1
|
Fehrmann MLA, Lanting CP, Haer-Wigman L, Mylanus EAM, Huinck WJ, Pennings RJE. Good cochlear implantation outcomes in subjects with mono-allelic WFS1-associated sensorineural hearing loss - a case series. Int J Audiol 2024:1-9. [PMID: 39422244 DOI: 10.1080/14992027.2024.2411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aimed to evaluate long-term cochlear implant (CI) outcomes in individuals with mono-allelic pathogenic variants in WFS1, which is associated with both Wolfram-like syndrome and DFNA6/14/38. DESIGN Retrospective case series. STUDY SAMPLE Seven CI recipients, ranging from eight months to 58 years of age, were included in the study, including four with Wolfram-like syndrome and three with DFNA6/14/38. A total of ten cochlear implantations were performed among these subjects. RESULTS At one-year post-implantation, a mean phoneme score of 90 ± 9% at 65 dB SPL in quiet was found, which remained stable up to ten years post-implantation with a mean phoneme score of 94 ± 6%. Despite these excellent outcomes, one subject achieved no speech recognition with CI and eventually became a non-user. This individual had a prolonged absence of auditory stimulation prior to implantation and encountered multiple challenges during rehabilitation. CONCLUSION Individuals with Wolfram-like syndrome or DFNA6/14/38 demonstrate consistently good outcomes following implantation, which remain stable over time. These findings affirm cochlear implantation as an effective rehabilitation option for these individuals. Furthermore, the stable and good CI outcomes contradict the suggested link between WFS1-associated sensorineural hearing loss and auditory neuropathy.
Collapse
Affiliation(s)
- M L A Fehrmann
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - C P Lanting
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - L Haer-Wigman
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E A M Mylanus
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - W J Huinck
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - R J E Pennings
- Department of Otorhinolaryngology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
3
|
Sokolowski EK, Kursawe R, Selvam V, Bhuiyan RM, Thibodeau A, Zhao C, Spracklen CN, Ucar D, Stitzel ML. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab 2024:S1550-4131(24)00370-X. [PMID: 39383866 DOI: 10.1016/j.cmet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Endoplasmic reticulum (ER) and inflammatory stress responses contribute to islet dysfunction in type 2 diabetes (T2D). Comprehensive genomic understanding of these human islet stress responses and whether T2D-associated genetic variants modulate them is lacking. Here, comparative transcriptome and epigenome analyses of human islets exposed ex vivo to these stressors revealed 30% of expressed genes and 14% of islet cis-regulatory elements (CREs) as stress responsive, modulated largely in an ER- or cytokine-specific fashion. T2D variants overlapped 86 stress-responsive CREs, including 21 induced by ER stress. We linked the rs6917676-T T2D risk allele to increased islet ER-stress-responsive CRE accessibility and allele-specific β cell nuclear factor binding. MAP3K5, the ER-stress-responsive putative rs6917676 T2D effector gene, promoted stress-induced β cell apoptosis. Supporting its pro-diabetogenic role, MAP3K5 expression correlated inversely with human islet β cell abundance and was elevated in T2D β cells. This study provides genome-wide insights into human islet stress responses and context-specific T2D variant effects.
Collapse
Affiliation(s)
- Eishani K Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chi Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
4
|
de Muijnck C, Haer-Wigman L, van Everdingen JAM, Lushchyk T, Heutinck PAT, van Dooren MF, Kievit AJA, Verhoeven VJM, Simon MEH, Wasmann RA, Notting IC, De Baere E, Walraedt S, De Zaeytijd J, Van den Broeck F, Leroy BP, Boon CJF, van Genderen MM. Characteristics of autosomal dominant WFS1-associated optic neuropathy and its comparability to OPA1-associated autosomal dominant optic atrophy. Sci Rep 2024; 14:22956. [PMID: 39363032 PMCID: PMC11450207 DOI: 10.1038/s41598-024-74364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
This study aims to describe the ophthalmic characteristics of autosomal dominant (AD) WFS1-associated optic atrophy (AD WFS1-OA), and to explore phenotypic differences with dominant optic atrophy (DOA) caused by mutations in the OPA1-gene. WFS1-associated diseases, or 'wolframinopathies', exhibit a spectrum of ocular and systemic phenotypes, of which the autosomal recessive Wolfram syndrome has been the most extensively studied. AD mutations in WFS1 also cause various phenotypical changes including OA. The most common phenotype in AD WFS1-associated disease, the combination of OA and hearing loss (HL), clinically resembles the 'plus' phenotype of DOA. We performed a comprehensive medical record review across tertiary referral centers in the Netherlands and Belgium resulting in 22 patients with heterozygous WFS1 variants. Eighteen (82%) had HL in addition to OA. Diabetes mellitus was found in 7 (32%). Four patients had isolated OA. One patient had an unusual phenotype with anterior chamber abnormalities and malformations of the extremities. Compared to DOA, AD WFS1-OA patients had different color vision abnormalities (red-green vs blue-yellow in DOA), abnormal OPL lamination on macular OCT (absent in DOA), more generalized thinning of the retinal nerve fiber layer, and more reduced and delayed pattern reversal visual evoked potentials.
