2a production via repression of SRSF2-mediated alternative splicing. As a result, elevated MBD2a outcompeted MBD2c for binding to promoter CpG islands to activate expression of FZD1, thereby promoting epithelial-to-mesenchymal transition and metastasis. Strikingly, clinical data reveal significantly correlated expression of MBD2a and MBD2c with the invasiveness of malignancy, indicating opposing roles for MBD2 splicing variants in regulating human breast cancer metastasis. Collectively, our findings establish a novel link between MBD2 switching and tumor metastasis and provide a promising therapeutic strategy and predictive biomarkers for hypoxia-driven breast cancer metastasis. SIGNIFICANCE: This study defines the opposing roles and clinical relevance of MBD2a and MBD2c, two MBD2 alternative splicing products, in hypoxia-driven breast cancer metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/5/1265/F1.large.jpg.
Collapse
Affiliation(s)
- Zhaoji Liu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Laboratory of Cancer and Stem Cell Metabolism, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Shengqi Shen
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Tong Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Nana Wang
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Gongwei Wu
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wenhao Ma
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Shi-Ting Li
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell Metabolism, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yijie Hao
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Wei-Dong Jia
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Gregg L Semenza
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Ping Gao
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.
- Laboratory of Cancer and Stem Cell Metabolism, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Lee HT, Oh S, Ro DH, Yoo H, Kwon YW. The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis. J Lipid Atheroscler 2020; 9:419-434. [PMID: 33024734 PMCID: PMC7521974 DOI: 10.12997/jla.2020.9.3.419] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis, which is the most common chronic disease of the coronary artery, constitutes a vascular pathology induced by inflammation and plaque accumulation within arterial vessel walls. Both DNA methylation and histone modifications are epigenetic changes relevant for atherosclerosis. Recent studies have shown that the DNA methylation and histone modification systems are closely interrelated and mechanically dependent on each other. Herein, we explore the functional linkage between these systems, with a particular emphasis on several recent findings suggesting that histone acetylation can help in targeting DNA methylation and that DNA methylation may control gene expression during atherosclerosis.
Collapse
Affiliation(s)
- Han-Teo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea.,Interdisciplinary Program in Stem Cell Biology, Graduate School of Medicine, Seoul National University, Seoul, Korea
| | - Sanghyeon Oh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea.,Interdisciplinary Program in Stem Cell Biology, Graduate School of Medicine, Seoul National University, Seoul, Korea
| | - Du Hyun Ro
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea.,Interdisciplinary Program in Stem Cell Biology, Graduate School of Medicine, Seoul National University, Seoul, Korea.,Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea
| | - Hyerin Yoo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea.,Interdisciplinary Program in Stem Cell Biology, Graduate School of Medicine, Seoul National University, Seoul, Korea
| | - Yoo-Wook Kwon
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Medicine, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Pérez-Mojica JE, Lillycrop KA, Cooper C, Calder PC, Burdge GC. Docosahexaenoic acid and oleic acid induce altered DNA methylation of individual CpG loci in Jurkat T cells. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102128. [PMID: 32464433 DOI: 10.1016/j.plefa.2020.102128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) and oleic acid (18:1n-9) can alter the DNA methylation of individual CpG loci in vivo and in vitro, although the targeting mechanism is unknown. We tested the hypothesis that the targeting of altered methylation is associated with putative transcription factor response elements (pTREs) proximal to modified loci. Jurkat cells were treated with 22:6n-3 or 18:1n-9 (both 15 μM) for eight days and DNA methylation measured using the MethylationEPIC 850K array. 1596 CpG loci were altered significantly (508 hypermethylated) by 22:6n-3 and 563 CpG loci (294 hypermethylated) by 18:1n-9. 78 loci were modified by both fatty acids. Induced differential methylation was not modified by the PPARα antagonist GW6471. DNA sequences proximal to differentially methylated CpG loci were enriched in zinc-finger pTREs. These findings suggest that zinc-finger-containing transcription factors may be involved in targeting altered DNA methylation modifying processes induced by fatty acids to individual CpG loci.
