1
|
Fernández I, Bontems F, Brun D, Coquin Y, Goverde CA, Correia BE, Gessain A, Buseyne F, Rey FA, Backovic M. Structures of the Foamy virus fusion protein reveal an unexpected link with the F protein of paramyxo- and pneumoviruses. SCIENCE ADVANCES 2024; 10:eado7035. [PMID: 39392890 PMCID: PMC11468914 DOI: 10.1126/sciadv.ado7035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Foamy viruses (FVs) constitute a subfamily of retroviruses. Their envelope (Env) glycoprotein drives the merger of viral and cellular membranes during entry into cells. The only available structures of retroviral Envs are those from human and simian immunodeficiency viruses from the subfamily of orthoretroviruses, which are only distantly related to the FVs. We report the cryo-electron microscopy structures of the FV Env ectodomain in the pre- and post-fusion states, which unexpectedly demonstrate structural similarity with the fusion protein (F) of paramyxo- and pneumoviruses, implying an evolutionary link between the viral fusogens. We describe the structural features that are unique to the FV Env and propose a mechanistic model for its conformational change, highlighting how the interplay of its structural elements could drive membrane fusion and viral entry. The structural knowledge on the FV Env now provides a framework for functional investigations, which can benefit the design of FV Env variants with improved features for use as gene therapy vectors.
Collapse
Affiliation(s)
- Ignacio Fernández
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - François Bontems
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris Saclay, 91190 Gif-sur-Yvette, France
| | - Delphine Brun
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Casper A. Goverde
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno E. Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, 75015 Paris, France
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| |
Collapse
|
2
|
Sederdahl BK, Weinberg GA, Campbell AP, Selvarangan R, Schuster JE, Lively JY, Olson SM, Boom JA, Piedra PA, Halasa NB, Stewart L, Szilagyi PG, Balasubramani GK, Sax T, Martin JM, Hickey RW, Michaels MG, Williams JV. Influenza C virus in U.S. children with acute respiratory infection 2016-2019. J Clin Virol 2024; 174:105720. [PMID: 39142019 DOI: 10.1016/j.jcv.2024.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Influenza C virus (ICV) is an orthomyxovirus related to influenza A and B, yet due to few commercial assays, epidemiologic studies may underestimate incidence of ICV infection and disease. We describe the epidemiology and characteristics of ICV within the New Vaccine Surveillance Network (NVSN), a Centers for Disease Control and Prevention (CDC)-led network that conducts population-based surveillance for pediatric acute respiratory illness (ARI). Nasal or/combined throat swabs were collected from emergency department (ED) or inpatient ARI cases, or healthy controls, between 12/05/2016-10/31/2019 and tested by molecular assays for ICV and other respiratory viruses. Parent surveys and chart review were used to analyze demographic and clinical characteristics of ICV+ children. Among 19,321 children tested for ICV, 115/17,668 (0.7 %) ARI cases and 8/1653 (0.5 %) healthy controls tested ICV+. Median age of ICV+ patients was 18 months and 88 (71.5 %) were ≤36 months. Among ICV+ ARI patients, 40 % (46/115) were enrolled in the ED, 60 % (69/115) were inpatients, with 15 admitted to intensive care. Most ICV+ ARI patients had fever (67.8 %), cough (94.8 %), or wheezing (60.9 %). Most (60.9 %) ARI cases had ≥1 co-detected viruses including rhinovirus, RSV, and adenovirus. In summary, ICV detection was rarely associated with ARI in children, and most ICV+ patients were ≤3 years old with co-detected respiratory viruses.
Collapse
Affiliation(s)
- Bethany K Sederdahl
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey A Weinberg
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Angela P Campbell
- Coronavirus and other Respiratory Viruses Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rangaraj Selvarangan
- Department of Pathology & Laboratory Medicine, University of Missouri Kansas City, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer E Schuster
- Department of Pediatrics, University of Missouri - Kansas City, Children's Mercy Hospital, Kansas City, MO, USA
| | - Joana Y Lively
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samantha M Olson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julie A Boom
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Pedro A Piedra
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura Stewart
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter G Szilagyi
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - G K Balasubramani
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Theresa Sax
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Judith M Martin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert W Hickey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marian G Michaels
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Naveed A, Yu J, Lawson S, Gao R, Ni S, Paulchakrabarti M, Choudhury B, Christopher-Hennings J, Nelson E, Sheng Z, Kennedy MA, Li F, Wang D. Receptor binding and immunogenic properties of the receptor binding domain of influenza D virus hemagglutinin-esterase-fusion protein expressed from Escherichia coli. Virology 2024; 597:110138. [PMID: 38880069 PMCID: PMC11257787 DOI: 10.1016/j.virol.2024.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The hemagglutinin-esterase-fusion (HEF) protein binds 9-O-acetylated sialic acids-containing glycans on the cell surface and drives influenza D virus (IDV) entry. The HEF is a primary determinant of the exceptional thermal and acid stability observed in IDV infection biology. Here, we expressed and purified the receptor binding domain (RBD) of the IDV HEF protein in Escherichia coli and characterized its receptor binding and antigenic properties. The data from these experiments indicate that (i) the RBD can bind with specificity to turkey red blood cells (RBC), and its binding can be specifically inhibited by IDV antibody; (ii) the RBD efficiently binds to the cell surface of MDCK cells expressing the receptor of IDV; and (iii) anti-RBD antibodies are capable of blocking RBD attachment to MDCK cells as well as of inhibiting the virus from agglutinating RBCs. These observations support the utility of this RBD in future receptor and entry studies of IDV.
Collapse
Affiliation(s)
- Ahsan Naveed
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Jieshi Yu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Steven Lawson
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Mousumi Paulchakrabarti
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, NY, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
4
|
David SC, Vadas O, Glas I, Schaub A, Luo B, D'angelo G, Montoya JP, Bluvshtein N, Hugentobler W, Klein LK, Motos G, Pohl M, Violaki K, Nenes A, Krieger UK, Stertz S, Peter T, Kohn T. Inactivation mechanisms of influenza A virus under pH conditions encountered in aerosol particles as revealed by whole-virus HDX-MS. mSphere 2023; 8:e0022623. [PMID: 37594288 PMCID: PMC10597348 DOI: 10.1128/msphere.00226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 08/19/2023] Open
Abstract
Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.
Collapse
Affiliation(s)
- Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oscar Vadas
- Protein Platform, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Giovanni D'angelo
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Paz Montoya
- Laboratory of Lipid Cell Biology, School of Life Sciences, Interschool Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Pohl
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Ghafoori SM, Petersen GF, Conrady DG, Calhoun BM, Stigliano MZZ, Baydo RO, Grice R, Abendroth J, Lorimer DD, Edwards TE, Forwood JK. Structural characterisation of hemagglutinin from seven Influenza A H1N1 strains reveal diversity in the C05 antibody recognition site. Sci Rep 2023; 13:6940. [PMID: 37117205 PMCID: PMC10140725 DOI: 10.1038/s41598-023-33529-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Influenza virus (IV) causes several outbreaks of the flu each year resulting in an economic burden to the healthcare system in the billions of dollars. Several influenza pandemics have occurred during the last century and estimated to have caused 100 million deaths. There are four genera of IV, A (IVA), B (IVB), C (IVC), and D (IVD), with IVA being the most virulent to the human population. Hemagglutinin (HA) is an IVA surface protein that allows the virus to attach to host cell receptors and enter the cell. Here we have characterised the high-resolution structures of seven IVA HAs, with one in complex with the anti-influenza head-binding antibody C05. Our analysis revealed conserved receptor binding residues in all structures, as seen in previously characterised IV HAs. Amino acid conservation is more prevalent on the stalk than the receptor binding domain (RBD; also called the head domain), allowing the virus to escape from antibodies targeting the RBD. The equivalent site of C05 antibody binding to A/Denver/57 HA appears hypervariable in the other H1N1 IV HAs. Modifications within this region appear to disrupt binding of the C05 antibody, as these HAs no longer bind the C05 antibody by analytical SEC. Our study brings new insights into the structural and functional recognition of IV HA proteins and can contribute to further development of anti-influenza vaccines.
