1
|
Fernández-Arroyo B, Jurado S, Lerma J. Understanding OLM interneurons: Characterization, circuitry, and significance in memory and navigation. Neuroscience 2024:S0306-4522(24)00366-X. [PMID: 39097181 DOI: 10.1016/j.neuroscience.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Understanding the intricate mechanisms underlying memory formation and retention relies on unraveling how the hippocampus, a structure fundamental for memory acquisition, is organized. Within the complex hippocampal network, interneurons play a crucial role in orchestrating memory processes. Among these interneurons, Oriens-Lacunosum Moleculare (OLM) cells emerge as key regulators, governing the flow of information to CA1 pyramidal cells. In this review, we explore OLM interneurons in detail, describing their mechanisms and effects on memory processing, particularly in spatial and contextual memory tasks. Our aim is to provide a detailed understanding of how OLM interneurons contribute to the dynamic landscape of memory formation and retrieval.
Collapse
Affiliation(s)
| | - Sandra Jurado
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
2
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Gaidin SG, Kosenkov AM. mRNA editing of kainate receptor subunits: what do we know so far? Rev Neurosci 2022; 33:641-655. [DOI: 10.1515/revneuro-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Collapse
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| |
Collapse
|
4
|
Zinchenko VP, Kosenkov AM, Gaidin SG, Sergeev AI, Dolgacheva LP, Tuleukhanov ST. Properties of GABAergic Neurons Containing Calcium-Permeable Kainate and AMPA-Receptors. Life (Basel) 2021; 11:life11121309. [PMID: 34947840 PMCID: PMC8705177 DOI: 10.3390/life11121309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Calcium-permeable kainate and AMPA receptors (CP-KARs and CP-AMPARs), as well as NMDARs, play a pivotal role in plasticity and in regulating neurotransmitter release. Here we visualized in the mature hippocampal neuroglial cultures the neurons expressing CP-AMPARs and CP-KARs. These neurons were visualized by a characteristic fast sustained [Ca2+]i increase in response to the agonist of these receptors, domoic acid (DoA), and a selective agonist of GluK1-containing KARs, ATPA. Neurons from both subpopulations are GABAergic. The subpopulation of neurons expressing CP-AMPARs includes a larger percentage of calbindin-positive neurons (39.4 ± 6.0%) than the subpopulation of neurons expressing CP-KARs (14.2 ± 7.5% of CB+ neurons). In addition, we have shown for the first time that NH4Cl-induced depolarization faster induces an [Ca2+]i elevation in GABAergic neurons expressing CP-KARs and CP-AMPARs than in most glutamatergic neurons. CP-AMPARs antagonist, NASPM, increased the amplitude of the DoA-induced Ca2+ response in GABAergic neurons expressing CP-KARs, indicating that neurons expressing CP-AMPARs innervate GABAergic neurons expressing CP-KARs. We assume that CP-KARs in inhibitory neurons are involved in the mechanism of outstripping GABA release upon hyperexcitation.
Collapse
Affiliation(s)
- Valery Petrovich Zinchenko
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
- Correspondence:
| | - Artem Mikhailovich Kosenkov
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Sergei Gennadevich Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Alexander Igorevich Sergeev
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Ludmila Petrovna Dolgacheva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (A.M.K.); (S.G.G.); (A.I.S.); (L.P.D.)
| | - Sultan Tuleukhanovich Tuleukhanov
- Laboratory of Biophysics, Chronobiology and Biomedicine, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| |
Collapse
|
5
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
6
|
Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021; 197:108696. [PMID: 34274351 DOI: 10.1016/j.neuropharm.2021.108696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/06/2022]
Abstract
Presynaptic kainate (KA) receptors (KARs) modulate GABA and glutamate release in the central nervous system of mammals. While some of the actions of KARs are ionotropic, metabotropic actions for these receptors have also been seen to modulate both GABA and glutamate release. In general, presynaptic KARs modulate glutamate release through their metabotropic actions in a biphasic manner, with low KA concentrations producing an increase in glutamate release and higher concentrations of KA driving weaker release of this neurotransmitter. Different molecular mechanisms are involved in this modulation of glutamate release, with a G-protein independent, Ca2+-calmodulin adenylate cyclase (AC) and protein kinase A (PKA) dependent mechanism facilitating glutamate release, and a G-protein, AC and PKA dependent mechanism mediating the decrease in neurotransmitter release. Here, we describe the events underlying the KAR modulation of glutamatergic transmission in different brain regions, addressing the possible functions of this modulation and proposing future research lines in this field.
Collapse
|
7
|
Mulle C, Crépel V. Regulation and dysregulation of neuronal circuits by KARs. Neuropharmacology 2021; 197:108699. [PMID: 34246686 DOI: 10.1016/j.neuropharm.2021.108699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Kainate receptors (KARs) constitute a family of ionotropic glutamate receptors (iGluRs) with distinct physiological roles in synapses and neuronal circuits. Despite structural and biophysical commonalities with the other iGluRs, AMPA receptors and NMDA receptors, their role as post-synaptic receptors involved in shaping EPSCs to transmit signals across synapses is limited to a small number of synapses. On the other hand KARs regulate presynaptic release mechanisms and control ion channels and signaling pathways through non-canonical metabotropic actions. We review how these different KAR-dependent mechanisms concur to regulate the activity and plasticity of neuronal circuits in physiological conditions of activation of KARs by endogenous glutamate (as opposed to pharmacological activation by exogenous agonists). KARs have been implicated in neurological disorders, based on genetic association and on physiopathological studies. A well described example relates to temporal lobe epilepsy for which the aberrant recruitment of KARs at recurrent mossy fiber synapses takes part in epileptogenic neuronal activity. In conclusion, KARs certainly represent an underestimated actor in the regulation of neuronal circuits, and a potential therapeutic target awaiting more selective and efficient genetic tools and/or ligands.
Collapse
Affiliation(s)
- Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille Université, Marseille, France
| |
Collapse
|
8
|
Negrete-Díaz JV, Falcón-Moya R, Rodríguez-Moreno A. Kainate receptors: from synaptic activity to disease. FEBS J 2021; 289:5074-5088. [PMID: 34143566 DOI: 10.1111/febs.16081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Kainate receptors (KARs) are glutamate receptors that participate in the postsynaptic transmission of information and in the control of neuronal excitability, as well as presynaptically modulating the release of the neurotransmitters GABA and glutamate. These modulatory effects, general follow a biphasic pattern, with low KA concentrations provoking an increase in GABA and glutamate release, and higher concentrations mediating a decrease in the release of these neurotransmitters. In addition, KARs are involved in different forms of long- and short-term plasticity. Importantly, altered activity of these receptors has been implicated in different central nervous system diseases and disturbances. Here, we describe the pre- and postsynaptic actions of KARs, and the possible role of these receptors in disease, a field that has seen significant progress in recent years.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain.,Laboratorio de Psicología Experimental y Neurociencias, División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, México
| | - Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
9
|
Kainate receptors in the developing neuronal networks. Neuropharmacology 2021; 195:108585. [PMID: 33910033 DOI: 10.1016/j.neuropharm.2021.108585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.