Collapse
Affiliation(s)
- J Eduardo Pérez-Mojica
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Karen A Lillycrop
- Centre for Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
17
|
Liu C, Song C, Li J, Sun Q. CFTR Functions as a Tumor Suppressor and Is Regulated by DNA Methylation in Colorectal Cancer. Cancer Manag Res 2020; 12:4261-4270. [PMID: 32606923 PMCID: PMC7292251 DOI: 10.2147/cmar.s248539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Cystic fibrosis transmembrane conductance regulator (CFTR) was shown to be downregulated or silenced in carcinomas and acts as a candidate tumor suppressor gene. However, the function of CFTR gene in colorectal cancer (CRC) is still unclear. This aim of this study was to investigate the CFTR promoter methylation status and its impact on the expression and functional role of CFTR in CRC development. Patients and Methods CFTR expression in CRC tissues and CRC cell lines was detected via quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The promoter methylation status of CFTR was measured using methylation-specific PCR (MSP). colony formation, transwell, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were used to evaluate the effect of CFTR overexpression in CRC cell lines. Results qRT-PCR and IHC results indicated that CFTR expression was downregulated in the CRC tissues compared to the adjacent normal tissues. The promoter methylation status of CFTR was further analyzed in 70 CRC specimens. MSP validation showed methylation of CFTR promoter in 62.2% (45/70) of CRC tissues. The methylation of CFTR promoter was significantly associated with age (P=0.013) and lymph node metastasis (P=0.026) in CRC tissues. Results of transwell, MTT, and colony formation assays showed that CFTR overexpression inhibited the migration, invasion, and proliferation of CRC cells. Conclusion CFTR expression was downregulated in CRC and promoter methylation may be responsible for this downregulation. Overexpression of CFTR may suppress CRC tumor growth by inhibiting the proliferation, migration, and invasion of CRC cells. CFTR promoter methylation was significantly correlated with lymph node metastasis; thus, CFTR may be a potential marker for lymph node metastasis of CRC.
Collapse
Affiliation(s)
- Can Liu
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Chao Song
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong Province, People's Republic of China
| | - Jiaxi Li
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Qing Sun
- Department of Pathology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, People's Republic of China.,Department of Pathology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
18
|
Liu SY, Shan NN. DNA methylation plays an important role in immune thrombocytopenia. Int Immunopharmacol 2020; 83:106390. [DOI: 10.1016/j.intimp.2020.106390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
|
19
|
Blin G, Liand M, Mauduit C, Chehade H, Benahmed M, Simeoni U, Siddeek B. Maternal Exposure to High-Fat Diet Induces Long-Term Derepressive Chromatin Marks in the Heart. Nutrients 2020; 12:E181. [PMID: 31936461 PMCID: PMC7019950 DOI: 10.3390/nu12010181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart diseases are a leading cause of death. While the link between early exposure to nutritional excess and heart disease risk is clear, the molecular mechanisms involved are poorly understood. In the developmental programming field, increasing evidence is pointing out the critical role of epigenetic mechanisms. Among them, polycomb repressive complex 2 (PRC2) and DNA methylation play a critical role in heart development and pathogenesis. In this context, we aimed at evaluating the role of these epigenetic marks in the long-term cardiac alterations induced by early dietary challenge. Using a model of rats exposed to maternal high-fat diet during gestation and lactation, we evaluated cardiac alterations at adulthood. Expression levels of PRC2 components, its histone marks di- and trimethylated histone H3 (H3K27me2/3), associated histone mark (ubiquitinated histone H2A, H2AK119ub1) and target genes were measured by Western blot. Global DNA methylation level and DNA methyl transferase 3B (DNMT3B) protein levels were measured. Maternal high-fat diet decreased H3K27me3, H2Ak119ub1 and DNA methylation levels, down-regulated the enhancer of zeste homolog 2 (EZH2), and DNMT3B expression. The levels of the target genes, isl lim homeobox 1 (Isl1), six homeobox 1 (Six1) and mads box transcription enhancer factor 2, polypeptide C (Mef2c), involved in cardiac pathogenesis were up regulated. Overall, our data suggest that the programming of cardiac alterations by maternal exposure to high-fat diet involves the derepression of pro-fibrotic and pro-hypertrophic genes through the induction of EZH2 and DNMT3B deficiency.
Collapse
Affiliation(s)
- Guillaume Blin
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Marjorie Liand
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Claire Mauduit
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, 06204 Nice, France; (C.M.); (M.B.)
| | - Hassib Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Mohamed Benahmed
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, 06204 Nice, France; (C.M.); (M.B.)
| | - Umberto Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| | - Benazir Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Rue du Bugnon 27, 1011 Lausanne, Switzerland; (G.B.); (M.L.); (H.C.); (U.S.)