Collapse
Affiliation(s)
- Seyed Mohammad Ghafoori
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Deborah G Conrady
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Brandy M Calhoun
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Matthew Z Z Stigliano
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Ruth O Baydo
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Rena Grice
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Donald D Lorimer
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Thomas E Edwards
- UCB BioSciences, Bainbridge Island, WA, 98110, USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA, 98109, USA
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| |
Collapse
|
6
|
Matsuzaki Y, Ohmiya S, Ota R, Kitai Y, Watanabe O, Kitaoka S, Kumaki S, Onuma R, Watanabe Y, Nagai Y, Kadowaki Y, Shimotai Y, Nishimura H. Epidemiologic, clinical, and genetic characteristics of influenza C virus infections among outpatients and inpatients in Sendai, Japan from 2006 to 2020. J Clin Virol 2023; 162:105429. [PMID: 37031609 DOI: 10.1016/j.jcv.2023.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Influenza C virus is a pathogen that causes acute respiratory illness in children. The clinical information about this virus is limited because of the small number of isolated viruses compared to influenza A or B viruses. METHODS A total of 60 influenza C viruses were isolated by clinical tests using cell culture methods conducted in one hospital and one clinic during the 15 years from 2006 to 2020. These 60 cases were retrospectively analyzed by comparing outpatients and inpatients. Moreover, isolated viruses were analyzed for genomic changes during the study period. RESULTS All were younger than 7 years, and 73% of inpatients (19 out of 26) were under 2 years of age. A significant difference was found in the frequency of pneumonia, accounting for 45% and 4% of inpatients and outpatients, respectively. Most of the viruses isolated from 2006 to 2012 belonged to the S/A sublineage of the C/Sao Paulo lineage, but three sublineage viruses, including the S/A sublineage with K190N mutation, S/V sublineage, and C/Kanagawa lineage, have cocirculated since 2014. Moreover, S/A sublineage viruses were undergoing reassortment since 2014, suggesting significant changes in the virus, both antigenically and genetically. Of the 10 strains from patients with pneumonia, 7 were in the S/A sublineage, which had circulated from 2006 to 2012. CONCLUSION Infants under 2 years of age were more likely to be hospitalized with pneumonia. The genomic changes that occurred in 2014 were suggested to affect the ability of the virus to spread.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, 990-9585, Yamagata Japan.
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Reiko Ota
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Yuki Kitai
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Setsuko Kitaoka
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Satoru Kumaki
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Ryoichi Onuma
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Yohei Watanabe
- Department of Pediatrics, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| | - Yukio Nagai
- Nagai Children's Clinic, Miyagino-ku, 983-0045, Sendai, Miyagi Japan
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, 990-9585, Yamagata Japan
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Iida-Nishi, 990-9585, Yamagata Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Miyagino-ku, 983-8520, Sendai, Miyagi Japan
| |
Collapse
|
7
|
Workman AM, McDaneld TG, Harhay GP, Das S, Loy JD, Hause BM. Recent Emergence of Bovine Coronavirus Variants with Mutations in the Hemagglutinin-Esterase Receptor Binding Domain in U.S. Cattle. Viruses 2022; 14:2125. [PMID: 36298681 PMCID: PMC9607061 DOI: 10.3390/v14102125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bovine coronavirus (BCoV) has spilled over to many species, including humans, where the host range variant coronavirus OC43 is endemic. The balance of the opposing activities of the surface spike (S) and hemagglutinin-esterase (HE) glycoproteins controls BCoV avidity, which is critical for interspecies transmission and host adaptation. Here, 78 genomes were sequenced directly from clinical samples collected between 2013 and 2022 from cattle in 12 states, primarily in the Midwestern U.S. Relatively little genetic diversity was observed, with genomes having >98% nucleotide identity. Eleven isolates collected between 2020 and 2022 from four states (Nebraska, Colorado, California, and Wisconsin) contained a 12 nucleotide insertion in the receptor-binding domain (RBD) of the HE gene similar to one recently reported in China, and a single genome from Nebraska collected in 2020 contained a novel 12 nucleotide deletion in the HE gene RBD. Isogenic HE proteins containing either the insertion or deletion in the HE RBD maintained esterase activity and could bind bovine submaxillary mucin, a substrate enriched in the receptor 9-O-acetylated-sialic acid, despite modeling that predicted structural changes in the HE R3 loop critical for receptor binding. The emergence of BCoV with structural variants in the RBD raises the possibility of further interspecies transmission.
Collapse
Affiliation(s)
- Aspen M. Workman
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Tara G. McDaneld
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Gregory P. Harhay
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS), US Meat Animal Research Center (USMARC), State Spur 18D, Clay Center, NE 68933, USA
| | - Subha Das
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, 4040 East Campus Loop N, Lincoln, NE 68503, USA
| | - Benjamin M. Hause
- Veterinary & Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
8
|
Anderson AC, Stangherlin S, Pimentel KN, Weadge JT, Clarke AJ. The SGNH hydrolase family: a template for carbohydrate diversity. Glycobiology 2022; 32:826-848. [PMID: 35871440 PMCID: PMC9487903 DOI: 10.1093/glycob/cwac045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
| | - Stefen Stangherlin
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| | - Kyle N Pimentel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph N1G2W1, Canada
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo N2L3C5, Canada
| |
Collapse
|
9
|
Petitjean SJL, Chen W, Koehler M, Jimmidi R, Yang J, Mohammed D, Juniku B, Stanifer ML, Boulant S, Vincent SP, Alsteens D. Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nat Commun 2022; 13:2564. [PMID: 35538121 PMCID: PMC9091252 DOI: 10.1038/s41467-022-30313-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023] Open
Abstract
The recent emergence of highly transmissible SARS-CoV-2 variants illustrates the urgent need to better understand the molecular details of the virus binding to its host cell and to develop anti-viral strategies. While many studies focused on the role of the angiotensin-converting enzyme 2 receptor in the infection, others suggest the important role of cell attachment factors such as glycans. Here, we use atomic force microscopy to study these early binding events with the focus on the role of sialic acids (SA). We show that SARS-CoV-2 binds specifically to 9-O-acetylated-SA with a moderate affinity, supporting its role as an attachment factor during virus landing to cell host surfaces. For therapeutic purposes and based on this finding, we have designed novel blocking molecules with various topologies and carrying a controlled number of SA residues, enhancing affinity through a multivalent effect. Inhibition assays show that the AcSA-derived glycoclusters are potent inhibitors of cell binding and infectivity, offering new perspectives in the treatment of SARS-CoV-2 infection. Cell surface attachment factors, such as glycans, play an important role in viral infection. Here, Petitjean et al. show that SARS-CoV-2 specifically binds to 9-Oacetylated sialic acid and have designed novel inhibitors based on multivalent derivatives.
Collapse
Affiliation(s)
- Simon J L Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Wenzhang Chen
- Laboratory of Bio-Organic Chemistry (NARILIS), UNamur, Namur, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Ravikumar Jimmidi
- Laboratory of Bio-Organic Chemistry (NARILIS), UNamur, Namur, Belgium
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Danahe Mohammed
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Blinera Juniku
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Megan L Stanifer
- Dept. of Infectious Diseases, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120, Heidelberg, Germany.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, USA
| | - Steeve Boulant
- Dept. of Infectious Diseases, Medical Faculty, Center for Integrative Infectious Diseases Research (CIID), University of Heidelberg, 69120, Heidelberg, Germany.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, USA
| | | | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium. .,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium.
| |
Collapse
|
10
|
Scott H, Davies GJ, Armstrong Z. The structure of Phocaeicola vulgatus sialic acid acetylesterase. Acta Crystallogr D Struct Biol 2022; 78:647-657. [PMID: 35503212 PMCID: PMC9063846 DOI: 10.1107/s2059798322003357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sialic acids terminate many N- and O-glycans and are widely distributed on cell surfaces. There are a diverse range of enzymes which interact with these sugars throughout the tree of life. They can act as receptors for influenza and specific betacoronaviruses in viral binding and their cleavage is important in virion release. Sialic acids are also exploited by both commensal and pathogenic bacteria for nutrient acquisition. A common modification of sialic acid is 9-O-acetylation, which can limit the action of sialidases. Some bacteria, including human endosymbionts, employ esterases to overcome this modification. However, few bacterial sialic acid 9-O-acetylesterases (9-O-SAEs) have been structurally characterized. Here, the crystal structure of a 9-O-SAE from Phocaeicola vulgatus (PvSAE) is reported. The structure of PvSAE was determined to resolutions of 1.44 and 2.06 Å using crystals from two different crystallization conditions. Structural characterization revealed PvSAE to be a dimer with an SGNH fold, named after the conserved sequence motif of this family, and a Ser-His-Asp catalytic triad. These structures also reveal flexibility in the most N-terminal α-helix, which provides a barrier to active-site accessibility. Biochemical assays also show that PvSAE deacetylates both mucin and the acetylated chromophore para-nitrophenyl acetate. This structural and biochemical characterization of PvSAE furthers the understanding of 9-O-SAEs and may aid in the discovery of small molecules targeting this class of enzyme.