Collapse
|
10
|
Valbuena S, Lerma J. Losing balance: Kainate receptors and psychiatric disorders comorbidities. Neuropharmacology 2021; 191:108558. [PMID: 33862031 DOI: 10.1016/j.neuropharm.2021.108558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/28/2023]
Abstract
Cognition and behavior are tightly linked to synaptic function. A growing body of evidence suggests that aberrant neurotransmission, caused by changes in synaptic protein expression levels, may be a major cause underlying different brain disorders. These changes in expression result in abnormal synaptic organization or function, leading to impaired neurotransmission and unbalanced circuit operations. Here, we review the data supporting the involvement of mutations in genes coding for kainate receptor (KAR) subunits in the pathogenesis of psychiatric disorders and Down syndrome (DS). We show that most of these mutations do not affect the biophysical properties or the receptors, but rather alter subunit expression levels. On the basis of reports studying KAR genes mutations in mouse models of autism spectrum disorders and DS, we illustrate how deviations from the physiological regulatory role that these receptors play in neurotransmitter release and plasticity give rise to synaptic alterations that lead to behavioral and cognitive deficits underlying these disorders.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550, San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550, San Juan de Alicante, Spain.
| |
Collapse
|
11
|
Maiorov SA, Zinchenko VP, Gaidin SG, Kosenkov AM. Potential mechanism of GABA secretion in response to the activation of GluK1-containing kainate receptors. Neurosci Res 2021; 171:27-33. [PMID: 33785410 DOI: 10.1016/j.neures.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022]
Abstract
Hippocampal GABAergic neurons are subdivided into more than 20 subtypes that are distinguished by features and functions. We have previously described the subpopulation of GABAergic neurons, which can be identified in hippocampal cell culture by the calcium response to the application of domoic acid (DoA), an agonist of kainate receptors (KARs). Here, we investigate the features of DoA-sensitive neurons and their GABA release mechanism in response to KARs activation. We demonstrate that DoA-sensitive GABAergic neurons express GluK1-containing KARs because ATPA, a selective agonist of GluK1-containing receptors, induces the calcium response exclusively in these GABAergic neurons. Our experiments also show that NASPM, previously considered a selective antagonist of calcium-permeable AMPARs, blocks calcium-permeable KARs. We established using NASPM that GluK1-containing receptors of the studied population of GABAergic neurons are calcium-permeable, and their activation is required for GABA release, at least in particular synapses. Notably, GABA release occurs even in the presence of tetrodotoxin, indicating that propagation of the depolarizing stimulus is not required for GABA release in this case. Thus, our data demonstrate that the activation of GluK1-containing calcium-permeable KARs mediates the GABA release by the studied subpopulation of GABAergic neurons.
Collapse
Affiliation(s)
- S A Maiorov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - V P Zinchenko
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| | - A M Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
12
|
Hori K, Tsujikawa S, Novakovic MM, Yamashita M, Prakriya M. Regulation of chemoconvulsant-induced seizures by store-operated Orai1 channels. J Physiol 2020; 598:5391-5409. [PMID: 32851638 DOI: 10.1113/jp280119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Temporal lobe epilepsy is a complex neurological disease caused by imbalance of excitation and inhibition in the brain. Growing literature implicates altered Ca2+ signalling in many aspects of epilepsy but the diversity of Ca2+ channels that regulate this syndrome are not well-understood. Here, we report that mice lacking the store-operated Ca2+ channel, Orai1, in the brain show markedly stronger seizures in response to the chemoconvulsants, kainic acid and pilocarpine. Electrophysiological analysis reveals that selective deletion of Orai1 channels in inhibitory neurons disables chemoconvulsant-induced excitation of GABAergic neurons in the CA1 hippocampus. Likewise, deletion of Orai1 in GABAergic neurons abrogates the chemoconvulsant-induced burst of spontaneous inhibitory postsynaptic currents (sIPSCs) on CA1 pyramidal neurons in the hippocampus. This loss of chemoconvulsant inhibition likely aggravates status epilepticus in Orai1 KO mice. These results identify Orai1 channels as regulators of hippocampal interneuron excitability and seizures. ABSTRACT Store-operated Orai1 channels are a major mechanism for Ca2+ entry in many cells and mediate numerous functions including gene expression, cytokine production and gliotransmitter release. Orai1 is expressed in many regions of the mammalian brain; however, its role in regulating neuronal excitability, synaptic function and brain disorders has only now begun to be investigated. To investigate a potential role of Orai1 channels in status epilepticus induced by chemoconvulsants, we examined acute seizures evoked by intraperitoneal injections of kainic acid (KA) and pilocarpine in mice with a conditional deletion of Orai1 (or its activator STIM1) in the brain. Brain-specific Orai1 and STIM1 knockout (KO) mice exhibited significantly stronger seizures (P = 0.00003 and P < 0.00001), and higher chemoconvulsant-induced mortality (P = 0.02) compared with wildtype (WT) littermates. Electrophysiological recordings in hippocampal brain slices revealed that KA stimulated the activity of inhibitory interneurons in the CA1 hippocampus (P = 0.04) which failed to occur in Orai1 KO mice. Further, KA and pilocarpine increased the frequency of spontaneous IPSCs in CA1 pyramidal neurons >twofold (KA: P = 0.04; pilocarpine: P = 0.0002) which was abolished in Orai1 KO mice. Mice with selective deletion of Orai1 in GABAergic neurons alone also showed stronger seizures to KA (P = 0.001) and pilocarpine (P < 0.00001) and loss of chemoconvulsant-induced increases in sIPSC responses compared with WT controls. We conclude that Orai1 channels regulate chemoconvulsant-induced excitation in GABAergic neurons and that destabilization of the excitatory/inhibitory balance in Orai1 KO mice aggravates chemoconvulsant-mediated seizures. These results identify Orai1 channels as novel molecular regulators of hippocampal neuronal excitability and seizures.
Collapse
Affiliation(s)
- Kotaro Hori
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shogo Tsujikawa
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michaela M Novakovic
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Pressey JC, Woodin MA. Kainate receptor regulation of synaptic inhibition in the hippocampus. J Physiol 2020; 599:485-492. [PMID: 32162694 DOI: 10.1113/jp279645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Kainate receptors (KARs) are glutamate-type receptors that mediate both canonical ionotropic currents and non-canonical metabotropic signalling. While KARs are expressed widely throughout the brain, synaptic KAR currents have only been recorded at a limited set of synapses, and the KAR currents that have been recorded are relatively small and slow, which has led to the question, what is the functional significance of KARs? While the KAR current itself is relatively modest, its impact on inhibition in the hippocampus can be profound. In the CA1 region of the hippocampus, presynaptic KAR activation bidirectionally regulates γ-aminobutyric acid (GABA) release in a manner that depends on the glutamate concentration; lower levels of glutamate facilitate GABA release via an ionotropic pathway, while higher levels of glutamate depress GABA release via a metabotropic pathway. Postsynaptic interneuron KAR activation increases spike frequency through an ionotropic current, which in turn can strengthen inhibition. In the CA3 region, postsynaptic KAR activation in pyramidal neurons also strengthens inhibition, but in this case through a metabotropic pathway which regulates the neuronal chloride gradient and hyperpolarizes the reversal potential for GABA (EGABA ). Taken together, the evidence for KAR-mediated regulation of the strength of inhibition via pre- and postsynaptic mechanisms provides compelling evidence that KARs are ideally positioned to regulate excitation-inhibition balance - through sensing the excitatory tone and concomitantly tuning the strength of inhibition.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Valbuena S, Lerma J. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience 2019; 456:17-26. [PMID: 31866560 DOI: 10.1016/j.neuroscience.2019.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/16/2023]
Abstract
Extensive research over the past decades has characterized multiple forms of synaptic plasticity, identifying them as key processes that allow the brain to operate in a dynamic manner. Within the wide variety of synaptic plasticity modulators, kainate receptors are receiving increasing attention, given their diversity of signaling mechanisms and cellular expression profile. Here, we summarize the experimental evidence about the involvement of kainate receptor signaling in the regulation of short- and long-term plasticity, from the perspective of the regulation of neurotransmitter release. In light of this evidence, we propose that kainate receptors may be considered homeostatic modulators of neurotransmitter release, able to bidirectionally regulate plasticity depending on the functional history of the synapse.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| | - Juan Lerma
- Instituto de Neurociencias UMH-CSIC, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
15
|
Domoic acid suppresses hyperexcitation in the network due to activation of kainate receptors of GABAergic neurons. Arch Biochem Biophys 2019; 671:52-61. [DOI: 10.1016/j.abb.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 01/01/2023]
|
16
|
Jack A, Hamad MIK, Gonda S, Gralla S, Pahl S, Hollmann M, Wahle P. Development of Cortical Pyramidal Cell and Interneuronal Dendrites: a Role for Kainate Receptor Subunits and NETO1. Mol Neurobiol 2019; 56:4960-4979. [PMID: 30421168 DOI: 10.1007/s12035-018-1414-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
During neuronal development, AMPA receptors (AMPARs) and NMDA receptors (NMDARs) are important for neuronal differentiation. Kainate receptors (KARs) are closely related to AMPARs and involved in the regulation of cortical network activity. However, their role for neurite growth and differentiation of cortical neurons is unclear. Here, we used KAR agonists and overexpression of selected KAR subunits and their auxiliary neuropilin and tolloid-like proteins, NETOs, to investigate their influence on dendritic growth and network activity in organotypic cultures of rat visual cortex. Kainate at 500 nM enhanced network activity and promoted development of dendrites in layer II/III pyramidal cells, but not interneurons. GluK2 overexpression promoted dendritic growth in pyramidal cells and interneurons. GluK2 transfectants were highly active and acted as drivers for network activity. GluK1 and NETO1 specifically promoted dendritic growth of interneurons. Our study provides new insights for the roles of KARs and NETOs in the morphological and physiological development of the visual cortex.