| |
Collapse
|
20
|
Beetch M, Harandi-Zadeh S, Shen K, Lubecka K, Kitts DD, O'Hagan HM, Stefanska B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br J Pharmacol 2019; 177:1382-1408. [PMID: 31626338 DOI: 10.1111/bph.14888] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases account for over 60% of all deaths worldwide according to the World Health Organization reports. Majority of cases are triggered by environmental exposures that lead to aberrant changes in the epigenome, specifically, the DNA methylation patterns. These changes result in altered expression of gene networks and activity of signalling pathways. Dietary antioxidants, including catechins, flavonoids, anthocyanins, stilbenes and carotenoids, demonstrate benefits in the prevention and/or support of therapy in chronic diseases. This review provides a comprehensive discussion of potential epigenetic mechanisms of antioxidant compounds in reversing altered patterns of DNA methylation in chronic disease. Antioxidants remodel the DNA methylation patterns through multiple mechanisms, including regulation of epigenetic enzymes and chromatin remodelling complexes. These effects can further contribute to antioxidant properties of the compounds. On the other hand, decrease in oxidative stress itself can impact DNA methylation delivering additional link between antioxidant mechanisms and epigenetic effects of the compounds. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Sadaf Harandi-Zadeh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Kate Shen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Medical University of Lodz, Lodz, Poland
| | - David D Kitts
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Heather M O'Hagan
- Cell, Molecular and Cancer Biology, Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Urine 5MedC, a Marker of DNA Methylation, in the Progression of Chronic Kidney Disease. DISEASE MARKERS 2019; 2019:5432453. [PMID: 31354889 PMCID: PMC6636573 DOI: 10.1155/2019/5432453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 06/02/2019] [Indexed: 01/13/2023]
Abstract
Background Alterations in DNA methylation may be involved in disease progression in patients with chronic kidney disease (CKD). Recent studies have suggested that 5-methyl-2′-deoxycytidine (5MedC) may be a marker of hypermethylation of DNA. Currently, there is no information available regarding the urine levels of 5MedC and its association with the progression of CKD. Method We examined the urine levels of 5MedC in spot urine samples from 308 patients with CKD (median age: 56 years, male: 53.2%, and glomerulonephritis: 51.0%) using a competitive enzyme-linked immunosorbent assay and investigated the relationships among urine 5MedC, urine albumin, urine α1-microglobulin (α1MG), and the laboratory parameters associated with CKD. The patients were followed for three years to evaluate renal endpoints in a prospective manner. Results The urine 5MedC level was significantly increased in the later stages of CKD compared to the early to middle stages of CKD. In multiple logistic regression models, urine 5MedC was significantly associated with the prediction of later CKD stages. Urine 5MedC (median value, 65.9 μmol/gCr) was significantly able to predict a 30% decline in the estimated GFR or a development of end-stage renal disease when combined with macroalbuminuria or an increased level of urine α1MG (median value, 5.7 mg/gCr). Conclusion The present data demonstrate that the urine 5MedC level is associated with a reduced renal function and can serve as a novel and potent biomarker for predicting the renal outcome in CKD patients. Further studies will be necessary to elucidate the role of urine DNA methylation in the progression of CKD.
Collapse
|
22
|
Mahmood N, Rabbani SA. DNA Methylation Readers and Cancer: Mechanistic and Therapeutic Applications. Front Oncol 2019; 9:489. [PMID: 31245293 PMCID: PMC6579900 DOI: 10.3389/fonc.2019.00489] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation is a major epigenetic process that regulates chromatin structure which causes transcriptional activation or repression of genes in a context-dependent manner. In general, DNA methylation takes place when methyl groups are added to the appropriate bases on the genome by the action of "writer" molecules known as DNA methyltransferases. How these methylation marks are read and interpreted into different functionalities represents one of the main mechanisms through which the genes are switched "ON" or "OFF" and typically involves different types of "reader" proteins that can recognize and bind to the methylated regions. A tightly balanced regulation exists between the "writers" and "readers" in order to mediate normal cellular functions. However, alterations in normal methylation pattern is a typical hallmark of cancer which alters the way methylation marks are written, read and interpreted in different disease states. This unique characteristic of DNA methylation "readers" has identified them as attractive therapeutic targets. In this review, we describe the current state of knowledge on the different classes of DNA methylation "readers" identified thus far along with their normal biological functions, describe how they are dysregulated in cancer, and discuss the various anti-cancer therapies that are currently being developed and evaluated for targeting these proteins.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
23
|
Venkatesagowda B. Enzymatic demethylation of lignin for potential biobased polymer applications. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2019.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Khosravi M, Bidmeshkipour A, Moravej A, Hojjat-Assari S, Naserian S, Karimi MH. Induction of CD4 +CD25 +Foxp3 + regulatory T cells by mesenchymal stem cells is associated with RUNX complex factors. Immunol Res 2019; 66:207-218. [PMID: 29143918 DOI: 10.1007/s12026-017-8973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among the particular immunomodulation properties of mesenchymal stem cells (MSCs), one relies on their capacity to regulatory T cell (Treg) induction from effector T cells. Stable expression of Foxp3 has a dominant role in suppressive phenotype and stability of induced regulatory T cells (iTregs). How MSCs induce stable Foxp3 expression in iTregs remains unknown. We previously showed MSCs could enhance demethylation of Treg-specific demethylated region (TSDR) in iTregs in cell-cell contact manner (unpublished data). Here, we evaluated the possible effect of MSCs on the mRNA expression of Runx complex genes (Runx1, Runx3, and CBFB) that perch on TSDR in iTregs and play the main role in suppressive properties of Tregs, a regulatory pathway that has not yet been explored by MSCs. Also, we investigated the mRNA expression of MBD2 that promotes TSDR demethylation in Tregs. We first showed that in vitro MSC-iTreg induction was associated with strong mRNA modifications of genes involved in Runx complex. We next injected high doses of MSCs in a murine model of C57BL/6 into Balb/C allogeneic skin transplantation to prolong allograft survival. When splenocytes of grafted mice were analyzed, we realized that the Foxp3 expression was increased at day 5 and 10 post-graft merely in MSC-treated mice. Furthermore, Foxp3 mRNA expression was associated with modified Runx complex mRNA expression comparable to what was shown in in vitro studies. Hence, our data identify a possible mechanism in which MSCs convert conventional T cells to iTreg through strong modifications of mRNA of genes that are involved in Runx complex of Foxp3.
