1
|
龚 雪, 黄 金, 黄 志. [Research Progress in the Role of Mitochondrial Dysfunction in Endometriosis-Associated Infertility]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:521-526. [PMID: 38948278 PMCID: PMC11211786 DOI: 10.12182/20240560404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 07/02/2024]
Abstract
Endometriosis (EMT), a common benign gynecological disease, is a leading cause of infertility in women. EMT affects female fertility in various aspects. However, the underlying mechanisms have not been fully elucidated. Mitochondria are known as the "powerhouse" of a cell. They play pivotal roles in the physiological processes of cellular energy metabolism, calcium homeostasis, oxidative stress, autophagy, the regulation of cell cycle, and cell death, and are involved in the pathophysiology of many diseases. Cellular mitochondria are highly dynamic, continuously undergoing cyclic fission and fusion to meet the demands of cellular activities. Balanced mitochondrial dynamics are critical for maintaining normal reproductive function in women. In addition, mitochondria are the major source of reactive oxygen species (ROS). Cell damage, cell death, and fibrosis mediated by the imbalance in the oxidative-antioxidant system in EMT patients lead to decreased oocyte quality and ovarian reserve. Currently, the treatment of EMT-associated infertility remains a challenging and controversial topic. We herein reviewed the latest findings on the role of mitochondrial dysfunction in EMT-associated infertility and the potential therapeutic targets.
Collapse
Affiliation(s)
- 雪 龚
- 香港中文大学医学院 妇产科学系 (香港 999077)Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - 金 黄
- 香港中文大学医学院 妇产科学系 (香港 999077)Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - 志超 黄
- 香港中文大学医学院 妇产科学系 (香港 999077)Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2024:S2090-1232(24)00168-1. [PMID: 38692429 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Pissas KP, Schilling M, Korkmaz A, Tian Y, Gründer S. Melatonin alters the excitability of mouse cerebellar granule neurons by inhibiting voltage-gated sodium, potassium, and calcium channels. J Pineal Res 2024; 76:e12919. [PMID: 37794846 DOI: 10.1111/jpi.12919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Besides its role in the circadian rhythm, the pineal gland hormone melatonin (MLT) also possesses antiepileptogenic, antineoplastic, and cardioprotective properties, among others. The dosages necessary to elicit beneficial effects in these diseases often far surpass physiological concentrations. Although even high doses of MLT are considered to be largely harmless to humans, the possible side effects of pharmacological concentrations are so far not well investigated. In the present study, we report that pharmacological doses of MLT (3 mM) strongly altered the electrophysiological characteristics of cultured primary mouse cerebellar granule cells (CGCs). Using whole-cell patch clamp and ratiometric Ca2+ imaging, we observed that pharmacological concentrations of MLT inhibited several types of voltage-gated Na+ , K+ , and Ca2+ channels in CGCs independently of known MLT-receptors, altering the character and pattern of elicited action potentials (APs) significantly, quickly and reversibly. Specifically, MLT reduced AP frequency, afterhyperpolarization, and rheobase, whereas AP amplitude and threshold potential remained unchanged. The altered biophysical profile of the cells could constitute a possible mechanism underlying the proposed beneficial effects of MLT in brain-related disorders, such as epilepsy. On the other hand, it suggests potential adverse effects of pharmacological MLT concentrations on neurons, which should be considered when using MLT as a pharmacological compound.
Collapse
Affiliation(s)
| | - Maria Schilling
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Ahmet Korkmaz
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Yuemin Tian
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Gründer
- Medical faculty, Institute of Physiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
4
|
Pastor-Idoate S, Mateos-Olivares M, Sobas EM, Marcos M, Toribio A, Pastor JC, Usategui Martín R. Short-Wavelength Light-Blocking Filters and Oral Melatonin Administration in Patients With Retinitis Pigmentosa: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e49196. [PMID: 37971796 PMCID: PMC10690531 DOI: 10.2196/49196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The medical community is beginning to recognize that retinitis pigmentosa (RP), due to its disabling progression, eventually leads to a reduction in the patient´s quality of life, a direct economic impact, and an increase in the burden on the health care system. There is no curative treatment for the origin of the disease, and most of the current interventions fail in reducing the associated negative psychological states, such as anxiety and depression, which lead to increased variability of vision and pose a continuous threat to the patient's independence. OBJECTIVE The aim of this study is to assess the effect of oral melatonin (OM) administration alone and combined with short-wavelength light (SWL)-blocking filters on patients with RP and test their effectiveness in improving the level of stress and sleep problems in many of these patients. METHODS We have developed a low-cost therapy protocol for patients with RP with sleep disorders and negative psychological stress. Patients will be randomized to receive a combined intervention with SWL-blocking filters and OM, SWL-blocking filters alone, or OM alone. There will also be a nonintervention arm as a control group. This study will be conducted across 2 retinal units in patients with RP with sleep disorders and high perceived stress and anxiety score reports. Patients will be assessed in the preintervention period, weekly during the 4 weeks of intervention, and then at 6 months postintervention. The primary outcomes are the differences in changes from baseline to postintervention in hormone release (α-amylase, cortisol, and melatonin) and sleep quality, as measured with the visual analog scale. Secondary outcome measures include clinical macular changes, as measured with optical coherence tomography and optical coherence tomography angiography; retinal function, as measured using the visual field and best-corrected visual acuity; sleep data collected from personal wearables; and several patient-reported variables, such as self-recorded sleep diaries, quality of life, perceived stress, and functional status. RESULTS This project is still a study protocol and has not yet started. Bibliographic research for information for its justification began in 2020, and this working group is currently seeking start-up funding. As soon as we have the necessary means, we will proceed with the registration and organization prior to the preliminary phase. CONCLUSIONS In this feasibility randomized clinical controlled trial, we will compare the effects of SWL blocking alone, administration of OM alone, and a combined intervention with both in patients with RP. We present this study so that it may be replicated and incorporated into future studies at other institutions, as well as applied to additional inherited retinal dystrophies. The goal of presenting this protocol is to aid recent efforts in reducing the impact of sleeping disorders and other psychological disorders on the quality of life in patients with RP and recovering their self-autonomy. In addition, the results of this study will represent a significant step toward developing a novel low-cost therapy for patients with RP and validating a novel therapeutic target. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/49196.
Collapse
Affiliation(s)
- Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Milagros Mateos-Olivares
- Department of Ophthalmology, Clinical University Hospital of Valladolid, Valladolid, Spain
- Department of Ophthalmology, Clinical University Hospital of Caceres, Caceres, Spain
| | - Eva María Sobas
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Nursing School, University of Valladolid, Valladolid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Alfredo Toribio
- Federation of Associations of Hereditary Retinal Dystrophies in Spain, Valladolid, Spain
| | - José Carlos Pastor
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Networks of Cooperative Research oriented to Health Results, National Institute of Health Carlos III, Madrid, Spain
- European Reference Network dedicated to Rare Eye Diseases, Valladolid, Spain
| | - Ricardo Usategui Martín
- Institute of Applied Ophthalmobiology, University of Valladolid, Valladolid, Spain
- Department of Cellular Biology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| |
Collapse
|
5
|
Tan Z, Gong X, Wang CC, Zhang T, Huang J. Diminished Ovarian Reserve in Endometriosis: Insights from In Vitro, In Vivo, and Human Studies-A Systematic Review. Int J Mol Sci 2023; 24:15967. [PMID: 37958954 PMCID: PMC10647261 DOI: 10.3390/ijms242115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Endometriosis, a prevalent disorder in women of reproductive age, is often associated with undesired infertility. Ovarian reserve, an essential measure of ovarian function that is crucial for maintaining fecundity, is frequently diminished in women with endometriosis. Though the causative relationship between endometriosis and reduced ovarian reserve is not fully understood due to the lack of standardized and precise measurements of ovarian reserve, there is ongoing discussion regarding the impact of interventions for endometriosis on ovarian reserve. Therefore, in this review, we investigate articles that have related keywords and which were also published in recent years. Thereafter, we provide a comprehensive summary of evidence from in vitro, in vivo, and human studies, thereby shedding light on the decreased ovarian reserve in endometriosis. This research consolidates evidence from in vitro, in vivo, and human studies on the diminished ovarian reserve associated with endometriosis, as well as enhances our understanding of whether and how endometriosis, as well as its interventions, contribute to reductions in ovarian reserve. Furthermore, we explore potential strategies to modify existing therapy options that could help prevent diminished ovarian reserve in patients with endometriosis.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
| | - Xue Gong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
| | - Jin Huang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
6
|
Kitidee K, Samutpong A, Pakpian N, Wisitponchai T, Govitrapong P, Reiter RJ, Wongchitrat P. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Sci Rep 2023; 13:6063. [PMID: 37055489 PMCID: PMC10099015 DOI: 10.1038/s41598-023-33254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections. However, the effects of melatonin on JEV infection have not yet been studied. The investigation tested the antiviral effects of melatonin against JEV infection and elucidated the possible molecular mechanisms of inhibition. Melatonin inhibited the viral production in JEV-infected SH-SY5Y cells in a time- and dose-dependent manner. Time-of-addition assays demonstrated a potent inhibitory effect of melatonin at the post-entry stage of viral replication. Molecular docking analysis revealed that melatonin negatively affected viral replication by interfering with physiological function and/or enzymatic activity of both JEV nonstructural 3 (NS3) and NS5 protein, suggesting a possible underlying mechanism of JEV replication inhibition. Moreover, treatment with melatonin reduced neuronal apoptosis and inhibited neuroinflammation induced by JEV infection. The present findings reveal a new property of melatonin as a potential molecule for the further development of anti-JEV agents and treatment of JEV infection.