Collapse
Affiliation(s)
- Alexander Jack
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Mohammad I K Hamad
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
- Medical Faculty, Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Steffen Gonda
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Sebastian Gralla
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Steffen Pahl
- Faculty of Chemistry and Biochemistry, Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Michael Hollmann
- Faculty of Chemistry and Biochemistry, Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Petra Wahle
- Faculty for Biology and Biotechnology ND 6/72, Developmental Neurobiology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
17
|
Orav E, Dowavic I, Huupponen J, Taira T, Lauri SE. NETO1 Regulates Postsynaptic Kainate Receptors in CA3 Interneurons During Circuit Maturation. Mol Neurobiol 2019; 56:7473-7489. [PMID: 31044365 PMCID: PMC6815322 DOI: 10.1007/s12035-019-1612-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/15/2019] [Indexed: 01/02/2023]
Abstract
Kainate type ionotropic glutamate receptors (KARs) are expressed in hippocampal interneurons and regulate interneuron excitability and GABAergic transmission. Neuropilin tolloid-like proteins (NETO1 and NETO2) act as KAR auxiliary subunits; however, their significance for various functions of KARs in GABAergic interneurons is not fully understood. Here we show that NETO1, but not NETO2, is necessary for dendritic delivery of KAR subunits and, consequently, for formation of KAR-containing synapses in cultured GABAergic neurons. Accordingly, electrophysiological analysis of neonatal CA3 stratum radiatum interneurons revealed impaired postsynaptic and metabotropic KAR signaling in Neto1 knockouts, while a subpopulation of ionotropic KARs in the somatodendritic compartment remained functional. Loss of NETO1/KAR signaling had no significant effect on development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-receptor-mediated glutamatergic transmission in CA3 interneurons, contrasting the synaptogenic role proposed for KARs in principal cells. Furthermore, loss of NETO1 had no effect on excitability and characteristic spontaneous network bursts in the immature CA3 circuitry. However, we find that NETO1 is critical for kainate-dependent modulation of network bursts and GABAergic transmission in the hippocampus already during the first week of life. Our results provide the first description of NETO1-dependent subcellular targeting of KAR subunits in GABAergic neurons and indicate that endogenous NETO1 is required for formation of KAR-containing synapses in interneurons. Since aberrant KAR-mediated excitability is implicated in certain forms of epilepsy, NETO1 represents a potential therapeutic target for treatment of both adult and early life seizures.
Collapse
Affiliation(s)
- Ester Orav
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Ilona Dowavic
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Johanna Huupponen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tomi Taira
- HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland.,Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- Molecular and Integrative Biosciences Research Program, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland. .,HiLife Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Francavilla R, Villette V, Martel O, Topolnik L. Calcium Dynamics in Dendrites of Hippocampal CA1 Interneurons in Awake Mice. Front Cell Neurosci 2019; 13:98. [PMID: 30930750 PMCID: PMC6428725 DOI: 10.3389/fncel.2019.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
Hippocampal inhibitory interneurons exhibit a large diversity of dendritic Ca2+ mechanisms that are involved in the induction of Hebbian and anti-Hebbian synaptic plasticity. High resolution imaging techniques allowed examining somatic Ca2+ signals and, accordingly, the recruitment of hippocampal interneurons in awake behaving animals. However, little is still known about dendritic Ca2+ activity in interneurons during different behavioral states. Here, we used two-photon Ca2+ imaging in mouse hippocampal CA1 interneurons to reveal Ca2+ signal patterns in interneuron dendrites during animal locomotion and immobility. Despite overall variability in dendritic Ca2+ transients (CaTs) across different cells and dendritic branches, we report consistent behavior state-dependent organization of Ca2+ signaling in interneurons. As such, spreading regenerative CaTs dominated in dendrites during locomotion, whereas both spreading and localized Ca2+ signals were seen during immobility. Thus, these data indicate that while animal locomotion is associated with widespread Ca2+ elevations in interneuron dendrites that may reflect regenerative activity, local CaTs that may be related to synaptic activity become apparent during animal quiet state.
Collapse
Affiliation(s)
- Ruggiero Francavilla
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Vincent Villette
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Olivier Martel
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Faculty of Science and Engineering, Neuroscience Axis, CHU de Québec Research Center (CHUL), Laval University, Québec, PQ, Canada
| |
Collapse
|
19
|
Aroniadou-Anderjaska V, Figueiredo TH, Apland JP, Braga MF. Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiol Dis 2019; 133:104406. [PMID: 30798006 DOI: 10.1016/j.nbd.2019.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
One of the devastating effects of acute exposure to organophosphates, like nerve agents, is the induction of severe and prolonged status epilepticus (SE), which can cause death, or brain damage if death is prevented. Seizures after exposure are initiated by muscarinic receptor hyperstimulation-after inhibition of acetylcholinesterase by the organophosphorus agent and subsequent elevation of acetylcholine-but they are reinforced and sustained by glutamatergic hyperexcitation, which is the primary cause of brain damage. Diazepam is the FDA-approved anticonvulsant for the treatment of nerve agent-induced SE, and its replacement by midazolam is currently under consideration. However, clinical data derived from the treatment of SE of any etiology, as well as studies on the control of nerve agent-induced SE in animal models, have indicated that diazepam and midazolam control seizures only temporarily, their antiseizure efficacy is reduced as the latency of treatment from the onset of SE increases, and their neuroprotective efficacy is limited or absent. Here, we review data on the discovery of a novel anticonvulsant and neuroprotectant, LY293558, an AMPA/GluK1 receptor antagonist. Treatment of soman-exposed immature, young-adult, and aged rats with LY293558, terminates SE with limited recurrence of seizures, significantly protects from brain damage, and prevents long-term behavioral deficits, even when LY293558 is administered 1 h post-exposure. More beneficial effects and complete neuroprotection is obtained when LY293558 administration is combined with caramiphen, which antagonizes NMDA receptors. Further efficacy studies may bring the LY293558 + caramiphen combination therapy on the pathway to approval for human use.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| | - James P Apland
- Neuroscience Program, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, United States of America.