Collapse
Affiliation(s)
- Maryam Khosravi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.,Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Ali Bidmeshkipour
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Ali Moravej
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Suzzan Hojjat-Assari
- Institut Français de Recherche et d'Enseignement Supérieur à l'International (IFRES-INT), Paris, France
| | - Sina Naserian
- Inserm, U1197, Hôpital Paul Brousse, 94807, Villejuif, France
| | | |
Collapse
|
25
|
Mahmood N, Rabbani SA. Targeting DNA Hypomethylation in Malignancy by Epigenetic Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:179-196. [PMID: 31576549 DOI: 10.1007/978-3-030-22254-3_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA methylation is a chemically reversible epigenetic modification that regulates the chromatin structure and gene expression, and thereby takes part in various cellular processes like embryogenesis, genomic imprinting, X-chromosome inactivation, and genome stability. Alterations in the normal methylation levels of DNA may contribute to the development of pathological conditions like cancer. Even though both hypo- and hypermethylation-mediated abnormalities are prevalent in the cancer genome, the field of cancer epigenetics has been more focused on targeting hypermethylation. As a result, DNA hypomethylation-mediated abnormalities remained relatively less explored, and currently, there are no approved drugs that can be clinically used to target hypomethylation. Understanding the precise role of DNA hypomethylation is not only crucial from a mechanistic point of view but also for the development of pharmacological agents that can reverse the hypomethylated state of the DNA. This chapter focuses on the causes and impact of DNA hypomethylation in the development of cancer and describes the possible ways to pharmacologically target it, especially by using a naturally occurring physiologic agent S-adenosylmethionine (SAM).
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Centre, Montréal, QC, Canada.
| |
Collapse
|
26
|
Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:38-44. [DOI: 10.1016/j.mrrev.2018.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
|
27
|
Silva WTAF. Methylation dynamics during the maternal-to-zygotic genome transition in dioecious species. PLoS One 2018; 13:e0200028. [PMID: 29990374 PMCID: PMC6039002 DOI: 10.1371/journal.pone.0200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 11/18/2022] Open
Abstract
The starting point of a new generation in sexually reproducing species is fertilization. In many species, fertilization is followed by cell divisions controlled primarily by maternal transcripts, with little to no zygotic transcription. The activation of the zygotic genome (ZGA) is part of a process called maternal-to-zygotic transition (MZT), during which transcripts from the zygotic genome take control of development, setting the conditions for cellular specialization. While we know that epigenetic processes (e.g. methylation) are involved in the MZT, their roles and interplay in the transition are largely unknown. I developed a model and used simulations to elucidate the interaction between possible epigenetic processes, namely methylation processes, involved in the MZT. The model focuses on the dynamics of global methylation levels and how these interact with factors such as a parental repressor and the nucleocytoplasmic ratio to trigger the ZGA, followed by development from fertilization to adulthood. In addition, I included transgenerational effects transmitted to the zygote from both parents through their gametes to show that these may set the stage for plastic developmental processes. I demonstrate that the rates of maintenance methylation and demethylation, which are important for the achievement of the final methylation levels of an individual, exhibit a certain level of flexibility in terms of parameter values. I find that high final methylation levels require more restricted combinations of parameter values. The model is discussed in the context of the current empirical knowledge and provide suggestions for directions of future empirical and theoretical studies.
Collapse
Affiliation(s)
- Willian T. A. F. Silva
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, 753 10 Uppsala, Sweden
| |
Collapse
|
28
|
Epigenetic modifications of gene expression by lifestyle and environment. Arch Pharm Res 2017; 40:1219-1237. [PMID: 29043603 DOI: 10.1007/s12272-017-0973-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Epigenetics oftenly described as the heritable changes in gene expression independent of changes in DNA sequence. Various environmental factors such as nutrition-dietary components, lifestyle, exercise, physical activity, toxins, and other contributing factors remodel the genome either in a constructive or detrimental way. Since epigenetic changes are reversible and nutrition is one of the many epigenetic regulators that modify gene expression without changing the DNA sequence, dietary nutrients and bioactive food components contribute to epigenetic phenomena either by directly suppressing DNA methylation or histone catalyzing enzymes or by changing the availability of substrates required for enzymatic reactions. Diets that contain catechol-dominant polyphenols are reported to suppress enzyme activity and activate epigenetically silenced genes. Furthermore, several dietary nutrients play a crucial role in one-carbon metabolism including folate, cobalamin, riboflavin, pyridoxine, and methionine by directly affecting S-adenosyl-L-methionine. Soy polyphenols block DNA methyltransferases and histone deacetylases to reverse aberrant CpG island methylation. Organosulfur rich compounds such as the sulforaphane found in broccoli appear to normalize DNA methylation and activate miR-140 expression, which represses SOX9 and ALDH1 and decreases tumor growth. The purpose of this short communication is to overview the epigenetic regulatory mechanisms of diet and other environmental factors. We discuss the epigenetic contributions of dietary components with a particular focus on nutritional polyphenols and flavonoids as epigenetic mediators that modify epigenetic tags and control gene expression. These mechanisms provide new insights to better understand the influence of dietary nutrients on epigenetic modifications and gene expression.