Collapse
Affiliation(s)
- Cansu de Muijnck
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Tanya Lushchyk
- Department of Neuro-Ophthalmology, The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Pam A T Heutinck
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Virginie J M Verhoeven
- Department of Ophthalmology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rosemarie A Wasmann
- Department of Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene C Notting
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Filip Van den Broeck
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, The Netherlands.
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands.
| |
Collapse
|
5
|
Gong M, Fang Y, Yang K, Yuan F, Hu R, Su Y, Yang Y, Xu W, Ma Q, Cha J, Zhang R, Zhang ZN, Li W. The WFS1-ZnT3-Zn 2+ Axis Regulates the Vicious Cycle of Obesity and Depression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403405. [PMID: 39258564 DOI: 10.1002/advs.202403405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Indexed: 09/12/2024]
Abstract
Obesity, a growing global health concern, is closely linked to depression. However, the neural mechanism of association between obesity and depression remains poorly understood. In this study, neural-specific WFS1 deficiency exacerbates the vicious cycle of obesity and depression in mice fed a high-fat diet (HFD), positioning WFS1 as a crucial factor in this cycle. Through human pluripotent stem cells (hESCs) neural differentiation, it is demonstrated that WFS1 regulates Zn2+ homeostasis and the apoptosis of neural progenitor cells (NPCs) and cerebral organoids by inhibiting the zinc transporter ZnT3 under the situation of dysregulated lipid metabolism. Notably, riluzole regulates ZnT3 expression to maintain zinc homeostasis and protect NPCs from lipotoxicity-induced cell death. Importantly, riluzole, a therapeutic molecule targeting the nervous system, in vivo administration prevents HFD-induced obesity and associated depression. Thus, a WFS1-ZnT3-Zn2+ axis critical is demonstrated for the vicious cycle of obesity and depression and that riluzole may have the potential to reverse this process against obesity and depression.
Collapse
Affiliation(s)
- Mengting Gong
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yulin Fang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaijiang Yang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fei Yuan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Rui Hu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yajuan Su
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yiling Yang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenjun Xu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qing Ma
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiaxue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Ning Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
6
|
Wang G, Li ZA, Chen L, Lugar H, Hershey T. Clinical Trials for Wolfram Syndrome Neurodegeneration: Novel Design, Endpoints, and Analysis Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.10.24313426. [PMID: 39314971 PMCID: PMC11419225 DOI: 10.1101/2024.09.10.24313426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objective Wolfram syndrome, an ultra-rare condition, currently lacks effective treatment options. The rarity of this disease presents significant challenges in conducting clinical trials, particularly in achieving sufficient statistical power (e.g., 80%). The objective of this study is to propose a novel clinical trial design based on real-world data to reduce the sample size required for conducting clinical trials for Wolfram syndrome. Methods We propose a novel clinical trial design with three key features aimed at reducing sample size and improve efficiency: (i) Pooling historical/external controls from a longitudinal observational study conducted by the Washington University Wolfram Research Clinic. (ii) Utilizing run-in data to estimate model parameters. (iii) Simultaneously tracking treatment effects in two endpoints using a multivariate proportional linear mixed effects model. Results Comprehensive simulations were conducted based on real-world data obtained through the Wolfram syndrome longitudinal observational study. Our simulations demonstrate that this proposed design can substantially reduce sample size requirements. Specifically, with a bivariate endpoint and the inclusion of run-in data, a sample size of approximately 30 per group can achieve over 80% power, assuming the placebo progression rate remains consistent during both the run-in and randomized periods. In cases where the placebo progression rate varies, the sample size increases to approximately 50 per group. Conclusions For rare diseases like Wolfram syndrome, leveraging existing resources such as historical/external controls and run-in data, along with evaluating comprehensive treatment effects using bivariate/multivariate endpoints, can significantly expedite the development of new drugs.