Collapse
Affiliation(s)
- Hannah Scott
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Zachary Armstrong
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
- Department of Bioorganic Synthesis, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
11
|
Cheung CSF, Gorman J, Andrews SF, Rawi R, Reveiz M, Shen CH, Wang Y, Harris DR, Nazzari AF, Olia AS, Raab J, Teng IT, Verardi R, Wang S, Yang Y, Chuang GY, McDermott AB, Zhou T, Kwong PD. Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure 2022; 30:993-1003.e6. [PMID: 35489332 DOI: 10.1016/j.str.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/18/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Several influenza antibodies with broad group 2 neutralization have recently been isolated. Here, we analyze the structure, class, and binding of one of these antibodies from an H7N9 vaccine trial, 315-19-1D12. The cryo-EM structure of 315-19-1D12 Fab in complex with the hemagglutinin (HA) trimer revealed the antibody to recognize the helix A region of the HA stem, at the supersite of vulnerability recognized by group 1-specific and by cross-group-neutralizing antibodies. 315-19-1D12 was derived from HV1-2 and KV2-28 genes and appeared to form a new antibody class. Bioinformatic analysis indicated its group 2 neutralization specificity to be a consequence of four key residue positions. We specifically tested the impact of the group 1-specific N33 glycan, which decreased but did not abolish group 2 binding of 315-19-1D12. Overall, this study highlights the recognition of a broad group 2-neutralizing antibody, revealing unexpected diversity in neutralization specificity for antibodies that recognize the HA stem supersite.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mateo Reveiz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Zhang X, Abel T, Su S, Herrmann A, Ludwig K, Veit M. Structural and functional analysis of the roles of influenza C virus membrane proteins in assembly and budding. J Biol Chem 2022; 298:101727. [PMID: 35157850 PMCID: PMC8914389 DOI: 10.1016/j.jbc.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Assembly and budding of the influenza C virus is mediated by three membrane proteins: the hemagglutinin-esterase-fusion glycoprotein (HEF), the matrix protein (CM1), and the ion channel (CM2). Here we investigated whether the formation of the hexagonal HEF arrangement, a distinctive feature of influenza C virions is important for virus budding. We used super resolution microscopy and found 250-nm sized HEF clusters at the plasma membrane of transfected cells, which were insensitive to cholesterol extraction and cytochalasin treatment. Overexpression of either CM1, CM2, or HEF caused the release of membrane-enveloped particles. Cryo-electron microscopy of the latter revealed spherical vesicles exhibiting the hexagonal HEF clusters. We subsequently used reverse genetics to identify elements in HEF required for this clustering. We found that deletion of the short cytoplasmic tail of HEF reduced virus titer and hexagonal HEF arrays, suggesting that an interaction with CM1 stabilizes the HEF clusters. In addition, we substituted amino acids at the surface of the closed HEF conformation and identified specific mutations that prevented virus rescue, others reduced virus titers and the number of HEF clusters in virions. Finally, mutation of two regions that mediate contacts between trimers in the in-situ structure of HEF was shown to prevent rescue of infectious virus particles. Mutations at residues thought to mediate lateral interactions were revealed to promote intracellular trafficking defects. Taken together, we propose that lateral interactions between the ectodomains of HEF trimers are a driving force for virus budding, although CM2 and CM1 also play important roles in this process.
Collapse
Affiliation(s)
- Xu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Tim Abel
- Institut für Biologie/Molekulare Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| | - Andreas Herrmann
- Institut für Biologie/Molekulare Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany; Biophysikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Kai Ludwig
- Department of Chemistry and Biochemistry and Core Facility BioSupraMol, Research Center of Electron Microscopy, Free University Berlin, Berlin, Germany
| | - Michael Veit
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Daniels RS, Galiano M, Ermetal B, Kwong J, Lau CS, Xiang Z, McCauley JW, Lo J. Temporal and Gene Reassortment Analysis of Influenza C Virus Outbreaks in Hong Kong, SAR, China. J Virol 2022; 96:e0192821. [PMID: 34787455 PMCID: PMC8826914 DOI: 10.1128/jvi.01928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
From 2014 to week 07/2020 the Centre for Health Protection in Hong Kong conducted screening for influenza C virus (ICV). A retrospective analysis of ICV detections to week 26/2019 revealed persistent low-level circulation with outbreaks occurring biennially in the winters of 2015 to 2016 and 2017 to 2018 (R. S. Daniels et al., J Virol 94:e01051-20, 2020, https://doi.org/10.1128/JVI.01051-20). Here, we report on an outbreak occurring in 2019 to 2020, reinforcing the observation of biennial seasonality in Hong Kong. All three outbreaks occurred in similar time frames, were subsequently dwarfed by seasonal epidemics of influenza types A and B, and were caused by similar proportions of C/Kanagawa/1/76 (K)-lineage and C/São Paulo/378/82 S1- and S2-sublineage viruses. Ongoing genetic drift was observed in all genes, with some evidence of amino acid substitution in the hemagglutinin-esterase-fusion (HEF) glycoprotein possibly associated with antigenic drift. A total of 61 ICV genomes covering the three outbreaks were analyzed for reassortment, and 9 different reassortant constellations were identified, 1 K-lineage, 4 S1-sublineage, and 4 S2-sublineage, with 6 of these being identified first in the 2019-1920 outbreak (2 S2-lineage and 4 S1-lineage). The roles that virus interference/enhancement, ICV persistent infection, genome evolution, and reassortment might play in the observed seasonality of ICV in Hong Kong are discussed. IMPORTANCE Influenza C virus (ICV) infection of humans is common, with the great majority of people being infected during childhood, though reinfection can occur throughout life. While infection normally results in "cold-like" symptoms, severe disease cases have been reported in recent years. However, knowledge of ICV is limited due to poor systematic surveillance and an inability to propagate the virus in large amounts in the laboratory. Following recent systematic surveillance in Hong Kong SAR, China, and direct ICV gene sequencing from clinical specimens, a 2-year cycle of disease outbreaks (epidemics) has been identified, with gene mixing playing a significant role in ICV evolution. Studies like those reported here are key to developing an understanding of the impact of influenza C virus infection in humans, notably where comorbidities exist and severe respiratory disease can develop.
Collapse
Affiliation(s)
- Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Monica Galiano
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Burcu Ermetal
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Jasmine Kwong
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Chi S. Lau
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Zheng Xiang
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
14
|
Known Cellular and Receptor Interactions of Animal and Human Coronaviruses: A Review. Viruses 2022; 14:v14020351. [PMID: 35215937 PMCID: PMC8878323 DOI: 10.3390/v14020351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
This article aims to review all currently known interactions between animal and human coronaviruses and their cellular receptors. Over the past 20 years, three novel coronaviruses have emerged that have caused severe disease in humans, including SARS-CoV-2 (severe acute respiratory syndrome virus 2); therefore, a deeper understanding of coronavirus host-cell interactions is essential. Receptor-binding is the first stage in coronavirus entry prior to replication and can be altered by minor changes within the spike protein-the coronavirus surface glycoprotein responsible for the recognition of cell-surface receptors. The recognition of receptors by coronaviruses is also a major determinant in infection, tropism, and pathogenesis and acts as a key target for host-immune surveillance and other potential intervention strategies. We aim to highlight the need for a continued in-depth understanding of this subject area following on from the SARS-CoV-2 pandemic, with the possibility for more zoonotic transmission events. We also acknowledge the need for more targeted research towards glycan-coronavirus interactions as zoonotic spillover events from animals to humans, following an alteration in glycan-binding capability, have been well-documented for other viruses such as Influenza A.