Collapse
|
29
|
Abstract
The regulation of the genome relies on the epigenome to instruct, define and restrict the activities of growth and development. Among the cohort of epigenetic instructions, DNA methylation is perhaps the best understood. In most mammals, cycles of the addition and removal of DNA methylation constitute phases of reprogramming when the developing embryo must negotiate lineage defining and developmental commitment events. In these instances, the DNA methylation instruction is often removed, thereby allowing a change in permission for future development and a return to a more plastic and pluripotent state. Because of this, the germ line, upon demethylation, can give rise to gametes that are fully functional across generations and poised for totipotency. This return to a less differentiated state can also be achieved experimentally. The loss of DNA methylation constitutes one of the significant barriers to induced pluripotency and is a prerequisite for the generation of iPS cells. Taking fully differentiated cells, such as skin cells, and turning back the developmental clock heralded a technological breakthrough discovery in 2006 (Takahashi and Yamanaka 2006) with unprecedented promise in regenerative medicine. In this chapter, the mechanistic possibilities for DNA demethylation will be described in the context of natural and experimentally induced epigenetic reprogramming. The balance of the maintenance of this heritable mark together with its timely removal is essential for lifelong health and may be a key in our understanding of ageing.
Collapse
Affiliation(s)
- Wendy Dean
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
30
|
Liang G, Weisenberger DJ. DNA methylation aberrancies as a guide for surveillance and treatment of human cancers. Epigenetics 2017; 12:416-432. [PMID: 28358281 DOI: 10.1080/15592294.2017.1311434] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA methylation aberrancies are hallmarks of human cancers and are characterized by global DNA hypomethylation of repetitive elements and non-CpG rich regions concomitant with locus-specific DNA hypermethylation. DNA methylation changes may result in altered gene expression profiles, most notably the silencing of tumor suppressors, microRNAs, endogenous retorviruses and tumor antigens due to promoter DNA hypermethylation, as well as oncogene upregulation due to gene-body DNA hypermethylation. Here, we review DNA methylation aberrancies in human cancers, their use in cancer surveillance and the interplay between DNA methylation and histone modifications in gene regulation. We also summarize DNA methylation inhibitors and their therapeutic effects in cancer treatment. In this context, we describe the integration of DNA methylation inhibitors with conventional chemotherapies, DNA repair inhibitors and immune-based therapies, to bring the epigenome closer to its normal state and increase sensitivity to other therapeutic agents to improve patient outcome and survival.
Collapse
Affiliation(s)
- Gangning Liang
- a Department of Urology , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Daniel J Weisenberger
- b Department of Biochemistry and Molecular Medicine , University of Southern California, USC Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
31
|
Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017; 11:41. [PMID: 28360846 PMCID: PMC5350110 DOI: 10.3389/fnbeh.2017.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral (e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation and the role of DNA repair machinery. From parental history (e.g., drugs, housing, illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota, antibodies and stimulation, the nature of nurture provides not only mechanistic insight into how experiences propagate from external to internal variables, but also identifies a composite therapeutic target, chromatin modeling, for gestational/prenatal stress, adolescent anxiety/depression and adult-onset neuropsychiatric disease.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Austin C Korgan
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Kristen Lee
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Ryan V Wheeler
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
32
|
Abstract
DNA methylation plays important roles in development and disease. Yet, only recently has the dynamic nature of this epigenetic mark via oxidation and DNA repair-mediated demethylation been recognized. A major conceptual challenge to the model that DNA methylation is reversible is the risk of genomic instability, which may come with widespread DNA repair activity. Here, we focus on recent advances in mechanisms of TET-TDG mediated demethylation and cellular strategies that avoid genomic instability. We highlight the recently discovered involvement of NEIL DNA glycosylases, which cooperate with TDG in oxidative demethylation to accelerate substrate turnover and promote the organized handover of harmful repair intermediates to maintain genome stability.