Collapse
Affiliation(s)
- Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Arisara Samutpong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nattaporn Pakpian
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tanchanok Wisitponchai
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
7
|
Kal Omar R, Hagström A, Stålhammar G. Adjuvant melatonin for uveal melanoma (AMUM): protocol for a randomized open-label phase III study. Trials 2023; 24:230. [PMID: 36966349 PMCID: PMC10040135 DOI: 10.1186/s13063-023-07245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Uveal melanoma is the most common primary intraocular tumor in adults. In Sweden, at least 100 patients are diagnosed with the disease each year. Almost half of the patients develop metastases, with a median survival time of 1 year once metastases are detected. The primary ocular tumor is typically treated with either enucleation or brachytherapy, and no adjuvant treatment is added. Melatonin is an indolamine hormone that has improved survival in previous trials with patients diagnosed with various cancers, including advanced cutaneous melanoma. Side effects have been mild. We aim to investigate if adjuvant treatment with melatonin for 5 years following diagnosis of non-metastasized uveal melanoma can decrease the occurrence of metastases. METHODS An open-label, prospective, 5-year randomized clinical trial (RCT) will be conducted at St. Erik Eye Hospital. One hundred patients recently diagnosed with non-metastatic uveal melanoma will be randomized to either treatment with adjuvant melatonin 20 mg (4 tablets of 5 mg) at 10 pm for 5 years, or to standard follow-up (control group). The primary outcome measurement is the relative risk for having developed metastases 5 years after randomization. The secondary outcomes are overall survival, risk of developing other cancers, overall survival after detection of metastases, and differences in the occurrence of adverse events (AE) and serious adverse events (SAE) between the groups. DISCUSSION Melatonin has been found to positively impact our immune system, inhibit angiogenesis, stimulate apoptosis in malignant cells, and act as a potent antioxidant. Previous clinical trials have used similar doses of melatonin with positive results, particularly in advanced stages of cancer. Previous animal and human studies have found the toxicity of the hormone to be low. Considering the potential benefits and limited risks of melatonin, as well as its global availability, it may be a suitable candidate for an adjuvant treatment in patients with uveal melanoma. TRIAL REGISTRATION Our trial protocol has been approved and registered by the Swedish Medical Products Agency on June 22, 2022 (EudraCT 2022-500,307-49-00). Our trial registration number is NCT05502900, and the date of registration is August 16, 2022.
Collapse
Affiliation(s)
- Ruba Kal Omar
- Department of Medicine, Karolinska Institutet, Nobels Väg 6, Stockholm, 171 76, Sweden.
| | - Anna Hagström
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, Stockholm, 171 64, Sweden.
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, Stockholm, 171 64, Sweden
- St. Erik Eye Hospital, Box 4078, 171 04, Stockholm, Sweden
| |
Collapse
|
8
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
9
|
Liu Y, Cai H, Guo X, Aierken A, Hua J, Ma B, Peng S. Melatonin alleviates heat stress-induced testicular damage in dairy goats by inhibiting the PI3K/AKT signaling pathway. STRESS BIOLOGY 2022; 2:47. [PMID: 37676539 PMCID: PMC10441922 DOI: 10.1007/s44154-022-00068-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2023]
Abstract
Current measures mainly focus on how melatonin reduces physiological heat stress in animals, but its effects on reproductive damage to male dairy goats have been neglected. This study aimed to determine the protective effect of melatonin on male reproduction during heat stress in dairy goats and to further explore its mechanisms. A natural heat stress model of Saanen dairy goats was used to assess testicular tissue damage 7 days after heat stress and to examine semen quality changes during a spermatogenic cycle. RNA-seq, Western blot, RT-qPCR, and immunofluorescence staining were used to explore the mechanism by which melatonin protects against heat stress-induced reproductive damage and to validate the results. The data suggested that melatonin significantly alleviated the heat stress-induced decrease in sperm quality, protected varicose tubule structure, reduced the levels of heat shock proteins and apoptotic proteins and protected the spermatocytes and round spermatozoa, which are mainly affected by heat stress. RNA-seq results suggest that melatonin inhibits the PI3K/AKT signaling pathway, reduces the level of p-AKT, and promotes elevated BCL-2. In addition, melatonin treatment could upregulate the gene expression of MT2 which was downregulated by heat stress and improve the change in extracellular matrix components and restore serum testosterone levels. Our results suggest that melatonin can protect against testicular and spermatogenic cell damage and improve semen quality in male dairy goats under heat stress. This study provides an important reference for subsequent studies on the molecular mechanisms of melatonin in protecting male reproductive processes under heat stress and using exogenous melatonin to prevent heat stress.
Collapse
Affiliation(s)
- Yundie Liu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China
| | - Hui Cai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China
| | - Xinrui Guo
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China
| | - Aili Aierken
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China.
| | - Baohua Ma
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China.
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest Agriculture and Forestry University of Science and Technology, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Iwamoto BK, Decker KM, Byars KC, Van Dyk TR. Impact of Exogenous Melatonin on Sleep and Daytime Functioning in Healthy, Typically Developing Adolescents. CURRENT SLEEP MEDICINE REPORTS 2022. [DOI: 10.1007/s40675-022-00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Li Y, Hung SW, Zhang R, Man GCW, Zhang T, Chung JPW, Fang L, Wang CC. Melatonin in Endometriosis: Mechanistic Understanding and Clinical Insight. Nutrients 2022; 14:nu14194087. [PMID: 36235740 PMCID: PMC9572886 DOI: 10.3390/nu14194087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is defined as the development of endometrial glands and stroma outside the uterine cavity. Pathophysiology of this disease includes abnormal hormone profiles, cell survival, migration, invasion, angiogenesis, oxidative stress, immunology, and inflammation. Melatonin is a neuroendocrine hormone that is synthesized and released primarily at night from the mammalian pineal gland. Increasing evidence has revealed that melatonin can be synthesized and secreted from multiple extra-pineal tissues where it regulates immune response, inflammation, and angiogenesis locally. Melatonin receptors are expressed in the uterus, and the therapeutic effects of melatonin on endometriosis and other reproductive disorders have been reported. In this review, key information related to the metabolism of melatonin and its biological effects is summarized. Furthermore, the latest in vitro and in vivo findings are highlighted to evaluate the pleiotropic functions of melatonin, as well as to summarize its physiological and pathological effects and treatment potential in endometriosis. Moreover, the pharmacological and therapeutic benefits derived from the administration of exogenous melatonin on reproductive system-related disease are discussed to support the potential of melatonin supplements toward the development of endometriosis. More clinical trials are needed to confirm its therapeutic effects and safety.
Collapse
Affiliation(s)
- Yiran Li
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Sze-Wan Hung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruizhe Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Gene Chi-Wai Man
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Tao Zhang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| | - Chi-Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong 999077, China
- Laboratory of Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Correspondence: (L.F.); (C.-C.W.); Tel.: +86-371-6691-3635 (L.F.); +852-3505-4267 (C.-C.W.)
| |
Collapse
|
12
|
Romagnoli S, Ferre-Dolcet L. Reversible Control of Reproduction In Queens: Mastering the use of reproductive drugs to manipulate cyclicity. J Feline Med Surg 2022; 24:853-870. [PMID: 36002142 PMCID: PMC10812224 DOI: 10.1177/1098612x221118754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The literature is full of papers reporting side effects of progestogens in cats; however, they are, in fact, safe drugs, as discussed in this article. Gonadotropin-releasing hormone (GnRH) agonists and melatonin are additionally a practical solution for controlling cyclicity in queens, but they also have some contraindications and need to be used carefully. CLINICAL RELEVANCE Mastering the use of reproductive drugs allows feline practitioners to handle many more clinical situations than can be solved using surgery. It is not necessary to be a specialist in reproduction to be able to halt cyclicity in a valuable breeding queen using hormones. EQUIPMENT AND TECHNICAL SKILLS A sound knowledge of appropriate dosages and criteria for patient selection for all reproductive drugs currently used in feline reproduction is the best guarantee of owner satisfaction and of ensuring the queen's health. Availability of a serum progesterone assay, either in-house or via an external laboratory, is also important, in order to confirm a queen is at an appropriate stage of the reproductive cycle for treatment. AUDIENCE This article is aimed principally (but not exclusively) at veterinarians working with cat breeders and whose clientele is increasingly interested in alternative methods of controlling reproduction in pet queens. Surgery is no longer the only choice, and practitioners who manage to keep abreast of new developments will be able to address clients' needs in a modern, professional way. EVIDENCE BASE This review draws on a vast body of scientific evidence-based literature. Previously, personal (and sometimes misinformed) opinions, such as the proposed dangerous side effects of progestogens, have been perpetuated in the scientific literature. The papers cited in this review have therefore been carefully scrutinised to distinguish reliable information based on controlled studies from non-evidence-based information.