| | - Maria F Braga
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America.
| |
Collapse
|
20
|
Molecular Docking of Phenylethylamine and CGP54626 to an Extracellular Domain of the GABAB-Receptor. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9743-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Blakemore LJ, Corthell JT, Trombley PQ. Kainate Receptors Play a Role in Modulating Synaptic Transmission in the Olfactory Bulb. Neuroscience 2018; 391:25-49. [PMID: 30213766 DOI: 10.1016/j.neuroscience.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Glutamate is the neurotransmitter used at most excitatory synapses in the mammalian brain, including those in the olfactory bulb (OB). There, ionotropic glutamate receptors including N-methyl-d-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) play a role in processes such as reciprocal inhibition and glomerular synchronization. Kainate receptors (KARs) represent another type of ionotropic glutamate receptor, which are composed of five (GluK1-GluK5) subunits. Whereas KARs appear to be heterogeneously expressed in the OB, evidence as to whether these KARs are functional, found at synapses, or modify synaptic transmission is limited. In the present study, coapplication of KAR agonists (kainate, SYM 2081) and AMPAR antagonists (GYKI 52466, SYM 2206) demonstrated that functional KARs are expressed by OB neurons, with a subset of receptors located at synapses. Application of kainate and the GluK1-selective agonist ATPA had modulatory effects on excitatory postsynaptic currents (EPSCs) evoked by stimulation of the olfactory nerve layer. Application of kainate and ATPA also had modulatory effects on reciprocal inhibitory postsynaptic currents (IPSCs) evoked using a protocol that evokes dendrodendritic inhibition. The latter finding suggests that KARs, with relatively slow kinetics, may play a role in circuits in which the relatively brief duration of AMPAR-mediated currents limits the role of AMPARs in synaptic transmission (e.g., reciprocal inhibition at dendrodendritic synapses). Collectively, our findings suggest that KARs, including those containing the GluK1 subunit, modulate excitatory and inhibitory transmission in the OB. These data further suggest that KARs participate in the regulation of synaptic circuits that encode odor information.
Collapse
Affiliation(s)
- Laura J Blakemore
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - John T Corthell
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Paul Q Trombley
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States; Department of Biological Science, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
22
|
Falcón-Moya R, Sihra TS, Rodríguez-Moreno A. Kainate Receptors: Role in Epilepsy. Front Mol Neurosci 2018; 11:217. [PMID: 29988380 PMCID: PMC6023982 DOI: 10.3389/fnmol.2018.00217] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
Kainate (KA) is a potent neurotoxin that has been widely used experimentally to induce acute brain seizures and, after repetitive treatments, as a chronic model of temporal lobe epilepsy (TLE), with similar features to those observed in human patients with TLE. However, whether KA activates KA receptors (KARs) as an agonist to mediate the induction of acute seizures and/or the chronic phase of epilepsy, or whether epileptogenic effects of the neurotoxin are indirect and/or mediated by other types of receptors, has yet to be satisfactorily elucidated. Positing a direct involvement of KARs in acute seizures induction, as well as a direct pathophysiological role of KARs in the chronic phase of TLE, recent studies have examined the specific subunit compositions of KARs that might underly epileptogenesis. In the present mini-review, we discuss the use of KA as a convulsant in the experimental models of acute seizures of TLE, and consider the involvement of KARs, their subunit composition and the mode of action in KAR-mediated epilepsy. In acute models, evidence points to epileptogenesis being precipitated by an overall depression of interneuron GABAergic transmission mediated by GluK1 containing KARs. On glutamatergic principal cell in the hippocampus, GluK2-containing KARs regulate post-synaptic excitability and susceptibility to KA-mediated epileptogenesis. In chronic models, a role GluK2-containing KARs in the hippocampal CA3 region provokes limbic seizures. Also observed in the hippocampus, is a ‘reactive plasticity’, where MF sprouting is seen with target granule cells at aberrant synapses recruiting de novo GluR2/GluR5 heteromeric KARs. Finally, in human epilepsy and animal models, astrocytic expression of GluK1, 2, 4, and 5 is reported.
Collapse
Affiliation(s)
- Rafael Falcón-Moya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Sevilla, Spain
| | - Talvinder S Sihra
- Department of Physiology, Pharmacology and Neuroscience, University College London, London, United Kingdom
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
23
|
Wyeth MS, Pelkey KA, Yuan X, Vargish G, Johnston AD, Hunt S, Fang C, Abebe D, Mahadevan V, Fisahn A, Salter MW, McInnes RR, Chittajallu R, McBain CJ. Neto Auxiliary Subunits Regulate Interneuron Somatodendritic and Presynaptic Kainate Receptors to Control Network Inhibition. Cell Rep 2018; 20:2156-2168. [PMID: 28854365 DOI: 10.1016/j.celrep.2017.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/28/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Although Netos are considered auxiliary subunits critical for kainate receptor (KAR) function, direct evidence for their regulation of native KARs is limited. Because Neto KAR regulation is GluK subunit/Neto isoform specific, such regulation must be determined in cell-type-specific contexts. We demonstrate Neto1/2 expression in somatostatin (SOM)-, cholecystokinin/cannabinoid receptor 1 (CCK/CB1)-, and parvalbumin (PV)-containing interneurons. KAR-mediated excitation of these interneurons is contingent upon Neto1 because kainate yields comparable effects in Neto2 knockouts and wild-types but fails to excite interneurons or recruit inhibition in Neto1 knockouts. In contrast, presynaptic KARs in CCK/CB1 interneurons are dually regulated by both Neto1 and Neto2. Neto association promotes tonic presynaptic KAR activation, dampening CCK/CB1 interneuron output, and loss of this brake in Neto mutants profoundly increases CCK/CB1 interneuron-mediated inhibition. Our results confirm that Neto1 regulates endogenous somatodendritic KARs in diverse interneurons and demonstrate Neto regulation of presynaptic KARs in mature inhibitory presynaptic terminals.
Collapse
Affiliation(s)
- Megan S Wyeth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA.
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Geoffrey Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - April D Johnston
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA; Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department NVS, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Calvin Fang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Vivek Mahadevan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - André Fisahn
- Neuronal Oscillations Laboratory, Division for Neurogeriatrics, Center for Alzheimer Research, Department NVS, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, and Department of Physiology, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | - Roderick R McInnes
- Lady Davis Research Institute, Jewish General Hospital and Departments of Human Genetics and Biochemistry, McGill University, Montreal, QC H3T 1E2, Canada
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 35 Lincoln Drive, MSC 3715, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Engelhardt M, Hamad MIK, Jack A, Ahmed K, König J, Rennau LM, Jamann N, Räk A, Schönfelder S, Riedel C, Wirth MJ, Patz S, Wahle P. Interneuron synaptopathy in developing rat cortex induced by the pro-inflammatory cytokine LIF. Exp Neurol 2018; 302:169-180. [PMID: 29305051 DOI: 10.1016/j.expneurol.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Maren Engelhardt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Mohammad I K Hamad
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Küpra Ahmed
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Jennifer König
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Lisa Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Andrea Räk
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Sabine Schönfelder
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Markus Joseph Wirth
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Institute of Biology-II, RWTH Aachen University, Aachen, Germany
| | - Silke Patz
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany.