Collapse
Affiliation(s)
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany.,Division of Molecular Embryology, German Cancer Research Center-Zentrum für Molekulare Biologie der Universität Heidelberg (DKFZ-ZMBH) Alliance, Heidelberg, Germany
| |
Collapse
|
33
|
Szyf M, Tang YY, Hill KG, Musci R. The dynamic epigenome and its implications for behavioral interventions: a role for epigenetics to inform disorder prevention and health promotion. Transl Behav Med 2016; 6:55-62. [PMID: 27012253 DOI: 10.1007/s13142-016-0387-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The emerging field of behavioral epigenetics is producing a growing body of evidence that early life experience and social exposure can alter the way by which genes are marked with DNA methylation. We hypothesize that changes in DNA methylation as well as other epigenetic markers could generate stable phenotypes. Early life adversity appears to result in altered DNA methylation of genes in the brain and peripheral tissues, and these changes are associated with adverse phenotypic changes. Although the data are still sparse, early epigenetic studies have provided a proof of principle that experiences and the environment leave marks on genes, and thus suggest molecular and physical mechanisms for the epidemiological concept of gene-environment interaction. The main attraction of DNA methylation for type I (TI) translational prevention science is the fact that, different from genetic changes that are inherited from our ancestors, DNA methylation is potentially preventable and reversible and, therefore, there is a prospect of epigenetically targeted interventions. In addition, DNA methylation markers might provide an objective tool for assessing effects of early adverse experience on individual risks as well as providing objective measures of progress of an intervention. In spite of this great potential promise of the emerging field of social and translational epigenetics, many practical challenges remain that must be addressed before behavioral epigenetics could become translational epigenetics.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Medical School, 3655 Sir William Osler Promenade, Montreal, Quebec, Canada, H3G1Y6.
| | | | | | | |
Collapse
|
34
|
Moon SY, Eun HJ, Baek SK, Jin SJ, Kim TS, Kim SW, Seong HH, Choi IC, Lee JH. Activation-Induced Cytidine Deaminase Induces DNA Demethylation of Pluripotency Genes in Bovine Differentiated Cells. Cell Reprogram 2016; 18:298-308. [DOI: 10.1089/cell.2015.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Song-Yi Moon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hye-Ju Eun
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Jin Jin
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Republic of Korea
| | - Sung-Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - Hwan-Hoo Seong
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Development Administration, Namwon, Republic of Korea
| | - In-Chul Choi
- Division of Animal and Dairy Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Republic of Korea
| |
Collapse
|
35
|
Drohat AC, Coey CT. Role of Base Excision "Repair" Enzymes in Erasing Epigenetic Marks from DNA. Chem Rev 2016; 116:12711-12729. [PMID: 27501078 DOI: 10.1021/acs.chemrev.6b00191] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Base excision repair (BER) is one of several DNA repair pathways found in all three domains of life. BER counters the mutagenic and cytotoxic effects of damage that occurs continuously to the nitrogenous bases in DNA, and its critical role in maintaining genomic integrity is well established. However, BER also performs essential functions in processes other than DNA repair, where it acts on naturally modified bases in DNA. A prominent example is the central role of BER in mediating active DNA demethylation, a multistep process that erases the epigenetic mark 5-methylcytosine (5mC), and derivatives thereof, converting them back to cytosine. Herein, we review recent advances in the understanding of how BER mediates this critical component of epigenetic regulation in plants and animals.
Collapse
Affiliation(s)
- Alexander C Drohat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Christopher T Coey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| |
Collapse
|
36
|
Electrochemical DNA sensor-based strategy for sensitive detection of DNA demethylation and DNA demethylase activity. Anal Chim Acta 2016; 934:66-71. [DOI: 10.1016/j.aca.2016.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/11/2016] [Accepted: 06/21/2016] [Indexed: 11/19/2022]
|
37
|
Ludwig AK, Zhang P, Cardoso MC. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front Genet 2016; 7:115. [PMID: 27446199 PMCID: PMC4914596 DOI: 10.3389/fgene.2016.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cytosine base modifications in mammals underwent a recent expansion with the addition of several naturally occurring further modifications of methylcytosine in the last years. This expansion was accompanied by the identification of the respective enzymes and proteins reading and translating the different modifications into chromatin higher order organization as well as genome activity and stability, leading to the hypothesis of a cytosine code. Here, we summarize the current state-of-the-art on DNA modifications, the enzyme families setting the cytosine modifications and the protein families reading and translating the different modifications with emphasis on the mouse protein homologs. Throughout this review, we focus on functional and mechanistic studies performed on mammalian cells, corresponding mouse models and associated human diseases.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - M C Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| |
Collapse
|
38
|
Keil KP, Lein PJ. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? ENVIRONMENTAL EPIGENETICS 2016; 2:dvv012. [PMID: 27158529 PMCID: PMC4856164 DOI: 10.1093/eep/dvv012] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly P. Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- *Correspondence address. Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA. Tel:
(530) 752-1970
; Fax:
(530) 752-7690
; E-mail:
| |
Collapse
|
39
|
Cribbs A, Feldmann M, Oppermann U. Towards an understanding of the role of DNA methylation in rheumatoid arthritis: therapeutic and diagnostic implications. Ther Adv Musculoskelet Dis 2015; 7:206-19. [PMID: 26425149 DOI: 10.1177/1759720x15598307] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The term 'epigenetics' loosely describes DNA-templated processes leading to heritable changes in gene activity and expression, which are independent of the underlying DNA sequence. Epigenetic mechanisms comprise of post-translational modifications of chromatin, methylation of DNA, nucleosome positioning as well as expression of noncoding RNAs. Major advances in understanding the role of DNA methylation in regulating chromatin functions have been made over the past decade, and point to a role of this epigenetic mechanism in human disease. Rheumatoid arthritis (RA) is an autoimmune disorder where altered DNA methylation patterns have been identified in a number of different disease-relevant cell types. However, the contribution of DNA methylation changes to RA disease pathogenesis is at present poorly understood and in need of further investigation. Here we review the current knowledge regarding the role of DNA methylation in rheumatoid arthritis and indicate its potential therapeutic implications.