Collapse
Affiliation(s)
- Stefano Romagnoli
- Department of Animal Medicine, Production and Health, University of Padova, Italy
| | | |
Collapse
|
13
|
Melatonin inhibits Gram-negative pathogens by targeting citrate synthase. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1430-1444. [PMID: 35000061 DOI: 10.1007/s11427-021-2032-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Bacterial infections caused by Gram-negative pathogens represent a growing burden for public health worldwide. Despite the urgent need for new antibiotics that effectively fight against pathogenic bacteria, very few compounds are currently under development or approved in the clinical setting. Repurposing compounds for other uses offers a productive strategy for the development of new antibiotics. Here we report that the multifaceted melatonin effectively improves survival rates of mice and decreases bacterial loads in the lung during infection. Mechanistically, melatonin specifically inhibits the activity of citrate synthase of Gram-negative pathogens through directly binding to the R300, D363, and H265 sites, particularly for the notorious Pasteurella multocida. These findings highlight that usage of melatonin is a feasible and alternative therapy to tackle the increasing threat of Gram-negative pathogen infections via disrupting metabolic flux of bacteria.
Collapse
|
14
|
Ortíz GG, Briones-Torres AL, Benitez-King G, González-Ortíz LJ, Palacios-Magaña CV, Pacheco-Moisés FP. Beneficial Effect of Melatonin Alone or in Combination with Glatiramer Acetate and Interferon β-1b on Experimental Autoimmune Encephalomyelitis. Molecules 2022; 27:molecules27134217. [PMID: 35807462 PMCID: PMC9268121 DOI: 10.3390/molecules27134217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a relevant animal model of multiple sclerosis (MS). Oxidative stress and chronic inflammation play a major role in the pathogenesis of MS and EAE. Melatonin, a neurohormone, has potent anti-inflammatory properties. The aim of our study was to assess the therapeutic properties of melatonin alone or in combination with interferon β-1b (IFNβ-1b) or glatiramer acetate (GA) on EAE. EAE was induced in male Sprague-Dawley rats with an intraperitoneal injection of a homogenate of spinal cord and pig brain. At day 10 post immunization, rats were euthanized, and their brains were immediately excised and processed to measure oxidative stress markers and membrane fluidity. In addition, proinflammatory cytokines were quantified in plasma. Melatonin alone or in combination with GA and IFNβ-1b inhibited the disease process of EAE and the synthesis of proinflammatory cytokines, caused a significant decrement in oxidative stress markers, and preserved the membrane fluidity in the motor cortex, midbrain, and spinal cord. The cumulative index score was significantly reduced in EAE rats treated with melatonin alone or in combination with GA and IFNβ-1b. In conclusion, our findings provide preclinical evidence for the use of melatonin as an adjuvant therapeutic treatment for MS.
Collapse
Affiliation(s)
- Genaro Gabriel Ortíz
- Department of Philosophical and Methodological Disciplines, University Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Briones-Torres
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Gloria Benitez-King
- National Institute of Psychiatry Ramón de la Fuente Muñíz, Mexico City 14370, Mexico;
| | - Luis Javier González-Ortíz
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Claudia Verónica Palacios-Magaña
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Center of Exact Sciences and Engineering, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico; (L.J.G.-O.); (C.V.P.-M.)
- Correspondence:
| |
Collapse
|
15
|
Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S. Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci 2022; 297:120426. [PMID: 35218765 DOI: 10.1016/j.lfs.2022.120426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Abstract
AIM This study investigated the link between forced swim induced acute gastric ulceration, inflammation and MMP-3 along with the possible mechanism of protective efficacy of melatonin. MAIN METHODS We distributed Balb/c mice into four different groups. Group 1 and 2 were given PBS gavage. Group 3 and 4 were given melatonin (60 mg/kg b.wt.) and omeprazole (25 mg/kg b.wt.), respectively, an hour prior to forced swim. Ulcer index, tissue histology, immunohistochemistry, protein carbonylation, lipid peroxidation, Myeloperoxidase, Zymography, Western blotting, reactive oxygen species (ROS), mitochondrial dehydrogenase, mitochondrial transmembrane potential and bioinformatical analysis were performed. KEY FINDINGS Our data revealed that gastric ulceration due to forced swim stress is responsible for overproduction of ROS, which may be a prime reason for mitochondrial dysfunction and induction of apoptosis via activation of Caspase-3. ROS is also responsible for p38 phosphorylation which in turn increases the activity of MMP-3 in ulcerated milieu, along with the oxidation of proteins, peroxidation of lipids and altered expression patterns of heat shock protein (HSP)-70. Melatonin is shown to reduce the inflammatory burden in gastric milieu and offers gastroprotection by binding to the active site of MMP-3; thereby inhibiting its activity, as suggested by in silico studies. Melatonin also inhibits the downregulation of HSP-70 and activates p38 dephosphorylation and thereby, it rescues gastric mucosal cells from stress-induced ulceration. SIGNIFICANCE Our findings suggest that, melatonin imparts its gastroprotective effect by down-regulating the activation of MAPK-ERK pathway along with binding to the active site of MMP-3.
Collapse
Affiliation(s)
- Preety Choudhary
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tapasi Roy
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhishek Chatterjee
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Snehasikta Swarnakar
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
16
|
Xu Z, Zhang F, Xu H, Yang F, Zhou G, Tong M, Li Y, Yang S. Melatonin affects hypoxia-inducible factor 1α and ameliorates delayed brain injury following subarachnoid hemorrhage via H19/miR-675/HIF1A/TLR4. Bioengineered 2022; 13:4235-4247. [PMID: 35170388 PMCID: PMC8974079 DOI: 10.1080/21655979.2022.2027175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the molecular mechanism of how melatonin (MT) interferes with hypoxia-inducible factor 1α (HIF1A) and toll-like receptor 4 (TLR4) expression, which is implicated in the management of delayed brain injury (DBI) after subarachnoid hemorrhage (SAH). Luciferase assay, real-time PCR, Western-blot analysis and immunohistochemistry (IHC) assays were utilized to explore the interaction among H19, miR-675, HIF1A and TLR4, and to evaluate the effect of MT on the expression of above transcripts in different groups. MT enhanced H19 expression by promoting the transcription efficiency of H19 promoter, and HIF1A was identified as a target of miR-675. HIF1A enhanced TLR4 expression via promoting the transcription efficiency of TLR4 promoter. Furthermore, administration of MT up-regulated miR-675 but suppressed the expressions of HIF1A and TLR4. Treatment with MT alleviated neurobehavioral deficits and apoptosis induced by SAH. According to the result of IHC, HIF1A and TLR4 protein levels in the SAH group were much higher than those in the SAH+MT group. Therefore, the administration of MT increased the levels of H19 and miR-675 which have been inhibited by SAH. In a similar way, treatment with MT decreased the levels of HIF1A and TLR4 which have been enhanced by SAH. MT could down-regulate the expression of HIF1A and TLR4 via the H19/miR-675/HIF1A/TLR4 signaling pathway, while TLR4 is crucial to the release of pro-inflammatory cytokines. Therefore, the treatment with MT could ameliorate post-SAH DBI.Running title: Melatonin ameliorates post-SAH DBI via H19/miR-675/HIF1A/TLR4 signaling pathways
Collapse
Affiliation(s)
- Zhijian Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fengduo Zhang
- Department of Emergency, Chinese People's Army 971 Hospital, Qingdao, Shandong, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fan Yang
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Gezhi Zhou
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Minfeng Tong
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yaqing Li
- Department of Neurosurgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Song Yang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Neurosurgery, Jiaozhou Branch, Shanghai East Hospital, School of Medicine, Tongji University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Shchetinin E, Baturin V, Arushanyan E, Bolatchiev A, Bobryshev D. Potential and Possible Therapeutic Effects of Melatonin on SARS-CoV-2 Infection. Antioxidants (Basel) 2022; 11:140. [PMID: 35052644 PMCID: PMC8772978 DOI: 10.3390/antiox11010140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
The absence of effective drugs for COVID-19 prevention and treatment requires the search for new candidates among approved medicines. Fundamental studies and clinical observations allow us to approach an understanding of the mechanisms of damage and protection from exposure to SARS-CoV-2, to identify possible points of application for pharmacological interventions. In this review we presented studies on the anti-inflammatory, antioxidant, and immunotropic properties of melatonin. We have attempted to present scientifically proven mechanisms of action for the potential therapeutic use of melatonin during SARS-CoV-2 infection. A wide range of pharmacological properties allows its inclusion as an effective addition to the methods of prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Evgeny Shchetinin
- Department of Pathophysiology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Vladimir Baturin
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Eduard Arushanyan
- Department of Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Albert Bolatchiev
- Department of Clinical Pharmacology, Stavropol State Medical University, 355000 Stavropol, Russia
| | - Dmitriy Bobryshev
- Center of Personalized Medicine, Stavropol State Medical University, 355000 Stavropol, Russia
| |
Collapse
|
18
|
Effects of Daily Melatonin Supplementation on Visual Loss, Circadian Rhythms, and Hepatic Oxidative Damage in a Rodent Model of Retinitis Pigmentosa. Antioxidants (Basel) 2021; 10:antiox10111853. [PMID: 34829724 PMCID: PMC8614953 DOI: 10.3390/antiox10111853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases characterized by a progressive loss of visual function that primarily affect photoreceptors, resulting in the complete disorganization and remodeling of the retina. Progression of the disease is enhanced by increased oxidative stress in the retina, aqueous humor, plasma, and liver of RP animal models and patients. Melatonin has beneficial effects against age-related macular degeneration, glaucoma, and diabetic retinopathy, in which oxidative stress plays a key role. In the present study, we used the P23HxLE rat as an animal model of RP. Melatonin treatment (10 mg/kg b.w. daily in drinking water for 6 months) improved the parameters of visual function and decreased the rate of desynchronization of the circadian rhythm, both in P23HxLE and wild-type rats. Melatonin reduced oxidative stress and increased antioxidant defenses in P23HxLE animals. In wild-type animals, melatonin did not modify any of the oxidative stress markers analyzed and reduced the levels of total antioxidant defenses. Treatment with melatonin improved visual function, circadian synchronization, and hepatic oxidative stress in P23HxLE rats, an RP model, and had beneficial effects against age-related visual damage in wild-type rats.