Collapse
|
15
|
Time-Dependent Proinflammatory Responses Shape Virus Interference during Coinfections of Influenza A Virus and Influenza D Virus. Viruses 2022; 14:v14020224. [PMID: 35215819 PMCID: PMC8878573 DOI: 10.3390/v14020224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Both influenza A virus (IAV) and influenza D virus (IDV) are enzootic in pigs. IAV causes approximately 100% morbidity with low mortality, whereas IDV leads to only mild respiratory diseases in pigs. In this study, we performed a series of coinfection experiments in vitro and in vivo to understand how IAV and IDV interact and cause pathogenesis during coinfection. The results showed that IAV inhibited IDV replication when infecting swine tracheal epithelial cells (STECs) with IAV 24 or 48 h prior to IDV inoculation and that IDV suppressed IAV replication when IDV preceded IAV inoculation by 48 h. Virus interference was not identified during simultaneous IAV/IDV infections or with 6 h between the two viral infections, regardless of their order. The interference pattern at 24 and 48 h correlated with proinflammatory responses induced by the first infection, which, for IDV, was slower than for IAV by about 24 h. The viruses did not interfere with each other if both infected the cells before proinflammatory responses were induced. Coinfection in pigs further demonstrated that IAV interfered with both viral shedding and virus replication of IDV, especially in the upper respiratory tract. Clinically, coinfection of IDV and IAV did not show significant enhancement of disease pathogenesis, compared with the pigs infected with IAV alone. In summary, this study suggests that interference during coinfection of IAV and IDV is primarily due to the proinflammatory response; therefore, it is dependent on the time between infections and the order of infection. This study facilitates our understanding of virus epidemiology and pathogenesis associated with IAV and IDV coinfection.
Collapse
|
16
|
Gamblin SJ, Vachieri SG, Xiong X, Zhang J, Martin SR, Skehel JJ. Hemagglutinin Structure and Activities. Cold Spring Harb Perspect Med 2021; 11:a038638. [PMID: 32513673 PMCID: PMC8485738 DOI: 10.1101/cshperspect.a038638] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hemagglutinins (HAs) are the receptor-binding and membrane fusion glycoproteins of influenza viruses. They recognize sialic acid-containing, cell-surface glycoconjugates as receptors but have limited affinity for them, and, as a consequence, virus attachment to cells requires their interaction with several virus HAs. Receptor-bound virus is transferred into endosomes where membrane fusion by HAs is activated at pH between 5 and 6.5, depending on the strain of virus. Fusion activity requires extensive rearrangements in HA conformation that include extrusion of a buried "fusion peptide" to connect with the endosomal membrane, form a bridge to the virus membrane, and eventually bring both membranes close together. In this review, we give an overview of the structures of the 16 genetically and antigenically distinct subtypes of influenza A HA in relation to these two functions in virus replication and in relation to recognition of HA by antibodies that neutralize infection.
Collapse
Affiliation(s)
- Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sébastien G Vachieri
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
17
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
18
|
Pérez-Vargas J, Teppa E, Amirache F, Boson B, Pereira de Oliveira R, Combet C, Böckmann A, Fusil F, Freitas N, Carbone A, Cosset FL. A fusion peptide in preS1 and the human protein disulfide isomerase ERp57 are involved in hepatitis B virus membrane fusion process. eLife 2021; 10:64507. [PMID: 34190687 PMCID: PMC8282342 DOI: 10.7554/elife.64507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Cell entry of enveloped viruses relies on the fusion between the viral and plasma or endosomal membranes, through a mechanism that is triggered by a cellular signal. Here we used a combination of computational and experimental approaches to unravel the main determinants of hepatitis B virus (HBV) membrane fusion process. We discovered that ERp57 is a host factor critically involved in triggering HBV fusion and infection. Then, through modeling approaches, we uncovered a putative allosteric cross-strand disulfide (CSD) bond in the HBV S glycoprotein and we demonstrate that its stabilization could prevent membrane fusion. Finally, we identified and characterized a potential fusion peptide in the preS1 domain of the HBV L glycoprotein. These results underscore a membrane fusion mechanism that could be triggered by ERp57, allowing a thiol/disulfide exchange reaction to occur and regulate isomerization of a critical CSD, which ultimately leads to the exposition of the fusion peptide.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elin Teppa
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France.,Sorbonne Université, Institut des Sciences du Calcul et des Données (ISCD), Paris, France
| | - Fouzia Amirache
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Rémi Pereira de Oliveira
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Christophe Combet
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 - CNRS 5286 - Université Lyon 1 - Centre Léon Bérard, Lyon, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS-Université Lyon 1, Lyon, France
| | - Floriane Fusil
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Alessandra Carbone
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB) - UMR 7238, Paris, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, Lyon, France
| |
Collapse
|
19
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|
20
|
Serrão VHB, Cook JD, Lee JE. Snapshot of an influenza virus glycoprotein fusion intermediate. Cell Rep 2021; 35:109152. [PMID: 34010634 DOI: 10.1016/j.celrep.2021.109152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
Enveloped virus entry requires the fusion of cellular and viral membranes, a process directed by their viral fusion glycoproteins. Our current knowledge of this process has been shaped by structural studies of the pre- and post-fusion conformations of these viral fusogens. These structural snapshots have revealed the start and end states necessary for fusion, but the dynamics of the intermediate conformations have remained unclear. Using the influenza C virus hemagglutinin-esterase-fusion glycoprotein as a model, we report the structural and biophysical characterization of a trapped intermediate. Crystallographic studies revealed a structural reorganization of the C terminus to create a second chain reversal region, resulting in the N and C termini being positioned in opposing directions. Intrinsic tryptophan fluorescence and bimane-induced quenching measurements suggest intermediate formation is mediated by conserved hydrophobic residues. Our study reveals a late-stage extended intermediate structural event. This work adds to our understanding of virus cell fusion.
Collapse
Affiliation(s)
- Vitor Hugo B Serrão
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
Albers M, Schröter L, Belousov S, Hartmann M, Grove M, Abeln M, Mühlenhoff M. The sialyl-O-acetylesterase NanS of Tannerella forsythia encompasses two catalytic modules with different regiospecificity for O7 and O9 of sialic acid. Glycobiology 2021; 31:1176-1191. [PMID: 33909048 DOI: 10.1093/glycob/cwab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The periodontal pathogen Tannerella forsythia utilizes host sialic acids as a nutrient source. To also make O-acetylated sialyl residues susceptible to the action of its sialidase and sialic acid up-take system, Tannerella produces NanS, an O-acetylesterase with two putative catalytic domains. Here, we analyzed NanS by homology modeling, predicted a catalytic serine-histidine-aspartate triad for each catalytic domain and performed individual domain inactivation by single alanine exchanges of the triad nucleophiles S32 and S311. Subsequent functional analyses revealed that both domains possess sialyl-O-acetylesterase activity, but differ in their regioselectivity with respect to position O9 and O7 of sialic acid. The 7-O-acetylesterase activity inherent to the C-terminal domain of NanS is unique among sialyl-O-acetylesterases and fills the current gap in tools targeting 7-O-acetylation. Application of the O7-specific variant NanS-S32A allowed us to evidence the presence of cellular 7,9-di-O-acetylated sialoglycans by monitoring the gain in 9-O-acetylation upon selective removal of acetyl groups from O7. Moreover, we established de-7,9-O-acetylation by wild-type NanS as an easy and efficient method to validate the specific binding of three viral lectins commonly used for the recognition of (7),9-O-acetylated sialoglycans. Their binding critically depends on an acetyl group in O9, yet de-7,9-O-acetylation proved advantageous over de-9-O-acetylation as the additional removal of the 7-O-acetyl group eliminated ligand formation by 7,9-ester migration. Together, our data show that NanS gained dual functionality through recruitment of two esterase modules with complementary activities. This enables Tannerella to scavenge 7,9-di-O-acetylated sialyl residues and provides a novel, O7-specific tool for studying sialic acid O-acetylation.