Collapse
Affiliation(s)
- Adam Cribbs
- Kennedy Institute of Rheumatology, Oxford, and Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Udo Oppermann
- Botnar Research Centre, NIHR Oxford Biomedical Research Unit, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, and Structural Genomics Consortium, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Keil KP, Vezina CM. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate. Epigenomics 2015; 7:413-25. [PMID: 26077429 DOI: 10.2217/epi.15.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.
Collapse
Affiliation(s)
- Kimberly P Keil
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| | - Chad M Vezina
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| |
Collapse
|
41
|
Lillycrop KA, Burdge GC. Environmental challenge, epigenetic plasticity and the induction of altered phenotypes in mammals. Epigenomics 2015; 6:623-36. [PMID: 25531256 DOI: 10.2217/epi.14.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The level of transcriptional activity of a gene is regulated by epigenetic processes. There is compelling evidence that environmental challenges throughout the life course can induce phenotypic change. In this review, we summarize the current evidence, focusing specifically on the effects of nutrition and of environmental pollutants, that epigenetic processes underpin the induction by environmental change of altered phenotypic traits, emphasizing the implications for health outcomes. We also discuss whether epigenetic processes may be involved in the passage of induced traits between generations. Overall, current findings indicate that epigenetic processes may play an important role in determining disease risk, but there is a lack of studies that demonstrate causal links between epigenetic change and tissue function.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Faculty of Natural & Environmental Sciences, Southampton General Hospital, University of Southampton, SO16 6YD, UK
| | | |
Collapse
|
42
|
Atilano SR, Malik D, Chwa M, Cáceres-Del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N, Kenney MC. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum Mol Genet 2015; 24:4491-503. [PMID: 25964427 PMCID: PMC4512622 DOI: 10.1093/hmg/ddv173] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial (mt) DNA can be classified into haplogroups representing different geographic and/or racial origins of populations. The H haplogroup is protective against age-related macular degeneration (AMD), while the J haplogroup is high risk for AMD. In the present study, we performed comparison analyses of human retinal cell cybrids, which possess identical nuclei, but mtDNA from subjects with either the H or J haplogroups, and demonstrate differences in total global methylation, and expression patterns for two genes related to acetylation and five genes related to methylation. Analyses revealed that untreated-H and -J cybrids have different expression levels for nuclear genes (CFH, EFEMP1, VEGFA and NFkB2). However, expression levels for these genes become equivalent after treatment with a methylation inhibitor, 5-aza-2'-deoxycytidine. Moreover, sequencing of the entire mtDNA suggests that differences in epigenetic status found in cybrids are likely due to single nucleotide polymorphisms (SNPs) within the haplogroup profiles rather than rare variants or private SNPs. In conclusion, our findings indicate that mtDNA variants can mediate methylation profiles and transcription for inflammation, angiogenesis and various signaling pathways, which are important in several common diseases.
Collapse
Affiliation(s)
| | | | | | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute and Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA 90211, USA
| | | | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University, New Orleans, LA 70118, USA and
| | - Michael V Miceli
- Tulane Center for Aging and Department of Medicine, Tulane University, New Orleans, LA 70118, USA and
| | - Douglas C Wallace
- Center of Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - M Cristina Kenney
- Gavin Herbert Eye Institute and Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA,
| |
Collapse
|
43
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
44
|
Abstract
DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development. [BMB Reports 2014; 47(11): 609-618]
Collapse
Affiliation(s)
- Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Colum P Walsh
- Centre for Molecular Biosciences, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| |
Collapse
|
45
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Vaissière T, Miller CA. DNA methylation: dynamic and stable regulation of memory. Biomol Concepts 2015; 2:459-67. [PMID: 25962048 DOI: 10.1515/bmc.2011.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/17/2011] [Indexed: 12/26/2022] Open
Abstract
Epigenetic mechanisms have emerged as a central process in learning and memory. Histone modifications and DNA methy-lation are epigenetic events that can mediate gene transcription. Interesting features of these epigenetic changes are their transient and long lasting potential. Recent advances in neuroscience suggest that DNA methylation is both dynamic and stable, mediating the formation and maintenance of memory. In this review, we will further illustrate the recent hypothesis that DNA methylation participates in the transcriptional regulation necessary for memory.