Collapse
|
19
|
Yang Z, He Y, Wang H, Zhang Q. Protective effect of melatonin against chronic cadmium-induced hepatotoxicity by suppressing oxidative stress, inflammation, and apoptosis in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112947. [PMID: 34736034 DOI: 10.1016/j.ecoenv.2021.112947] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a widespread environmental heavy metal pollutant that has high toxicity to human health. Cd accumulates in the liver and results in oxidative stress and inflammatory reactions. Melatonin (MT), a hormone exhibiting strong antioxidative properties, has been proved to have hepatoprotective effect against both acute and chronic liver injury. However, the molecular mechanism underlying MT's hepatoprotective effect against Cd-induced liver injury remain not fully understood. In this study, the potential protective effect of MT on Cd-induced hepatic injury was investigated. Adult male C57BL/6 mice were randomly divided into four groups: control, CdCl2, MT, and CdCl2 plus MT groups. Animals were daily treated with either CdCl2 (5 mg/kg) or MT (10 mg/kg) or both through intragastric administration for 30 consecutive days. Serum enzymatic analysis indicated that treatment mice with Cd significantly increased AST, ALT, LDH and ALP levels, by contrast, MT treatment resulted in significant decreases of AST, ALT, LDH and ALP levels in the serum of Cd treated mice. By biochemical analysis, it was found that MT treatment significantly increased the activities of SOD, GSH, GST, CAT and GR, while significantly decreased the contents of MDA in the liver tissue of Cd treated mice. Moreover, MT treatment also suppressed the Cd-induced inflammation by reducing the inflammatory mediators, including IL-1β, IL-6, TNF-α and iNOS. Furthermore, MT treatment ameliorated the Cd-induced histopathological variations of liver tissue, which was confirmed by the biochemical and molecular data. It is clear from the results of this study that MT exerts hepatoprotective effect by improving the redox state, suppressing inflammatory reaction and cell apoptosis as well as ameliorating the performance of liver tissue histopathology, which is eventually reflected by the improvement of liver function in mice.
Collapse
Affiliation(s)
- Zhijie Yang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuqin He
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haifang Wang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiong Zhang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
20
|
Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021; 13:nu13103480. [PMID: 34684482 PMCID: PMC8538349 DOI: 10.3390/nu13103480] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Sleep is an essential component of overall human health but is so tightly regulated that when disrupted can cause or worsen certain ailments. An important part of this process is the presence of the well-known hormone, melatonin. This compound assists in the governing of sleep and circadian rhythms. Previous studies have postulated that dysregulation of melatonin rhythms is the driving force behind sleep and circadian disorders. A computer-aided search spanning the years of 2015–2020 using the search terms melatonin, circadian rhythm, disorder yielded 52 full text articles that were analyzed. We explored the mechanisms behind melatonin dysregulation and how it affects various disorders. Additionally, we examined associated therapeutic treatments including bright light therapy (BLT) and exogenous forms of melatonin. We found that over the past 5 years, melatonin has not been widely investigated in clinical studies thus there remains large gaps in its potential utilization as a therapy.
Collapse
|
21
|
KUMAR PRAMOD, SINGH SV. Growth rate, feed intake, physiological responses and hormonal profile of Murrah buffaloes implanted melatonin during summer season. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i5.115394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to find out the effect of melatonin implantation on physiological responses, hormonal profile, feed intake and growth performance, 12 growing Murrah buffaloes were selected. These animals were further divided equally in two groups i.e. control and treatment (melatonin implantation @ 18 mg/50 kg body wt.). Melatonin was implanted subcutaneously in the thoracic region after every 45 days' interval in treatment group. Body weight and physiological parameters, viz. respiration rate (RR), rectal temperature (RT), pulse rate (PR) were recorded at fortnightly interval. Blood samples were also collected aseptically from both the group of animals at fortnightly intervals and plasma was separated for quantitation of hormones. The physiological responses were found to be significantly lower in treatment group than control group of growing buffaloes. The levels of growth and cortisol hormones were higher in treatment than control group. No significant variation was observed in the IGF-I levels. The melatonin implantation improved the growth rate, ADG and feed intake of growing buffaloes than control group. Based on the results of the present study, it is evident that melatonin implantation to growing buffaloes worked as an antioxidant and lowered the stress levels and enhanced growth rate during heat stress. Higher growth rate in treatment group of growing buffaloes will help in reducing the age of puberty and ultimately increase the total productive life.
Collapse
|
22
|
Chaudhry SR, Stadlbauer A, Buchfelder M, Kinfe TM. Melatonin Moderates the Triangle of Chronic Pain, Sleep Architecture and Immunometabolic Traffic. Biomedicines 2021; 9:984. [PMID: 34440187 PMCID: PMC8392406 DOI: 10.3390/biomedicines9080984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 12/30/2022] Open
Abstract
Preclinical as well as human studies indicate that melatonin is essential for a physiological sleep state, promotes analgesia and is involved in immunometabolic signaling by regulating neuroinflammatory pathways. Experimental and clinical neuromodulation studies for chronic pain treatment suggest that neurostimulation therapies such as spinal cord stimulation, vagus nerve stimulation and dorsal root ganglion stimulation have an impact on circulating inflammatory mediators in blood, cerebrospinal fluid and saliva. Herein, we provide an overview of current literature relevant for the shared pathways of sleep, pain and immunometabolism and elaborate the impact of melatonin on the crossroad of sleep, chronic pain and immunometabolism. Furthermore, we discuss the potential of melatonin as an adjunct to neurostimulation therapies. In this narrative review, we addressed these questions using the following search terms: melatonin, sleep, immunometabolism, obesity, chronic pain, neuromodulation, neurostimulation, neuroinflammation, molecular inflammatory phenotyping. So far, the majority of the published literature is derived from experimental studies and studies specifically assessing these relationships in context to neurostimulation are sparse. Thus, the adjunct potential of melatonin in clinical neurostimulation has not been evaluated under the umbrella of randomized-controlled trials and deserves increased attention as melatonin interacts and shares pathways relevant for noninvasive and invasive neurostimulation therapies.
Collapse
Affiliation(s)
- Shafqat R. Chaudhry
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Andreas Stadlbauer
- Department of Neurosurgery, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany; (A.S.); (M.B.)
| | - Michael Buchfelder
- Department of Neurosurgery, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany; (A.S.); (M.B.)
| | - Thomas M. Kinfe
- Department of Neurosurgery, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany; (A.S.); (M.B.)
- Division of Functional Neurosurgery and Stereotaxy, Medical Faculty, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
23
|
Applications of Melatonin in Female Reproduction in the Context of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6668365. [PMID: 34367465 PMCID: PMC8342146 DOI: 10.1155/2021/6668365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been recognized as one of the causal mediators of female infertility by affecting the oocyte quality and early embryo development. Improving oxidative stress is essential for reproductive health. Melatonin, a self-secreted antioxidant, has a wide range of effects by improving mitochondrial function and reducing the damage of reactive oxygen species (ROS). This minireview illustrates the applications of melatonin in reproduction from four aspects: physiological ovarian aging, vitrification freezing, in vitro maturation (IVM), and oxidative stress homeostasis imbalance associated with polycystic ovary syndrome (PCOS), emphasising the role of melatonin in improving the quality of oocytes in assisted reproduction and other adverse conditions.