Collapse
Affiliation(s)
- Guoqiao Wang
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Ling Chen
- Division of Biostatistics, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Heather Lugar
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
- Department of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
7
|
Jung J, Jang SH, Won D, Gee HY, Choi JY, Jung J. Clinical Characteristics and Audiological Profiles of Patients with Pathogenic Variants of WFS1. J Clin Med 2024; 13:4851. [PMID: 39200993 PMCID: PMC11355604 DOI: 10.3390/jcm13164851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Background: Mutations in Wolfram syndrome 1 (WFS1) cause Wolfram syndrome and autosomal dominant non-syndromic hearing loss DFNA6/14/38. To date, more than 300 pathogenic variants of WFS1 have been identified. Generally, the audiological phenotype of Wolfram syndrome or DFNA6/14/38 is characterized by low-frequency hearing loss; however, this phenotype is largely variable. Hence, there is a need to better understand the diversity in audiological and vestibular profiles associated with WFS1 variants, as this can have significant implications for diagnosis and management. This study aims to investigate the clinical characteristics, audiological phenotypes, and vestibular function in patients with DFNA6/14/38. Methods: Whole-exome or targeted deafness gene panel sequencing was performed to confirm the pathogenic variants in patients with genetic hearing loss. Results: We identified nine independent families with affected individuals who carried a heterozygous pathogenic variant of WFS1. The onset of hearing loss varied from the first to the fifth decade. On a pure-tone audiogram, hearing loss was symmetrical, and the severity ranged from mild to severe. Notably, either both low-frequency and high-frequency or all-frequency-specific hearing loss was observed. However, hearing loss was non-progressive in all types. In addition, vestibular impairment was identified in patients with DFNA6/14/38, indicating that impaired WFS1 may also affect the vestibular organs. Conclusions: Diverse audiological and vestibular profiles were observed in patients with pathogenic variants of WFS1. These findings highlight the importance of comprehensive audiological and vestibular assessments in patients with WFS1 mutations for accurate diagnosis and management.
Collapse
Affiliation(s)
- Joonho Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| | - Seung Hyun Jang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.J.); (S.H.J.); (J.Y.C.)
| |
Collapse
|
8
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Caruso V, Raia A, Rigoli L. Wolfram Syndrome 1: A Neuropsychiatric Perspective on a Rare Disease. Genes (Basel) 2024; 15:984. [PMID: 39202345 PMCID: PMC11353439 DOI: 10.3390/genes15080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Wolfram syndrome 1 (WS1) is an uncommon autosomal recessive neurological disorder that is characterized by diabetes insipidus, early-onset non-autoimmune diabetes mellitus, optic atrophy, and deafness (DIDMOAD). Other clinical manifestations are neuropsychiatric symptoms, urinary tract alterations, and endocrinological disorders. The rapid clinical course of WS1 results in death by the age of 30. Severe brain atrophy leads to central respiratory failure, which is the main cause of death in WS1 patients. Mutations in the WFS1 gene, located on chromosome 4p16, account for approximately 90% of WS1 cases. The gene produces wolframin, a transmembrane glycoprotein widely distributed and highly expressed in retinal, neural, and muscular tissues. Wolframin plays a crucial role in the regulation of apoptosis, insulin signaling, and ER calcium homeostasis, as well as the ER stress response. WS1 has been designated as a neurodegenerative and neurodevelopmental disorder due to the numerous abnormalities in the ER stress-mediated system. WS1 is a devastating neurodegenerative disease that affects patients and their families. Early diagnosis and recognition of the initial clinical signs may slow the disease's progression and improve symptomatology. Moreover, genetic counseling should be provided to the patient's relatives to extend multidisciplinary care to their first-degree family members. Regrettably, there are currently no specific drugs for the therapy of this fatal disease. A better understanding of the etiology of WS1 will make possible the development of new therapeutic approaches that may enhance the life expectancy of patients. This review will examine the pathogenetic mechanisms, development, and progression of neuropsychiatric symptoms commonly associated with WS1. A thorough understanding of WS1's neurophysiopathology is critical for achieving the goal of improving patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Valerio Caruso
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Accursio Raia