Collapse
|
47
|
Weaver ICG, Hellstrom IC, Brown SE, Andrews SD, Dymov S, Diorio J, Zhang TY, Szyf M, Meaney MJ. The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0513. [PMID: 25135974 DOI: 10.1098/rstb.2013.0513] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 17 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 17 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 17 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada B3H 0A8
| | - Ian C Hellstrom
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Shelley E Brown
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Stephen D Andrews
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Sergiy Dymov
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Josie Diorio
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Tie-Yuan Zhang
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Moshe Szyf
- Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4 Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Michael J Meaney
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| |
Collapse
|
48
|
Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2015; 25:682-702. [PMID: 24857313 DOI: 10.1016/j.euroneuro.2014.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Aberrant changes in gene function are believed to be involved in a wide spectrum of human disease including behavioral, cognitive and neurodegenerative pathologies. Most of the attention in last few decades have focused on changes in gene sequence as a cause of gene dysfunction leading to disease and mental health disorders. Germ line mutations or other alterations in the sequence of DNA that associate with different behavioral and neurological pathologies have been identified. However, sequence alterations explain only a small fraction of the cases. In addition there is evidence for "gene-environment" interactions in the brain suggesting mechanisms that alter gene function and the phenotype through environmental exposure. Genes are programmed by "epigenetic" mechanisms such as chromatin structure, chromatin modification and DNA methylation. These mechanisms confer on similar sequences different identities during cellular differentiation. Epigenetic differences are proposed to be involved in differentiating gene function in response to different environmental contexts and could result in alterations in functional gene networks that lead to brain disease. Epigenetic markers could serve important biomarkers in brain and behavioral diseases. Moreover, epigenetic processes are potentially reversible pointing to epigenetic therapeutics in psychotherapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G1Y5.
| |
Collapse
|
49
|
Cheishvili D, Boureau L, Szyf M. DNA demethylation and invasive cancer: implications for therapeutics. Br J Pharmacol 2015; 172:2705-15. [PMID: 25134627 DOI: 10.1111/bph.12885] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cancer is aberrant DNA methylation, which is associated with abnormal gene expression. Both hypermethylation and silencing of tumour suppressor genes as well as hypomethylation and activation of prometastatic genes are characteristic of cancer cells. As DNA methylation is reversible, DNA methylation inhibitors were tested as anticancer drugs with the idea that such agents would demethylate and reactivate tumour suppressor genes. Two cytosine analogues, 5-azacytidine (Vidaza) and 5-aza-2'-deoxycytidine, were approved by the Food and Drug Administration as antitumour agents in 2004 and 2006 respectively. However, these agents might cause activation of a panel of prometastatic genes in addition to activating tumour suppressor genes, which might lead to increased metastasis. This poses the challenge of how to target tumour suppressor genes and block cancer growth with DNA-demethylating drugs while avoiding the activation of prometastatic genes and precluding the morbidity of cancer metastasis. This paper reviews current progress in using DNA methylation inhibitors in cancer therapy and the potential promise and challenges ahead.
Collapse
Affiliation(s)
- David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada
| | - Lisa Boureau
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada.,Department of Physiology Medical Sciences, University of Toronto 1 King's College Circle Toronto, ON, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Medical School, Montreal, QC, Canada.,Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Medical School, Montreal, QC, Canada.,Canadian Institute for Advanced Research, Faculty of Medicine, University of Toronto 1 King's College Circle Toronto, ON, Canada
| |
Collapse
|
50
|
Alvarado S, Mak T, Liu S, Storey KB, Szyf M. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus. ACTA ACUST UNITED AC 2015; 218:1787-95. [PMID: 25908059 DOI: 10.1242/jeb.116046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Hibernating mammals conserve energy in the winter by undergoing prolonged bouts of torpor, interspersed with brief arousals back to euthermia. These bouts are accompanied by a suite of reversible physiological and biochemical changes; however, much remains to be discovered about the molecular mechanisms involved. Given the seasonal nature of hibernation, it stands to reason that underlying plastic epigenetic mechanisms should exist. One such form of epigenomic regulation involves the reversible modification of cytosine bases in DNA by methylation. DNA methylation is well known to be a mechanism that confers upon DNA its cellular identity during differentiation in response to innate developmental cues. However, it has recently been hypothesized that DNA methylation also acts as a mechanism for adapting genome function to changing external environmental and experiential signals over different time scales, including during adulthood. Here, we tested the hypothesis that DNA methylation is altered during hibernation in adult wild animals. This study evaluated global changes in DNA methylation in response to hibernation in the liver and skeletal muscle of thirteen-lined ground squirrels along with changes in expression of DNA methyltransferases (DNMT1/3B) and methyl binding domain proteins (MBDs). A reduction in global DNA methylation occurred in muscle during torpor phases whereas significant changes in DNMTs and MBDs were seen in both tissues. We also report dynamic changes in DNA methylation in the promoter of the myocyte enhancer factor 2C (mef2c) gene, a candidate regulator of metabolism in skeletal muscle. Taken together, these data show that genomic DNA methylation is dynamic across torpor-arousal bouts during winter hibernation, consistent with a role for this regulatory mechanism in contributing to the hibernation phenotype.
Collapse
Affiliation(s)
- Sebastian Alvarado
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Timothy Mak
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Sara Liu
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Moshe Szyf
- Department of Pharmacology, McGill University, 3655 Sir William Osler Suite 1309, Montreal, QC, Canada H3G 1Y6; Sackler program in Epigenetics and Psychobiology at McGill University
| |
Collapse
|