Collapse
Affiliation(s)
- Malena Albers
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Larissa Schröter
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sergej Belousov
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Maike Hartmann
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Grove
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
22
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
23
|
Halldorsson S, Sader K, Turner J, Calder LJ, Rosenthal PB. In situ structure and organization of the influenza C virus surface glycoprotein. Nat Commun 2021; 12:1694. [PMID: 33727554 PMCID: PMC7966785 DOI: 10.1038/s41467-021-21818-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
The lipid-enveloped influenza C virus contains a single surface glycoprotein, the haemagglutinin-esterase-fusion (HEF) protein, that mediates receptor binding, receptor destruction, and membrane fusion at the low pH of the endosome. Here we apply electron cryotomography and subtomogram averaging to describe the structural basis for hexagonal lattice formation by HEF on the viral surface. The conformation of the glycoprotein in situ is distinct from the structure of the isolated trimeric ectodomain, showing that a splaying of the membrane distal domains is required to mediate contacts that form the lattice. The splaying of these domains is also coupled to changes in the structure of the stem region which is involved in membrane fusion, thereby linking HEF's membrane fusion conformation with its assembly on the virus surface. The glycoprotein lattice can form independent of other virion components but we show a major role for the matrix layer in particle formation.
Collapse
Affiliation(s)
- Steinar Halldorsson
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kasim Sader
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, The Netherlands
| | - Jack Turner
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lesley J Calder
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
24
|
Matsuzaki Y, Sugawara K, Shimotai Y, Kadowaki Y, Hongo S, Mizuta K, Nishimura H. Growth Kinetics of Influenza C Virus Antigenic Mutants That Escaped from Anti-Hemagglutinin Esterase Monoclonal Antibodies and Viral Antigenic Changes Found in Field Isolates. Viruses 2021; 13:401. [PMID: 33802440 PMCID: PMC7998938 DOI: 10.3390/v13030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023] Open
Abstract
The antigenicity of the hemagglutinin esterase (HE) glycoprotein of influenza C virus is known to be stable; however, information about residues related to antigenic changes has not yet been fully acquired. Using selection with anti-HE monoclonal antibodies, we previously obtained some escape mutants and identified four antigenic sites, namely, A-1, A-2, A-3, and Y-1. To confirm whether the residues identified as the neutralizing epitope possibly relate to the antigenic drift, we analyzed the growth kinetics of these mutants. The results showed that some viruses with mutations in antigenic site A-1 were able to replicate to titers comparable to that of the wild-type, while others showed reduced titers. The mutants possessing substitutions in the A-2 or A-3 site replicated as efficiently as the wild-type virus. Although the mutant containing a deletion at positions 192 to 195 in the Y-1 site showed lower titers than the wild-type virus, it was confirmed that this region in the 190-loop on the top side of the HE protein is not essential for viral propagation. Then, we revealed that antigenic changes due to substitutions in the A-1, A-3, and/or Y-1 site had occurred in nature in Japan for the past 30 years. These results suggest that some residues (i.e., 125, 176, 192) in the A-1 site, residue 198 in the A-3 site, and residue 190 in the Y-1 site are likely to mediate antigenic drift while maintaining replicative ability.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; (K.S.); (Y.S.); (Y.K.); (S.H.)
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan;
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan;
| |
Collapse
|
25
|
Abstract
This article summarizes current knowledge on the related influenza B and C viruses and considers the few studies on the recently identified influenza D virus. We focus on the particular viral genome organizations, the viral propagation cycles, as well as structural and functional insight into the encoded viral gene products. This is complemented with comprehensive sections that address the evolutionary strategies and the epidemiological significance of these influenza virus types, as well as the current state of interventions available for their control.
Collapse
|
26
|
Okda FA, Griffith E, Sakr A, Nelson E, Webby R. New Diagnostic Assays for Differential Diagnosis Between the Two Distinct Lineages of Bovine Influenza D Viruses and Human Influenza C Viruses. Front Vet Sci 2020; 7:605704. [PMID: 33363244 PMCID: PMC7759653 DOI: 10.3389/fvets.2020.605704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Influenza D virus (IDV), a novel orthomyxovirus, is currently emerging in cattle worldwide. It shares >50% sequence similarity with the human influenza C virus (HICV). Two clades of IDV are currently co-circulating in cattle herds in the U.S. New assays specific for each lineage are needed for accurate surveillance. Also, differential diagnosis between zoonotic human influenza C virus and the two clades of IDV are important to assess the zoonotic potential of IDV. We developed an enzyme-linked immunosorbent assay (ELISA) based on two different epitopes HEF and NP and four peptides, and fluorescent focus neutralization assay to differentiate between IDV bovine and swine clades. Calf sera were obtained, and bovine samples underwent surveillance. Our results highlight the importance of position 215 with 212 in determining the heterogeneity between the two lineages. We needed IFA and FFN for tissue culture-based analysis and a BSL2 facility for analyzing virus interactions. Unfortunately, these are not available in many veterinary centers. Hence, our second aim was to develop an iELISA using specific epitopes to detect two lineages of IDVs simultaneously. Epitope-iELISA accurately detects neutralizing and non-neutralizing antibodies against the IDV in non-BSL2 laboratories and veterinary clinics and is cost-effective and sensitive. To differentiate between IDVs and HICVs, whole antigen blocking, polypeptides, and single-peptide ELISAs were developed. A panel of ferret sera against both viruses was used. Results suggested that both IDV and ICV had a common ancestor, and IDV poses a zoonotic risk to individuals with prior or current exposure to cattle. IDV peptides IANAGVK (286-292 aa), KTDSGR (423-428 aa), and RTLTPAT (448-455 aa) could differentiate between the two viruses, whereas peptide AESSVNPGAKPQV (203-215 aa) detected the presence of IDV in human sera but could not deny that it could be ICV, because the only two conserved influenza C peptides shared 52% sequence similarity with IDV and cross-reacted with IDV. However, blocking ELISAs differentiated between the two viruses. Diagnostic tools and assays to differentiate between ICV and IDV are required for serological and epidemiological analysis to clarify the complexity and evolution and eliminate misdiagnosis between ICV and IDV in human samples.
Collapse
Affiliation(s)
- Faten A Okda
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States.,Veterinary Division, National Research Center, Cairo, Egypt
| | - Elizabeth Griffith
- Department of Chemical and Therapeutic, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmed Sakr
- Department of Business Administration and Management, Dakota State University, Madison, SD, United States
| | - Eric Nelson
- Veterinary & Biomedical Sciences Department, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, United States
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
27
|
Daniels RS, Tse H, Ermetal B, Xiang Z, Jackson DJ, Guntoro J, Nicod J, Stewart A, Cross KJ, Hussain S, McCauley JW, Lo J. Molecular Characterization of Influenza C Viruses from Outbreaks in Hong Kong SAR, China. J Virol 2020; 94:e01051-20. [PMID: 32817211 PMCID: PMC7565627 DOI: 10.1128/jvi.01051-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amino Acid Substitution
- Child
- Child, Preschool
- Disease Outbreaks
- Epidemiological Monitoring
- Female
- Gene Expression
- Hemagglutinins, Viral/chemistry
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/metabolism
- High-Throughput Nucleotide Sequencing
- Hong Kong/epidemiology
- Humans
- Infant
- Influenza, Human/epidemiology
- Influenza, Human/pathology
- Influenza, Human/virology
- Gammainfluenzavirus/enzymology
- Gammainfluenzavirus/genetics
- Male
- Middle Aged
- Models, Molecular
- Molecular Epidemiology
- Mutation
- Phylogeny
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Retrospective Studies
- Viral Fusion Proteins/chemistry
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rodney S Daniels
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Herman Tse
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| | - Burcu Ermetal
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Zheng Xiang
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Deborah J Jackson
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jeremy Guntoro
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Jérôme Nicod
- Advanced Sequencing Facility, The Francis Crick Institute, London, United Kingdom
| | - Aengus Stewart
- Bioinformatics & Biostatistics, The Francis Crick Institute, London, United Kingdom
| | - Karen J Cross
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Saira Hussain
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - John W McCauley
- Worldwide Influenza Centre (a WHO Collaborating Centre for Reference and Research on Influenza), The Francis Crick Institute, London, United Kingdom
| | - Janice Lo
- Centre for Health Protection, Department of Health, Hong Kong SAR, China
| |
Collapse
|
28
|
Liu R, Sheng Z, Huang C, Wang D, Li F. Influenza D virus. Curr Opin Virol 2020; 44:154-161. [PMID: 32932215 PMCID: PMC7755673 DOI: 10.1016/j.coviro.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Influenza D is the only type of influenza virus that mainly affects cattle with frequent spillover to other species. Since the initial description of influenza D virus (IDV) in 2011, the virus has been found to circulate among cattle and swine populations worldwide. Research conducted during the past several years has led to an increased understanding of this novel influenza virus with bovines as a reservoir. In this review, we describe the current knowledge of epidemiology and host range of IDV followed by discussion of infection biology and animal model development for IDV. Finally, we review progress towards understanding of the pathogenesis and host response of IDV as well as developing preventive vaccines for IDV.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Zizhang Sheng
- Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY, USA
| | - Chen Huang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
29
|
Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc Natl Acad Sci U S A 2020; 117:25759-25770. [PMID: 32994342 DOI: 10.1073/pnas.2006299117] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.