| |
Collapse
|
25
|
Zinchenko VP, Gaidin SG, Teplov IY, Kosenkov AM. Inhibition of spontaneous synchronous activity of hippocampal neurons by excitation of GABAergic neurons. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Ievglevskyi O, Isaev D, Netsyk O, Romanov A, Fedoriuk M, Maximyuk O, Isaeva E, Akaike N, Krishtal O. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0431. [PMID: 27377725 DOI: 10.1098/rstb.2015.0431] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca(2+)-permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg(2+) model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo Our results reveal a significant novel role for ASICs.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- O Ievglevskyi
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - D Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - O Netsyk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - A Romanov
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - M Fedoriuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - O Maximyuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - E Isaeva
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| | - N Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, JyuryoGroup, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan
| | - O Krishtal
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine
| |
Collapse
|
27
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
28
|
Akgül G, McBain CJ. Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain. J Physiol 2016; 594:5471-90. [PMID: 26918438 PMCID: PMC5043048 DOI: 10.1113/jp271764] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/10/2016] [Indexed: 01/07/2023] Open
Abstract
Glutamate receptor-mediated recruitment of GABAergic inhibitory interneurons is a critical determinant of network processing. Early studies observed that many, but not all, interneuron glutamatergic synapses contain AMPA receptors that are GluA2-subunit lacking and Ca(2+) permeable, making them distinct from AMPA receptors at most principal cell synapses. Subsequent studies demonstrated considerable alignment of synaptic AMPA and NMDA receptor subunit composition within specific subtypes of interneurons, suggesting that both receptor expression profiles are developmentally and functionally linked. Indeed glutamate receptor expression profiles are largely predicted by the embryonic origins of cortical interneurons within the medial and caudal ganglionic eminences of the developing telencephalon. Distinct complements of AMPA and NMDA receptors within different interneuron subpopulations contribute to the differential recruitment of functionally divergent interneuron subtypes by common afferent inputs for appropriate feed-forward and feedback inhibitory drive and network entrainment. In contrast, the lesser-studied kainate receptors, which are often present at both pre- and postsynaptic sites, appear to follow an independent developmental expression profile. Loss of specific ionotropic glutamate receptor (iGluR) subunits during interneuron development has dramatic consequences for both cellular and network function, often precipitating circuit inhibition-excitation imbalances and in some cases lethality. Here we briefly review recent findings highlighting the roles of iGluRs in interneuron development.
Collapse
Affiliation(s)
- Gülcan Akgül
- Porter Neuroscience Research Centre, Rm3C903, Lincoln Drive, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Chris J McBain
- Porter Neuroscience Research Centre, Rm3C903, Lincoln Drive, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
29
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
30
|
Noé FM, Bellistri E, Colciaghi F, Cipelletti B, Battaglia G, de Curtis M, Librizzi L. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions. Epilepsia 2016; 57:967-76. [PMID: 27173148 DOI: 10.1111/epi.13394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. METHODS Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. RESULTS KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. SIGNIFICANCE Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation.
Collapse
Affiliation(s)
- Francesco M Noé
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Elisa Bellistri
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Francesca Colciaghi
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Barbara Cipelletti
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Giorgio Battaglia
- Unit of Molecular Neuroanatomy and Pathogenesis, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Marco de Curtis
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | - Laura Librizzi
- Unit of Clinical Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| |
Collapse
|
31
|
Libbey JE, Hanak TJ, Doty DJ, Wilcox KS, Fujinami RS. NBQX, a highly selective competitive antagonist of AMPA and KA ionotropic glutamate receptors, increases seizures and mortality following picornavirus infection. Exp Neurol 2016; 280:89-96. [PMID: 27072529 DOI: 10.1016/j.expneurol.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/25/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Seizures occur due to an imbalance between excitation and inhibition, with the balance tipping towards excitation, and glutamate is the predominant excitatory neurotransmitter in the central nervous system of mammals. Since upregulation of expression and/or function of glutamate receptors can contribute to seizures we determined the effects of three antagonists, NBQX, GYKI-52466 and MK 801, of the various ionotropic glutamate receptors, AMPA, NMDA and KA, on acute seizure development in the Theiler's murine encephalomyelitis virus (TMEV)-induced seizure model. We found that only NBQX had an effect on acute seizure development, resulting in a significantly higher number of mice experiencing seizures, an increase in the number of seizures per mouse, a greater cumulative seizure score per mouse and a significantly higher mortality rate among the mice. Although NBQX has previously been shown to be a potent anticonvulsant in animal seizure models, seizures induced by electrical stimulation, drug administration or as a result of genetic predisposition may differ greatly in terms of mechanism of seizure development from our virus-induced seizure model, which could explain the opposite, proconvulsant effect of NBQX observed in the TMEV-induced seizure model.
Collapse
Affiliation(s)
- Jane E Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Tyler J Hanak
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Daniel J Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - Karen S Wilcox
- Department of Pharmacology & Toxicology, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | - Robert S Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
|
33
|
Sheng N, Shi YS, Lomash RM, Roche KW, Nicoll RA. Neto auxiliary proteins control both the trafficking and biophysical properties of the kainate receptor GluK1. eLife 2015; 4. [PMID: 26720915 PMCID: PMC4749551 DOI: 10.7554/elife.11682] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/21/2015] [Indexed: 02/02/2023] Open
Abstract
Kainate receptors (KARs) are a subfamily of glutamate receptors mediating excitatory synaptic transmission and Neto proteins are recently identified auxiliary subunits for KARs. However, the roles of Neto proteins in the synaptic trafficking of KAR GluK1 are poorly understood. Here, using the hippocampal CA1 pyramidal neuron as a null background system we find that surface expression of GluK1 receptor itself is very limited and is not targeted to excitatory synapses. Both Neto1 and Neto2 profoundly increase GluK1 surface expression and also drive GluK1 to synapses. However, the regulation GluK1 synaptic targeting by Neto proteins is independent of their role in promoting surface trafficking. Interestingly, GluK1 is excluded from synapses expressing AMPA receptors and is selectively incorporated into silent synapses. Neto2, but not Neto1, slows GluK1 deactivation, whereas Neto1 speeds GluK1 desensitization and Neto2 slows desensitization. These results establish critical roles for Neto auxiliary subunits controlling KARs properties and synaptic incorporation. DOI:http://dx.doi.org/10.7554/eLife.11682.001 Information is transmitted in the brain by cells called neurons. To communicate with neighboring cells, neurons release chemicals called neurotransmitters across a structure called a synapse that forms a junction between the cells. The neurotransmitters bind to receptors on the surface of the receiving neuron, and depending on the type of neurotransmitter released, make that neuron either more or less likely to signal to its neighbors. Excitatory neurotransmitters make neurons more likely to signal, and glutamate is the most common excitatory neurotransmitter in the brain. There are several different types of receptor that can bind to glutamate, one of which – the kainate receptor – is found at relatively few synapses. These synapses include some in the hippocampus, a region of the brain that is important for memory. Researchers have recently identified two auxiliary proteins, called Neto1 and Neto2, that interact with kainate receptors and appear to affect how strongly the kainate receptors respond when glutamate binds to them. However, the effect of the Neto proteins on one particular subunit of the kainate receptors – called GluK1 – had not been investigated in depth. CA1 pyramidal neurons are a group of neurons in the hippocampus that are able to produce kainate receptors, but these receptors are not found in CA1 pyramidal neuron synapses. Sheng et al. have now studied CA1 pyramidal neurons from rats, and found that these cells produce a limited amount of GluK1 on their surfaces. However, when GluK1 is expressed together with Neto1 or Neto2, GluK1 receptors appear on the cell surface. Through an independent mechanism Neto proteins also promote the targeting of surface GluK1 to the synapse. Unexpectedly, GluK1 was excluded from synapses that contain another type of glutamate receptor called AMPA receptors. By measuring the effect of Neto1 and Neto2 on the behavior of GluK1, Sheng et al. found that these proteins modified how the receptor responded to prolonged exposure to glutamate. Specifically, Neto1 increased how quickly GluK1 became desensitized to glutamate, while Neto2 decreased the rate of desensitization. This study demonstrates that Neto proteins play critical roles in controlling the location and biophysical properties of kainate receptors. It will be of interest to see how the present findings apply to other excitatory synapses in the brain. DOI:http://dx.doi.org/10.7554/eLife.11682.002
Collapse
Affiliation(s)
- Nengyin Sheng
- Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Yun S Shi
- Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,The Model Animal Research Center, Key Laboratory of Model Animal for Disease Study of Ministry of Education, Nanjing University, Nanjing, China
| | - Richa Madan Lomash
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Katherine W Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Roger A Nicoll
- Deparment of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
34
|
Jiang L, Kang D, Kang J. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors. Neuroscience 2015; 298:448-54. [PMID: 25934031 DOI: 10.1016/j.neuroscience.2015.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/02/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation.