Collapse
|
24
|
He F, Wu X, Zhang Q, Li Y, Ye Y, Li P, Chen S, Peng Y, Hardeland R, Xia Y. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights. Front Immunol 2021; 12:683879. [PMID: 34135911 PMCID: PMC8201398 DOI: 10.3389/fimmu.2021.683879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by pathogenic bacteria in animals (e.g., bacterial pneumonia, meningitis and sepsis) and plants (e.g., bacterial wilt, angular spot and canker) lead to high prevalence and mortality, and decomposition of plant leaves, respectively. Melatonin, an endogenous molecule, is highly pleiotropic, and accumulating evidence supports the notion that melatonin's actions in bacterial infection deserve particular attention. Here, we summarize the antibacterial effects of melatonin in vitro, in animals as well as plants, and discuss the potential mechanisms. Melatonin exerts antibacterial activities not only on classic gram-negative and -positive bacteria, but also on members of other bacterial groups, such as Mycobacterium tuberculosis. Protective actions against bacterial infections can occur at different levels. Direct actions of melatonin may occur only at very high concentrations, which is at the borderline of practical applicability. However, various indirect functions comprise activation of hosts' defense mechanisms or, in sepsis, attenuation of bacterially induced inflammation. In plants, its antibacterial functions involve the mitogen-activated protein kinase (MAPK) pathway; in animals, protection by melatonin against bacterially induced damage is associated with inhibition or activation of various signaling pathways, including key regulators such as NF-κB, STAT-1, Nrf2, NLRP3 inflammasome, MAPK and TLR-2/4. Moreover, melatonin can reduce formation of reactive oxygen and nitrogen species (ROS, RNS), promote detoxification and protect mitochondrial damage. Altogether, we propose that melatonin could be an effective approach against various pathogenic bacterial infections.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China.,Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yikun Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuyi Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shuai Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Morchang A, Malakar S, Poonudom K, Noisakran S, Yenchitsomanus PT, Limjindaporn T. Melatonin Inhibits Dengue Virus Infection via the Sirtuin 1-Mediated Interferon Pathway. Viruses 2021; 13:v13040659. [PMID: 33920458 PMCID: PMC8070382 DOI: 10.3390/v13040659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
Dengue virus (DENV) is the causative pathogen in the life-threatening dengue hemorrhagic fever and dengue shock syndrome. DENV is transmitted to humans via the bite of an infected Aedes mosquito. Approximately 100 million people are infected annually worldwide, and most of those live in tropical and subtropical areas. There is still no effective drug or vaccine for treatment of DENV infection. In this study, we set forth to investigate the effect of melatonin, which is a natural hormone with multiple pharmacological functions, against DENV infection. Treatment with subtoxic doses of melatonin dose-dependently inhibited DENV production. Cross-protection across serotypes and various cell types was also observed. Time-of-addition assay suggested that melatonin exerts its influence during the post-entry step of viral infection. The antiviral activity of melatonin partly originates from activation of the sirtuin pathway since co-treatment with melatonin and the sirtuin 1 (SIRT1) inhibitor reversed the effect of melatonin treatment alone. Moreover, melatonin could modulate the transcription of antiviral genes that aid in suppression of DENV production. This antiviral mechanism of melatonin suggests a possible new strategy for treating DENV infection.
Collapse
Affiliation(s)
- Atthapan Morchang
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (A.M.); (P.-t.Y.)
| | - Shilu Malakar
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.M.); (K.P.)
| | - Kanchanaphan Poonudom
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.M.); (K.P.)
| | - Sansanee Noisakran
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand;
- Division of Dengue Hemorrhagic Fever Research, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (A.M.); (P.-t.Y.)
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.M.); (K.P.)
- Correspondence: ; Tel.: +66-2-419-2754
| |
Collapse
|
26
|
Vlachou M, Siamidi A, Dedeloudi A, Konstantinidou SK, Papanastasiou IP. Pineal hormone melatonin as an adjuvant treatment for COVID‑19 (Review). Int J Mol Med 2021; 47:47. [PMID: 33576451 PMCID: PMC7891824 DOI: 10.3892/ijmm.2021.4880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
The beneficial properties of the pineal hormone, melatonin, as a neuroprotective and cardioprotective agent, have been previously identified. Furthermore, melatonin plays essential roles in biological rhythms resynchronization, sleep initiation/maintenance and metabolic, ocular, rheumatological diseases. In addition to these functions, melatonin is known to exert immunomodulation, anti-inflammatory and anti-oxidative effects. Due to these properties, coupled with its non-toxic nature, melatonin has been suggested to limit viral infections; however, melatonin cannot be classified as a viricidal drug. In addition, the recent increase in the number of clinical trials on melatonin's role, as an adjuvant treatment for COVID-19, has resurged the interest of the scientific community in this hormone. The present short review aimed to improve the understanding of the antiviral/anti-COVID-19 profile of melatonin and the clinical trials that have recently been conducted, with respect to its co-administration in treating individuals with COVID-19.
Collapse
Affiliation(s)
- Marilena Vlachou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Aikaterini Dedeloudi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sofia K Konstantinidou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis P Papanastasiou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
27
|
Reiter RJ, Sharma R. Central and peripheral actions of melatonin on reproduction in seasonal and continuous breeding mammals. Gen Comp Endocrinol 2021; 300:113620. [PMID: 32950582 DOI: 10.1016/j.ygcen.2020.113620] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
Under field conditions, especially for mammals that inhabit high latitudes, the regulation of seasonal breeding activity to ensure delivery of the young at the time most conducive to their survival is essential. This is most frequently accomplished by the annual reproductive cycle being linked to seasonal photoperiod changes which determine the nocturnal duration of the pineal melatonin signal. Mating can occur during any season that ensures spring/early summer delivery of the offspring. Thus, the season of mating is determined by the duration of pregnancy. The precise hormonal control of the annual cycle of reproduction by melatonin is accomplished at the level of the hypothalamo-pituitary axis which, in turn, determines the physiological state of the gonad and adnexa due to the regulation of pituitary gonadotrophin release. Many species are continuous rather than seasonal breeders. In these species, melatonin has a minor hormonal influence on the central regulation of reproduction but, nevertheless, its antioxidant functions at the level of the gonads support optimal reproductive physiology. Possibly like all cells, those in the ovary, e.g., granulosa cells and oocytes (less is known about melatonin synthesis by the testes or spermatogenic cells), synthesize melatonin which is used locally to combat free radicals and reactive nitrogen species which would otherwise cause oxidative/nitrosative stress to these critically important cells. Oxidative damage to the oocyte, zygote, blastocyst, etc., results in an abnormal fetus which is either sloughed or gives rise to an unhealthy offspring. The importance of the protection of the gametes (both oocytes and sperm) from oxidative molecular mutilation cannot be overstated. Fortunately, as a highly effective free radical scavenger and indirect antioxidant (by upregulating antioxidant enzyme), locally-produced melatonin is in the optimal location to protect the reproductive system from such damage.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
28
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
29
|
Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer's disease. Biomed Pharmacother 2020; 132:110887. [PMID: 33254429 DOI: 10.1016/j.biopha.2020.110887] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with multiple predisposing factors and complicated pathogenesis. Aβ peptide is one of the most important pathogenic factors in the etiology of AD. Accumulating evidence indicates that the imbalance of Aβ production and Aβ clearance in the brain of AD patients leads to Aβ deposition and neurotoxic Aβ oligomer formation. Melatonin shows a potent neuroprotective effect and can prevent or slow down the progression of AD, supporting the view that melatonin is a potential therapeutic molecule for AD. Melatonin modulates the regulatory network of secretase expression and affects the function of secretase, thereby inhibiting amyloidogenic APP processing and Aβ production. Additionally, melatonin ameliorates Aβ-induced neurotoxicity and probably promotes Aβ clearance through glymphatic-lymphatic drainage, BBB transportation and degradation pathways. In this review, we summarize and discuss the role of melatonin against Aβ-dependent AD pathogenesis. We explore the potential cellular and molecular mechanisms of melatonin on Aβ production and assembly, Aβ clearance, Aβ neurotoxicity and circadian cycle disruption. We summarize multiple clinical trials of melatonin treatment in AD patients, showing that melatonin has a promising effect on improving sleep quality and cognitive function. This review aims to stimulate further research on melatonin as a potential therapeutic agent for AD.