Collapse
|
30
|
Structural Biology of Influenza Hemagglutinin: An Amaranthine Adventure. Viruses 2020; 12:v12091053. [PMID: 32971825 PMCID: PMC7551194 DOI: 10.3390/v12091053] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/27/2022] Open
Abstract
Hemagglutinin (HA) glycoprotein is an important focus of influenza research due to its role in antigenic drift and shift, as well as its receptor binding and membrane fusion functions, which are indispensable for viral entry. Over the past four decades, X-ray crystallography has greatly facilitated our understanding of HA receptor binding, membrane fusion, and antigenicity. The recent advances in cryo-EM have further deepened our comprehension of HA biology. Since influenza HA constantly evolves in natural circulating strains, there are always new questions to be answered. The incessant accumulation of knowledge on the structural biology of HA over several decades has also facilitated the design and development of novel therapeutics and vaccines. This review describes the current status of the field of HA structural biology, how we got here, and what the next steps might be.
Collapse
|
31
|
Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, Snijder J, de Groot RJ. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat Commun 2020; 11:4646. [PMID: 32938911 PMCID: PMC7495468 DOI: 10.1038/s41467-020-18440-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
The human betacoronaviruses HKU1 and OC43 (subgenus Embecovirus) arose from separate zoonotic introductions, OC43 relatively recently and HKU1 apparently much longer ago. Embecovirus particles contain two surface projections called spike (S) and haemagglutinin-esterase (HE), with S mediating receptor binding and membrane fusion, and HE acting as a receptor-destroying enzyme. Together, they promote dynamic virion attachment to glycan-based receptors, specifically 9-O-acetylated sialic acid. Here we present the cryo-EM structure of the ~80 kDa, heavily glycosylated HKU1 HE at 3.4 Å resolution. Comparison with existing HE structures reveals a drastically truncated lectin domain, incompatible with sialic acid binding, but with the structure and function of the esterase domain left intact. Cryo-EM and mass spectrometry analysis reveals a putative glycan shield on the now redundant lectin domain. The findings further our insight into the evolution and host adaptation of human embecoviruses, and demonstrate the utility of cryo-EM for studying small, heavily glycosylated proteins.
Collapse
Affiliation(s)
- Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands. .,Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ieva Drulyte
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Yifei Lang
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Matti F Pronker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Raoul J de Groot
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
32
|
The bright and dark sides of protein conformational switches and the unifying forces of infections. Commun Biol 2020; 3:382. [PMID: 32669705 PMCID: PMC7363679 DOI: 10.1038/s42003-020-1115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
It is now established that a protein can switch between multiple conformations to enable altered functions. Several pathogens including SARS COV2 utilize context-dependent conformational switches of particular proteins to invade host membrane to establish infections. In this perspective, we first discuss the understanding of the conformational switch of a protein towards the productive infections as a dark side of nature. Next, the unexplored binary combination of the sequences of SARS COV2 spike protein and the similarity with diverse pathogen derived proteins have been discussed to obtain novel molecular insights into the process of infection. Sannigrahi et al. discuss conformational switching that allows proteins to alter their conformation, aiding in pathogenesis by enabling cellular entry of viruses and bacterial toxins. Focussing on fusion domain of the Spike glycoprotein of SARS COV2 virus, they identify similar “switching sequences” present in diverse pathogen derived proteins.
Collapse
|
33
|
Matsuzaki Y, Shimotai Y, Kadowaki Y, Sugawara K, Hongo S, Mizuta K, Nishimura H. Antigenic changes among the predominantly circulating C/Sao Paulo lineage strains of influenza C virus in Yamagata, Japan, between 2015 and 2018. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104269. [PMID: 32135195 DOI: 10.1016/j.meegid.2020.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/29/2020] [Indexed: 11/29/2022]
Abstract
Influenza C virus is a pathogen that causes acute respiratory illness in children and results in the hospitalization of infants. The antigenicity of the hemagglutinin esterase (HE) glycoprotein is highly stable, and it is not yet known whether antigenic changes contribute to the worldwide transmission and the occurrence of outbreaks of influenza C virus. Here, we performed antigenic analysis of 84 influenza C viruses isolated in Yamagata, Japan, during a 4-year period from 2015 to 2018 and analyzed sequence data for strains of the virus from Japan and many other parts of the world. Antigenic and phylogenetic analyses revealed that 83 strains belonged to the C/Sao Paulo lineage, and two sublineage strains, the Aichi99 sublineage and Victoria2012 sublineage, cocirculated between 2016 and 2018. Aichi99 sublineage strains exhibiting decreased reactivity with the monoclonal antibody YA3 became predominant after 2016, and these strains possessed the K190N mutation. Residue 190 is located in the 190-loop on the top side of the HE protein within a region that is known to show variation that does not impair the biological activity of the protein. The Aichi99 sublineage strains possessing the K190N mutation were detected after 2012 in Europe, Australia, the USA, and Asia as well as Japan. These observations suggest that antigenic variants with K190N mutations have circulated extensively around the world and caused outbreaks in Japan between 2016 and 2018. Our study indicated that the 190-loop is an important antigenic region, and the results suggested that changes in the 190-loop have contributed to the extensive transmission of the virus.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan.
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Yoko Kadowaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata, Yamagata 990-0031, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| |
Collapse
|
34
|
SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:ijms21124549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
|
35
|
Liu R, Sreenivasan C, Yu H, Sheng Z, Newkirk SJ, An W, Smith DF, Chen X, Wang D, Li F. Influenza D virus diverges from its related influenza C virus in the recognition of 9-O-acetylated N-acetyl- or N-glycolyl-neuraminic acid-containing glycan receptors. Virology 2020; 545:16-23. [PMID: 32174455 PMCID: PMC7174096 DOI: 10.1016/j.virol.2020.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other mammalian hosts. By using traditional hemagglutination assay coupled with sialoglycan microarray (SGM) platform and functional assays, we demonstrated that IDV is more efficient in recognizing both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) than influenza C virus (ICV), a ubiquitous human pathogen. ICV seems to strongly prefer Neu5,9Ac2 over Neu5Gc9Ac. Since Neu5Gc9Ac is different from Neu5,9Ac2 only by an additional oxygen in the group at the C5 position, our results reveal that the hydroxyl group in Neu5Gc9Ac plays a critical role in determining receptor binding specificity, which as a result may discriminate IDV from ICV in communicating with 9-O-acetylated SAs. These findings shall provide a framework for further investigation towards better understanding of how newly discovered multiple-species-infecting IDV exploits natural 9-O-acetylated SA variations to expand its host range.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - David F Smith
- Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA; Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA; BioSNTR, Brookings, SD, 57007, USA.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA; Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA; BioSNTR, Brookings, SD, 57007, USA.
| |
Collapse
|
36
|
Benton DJ, Gamblin SJ, Rosenthal PB, Skehel JJ. Structural transitions in influenza haemagglutinin at membrane fusion pH. Nature 2020; 583:150-153. [PMID: 32461688 PMCID: PMC7116728 DOI: 10.1038/s41586-020-2333-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Infection by enveloped viruses involves fusion of their lipid envelopes with cellular membranes to release the viral genome into cells. For HIV, Ebola, influenza and numerous other viruses, envelope glycoproteins bind the infecting virion to cell-surface receptors and mediate membrane fusion. In the case of influenza, the receptor-binding glycoprotein is the haemagglutinin (HA), and following receptor-mediated uptake of the bound virus by endocytosis1, it is the HA that mediates fusion of the virus envelope with the membrane of the endosome2. Each subunit of the trimeric HA consists of two disulfide-linked polypeptides, HA1 and HA2. The larger, virus-membrane-distal, HA1 mediates receptor binding; the smaller, membrane-proximal, HA2 anchors HA in the envelope and contains the fusion peptide, a region that is directly involved in membrane interaction3. The low pH of endosomes activates fusion by facilitating irreversible conformational changes in the glycoprotein. The structures of the initial HA at neutral pH and the final HA at fusion pH have been investigated by electron microscopy4,5 and X-ray crystallography6–8. Here, to further study the process of fusion, we incubate HA for different times at pH 5.0 and directly image structural changes using single-particle cryo-electron microscopy. We describe three distinct, previously undescribed forms of HA, most notably a 150 Å-long triple-helical coil of HA2, which may bridge between the viral and endosomal membranes. Comparison of these structures reveals concerted conformational rearrangements through which the HA mediates membrane fusion.