Collapse
Affiliation(s)
- L Jiang
- Department of Neurobiology and Behavior/Center for Nervous Systems Disorders Research, Stony Brook University, Stony Brook, New York 11794, USA
| | - D Kang
- Park Ridge High School, 2 Park Avenue, Park Ridge, NJ 07656, USA
| | - J Kang
- Department of Cell Biology and Anatomy, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
35
|
Crépel V, Mulle C. Physiopathology of kainate receptors in epilepsy. Curr Opin Pharmacol 2014; 20:83-8. [PMID: 25506747 DOI: 10.1016/j.coph.2014.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Kainate receptors (KARs) are tetrameric ionotropic glutamate receptors composed of the combinations of five subunits GluK1-GluK5. KARs are structurally related to AMPA receptors but they serve quite distinct functions by regulating the activity of synaptic circuits at presynaptic and postsynaptic sites, through either ionotropic or metabotropic actions. Although kainate is a potent neurotoxin known to induce acute seizures through activation of KARs, the actual role of KARs in the clinically-relevant chronic phase of temporal lobe epilepsy (TLE) has long been elusive. Recent evidences have described pathophysiological mechanisms of heteromeric GluK2/GluK5 KARs in generating recurrent seizures in chronic epilepsy. The role of the other major subunit GluK1 in epileptogenic activity is still a matter of debate. This review will present the current knowledge on the subtype-specific pharmacology of KARs and highlight recent results linking KARs to epileptic conditions.
Collapse
Affiliation(s)
- Valérie Crépel
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
36
|
The GABA excitatory/inhibitory developmental sequence: a personal journey. Neuroscience 2014; 279:187-219. [PMID: 25168736 DOI: 10.1016/j.neuroscience.2014.08.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/17/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022]
Abstract
The developing brain is talkative but its language is not that of the adult. Most if not all voltage and transmitter-gated ionic currents follow a developmental sequence and network-driven patterns differ in immature and adult brains. This is best illustrated in studies engaged almost three decades ago in which we observed elevated intracellular chloride (Cl(-))i levels and excitatory GABA early during development and a perinatal excitatory/inhibitory shift. This sequence is observed in a wide range of brain structures and animal species suggesting that it has been conserved throughout evolution. It is mediated primarily by a developmentally regulated expression of the NKCC1 and KCC2 chloride importer and exporter respectively. The GABAergic depolarization acts in synergy with N-methyl-d-aspartate (NMDA) receptor-mediated and voltage-gated calcium currents to enhance intracellular calcium exerting trophic effects on neuritic growth, migration and synapse formation. These sequences can be deviated in utero by genetic or environmental insults leading to a persistence of immature features in the adult brain. This "neuroarcheology" concept paves the way to novel therapeutic perspectives based on the use of drugs that block immature but not adult currents. This is illustrated notably with the return to immature high levels of chloride and excitatory actions of GABA observed in many pathological conditions. This is due to the fact that in the immature brain a down regulation of KCC2 and an up regulation of NKCC1 are seen. Here, I present a personal history of how an unexpected observation led to novel concepts in developmental neurobiology and putative treatments of autism and other developmental disorders. Being a personal account, this review is neither exhaustive nor provides an update of this topic with all the studies that have contributed to this evolution. We all rely on previous inventors to allow science to advance. Here, I present a personal summary of this topic primarily to illustrate why we often fail to comprehend the implications of our own observations. They remind us - and policy deciders - why Science cannot be programed, requiring time, and risky investigations that raise interesting questions before being translated from bench to bed. Discoveries are always on sideways, never on highways.
Collapse
|
37
|
Dendritic calcium nonlinearities switch the direction of synaptic plasticity in fast-spiking interneurons. J Neurosci 2014; 34:3864-77. [PMID: 24623765 DOI: 10.1523/jneurosci.2253-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic calcium (Ca2+) nonlinearities allow neuronal coincidence detection and site-specific plasticity. Whether such events exist in dendrites of interneurons and play a role in regulation of synaptic efficacy remains unknown. Here, we used a combination of whole-cell patch-clamp recordings and two-photon Ca2+ imaging to reveal Ca2+ nonlinearities associated with synaptic integration in dendrites of mouse hippocampal CA1 fast-spiking interneurons. Local stimulation of distal dendritic branches within stratum oriens/alveus elicited fast Ca2+ transients, which showed a steep sigmoidal relationship to stimulus intensity. Supralinear Ca2+ events required Ca2+ entry through AMPA receptors with a subsequent Ca2+ release from internal stores. To investigate the functional significance of supralinear Ca2+ signals, we examined activity-dependent fluctuations in transmission efficacy triggered by Ca2+ signals of different amplitudes at excitatory synapses of interneurons. Subthreshold theta-burst stimulation (TBS) produced small amplitude postsynaptic Ca2+ transients and triggered long-term potentiation. In contrast, the suprathreshold TBS, which was associated with the generation of supralinear Ca2+ events, triggered long-term depression. Blocking group I/II metabotropic glutamate receptors (mGluRs) during suprathreshold TBS resulted in a slight reduction of supralinear Ca2+ events and induction of short-term depression. In contrast, blocking internal stores and supralinear Ca2+ signals during suprathreshold TBS switched the direction of plasticity from depression back to potentiation. These data reveal a novel type of supralinear Ca2+ events at synapses lacking the GluA2 AMPA subtype of glutamate receptors and demonstrate a general mechanism by which Ca2+ -permeable AMPA receptors, together with internal stores and mGluRs, control the direction of plasticity at interneuron excitatory synapses.
Collapse
|
38
|
Fritsch B, Reis J, Gasior M, Kaminski RM, Rogawski MA. Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J Neurosci 2014; 34:5765-75. [PMID: 24760837 PMCID: PMC3996208 DOI: 10.1523/jneurosci.5307-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/12/2014] [Accepted: 03/07/2014] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors containing the GluK1 subunit have an impact on excitatory and inhibitory neurotransmission in brain regions, such as the amygdala and hippocampus, which are relevant to seizures and epilepsy. Here we used 2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a potent and selective agonist of kainate receptors that include the GluK1 subunit, in conjunction with mice deficient in GluK1 and GluK2 kainate receptor subunits to assess the role of GluK1 kainate receptors in provoking seizures and in kindling epileptogenesis. We found that systemic ATPA, acting specifically via GluK1 kainate receptors, causes locomotor arrest and forelimb extension (a unique behavioral characteristic of GluK1 activation) and induces myoclonic behavioral seizures and electrographic seizure discharges in the BLA and hippocampus. In contrast, the proconvulsant activity of systemic AMPA, kainate, and pentylenetetrazol is not mediated by GluK1 kainate receptors, and deletion of these receptors does not elevate the threshold for seizures in the 6 Hz model. ATPA also specifically activates epileptiform discharges in BLA slices in vitro via GluK1 kainate receptors. Olfactory bulb kindling developed similarly in wild-type, GluK1, and GluK2 knock-out mice, demonstrating that GluK1 kainate receptors are not required for epileptogenesis or seizure expression in this model. We conclude that selective activation of kainate receptors containing the GluK1 subunit can trigger seizures, but these receptors are not necessary for seizure generation in models commonly used to identify therapeutic agents for the treatment of epilepsy.