Collapse
|
30
|
Genario R, Cipolla-Neto J, Bueno AA, Santos HO. Melatonin supplementation in the management of obesity and obesity-associated disorders: A review of physiological mechanisms and clinical applications. Pharmacol Res 2020; 163:105254. [PMID: 33080320 DOI: 10.1016/j.phrs.2020.105254] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
Despite the evolving advances in clinical approaches to obesity and its inherent comorbidities, the therapeutic challenge persists. Among several pharmacological tools already investigated, recent studies suggest that melatonin supplementation could be an efficient therapeutic approach in the context of obesity. In the present review, we have amalgamated the evidence so far available on physiological effects of melatonin supplementation in obesity therapies, addressing its effects upon neuroendocrine systems, cardiometabolic biomarkers and body composition. Most studies herein appraised employed melatonin supplementation at dosages ranging from 1 to 20 mg/day, and most studies followed up participants for periods from 3 weeks to 12 months. Overall, it was observed that melatonin plays an important role in glycaemic homeostasis, in addition to modulation of white adipose tissue activity and lipid metabolism, and mitochondrial activity. Additionally, melatonin increases brown adipose tissue volume and activity, and its antioxidant and anti-inflammatory properties have also been demonstrated. There appears to be a role for melatonin in adiposity reduction; however, several questions remain unanswered, for example melatonin baseline levels in obesity, and whether any seeming hypomelatonaemia or melatonin irresponsiveness could be clarifying factors. Supplementation dosage studies and more thorough clinical trials are needed to ascertain not only the relevance of such findings but also the efficacy of melatonin supplementation.
Collapse
Affiliation(s)
- Rafael Genario
- School of Medicine, University of Sao Paulo (USP), São Paulo, Brazil.
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Harguindey S, Alfarouk K, Polo Orozco J, Fais S, Devesa J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H +-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020; 21:E7475. [PMID: 33050492 PMCID: PMC7589677 DOI: 10.3390/ijms21207475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
A brand new approach to the understanding of breast cancer (BC) is urgently needed. In this contribution, the etiology, pathogenesis, and treatment of this disease is approached from the new pH-centric anticancer paradigm. Only this unitarian perspective, based upon the hydrogen ion (H+) dynamics of cancer, allows for the understanding and integration of the many dualisms, confusions, and paradoxes of the disease. The new H+-related, wide-ranging model can embrace, from a unique perspective, the many aspects of the disease and, at the same time, therapeutically interfere with most, if not all, of the hallmarks of cancer known to date. The pH-related armamentarium available for the treatment of BC reviewed here may be beneficial for all types and stages of the disease. In this vein, we have attempted a megasynthesis of traditional and new knowledge in the different areas of breast cancer research and treatment based upon the wide-ranging approach afforded by the hydrogen ion dynamics of cancer. The concerted utilization of the pH-related drugs that are available nowadays for the treatment of breast cancer is advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Khalid Alfarouk
- Department of Pharmacology, Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah 42316, Saudi Arabia and Alfarouk Biomedical Research LLC, Tampa, FL 33617, USA;
| | - Julián Polo Orozco
- Department of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), 00161 Rome, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
32
|
Mantle D, Smits M, Boss M, Miedema I, van Geijlswijk I. Efficacy and safety of supplemental melatonin for delayed sleep-wake phase disorder in children: an overview. Sleep Med X 2020; 2:100022. [PMID: 33870175 PMCID: PMC8041131 DOI: 10.1016/j.sleepx.2020.100022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/03/2023] Open
Abstract
Delayed sleep–wake phase disorder (DSPD) is the most frequently occurring intrinsic circadian rhythm sleep–wake disorder, with the highest prevalence in adolescence. Melatonin is the first-choice drug treatment. However, to date melatonin (in a controlled-release formulation) is only authorised for the treatment of insomnia in children with autism or Smiths-Magenis syndrome. Concerns have been raised with respect to the safety and efficacy of melatonin for more general use in children, as melatonin has not undergone the formal safety testing required for a new drug, especially long-term safety in children. Melatonin is known to have profound effects on the reproductive systems of rodents, sheep and primates, as well as effects on the cardiovascular, immune and metabolic systems. The objective of the present article was therefore to establish the efficacy and safety of exogenous melatonin for use in children with DSPD, based on in vitro, animal model and clinical studies by reviewing the relevant literature in the Medline database using PubMed. Acute toxicity studies in rats and mice showed toxic effects only at extremely high melatonin doses (>400 mg/kg), some tens of thousands of times more than the recommended dose of 3–6 mg in a person weighing 70 kg. Longer-term administration of melatonin improved the general health and survival of ageing rats or mice. A full range of in vitro/in vivo genotoxicity tests consistently found no evidence that melatonin is genotoxic. Similarly long term administration of melatonin in rats or mice did not have carcinogenic effects, or negative effects on cardiovascular, endocrine and reproductive systems. With regard to clinical studies, in 19 randomised controlled trials comprising 841 children and adolescents with DSPD, melatonin treatment (usually of 4 weeks duration) consistently improved sleep latency by 22–60 min, without any serious adverse effects. Similarly, 17 randomised controlled trials, comprising 1374 children and adolescents, supplementing melatonin for indications other than DSPD, reported no relevant adverse effects. In addition, 4 long-term safety studies (1.0–10.8 yr) supplementing exogenous melatonin found no substantial deviation of the development of children with respect to sleep quality, puberty development and mental health scores. Finally, post-marketing data for an immediate-release melatonin formulation (Bio-melatonin), used in the UK since 2008 as an unlicensed medicine for sleep disturbance in children, recorded no adverse events to date on sales of approximately 600,000 packs, equivalent to some 35 million individual 3 mg tablet doses (MHRA yellow card adverse event recording scheme). In conclusion, evidence has been provided that melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in children, provided that it is administered at the correct time (3–5 h before endogenous melatonin starts to rise in dim light (DLMO)), and in the correct (minimal effective) dose. As the status of circadian rhythmicity may change during long-time treatment, it is recommended to stop melatonin treatment at least once a year (preferably during the summer holidays). Melatonin improves sleep onset without serious adverse effects in youths with DSPD. Change th text after the fourth bullet into: Melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in youths. Melatonin for indications other than DSPD, dose not cause relevant adverse effects. Long term melatonin treatment does not impair sleep, puberty, and mental health. Melatonin is an efficacious and safe chronobiotic drug for the treatment of DSPD in youths. Melatonin should be administered at the correct time and in the minimal effective dose.
Collapse
Affiliation(s)
| | - Marcel Smits
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Myrthe Boss
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Irene Miedema
- Multidisciplinary Expertise Centre for Sleep-Wake Disorders and Chronobiology, Gelderse Valley Hospital Ede, The Netherlands
| | - Inge van Geijlswijk
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, and Faculty of Veterinary Medicine, Pharmacy Department Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
33
|
Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG. Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol Life Sci 2020; 77:2527-2542. [PMID: 31970423 PMCID: PMC11104865 DOI: 10.1007/s00018-019-03438-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022]
Abstract
Melatonin has the ability to intervene in the initiation, progression and metastasis of some experimental cancers. A large variety of potential mechanisms have been advanced to describe the metabolic and molecular events associated with melatonin's interactions with cancer cells. There is one metabolic perturbation that is common to a large number of solid tumors and accounts for the ability of cancer cells to actively proliferate, avoid apoptosis, and readily metastasize, i.e., they use cytosolic aerobic glycolysis (the Warburg effect) to rapidly generate the necessary ATP required for the high metabolic demands of the cancer cells. There are several drugs, referred to as glycolytic agents, that cause cancer cells to abandon aerobic glycolysis and shift to the more conventional mitochondrial oxidative phosphorylation for ATP synthesis as in normal cells. In doing so, glycolytic agents also inhibit cancer growth. Herein, we hypothesize that melatonin also functions as an inhibitor of cytosolic glycolysis in cancer cells using mechanisms, i.e., downregulation of the enzyme (pyruvate dehydrogenase kinase) that interferes with the conversion of pyruvate to acetyl CoA in the mitochondria, as do other glycolytic drugs. In doing so, melatonin halts the proliferative activity of cancer cells, reduces their metastatic potential and causes them to more readily undergo apoptosis. This hypothesis is discussed in relation to the previously published reports. Whereas melatonin is synthesized in the mitochondria of normal cells, we hypothesize that this synthetic capability is not present in cancer cell mitochondria because of the depressed acetyl CoA; acetyl CoA is necessary for the rate limiting enzyme in melatonin synthesis, arylalkylamine-N-acetyltransferase. Finally, the ability of melatonin to switch glucose oxidation from the cytosol to the mitochondria also explains how tumors that become resistant to conventional chemotherapies are re-sensitized to the same treatment when melatonin is applied.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Qiang Ma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Sergio Rorsales-Corral
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | | |
Collapse
|
34
|
Labay LM, Kraner JC, Mock AR, Sozio TJ. The Importance of Melatonin Detection in Pediatric Deaths. Acad Forensic Pathol 2019; 9:24-32. [PMID: 34394788 DOI: 10.1177/1925362119851107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is an endogenous hormone that regulates sleep patterns. It is available in varying formulations and dosages and is marketed as a natural substance that can alleviate insomnia. Recent news reports indicate that melatonin has been administered without appropriate authorization in daycare settings. Even though lethal outcomes have not been solely attributed to exogenous melatonin overdose, it has been relevant to select police and postmortem investigations. A quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed for the analysis of biological specimens. Results of 22 positive blood samples were evaluated based upon gender, age, and melatonin concentration from cases submitted by clinical, police, and death investigation agencies. Two cases are described. In Case 1, a 9-month-old was found unresponsive after cosleeping with a sibling. Allegations included exposure to an unspecified pesticide and dextromethorphan, and consumption of half a cigarette. There was admitted use of melatonin. Melatonin was quantified in blood and gastric fluid at concentrations of 13 ng/mL and 1200 ng/mL, respectively. In Case 2, a 13-month-old was found nonresponsive in a shared room. Melatonin was found within some of the sippy cups. The infant was extremely warm to the touch. Resuscitative efforts were unsuccessful and death was pronounce3d. Analysis showed a result of 210 ng/mL in blood. The presented quantitative LC-MS/MS method can successfully be applied to evaluate exposure to exogenous melatonin. Toxicology testing can assist in the investigation of these case types by substantiating the purposeful administration of melatonin.