Collapse
Affiliation(s)
- Donald J Benton
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK.
| | - Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, Francis Crick Institute, London, UK.
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
37
|
Ojeda N, Cárdenas C, Marshall S. Interaction of the Amino-Terminal Domain of the ISAV Fusion Protein with a Cognate Cell Receptor. Pathogens 2020; 9:pathogens9060416. [PMID: 32471165 PMCID: PMC7350309 DOI: 10.3390/pathogens9060416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 11/16/2022] Open
Abstract
The infectious salmon anemia virus (ISAV), etiological agent of the disease by the same name, causes major losses to the salmon industry. Classified as a member of the Orthomyxoviridae family, ISAV is characterized by the presence of two surface glycoproteins termed hemagglutinin esterase (HE) and fusion protein (F), both of them directly involved in the initial interaction of the virus with the target cell. HE mediates receptor binding and destruction, while F promotes the fusion process of the viral and cell membranes. The carboxy-terminal end of F (F2) possesses canonical structural characteristics of a type I fusion protein, while no functional properties have been proposed for the amino-terminal (F1) region. In this report, based on in silico modeling, we propose a tertiary structure for the F1 region, which resembles a sialic acid binding domain. Furthermore, using recombinant forms of both HE and F proteins and an in vitro model system, we demonstrate the interaction of F with a cell receptor, the hydrolysis of this receptor by the HE esterase, and a crucial role for F1 in the fusion mechanism. Our interpretation is that binding of F to its cell receptor is fundamental for membrane fusion and that the esterase in HE modulates this interaction.
Collapse
|
38
|
Liu R, Sheng Z, Lin T, Sreenivasan C, Gao R, Thomas M, Druce J, Hause BM, Kaushik RS, Li F, Wang D. Genetic and antigenic characteristics of a human influenza C virus clinical isolate. J Med Virol 2020; 92:161-166. [PMID: 31498448 PMCID: PMC6901781 DOI: 10.1002/jmv.25589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
Abstract
Unlike influenza A and B viruses that infect humans and cause severe diseases in seasonal epidemics, influenza C virus (ICV) is a ubiquitous childhood pathogen typically causing mild respiratory symptoms. ICV infections are rarely diagnosed and less research has been performed on it despite the virus being capable of causing severe disease in infants. Here we report on the isolation of a human ICV from a child with acute respiratory disease, provisionally designated C/Victoria/2/2012 (C/Vic). The full-length genome sequence and phylogenetic analysis revealed that the hemagglutinin-esterase-fusion (HEF) gene of C/Vic was derived from C/Sao Paulo lineage, while its PB2 and P3 genes evolved separately from all characterized historical ICV isolates. Furthermore, antigenic analysis using the hemagglutination inhibition (HI) assay found that 1947 C/Taylor virus (C/Taylor lineage) was antigenically more divergent from1966 C/Johannesburg (C/Aichi lineage) than from 2012 C/Vic. Structure modeling of the HEF protein identified two mutations in the 170-loop of the HEF protein around the receptor-binding pocket as a possible antigenic determinant responsible for the discrepant HI results. Taken together, results of our studies reveal novel insights into the genetic and antigenic evolution of ICV and provide a framework for further investigation of its molecular determinants of antigenic property and replication.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Chithra Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Rongruan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Milton Thomas
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Ben M. Hause
- Cambridge Technologies Inc., Worthington, 56187, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| |
Collapse
|
39
|
Sederdahl BK, Williams JV. Epidemiology and Clinical Characteristics of Influenza C Virus. Viruses 2020; 12:E89. [PMID: 31941041 PMCID: PMC7019359 DOI: 10.3390/v12010089] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Influenza C virus (ICV) is a common yet under-recognized cause of acute respiratory illness. ICV seropositivity has been found to be as high as 90% by 7-10 years of age, suggesting that most people are exposed to ICV at least once during childhood. Due to difficulty detecting ICV by cell culture, epidemiologic studies of ICV likely have underestimated the burden of ICV infection and disease. Recent development of highly sensitive RT-PCR has facilitated epidemiologic studies that provide further insights into the prevalence, seasonality, and course of ICV infection. In this review, we summarize the epidemiology and clinical characteristics of ICV.
Collapse
Affiliation(s)
- Bethany K. Sederdahl
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
40
|
Kanungo A, Bag BP. Structural insights into the molecular mechanisms of pectinolytic enzymes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Abstract
Coronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
42
|
Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 2019; 26:481-489. [PMID: 31160783 PMCID: PMC6554059 DOI: 10.1038/s41594-019-0233-y] [Citation(s) in RCA: 408] [Impact Index Per Article: 81.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022]
Abstract
Coronaviruses cause respiratory tract infections in humans and outbreaks of deadly pneumonia worldwide. Infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host receptors and fuses the viral and cellular membranes. To understand the molecular basis of coronavirus attachment to oligosaccharide receptors, we determined cryo-EM structures of coronavirus OC43 S glycoprotein trimer in isolation and in complex with a 9-O-acetylated sialic acid. We show that the ligand binds with fast kinetics to a surface-exposed groove and that interactions at the identified site are essential for S-mediated viral entry into host cells, but free monosaccharide does not trigger fusogenic conformational changes. The receptor-interacting site is conserved in all coronavirus S glycoproteins that engage 9-O-acetyl-sialogycans, with an architecture similar to those of the ligand-binding pockets of coronavirus hemagglutinin esterases and influenza virus C/D hemagglutinin-esterase fusion glycoproteins. Our results demonstrate these viruses evolved similar strategies to engage sialoglycans at the surface of target cells. Structural and functional analyses reveal how 9-O-acetyl sialic acid is recognized by the human coronavirus OC43 S glycoprotein and how this interaction promotes viral entry.
Collapse
|
43
|
Du R, Cui Q, Rong L. Competitive Cooperation of Hemagglutinin and Neuraminidase during Influenza A Virus Entry. Viruses 2019; 11:v11050458. [PMID: 31137516 PMCID: PMC6563287 DOI: 10.3390/v11050458] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
The hemagglutinin (HA) and neuraminidase (NA) of influenza A virus possess antagonistic activities on interaction with sialic acid (SA), which is the receptor for virus attachment. HA binds SA through its receptor-binding sites, while NA is a receptor-destroying enzyme by removing SAs. The function of HA during virus entry has been extensively investigated, however, examination of NA has long been focused to its role in the exit of progeny virus from infected cells, and the role of NA in the entry process is still under-appreciated. This review summarizes the current understanding of the roles of HA and NA in relation to each other during virus entry.
Collapse
Affiliation(s)
- Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Shandong Provincial Collaborative Innovation Center for Antiviral Traditional Chinese Medicine, Jinan 250355, China.
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
44
|
Vahey MD, Fletcher DA. Influenza A virus surface proteins are organized to help penetrate host mucus. eLife 2019; 8:43764. [PMID: 31084711 PMCID: PMC6516830 DOI: 10.7554/elife.43764] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) enters cells by binding to sialic acid on the cell surface. To accomplish this while avoiding immobilization by sialic acid in host mucus, viruses rely on a balance between the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving protein neuraminidase (NA). Although genetic aspects of this balance are well-characterized, little is known about how the spatial organization of these proteins in the viral envelope may contribute. Using site-specific fluorescent labeling and super-resolution microscopy, we show that HA and NA are asymmetrically distributed on the surface of filamentous viruses, creating a spatial organization of binding and cleaving activities that causes viruses to step consistently away from their NA-rich pole. This Brownian ratchet-like diffusion produces persistent directional mobility that resolves the virus’s conflicting needs to both penetrate mucus and stably attach to the underlying cells, potentially contributing to the prevalence of the filamentous phenotype in clinical isolates of IAV.