- Department of Neuroscience, Psychiatric Section, Azienda Ospedaliera Universitaria Pisana (A.U.O.P.), 56126 Pisa, Italy;
| | - Luciana Rigoli
- Department of Human Pathology of Adulthood and Childhood G. Barresi, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Liiv M, Vaarmann A, Safiulina D, Choubey V, Gupta R, Kuum M, Janickova L, Hodurova Z, Cagalinec M, Zeb A, Hickey MA, Huang YL, Gogichaishvili N, Mandel M, Plaas M, Vasar E, Loncke J, Vervliet T, Tsai TF, Bultynck G, Veksler V, Kaasik A. ER calcium depletion as a key driver for impaired ER-to-mitochondria calcium transfer and mitochondrial dysfunction in Wolfram syndrome. Nat Commun 2024; 15:6143. [PMID: 39034309 PMCID: PMC11271478 DOI: 10.1038/s41467-024-50502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Wolfram syndrome is a rare genetic disease caused by mutations in the WFS1 or CISD2 gene. A primary defect in Wolfram syndrome involves poor ER Ca2+ handling, but how this disturbance leads to the disease is not known. The current study, performed in primary neurons, the most affected and disease-relevant cells, involving both Wolfram syndrome genes, explains how the disturbed ER Ca2+ handling compromises mitochondrial function and affects neuronal health. Loss of ER Ca2+ content and impaired ER-mitochondrial contact sites in the WFS1- or CISD2-deficient neurons is associated with lower IP3R-mediated Ca2+ transfer from ER to mitochondria and decreased mitochondrial Ca2+ uptake. In turn, reduced mitochondrial Ca2+ content inhibits mitochondrial ATP production leading to an increased NADH/NAD+ ratio. The resulting bioenergetic deficit and reductive stress compromise the health of the neurons. Our work also identifies pharmacological targets and compounds that restore Ca2+ homeostasis, enhance mitochondrial function and improve neuronal health.
Collapse
Affiliation(s)
- Mailis Liiv
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Annika Vaarmann
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Dzhamilja Safiulina
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Vinay Choubey
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Ruby Gupta
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Malle Kuum
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Lucia Janickova
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Ch. du Musée 14, 1700, Fribourg, Switzerland
- Department of Cell Pharmacology and Developmental Toxicology, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 84104, Bratislava, Slovakia
| | - Zuzana Hodurova
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
- Department of Cell Pharmacology and Developmental Toxicology, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 84104, Bratislava, Slovakia
| | - Michal Cagalinec
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center and Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Akbar Zeb
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Miriam A Hickey
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Yi-Long Huang
- Department of Life Sciences, Institute of Genome Sciences and Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong St., Section 2, Peitou, Taipei, 11221, Taiwan
| | - Nana Gogichaishvili
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Merle Mandel
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Mario Plaas
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Eero Vasar
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Jens Loncke
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Ting-Fen Tsai
- Department of Life Sciences, Institute of Genome Sciences and Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong St., Section 2, Peitou, Taipei, 11221, Taiwan
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Vladimir Veksler
- Laboratory of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, 91400, Orsay, France
| | - Allen Kaasik
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| |
Collapse
|
11
|
Li S, Li X, Qu J. A Wolfram-like syndrome family: Case report. Eur J Ophthalmol 2024; 34:NP51-NP57. [PMID: 38470317 DOI: 10.1177/11206721241237552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Wolfram-like syndrome (WFLS) is an autosomal dominant inherited disease characterized by a single heterozygous pathogenic variant in the WFS1 gene. Its clinical presentation is similar to autosomal recessive Wolfram syndrome. CASE PRESENTATION We reported a case of a 10-year-old boy and his family members who initially experienced hearing impairment (HI), followed by optic atrophy. Genetic testing revealed the presence of a WFS1 variant (chr4-6302385 exon8 NM_006005.3: c.2590G > A, p. Glu864Lys). CONCLUSION Wolfram-like syndrome, a rare neurodegenerative genetic disorder, manifested as deafness, optic atrophy, and diabetes mellitus. There hasn't been a definite treatment yet. Early identification of the variant in the WFS1 gene is beneficial for genetic counseling.