Collapse
|
35
|
Niggemann JR, Tichy A, Eberspächer-Schweda MC, Eberspächer-Schweda E. Preoperative calming effect of melatonin and its influence on propofol dose for anesthesia induction in healthy dogs. Vet Anaesth Analg 2019; 46:560-567. [PMID: 31351807 DOI: 10.1016/j.vaa.2019.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/10/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the preoperative calming effect of melatonin and its influence on propofol dose for anesthesia induction in dogs. STUDY DESIGN Prospective, randomized, blinded, placebo-controlled clinical study. ANIMALS A total of 50 healthy, adult, client-owned dogs scheduled for elective surgery. METHODS Dogs were equally divided into treatment group M, which received 5 mg kg-1 melatonin, and placebo-control group P (sucrose), both administered orally 2 hours prior to induction of anesthesia. Dogs were subjectively characterized and further designated as skeptical (group S; n = 18) or trustful (group T; n = 32). Behavior, calming effect and vital parameters (pulse rate, respiratory rate, blood pressure, rectal temperature) were evaluated before and after treatment. Propofol dose [mg kg-1 intravenously (IV)] to allow endotracheal intubation and anesthesia induction quality was documented. Data were analyzed using a general linear model and Mann-Whitney U tests. RESULTS Dogs in group MS (n = 10) were calmer than those in group PS (n = 8) at 90 minutes after drug administration (p = 0.047). Group MT (n = 15) required less propofol (5.98 ± 0.96 mg kg-1) than group PT (n = 17; 7.04 ± 1.82 mg kg-1 IV; p = 0.048) and group MS (9.48 ± 3.22 mg kg-1 IV; p = 0.007). Group PS required 7.69 ± 2.71 mg kg-1 IV. Skeptical dogs showed more reactions during induction (p = 0.013). Vital parameters were within physiological ranges before and after treatment. CONCLUSION AND CLINICAL RELEVANCE Results showed that melatonin may be used to reduce propofol dose for anesthesia induction in trustful dogs. Skeptical dogs benefitted from the calming properties. Potentially, melatonin could be used to minimize the level of excitement before general anesthesia and to reduce the required propofol dose for induction.
Collapse
Affiliation(s)
- Johanna R Niggemann
- Clinic of Anaesthesiology and perioperative Intensive Care, Department of Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Matthias C Eberspächer-Schweda
- Clinical Unit of Small Animal Surgery, Department of Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Eva Eberspächer-Schweda
- Clinic of Anaesthesiology and perioperative Intensive Care, Department of Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
36
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 330] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
37
|
Song Z, Humar B, Gupta A, Maurizio E, Borgeaud N, Graf R, Clavien PA, Tian Y. Exogenous melatonin protects small-for-size liver grafts by promoting monocyte infiltration and releases interleukin-6. J Pineal Res 2018; 65:e12486. [PMID: 29505662 DOI: 10.1111/jpi.12486] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 01/08/2023]
Abstract
Defective regeneration of small-for-size (SFS) liver remnants and partial grafts remains a key limiting factor in the application of liver surgery and transplantation. Exogenous melatonin (MLT) has protective effects on hepatic ischemia-reperfusion injury (IRI), but its influence on graft regeneration is unknown. The aim of the study is to investigate the role of MLT in IRI and graft regeneration in settings of partial liver transplantation. We established three mouse models to study hepatic IRI and regeneration associated with partial liver transplantation: (I) IR+PH group: 60 minutes liver ischemia (IR) plus 2/3 hepatectomy (PH); (II) IR+exPH group: 60 minutes liver IR plus extended hepatectomy (exPH) associated with the SFS syndrome; (III) SFS-LT group: Arterialized 30% SFS liver transplant. Each group was divided into MLT or vehicle-treated subgroups. Hepatic injury, inflammatory signatures, liver regeneration, and animal survival rates were assessed. MLT reduced liver injury, enhanced liver regeneration, and promoted interleukin (IL) 6, IL10, and tumor necrosis factor-α release by infiltrating, inflammatory Ly6C+ F4/80+ monocytes in the IR+PH group. MLT-induced IL6 significantly improved hepatic microcirculation and survival in the IR+exPH model. In the SFS-LT group, MLT promoted graft regeneration and increased recipient survival along with increased IL6/GP130-STAT3 signaling. In IL6-/- mice, MLT failed to promote liver recovery, which could be restored through recombinant IL6. In the IR+exPH and SFS-LT groups, inhibition of the IL6 co-receptor GP130 through SC144 abolished the beneficial effects of MLT. MLT ameliorates SFS liver graft IRI and restores regeneration through monocyte-released IL6 and downstream IL6/GP130-STAT3 signaling.
Collapse
Affiliation(s)
- Zhuolun Song
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Bostjan Humar
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Anurag Gupta
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Eleonora Maurizio
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Nathalie Borgeaud
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Rolf Graf
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| | - Yinghua Tian
- Department of Surgery, Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Center, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
38
|
Affiliation(s)
- Daniel P. Cardinali
- Departmento de Docencia e Investigación, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
39
|
Pshenichnyuk SA, Modelli A, Komolov AS. Interconnections between dissociative electron attachment and electron-driven biological processes. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1461347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanislav A. Pshenichnyuk
- Institute of Molecule and Crystal Physics – Subdivision of the Ufa Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Alberto Modelli
- Dipartimento di Chimica ‘G. Ciamician’, Università di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca in Scienze Ambientali, Ravenna, Italy
| | - Alexei S. Komolov
- Department of Solid State Electronics, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
40
|
Hobson SR, Lim R, Wallace EM. Phase I Pilot Clinical Trial of Antenatal Maternally Administered Melatonin to Decrease the Level of Oxidative Stress in Human Pregnancies Affected by Preeclampsia. Methods Mol Biol 2018; 1710:335-345. [PMID: 29197016 DOI: 10.1007/978-1-4939-7498-6_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This chapter describes the methodologies which may be used in the development of a phase I clinical trial investigating a therapy of choice in treating preeclampsia.
Collapse
Affiliation(s)
- Sebastian R Hobson
- Maternal Fetal Medicine Unit, Department of Obstetrics & Gynaecology, Monash Medical Centre, Monash Health & Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
| | - Rebecca Lim
- Maternal Fetal Medicine Unit, Department of Obstetrics & Gynaecology, Monash Medical Centre, Monash Health & Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Euan M Wallace
- Maternal Fetal Medicine Unit, Department of Obstetrics & Gynaecology, Monash Medical Centre, Monash Health & Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
41
|
Song X, Fiati Kenston SS, Kong L, Zhao J. Molecular mechanisms of nickel induced neurotoxicity and chemoprevention. Toxicology 2017; 392:47-54. [PMID: 29032222 DOI: 10.1016/j.tox.2017.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 01/05/2023]
Abstract
Nickel (Ni) is widely used in many industrial sectors such as alloy, welding, printing inks, electrical and electronics industries. Excessive environmental or occupational exposure to Ni may result in tumor, contact dermatitis, as well as damages to the nervous system. In recent years, more and more research has demonstrated that Ni induced nerve damages are related to mitochondrial dysfunction. In this paper, we try to characterize Ni induced neurotoxicity as well as the underlying mechanisms, and how to find new drugs for chemoprevention, by reviewing chemicals with neuroprotective effects on Ni induced neurotoxicity.