Collapse
Affiliation(s)
- Brita Fritsch
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neurology, University Hospital, 79106 Freiburg, Germany, and
| | - Janine Reis
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neurology, University Hospital, 79106 Freiburg, Germany, and
| | - Maciej Gasior
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Rafal M. Kaminski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael A. Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
- Department of Neurology, School of Medicine and Center for Neuroscience, University of California, Davis, Sacramento, California 95817
| |
Collapse
|
39
|
Carta M, Fièvre S, Gorlewicz A, Mulle C. Kainate receptors in the hippocampus. Eur J Neurosci 2014; 39:1835-44. [PMID: 24738709 DOI: 10.1111/ejn.12590] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/23/2023]
Abstract
Kainate receptors (KARs) consist of a family of ionotropic glutamate receptors composed of the combinations of five subunits, GluK1-GluK5. Although KARs display close structural homology with AMPA receptors, they serve quite distinct functions. A great deal of our knowledge of the molecular and functional properties of KARs comes from their study in the hippocampus. This review aims at summarising the functions of KARs in the regulation of the activity of hippocampal synaptic circuits at the adult stage and throughout development. We focus on the variety of roles played by KARs in physiological conditions of activation, at pre- and postsynaptic sites, in different cell types and through either metabotropic or ionotropic actions. Finally, we present some of the few attempts to link the role of KARs in the regulation of local hippocampal circuits to the behavioural functions of the hippocampus in health and diseases.
Collapse
Affiliation(s)
- Mario Carta
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000, Bordeaux, France
| | | | | | | |
Collapse
|
40
|
Abstract
Our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms underlying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic receptors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins.
Collapse
|
41
|
Yan D, Yamasaki M, Straub C, Watanabe M, Tomita S. Homeostatic control of synaptic transmission by distinct glutamate receptors. Neuron 2013; 78:687-99. [PMID: 23719165 DOI: 10.1016/j.neuron.2013.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2013] [Indexed: 01/27/2023]
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the brain, and distinct classes of glutamate receptors coordinate synaptic transmission and spike generation upon various levels of neuronal activity. However, the mechanisms remain unclear. Here, we found that loss of synaptic AMPA receptors increased kainate receptor activity in cerebellar granule cells without changing NMDA receptors. The augmentation of kainate receptor-mediated currents in the absence of AMPA receptor activity is required for spike generation and is mediated by the increased expression of the GluK5 high-affinity kainate receptor subunit. Increase in GluK5 expression is sufficient to enhance kainate receptor activity by modulating receptor channel properties, but not localization. Furthermore, we demonstrate that the combined loss of the AMPA receptor auxiliary TARPγ-2 subunit and the GluK5 subunit leads to early mouse lethality. Our findings reveal mechanisms mediated by distinct classes of postsynaptic glutamate receptors for the homeostatic maintenance of the neuronal activity.
Collapse
Affiliation(s)
- Dan Yan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
42
|
Noh J, Chung JM. Neu2000 potentiates a kainate response in mouse cortical neurons. J Pharmacol Sci 2013; 122:149-52. [PMID: 23698159 DOI: 10.1254/jphs.13023sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Neu2000, acting as an antioxidant with N-methyl-d-aspartate-receptor antagonism, demonstrates excellent protection against ischemic insults in rodents. In this study, we report that Neu2000 also dramatically enhances the activity of kainate (KA) receptors. Neu2000 non-competitively and reversibly potentiated KA-evoked responses in a voltage-independent manner, mainly by increasing the open probability of KA receptor channels.
Collapse
Affiliation(s)
- Jihyun Noh
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
43
|
Synaptic kainate receptors in CA1 interneurons gate the threshold of theta-frequency-induced long-term potentiation. J Neurosci 2013; 32:18215-26. [PMID: 23238735 DOI: 10.1523/jneurosci.2327-12.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Theta oscillations (4-12 Hz) in neuronal networks are known to predispose the synapses involved to plastic changes and may underlie their association with learning behaviors. The lowered threshold for synaptic plasticity during theta oscillations is thought to be due to decreased GABAergic inhibition. Interneuronal kainate receptors (KARs) regulate GABAergic transmission and are implicated in theta activity; however, the physiological significance of this regulation is unknown. In rat hippocampus, we show that during theta activity, there is excitatory postsynaptic drive to CA1 interneurons mediated by KARs. This promotes feedforward inhibition of pyramidal neurons, raising the threshold for induction of theta-burst long-term potentiation. These results identify a novel mechanism whereby the activation of postsynaptic KARs in CA1 interneurons gate changes in synaptic efficacy to a physiologically relevant patterned stimulation.
Collapse
|
44
|
Tang M, Ivakine E, Mahadevan V, Salter MW, McInnes RR. Neto2 interacts with the scaffolding protein GRIP and regulates synaptic abundance of kainate receptors. PLoS One 2012; 7:e51433. [PMID: 23236500 PMCID: PMC3516556 DOI: 10.1371/journal.pone.0051433] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Kainate receptors (KARs) are a class of ionotropic glutamate receptors that are expressed throughout the central nervous system. The function and subcellular localization of KARs are tightly regulated by accessory proteins. We have previously identified the single-pass transmembrane proteins, Neto1 and Neto2, to be associated with native KARs. In the hippocampus, Neto1, but not Neto2, controls the abundance and modulates the kinetics of postsynaptic KARs. Here we evaluated whether Neto2 regulates synaptic KAR levels in the cerebellum where Neto1 expression is limited to the deep cerebellar nuclei. In the cerebellum, where Neto2 is present abundantly, we found a ∼40% decrease in GluK2-KARs at the postsynaptic density (PSD) of Neto2-null mice. No change, however, was observed in total level of GluK2-KARs, thereby suggesting a critical role of Neto2 on the synaptic localization of cerebellar KARs. The presence of a putative class II PDZ binding motif on Neto2 led us to also investigate whether it interacts with PDZ domain-containing proteins previously implicated in regulating synaptic abundance of KARs. We identified a PDZ-dependent interaction between Neto2 and the scaffolding protein GRIP. Furthermore, coexpression of Neto2 significantly increased the amount of GRIP associated with GluK2, suggesting that Neto2 may promote and/or stabilize GluK2:GRIP interactions. Our results demonstrate that Neto2, like Neto1, is an important auxiliary protein for modulating the synaptic levels of KARs. Moreover, we propose that the interactions of Neto1/2 with various scaffolding proteins is a critical mechanism by which KARs are stabilized at diverse synapses.