Collapse
Affiliation(s)
- Siying Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Xiaoxin Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jinfeng Qu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
12
|
Borrelli E, Bandello F, Boon CJF, Carelli V, Lenaers G, Reibaldi M, Sadda SR, Sadun AA, Sarraf D, Yu-Wai-Man P, Barboni P. Mitochondrial retinopathies and optic neuropathies: The impact of retinal imaging on modern understanding of pathogenesis, diagnosis, and management. Prog Retin Eye Res 2024; 101:101264. [PMID: 38703886 DOI: 10.1016/j.preteyeres.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Advancements in ocular imaging have significantly broadened our comprehension of mitochondrial retinopathies and optic neuropathies by examining the structural and pathological aspects of the retina and optic nerve in these conditions. This article aims to review the prominent imaging characteristics associated with mitochondrial retinopathies and optic neuropathies, aiming to deepen our insight into their pathogenesis and clinical features. Preceding this exploration, the article provides a detailed overview of the crucial genetic and clinical features, which is essential for the proper interpretation of in vivo imaging. More importantly, we will provide a critical analysis on how these imaging modalities could serve as biomarkers for characterization and monitoring, as well as in guiding treatment decisions. However, these imaging methods have limitations, which will be discussed along with potential strategies to mitigate them. Lastly, the article will emphasize the potential advantages and future integration of imaging techniques in evaluating patients with mitochondrial eye disorders, considering the prospects of emerging gene therapies.
Collapse
Affiliation(s)
- Enrico Borrelli
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy.
| | - Francesco Bandello
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam University Medical Centers, Amsterdam, the Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Guy Lenaers
- Equipe MitoLab, Unité MitoVasc, INSERM U1083, Université d'Angers, 49933, Angers, France; Service de Neurologie, CHU d'Angers, 49100, Angers, France
| | - Michele Reibaldi
- Department of Surgical Sciences, University of Turin, Turin, Italy; Department of Ophthalmology, "City of Health and Science" Hospital, Turin, Italy
| | - Srinivas R Sadda
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Doheny Eye Institute, Los Angeles, CA, USA
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Retinal Disorders and Ophthalmic Genetics Division, Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Institute of Ophthalmology, University College London, London, UK
| | - Piero Barboni
- IRCCS San Raffaele Scientific Institute, Milan, Italy; Studio Oculistico d'Azeglio, Bologna, Italy.
| |
Collapse
|
13
|
Ravindren RK, Veettil RT, Athimannil S, Balaram N, Veedu PT, Veetil SA, Ayoor AK, Mathew S, Padinharath K, Balan S. Sequential Presentation of Obsessive-Compulsive Disorder and Narcolepsy in a 10-Year-Old Girl With Wolfram Syndrome 1. J Nerv Ment Dis 2024; 212:403-405. [PMID: 38949661 DOI: 10.1097/nmd.0000000000001784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
ABSTRACT Wolfram syndrome 1 (WS1) is a rare, autosomal recessive neurodegenerative disorder characterized by diabetes insipidus, insulin-dependent diabetes mellitus, optic atrophy, and deafness resulting from loss-of-function genetic variants in the WFS1 gene. Individuals with WS1 manifest a spectrum of neuropsychiatric disorders. Here, we report a pediatric case of WS1, which stemmed from a novel biallelic WFS1 loss-of-function genetic variant. The individual initially presented with obsessive-compulsive disorder, which was successfully managed by fluvoxamine. After 2 months, the child manifested excessive daytime sleepiness. Clinical evaluation and sleep recordings revealed a diagnosis of narcolepsy type 2. Excessive daytime sleepiness was improved with methylphenidate. To the best of our knowledge, this is the first report of narcolepsy in WS1, which possibly arose during a progressive neurodegenerative process. We emphasize the need for in-depth screening for neuropsychiatric phenotypes and sleep-related disorders in WS1, for clinical management, which significantly improves the quality of life.