Collapse
Affiliation(s)
- Xin Song
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Lu Kong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medicine School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
42
|
Zhao M, Li Y, Xu L, Hickey A, Groom K, Stone PR, Chamley LW, Chen Q. Melatonin prevents preeclamptic sera and antiphospholipid antibodies inducing the production of reactive nitrogen species and extrusion of toxic trophoblastic debris from first trimester placentae. Placenta 2017; 58:17-24. [PMID: 28962691 DOI: 10.1016/j.placenta.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The exact cause of preeclampsia is unknown. However a "toxin" from the placenta triggers the condition via activation of the maternal endothelium. Extracellular vesicles (EVs) from the syncytiotrophoblast, may be an endothelial-activating toxin. Antiphospholipid antibodies (aPL) and preeclamptic sera both induce the production of endothelial cell-activating EVs by mechanisms which may produce excess free-radicals in the placenta. Melatonin is produced by the human placenta and has both direct and indirect anti-free-radical properties and may therefore counter the effects of aPL and preeclamptic sera. METHODS First trimester placental explants were exposed to preeclamptic sera or aPL in the presence or absence of melatonin. Nitrosylative damage was assessed in the explants by immunohistochemistry and the effect of EVs from these explants on endothelial cell activation determined by ICAM-1. Release of nitrosylated proteins from the explants was also measured. RESULTS Placental explants showed reduced secretion of melatonin after treatment with preeclamptic sera. Nitrosylated proteins were more abundant in placentae that had been treated with aPL or preeclamptic sera and EVs from such placentae induced endothelial cell activation. Adding melatonin to the aPL or preeclamptic sera reversed the protein nitrosylation and production of endothelial-activating EVs. DISCUSSION Our data are consistent with reports that the levels of circulating melatonin are reduced in preeclampsia and suggest that aPL and factors in preeclamptic sera induce free-radical-mediated damage in the placenta leading to the production of endothelial-activating EVs. Melatonin reversing production of endothelial-activating EVs indicates that melatonin may have therapeutic benefits in women with preeclampsia and/or aPL.
Collapse
Affiliation(s)
- Mingzhi Zhao
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Yanyun Li
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lance Xu
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Anthony Hickey
- School of Biological Science, The University of Auckland, New Zealand
| | - Katie Groom
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
43
|
Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS. Low-Energy Electron Interaction with Melatonin and Related Compounds. J Phys Chem B 2017; 121:3965-3974. [PMID: 28394598 DOI: 10.1021/acs.jpcb.7b01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences , Prospeκt Oktyabrya 151, 450075 Ufa, Russia.,St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician″, Università di Bologna , via Selmi 2, 40126 Bologna, Italy.,Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163, 48123 Ravenna, Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività , C.N.R., via Gobetti 101, 40129 Bologna, Italy
| | - Eleonora F Lazneva
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
44
|
Rather ZA, Chowta MN, Bolumbu G, Rakesh KB. Evaluation of acute effects of melatonin on ethanol drinking in ethanol naïve rats. Indian J Pharmacol 2016; 47:383-7. [PMID: 26288469 PMCID: PMC4527058 DOI: 10.4103/0253-7613.161259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/25/2015] [Accepted: 06/11/2015] [Indexed: 12/02/2022] Open
Abstract
Objective: The objective was to evaluate the acute effect of melatonin on ethanol drinking in ethanol naïve rats and to determine the specificity of the effect of melatonin on ethanol intake as compared to an intake of plain tap water or sugar water. Materials and Methods: A total of three experiments (2 weeks duration each) using different drinking solutions (ethanol, plain tap water, sugar water) was conducted in individually housed male wistar rats of 5 weeks age. Each animal had access to bottles containing drinking solutions for 2 h a day. In each experiment, on day 1, day 2, day 4, day 5, day 8, day 9, day 11, day 12 rats received drinking solutions. Each individual rat received single doses of saline, melatonin (50 mg and 100 mg/kg), and naltrexone on day 2, 5, 9, and 12, 1-h before receiving drinking solution. The order of drug administration is permuted such a way that each animal received the drugs in a different order in different experiments. Results: Melatonin has significantly decreased ethanol consumption by the rats and effect is dose-dependent. Naltrexone also has caused a significant reduction in the ethanol consumption. The maximum reduction in ethanol consumption was seen with melatonin 100 mg/kg dose compared to melatonin 50 mg/kg and naltrexone. There was no statistically significant effect of melatonin on plain water and sugar solution intake. Conclusions: Melatonin decreases ethanol consumption in ethanol naïve rats. The effect of melatonin is similar to naltrexone affecting selectively ethanol consumption, but not plain water and sugar water consumption.
Collapse
Affiliation(s)
- Zahoor Ahmad Rather
- Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| | - Ganaraja Bolumbu
- Department of Physiology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| | - K B Rakesh
- Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, Karnataka, India
| |
Collapse
|
45
|
Scheuer C, Pommergaard HC, Rosenberg J, Gögenur I. Effect of topical application of melatonin cream 12.5% on cognitive parameters: A randomized, placebo-controlled, double-blind crossover study in healthy volunteers. J DERMATOL TREAT 2016; 27:488-494. [PMID: 27052036 DOI: 10.3109/09546634.2016.1161154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Skin cancer is an increasing problem in modern dermatology. Earlier studies have shown protective effects against ultraviolet radiation (UVR)-induced skin damage by topical treatment with melatonin. However, the potential sedative effects of full body topical application of melatonin have never been investigated. Objectives The aim of this study was to assess the degree of cognitive dysfunction when using melatonin cream as full body topical application. METHODS In a randomized, placebo-controlled, double-blind crossover study in healthy volunteers, the degree of cognitive dysfunction when using cream containing 12.5% melatonin as full body application was assessed. A group of ten volunteers had melatonin cream 12.5% applied on 80% of their body surface area, and degree of cognitive dysfunction was assessed using a test battery consisting of Karolinska sleepiness scale (KSS), Finger tapping test (FTT) and Continuous Reaction time (CRT). RESULTS No significant effects on cognitive parameters were found. However, great inter-individual variations on cognitive parameters were observed. CONCLUSION This study was the first to assess degree of cognitive dysfunction resulting from application of melatonin cream on a full body surface area. The results support that melatonin is a safe drug for dermal application even in a high dosage.
Collapse
Affiliation(s)
- Cecilie Scheuer
- a Department of Surgery , Køge Hospital - University of Copenhagen , Køge , Denmark
| | | | - Jacob Rosenberg
- c Department of Surgery , Herlev Hospital - University of Copenhagen , Herlev , Denmark
| | - Ismail Gögenur
- a Department of Surgery , Køge Hospital - University of Copenhagen , Køge , Denmark
| |
Collapse
|
46
|
Hobson SR, Mockler JC, Lim R, Alers NO, Miller SL, Wallace EM. Melatonin for treating pre-eclampsia. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2016. [DOI: 10.1002/14651858.cd012109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian R Hobson
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Joanne C Mockler
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Rebecca Lim
- Monash University; The Ritchie Centre; Melbourne Australia
| | - Nicole O Alers
- Monash University; The Ritchie Centre; Melbourne Australia
| | | | - Euan M Wallace
- Monash Health; Department of Obstetrics and Gynaecology; 246 Clayton Road Melbourne Victoria Australia 3168
- Monash University; The Ritchie Centre; Melbourne Australia
| |
Collapse
|
47
|
Haduch A, Bromek E, Wojcikowski J, Go embiowska K, Daniel WA. Melatonin Supports CYP2D-Mediated Serotonin Synthesis in the Brain. Drug Metab Dispos 2016; 44:445-452. [DOI: 10.1124/dmd.115.067413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
48
|
Andersen LPH, Gögenur I, Rosenberg J, Reiter RJ. The Safety of Melatonin in Humans. Clin Drug Investig 2015; 36:169-75. [DOI: 10.1007/s40261-015-0368-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Barchas JD, Brody BD. Perspectives on depression-past, present, futurea. Ann N Y Acad Sci 2015; 1345:1-15. [DOI: 10.1111/nyas.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jack D. Barchas
- Department of Psychiatry; Weill Cornell Medical College; New York New York
| | - Benjamin D. Brody
- Department of Psychiatry; Weill Cornell Medical College; New York New York
| |
Collapse
|
50
|
Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 2014; 71:2997-3025. [PMID: 24554058 PMCID: PMC11113552 DOI: 10.1007/s00018-014-1579-2] [Citation(s) in RCA: 715] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Endogenous melatonin is synthesized from tryptophan via 5-hydroxytryptamine. It is considered an indoleamine from a biochemical point of view because the melatonin molecule contains a substituted indolic ring with an amino group. The circadian production of melatonin by the pineal gland explains its chronobiotic influence on organismal activity, including the endocrine and non-endocrine rhythms. Other functions of melatonin, including its antioxidant and anti-inflammatory properties, its genomic effects, and its capacity to modulate mitochondrial homeostasis, are linked to the redox status of cells and tissues. With the aid of specific melatonin antibodies, the presence of melatonin has been detected in multiple extrapineal tissues including the brain, retina, lens, cochlea, Harderian gland, airway epithelium, skin, gastrointestinal tract, liver, kidney, thyroid, pancreas, thymus, spleen, immune system cells, carotid body, reproductive tract, and endothelial cells. In most of these tissues, the melatonin-synthesizing enzymes have been identified. Melatonin is present in essentially all biological fluids including cerebrospinal fluid, saliva, bile, synovial fluid, amniotic fluid, and breast milk. In several of these fluids, melatonin concentrations exceed those in the blood. The importance of the continual availability of melatonin at the cellular level is important for its physiological regulation of cell homeostasis, and may be relevant to its therapeutic applications. Because of this, it is essential to compile information related to its peripheral production and regulation of this ubiquitously acting indoleamine. Thus, this review emphasizes the presence of melatonin in extrapineal organs, tissues, and fluids of mammals including humans.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Avda. del Conocimiento s/n, Armilla, 18100, Granada, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|