Collapse
Affiliation(s)
- Michael D Vahey
- Department of Bioengineering, University of California, Berkeley, Berkeley, United States.,Biophysics Program, University of California, Berkeley, Berkeley, United States
| | - Daniel A Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, United States.,Biological Systems & Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| |
Collapse
|
45
|
Zhang W, Zhang L, He W, Zhang X, Wen B, Wang C, Xu Q, Li G, Zhou J, Veit M, Su S. Genetic Evolution and Molecular Selection of the HE Gene of Influenza C Virus. Viruses 2019; 11:E167. [PMID: 30791465 PMCID: PMC6409753 DOI: 10.3390/v11020167] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 11/26/2022] Open
Abstract
Influenza C virus (ICV) was first identified in humans and swine, but recently also in cattle, indicating a wider host range and potential threat to both the livestock industry and public health than was originally anticipated. The ICV hemagglutinin-esterase (HE) glycoprotein has multiple functions in the viral replication cycle and is the major determinant of antigenicity. Here, we developed a comparative approach integrating genetics, molecular selection analysis, and structural biology to identify the codon usage and adaptive evolution of ICV. We show that ICV can be classified into six lineages, consistent with previous studies. The HE gene has a low codon usage bias, which may facilitate ICV replication by reducing competition during evolution. Natural selection, dinucleotide composition, and mutation pressure shape the codon usage patterns of the ICV HE gene, with natural selection being the most important factor. Codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of ICV was to humans, followed by cattle and swine. Additionally, similarity index (SiD) analysis revealed that swine exerted a stronger evolutionary pressure on ICV than humans, which is considered the primary reservoir. Furthermore, a similar tendency was also observed in the M gene. Of note, we found HE residues 176, 194, and 198 to be under positive selection, which may be the result of escape from antibody responses. Our study provides useful information on the genetic evolution of ICV from a new perspective that can help devise prevention and control strategies.
Collapse
Affiliation(s)
- Wenyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Letian Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xu Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Baiqing Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Congcong Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qiuhua Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiyong Zhou
- Key laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, 14163 Berlin, Germany.
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Human coronaviruses OC43 and HKU1 bind to 9- O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proc Natl Acad Sci U S A 2019; 116:2681-2690. [PMID: 30679277 DOI: 10.1073/pnas.1809667116] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human betacoronaviruses OC43 and HKU1 are endemic respiratory pathogens and, while related, originated from independent zoonotic introductions. OC43 is in fact a host-range variant of the species Betacoronavirus-1, and more closely related to bovine coronavirus (BCoV)-its presumptive ancestor-and porcine hemagglutinating encephalomyelitis virus (PHEV). The β1-coronaviruses (β1CoVs) and HKU1 employ glycan-based receptors carrying 9-O-acetylated sialic acid (9-O-Ac-Sia). Receptor binding is mediated by spike protein S, the main determinant of coronavirus host specificity. For BCoV, a crystal structure for the receptor-binding domain S1A is available and for HKU1 a cryoelectron microscopy structure of the complete S ectodomain. However, the location of the receptor-binding site (RBS), arguably the single-most important piece of information, is unknown. Here we solved the 3.0-Å crystal structure of PHEV S1A We then took a comparative structural analysis approach to map the β1CoV S RBS, using the general design of 9-O-Ac-Sia-binding sites as blueprint, backed-up by automated ligand docking, structure-guided mutagenesis of OC43, BCoV, and PHEV S1A, and infectivity assays with BCoV-S-pseudotyped vesicular stomatitis viruses. The RBS is not exclusive to OC43 and related animal viruses, but is apparently conserved and functional also in HKU1 S1A The binding affinity of the HKU1 S RBS toward short sialoglycans is significantly lower than that of OC43, which we attribute to differences in local architecture and accessibility, and which may be indicative for differences between the two viruses in receptor fine-specificity. Our findings challenge reports that would map the OC43 RBS elsewhere in S1A and that of HKU1 in domain S1B.
Collapse
|
47
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
48
|
Russell CJ, Hu M, Okda FA. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol 2018; 26:841-853. [PMID: 29681430 PMCID: PMC6150828 DOI: 10.1016/j.tim.2018.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
For decades, hemagglutinin (HA) protein structure and its refolding mechanism have served as a paradigm for understanding protein-mediated membrane fusion. HA trimers are in a high-energy state and are functionally activated by low pH. Over the past decade, HA stability (or the pH at which irreversible conformational changes are triggered) has emerged as an important determinant in influenza virus host range, infectivity, transmissibility, and human pandemic potential. Here, we review HA protein structure, assays to measure its stability, measured HA stability values, residues and mutations that regulate its stability, the effect of HA stability on interspecies adaptation and transmissibility, and mechanistic insights into this process. Most importantly, HA stabilization appears to be necessary for adapting emerging influenza viruses to humans.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA; Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Meng Hu
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Faten A Okda
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
49
|
The Vestigial Esterase Domain of Haemagglutinin of H5N1 Avian Influenza A Virus: Antigenicity and Contribution to Viral Pathogenesis. Vaccines (Basel) 2018; 6:vaccines6030053. [PMID: 30103381 PMCID: PMC6161130 DOI: 10.3390/vaccines6030053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022] Open
Abstract
Initial attempts to develop monoclonal antibodies as therapeutics to resolve influenza infections focused mainly on searching for antibodies with the potential to neutralise the virus in vitro with classical haemagglutination inhibition and microneutralisation assays. This led to the identification of many antibodies that bind to the head domain of haemagglutinin (HA), which generally have potent neutralisation capabilities that block viral entry or viral membrane fusion. However, this class of antibodies has a narrow breadth of protection in that they are usually strain-specific. This led to the emphasis on stalk-targeting antibodies, which are able to bind a broad range of viral targets that span across different influenza subtypes. Recently, a third class of antibodies targeting the vestigial esterase (VE) domain have been characterised. In this review, we describe the key features of neutralising VE-targeting antibodies and compare them with head- and stalk-class antibodies.
Collapse
|
50
|
Matsuzaki Y, Sugawara K, Furuse Y, Shimotai Y, Hongo S, Mizuta K, Nishimura H. Neutralizing Epitopes and Residues Mediating the Potential Antigenic Drift of the Hemagglutinin-Esterase Protein of Influenza C Virus. Viruses 2018; 10:E417. [PMID: 30096880 PMCID: PMC6116000 DOI: 10.3390/v10080417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022] Open
Abstract
We mapped the hemagglutinin-esterase (HE) antigenic epitopes of the influenza C virus on the three-dimensional (3D) structure of the HE glycoprotein using 246 escape mutants that were selected by a panel of nine anti-HE monoclonal antibodies (MAbs), including seven of the C/Ann Arbor/1/50 virus and two of the C/Yamagata/15/2004 virus. The frequency of variant selection in the presence of anti-HE MAbs was very low, with frequencies ranging from 10-4.62 to 10-7.58 for the C/Ann Arbor/1/50 virus and from 10-7.11 to 10-9.25 for the C/Yamagata/15/2004 virus. Sequencing of mutant HE genes revealed 25 amino acid substitutions at 16 positions in three antigenic sites: A-1, A-2, and A-3, and a newly designated Y-1 site. In the 3D structure, the A-1 site was widely located around the receptor-binding site, the A-2 site was near the receptor-destroying enzyme site, and the Y-1 site was located in the loop on the topside of HE. The hemagglutination inhibition reactions of the MAbs with influenza C viruses, circulating between 1947 and 2016, were consistent with the antigenic-site amino acid changes. We also found some amino acid variations in the antigenic site of recently circulating strains with antigenic changes, suggesting that viruses that have the potential to alter antigenicity continue to circulate in humans.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Kanetsu Sugawara
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Yuki Furuse
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
- Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Seiji Hongo
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | - Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 990-0031, Japan.
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan.
| |
Collapse
|