Collapse
Affiliation(s)
- Man Tang
- Program in Developmental and Stem Cell Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Evgueni Ivakine
- Program in Developmental and Stem Cell Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vivek Mahadevan
- Program in Developmental and Stem Cell Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Salter
- Program in Neurosciences and Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RRM); (MWS)
| | - Roderick R. McInnes
- Program in Developmental and Stem Cell Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lady Davis Research Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- * E-mail: (RRM); (MWS)
| |
Collapse
|
45
|
Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 2012; 13:675-86. [PMID: 22948074 DOI: 10.1038/nrn3335] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kainate receptors are a family of ionotropic glutamate receptors whose physiological roles differ from those of other subtypes of glutamate receptors in that they predominantly serve as modulators, rather than mediators, of synaptic transmission. Neuronal kainate receptors exhibit unusually slow kinetic properties that have been difficult to reconcile with the behaviour of recombinant kainate receptors. Recently, however, the neuropilin and tolloid-like 1 (NETO1) and NETO2 proteins were identified as auxiliary kainate receptor subunits that shape both the biophysical properties and synaptic localization of these receptors.
Collapse
|
46
|
Bhangoo SK, Swanson GT. Kainate receptor signaling in pain pathways. Mol Pharmacol 2012; 83:307-15. [PMID: 23095167 DOI: 10.1124/mol.112.081398] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Receptors and channels that underlie nociceptive signaling constitute potential sites of intervention for treatment of chronic pain states. The kainate receptor family of glutamate-gated ion channels represents one such candidate set of molecules. They have a prominent role in modulation of excitatory signaling between sensory and spinal cord neurons. Kainate receptors are also expressed throughout central pain neuraxis, where their functional contributions to neural integration are less clearly defined. Pharmacological inhibition or genetic ablation of kainate receptor activity reduces pain behaviors in a number of animal models of chronic pain, and small clinical trials have been conducted using several orthosteric antagonists. This review will cover kainate receptor function and participation in pain signaling as well as the pharmacological studies supporting further consideration as potential targets for therapeutic development.
Collapse
Affiliation(s)
- Sonia K Bhangoo
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
47
|
Koga K, Sim SE, Chen T, Wu LJ, Kaang BK, Zhuo M. Kainate receptor-mediated synaptic transmissions in the adult rodent insular cortex. J Neurophysiol 2012; 108:1988-98. [PMID: 22786952 DOI: 10.1152/jn.00453.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kainate (KA) receptors are expressed widely in the central nervous system and regulate both excitatory and inhibitory synaptic transmission. KA receptors play important roles in fear memory, anxiety, and pain. However, little is known about their function in synaptic transmission in the insular cortex (IC), a critical region for taste, memory, and pain. Using whole cell patch-clamp recordings, we have shown that KA receptors contribute to fast synaptic transmission in neurons in all layers of the IC. In the presence of the GABA(A) receptor antagonist picrotoxin, the NMDA receptor antagonist AP-5, and the selective AMPA receptor antagonist GYKI 53655, KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) were revealed. We found that KA EPSCs are ~5-10% of AMPA/KA EPSCs in all layers of the adult mouse IC. Similar results were found in adult rat IC. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulations at 200 Hz significantly facilitated the summation of KA EPSCs. In addition, genetic deletion of GluK1 or GluK2 subunit partially reduced postsynaptic KA EPSCs, and exposure of GluK2 knockout mice to the selective GluK1 antagonist UBP 302 could significantly reduce the KA EPSCs. These data suggest that both GluK1 and GluK2 play functional roles in the IC. Our study may provide the synaptic basis for the physiology and pathology of KA receptors in the IC-related functions.
Collapse
Affiliation(s)
- Kohei Koga
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Aroniadou-Anderjaska V, Pidoplichko VI, Figueiredo TH, Almeida-Suhett CP, Prager EM, Braga MFM. Presynaptic facilitation of glutamate release in the basolateral amygdala: a mechanism for the anxiogenic and seizurogenic function of GluK1 receptors. Neuroscience 2012; 221:157-69. [PMID: 22796081 DOI: 10.1016/j.neuroscience.2012.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/14/2012] [Accepted: 07/03/2012] [Indexed: 11/29/2022]
Abstract
Kainate receptors containing the GluK1 subunit (GluK1Rs; previously known as GluR5 kainate receptors) are concentrated in certain brain regions, where they play a prominent role in the regulation of neuronal excitability, by modulating GABAergic and/or glutamatergic synaptic transmission. In the basolateral nucleus of the amygdala (BLA), which plays a central role in anxiety as well as in seizure generation, GluK1Rs modulate GABAergic inhibition via postsynaptic and presynaptic mechanisms. However, the role of these receptors in the regulation of glutamate release, and the net effect of their activation on the excitability of the BLA network are not well understood. Here, we show that in amygdala slices from 35- to 50-day-old rats, the GluK1 agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) (300 nM) increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs) recorded from BLA principal neurons, and decreased the rate of failures of evoked EPSCs. The GluK1 antagonist (S)-1-(2-amino-2-carboxyethyl)-3-(2-carboxybenzyl) pyrimidine-2,4-dione (UBP302) (25 or 30 μM) decreased the frequency of mEPSCs, reduced evoked field potentials, and increased the "paired-pulse ratio" of the field potential amplitudes. Taken together, these results suggest that GluK1Rs in the rat BLA are present on presynaptic terminals of principal neurons, where they mediate facilitation of glutamate release. In vivo bilateral microinjections of ATPA (250 pmol) into the rat BLA increased anxiety-like behavior in the open field test, while 2 nmol ATPA induced seizures. Similar intra-BLA injections of UBP302 (20 nmol) had anxiolytic effects in the open field and the acoustic startle response tests, without affecting pre-pulse inhibition. These results suggest that although GluK1Rs in the rat BLA facilitate both GABA and glutamate release, the facilitation of glutamate release prevails, and these receptors can have an anxiogenic and seizurogenic net function. Presynaptic facilitation of glutamate release may, in part, underlie the hyperexcitability-promoting effects of GluK1R activation in the rat BLA.
Collapse
Affiliation(s)
- V Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lv Q, Liu Y, Han D, Xu J, Zong YY, Wang Y, Zhang GY. Neuroprotection of GluK1 kainate receptor agonist ATPA against ischemic neuronal injury through inhibiting GluK2 kainate receptor-JNK3 pathway via GABA(A) receptors. Brain Res 2012; 1456:1-13. [PMID: 22516108 DOI: 10.1016/j.brainres.2012.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 12/21/2022]
Abstract
It is well known that GluK2-containing kainate receptors play essential roles in seizure and cerebral ischemia-induced neuronal death, while GluK1-containing kainate receptors could increase tonic inhibition of post-synaptic pyramidal neurons. This research investigated whether GluK1 could inhibit activation of c-Jun N-terminal kinase 3 (JNK3) signaling pathway mediated by the GluK2 in cerebral ischemia-reperfusion. The results show that GluK1 activation by (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) at 1nmol per rat could inhibit the assembly of GluK2·Postsynaptic density 95·mixed lineage kinase 3 signaling module, activation of JNK3 and its downstream signal molecules. However, the inhibition of ATPA could be prevented by GluK1 antagonist NS3763, GluK1 antisense, and GABA(A) receptor antagonist bicuculline. In addition, ATPA played a neuroprotective role against cerebral ischemia. In sum, the findings indicate that activation of GluK1 by ATPA at specific dosages may promote GABA release, which then suppresses post-synaptic GluK2-JNK3 signaling-mediated cerebral ischemic injury via GABA(A)R.
Collapse
Affiliation(s)
- Qian Lv
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bio-information, Xuzhou Medical College, Xuzhou 221002, Jiangsu, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Karunakaran S, Grasse DW, Moxon KA. Changes in network dynamics during status epilepticus. Exp Neurol 2012; 234:454-65. [PMID: 22309830 DOI: 10.1016/j.expneurol.2012.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/29/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Affiliation(s)
- S Karunakaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|