Collapse
Affiliation(s)
| | - Rajesh Thaliyil Veettil
- Department of Paediatrics, Institute of Maternal and Child Health (IMCH), Government Medical College Kozhikode
| | - Shibila Athimannil
- Neuroscience Research Laboratory, Center for Interdisciplinary Brain Sciences, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode
| | - Neetha Balaram
- Department of Neurology, Government Medical College Kozhikode
| | | | | | - Arun Kumar Ayoor
- Department of Ophthalmology, Government Medical College Kozhikode
| | | | | | - Shabeesh Balan
- Neuroscience Research Laboratory, Center for Interdisciplinary Brain Sciences, Institute of Mental Health and Neurosciences (IMHANS), Kozhikode
| |
Collapse
|
14
|
Misra K, Ślęczkowska M, Santoro S, Gerrits MM, Mascia E, Marchi M, Salvi E, Smeets HJM, Hoeijmakers JGJ, Martinelli Boneschi FG, Filippi M, Lauria Pinter G, Faber CG, Esposito F. Broadening the Genetic Spectrum of Painful Small-Fiber Neuropathy through Whole-Exome Study in Early-Onset Cases. Int J Mol Sci 2024; 25:7248. [PMID: 39000354 PMCID: PMC11242789 DOI: 10.3390/ijms25137248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Small-Fiber Neuropathy (SFN) is a disorder of the peripheral nervous system, characterised by neuropathic pain; approximately 11% of cases are linked to variants in Voltage-Gated Sodium Channels (VGSCs). This study aims to broaden the genetic knowledge on painful SFN by applying Whole-Exome Sequencing (WES) in Early-Onset (EO) cases. A total of 88 patients from Italy (n = 52) and the Netherlands (n = 36), with a disease onset at age ≤ 45 years old and a Pain Numerical Rating Score ≥ 4, were recruited. After variant filtering and classification, WES analysis identified 142 potentially causative variants in 93 genes; 8 are Pathogenic, 15 are Likely Pathogenic, and 119 are Variants of Uncertain Significance. Notably, an enrichment of variants in transient receptor potential genes was observed, suggesting their role in pain modulation alongside VGSCs. A pathway analysis performed by comparing EO cases with 40 Italian healthy controls found enriched mutated genes in the "Nicotinic acetylcholine receptor signaling pathway". Targeting this pathway with non-opioid drugs could offer novel therapeutic avenues for painful SFN. Additionally, with this study we demonstrated that employing a gene panel of reported mutated genes could serve as an initial screening tool for SFN in genetic studies, enhancing clinical diagnostics.
Collapse
Affiliation(s)
- Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Hubert J. M. Smeets
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Filippo Giovanni Martinelli Boneschi
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Clinical Neurology Unit, Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo and Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Lauria Pinter
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Biomedical and Clinical Sciences “Luigi Sacco”, University of Milan, 20157 Milan, Italy
| | - Catharina G. Faber
- Department of Neurology, Mental Health and Neuroscience Research Intsitute, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, Institute of Experimental Neurology, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
15
|
Jurca AD, Galea-Holhos LB, Jurca AA, Atasie D, Petchesi CD, Severin E, Jurca CM. Wolfram Syndrome Type I Case Report and Review-Focus on Early Diagnosis and Genetic Variants. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1064. [PMID: 39064493 PMCID: PMC11278941 DOI: 10.3390/medicina60071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Wolfram syndrome type 1 (OMIM# 222300; ORPHAcode 3463) is an extremely rare autosomal recessive syndrome with a 25% recurrence risk in children. It is characterized by the presence of juvenile-onset diabetes mellitus (DM), progressive optic atrophy (OA), diabetes insipidus (DI), and sensorineural deafness (D), often referred to by the acronym DIDMOAD. It is a severe neurodegenerative disease with a life expectancy of 39 years, with death occurring due to cerebral atrophy. For a positive diagnosis, the presence of diabetes mellitus and optic nerve atrophy is sufficient. The disease occurs because of pathogenic variants in the WFS1 gene. The aim of this article is to present a case report of Wolfram Syndrome Type I, alongside a review of genetic variants, clinical manifestations, diagnosis, therapy, and long-term management. Emphasizing the importance of early diagnosis and a multidisciplinary approach, the study aims to enhance understanding and improve outcomes for patients with this complex syndrome. Materials and Methods: A case of a 28-year-old patient diagnosed with DM at the age of 6 and with progressive optic atrophy at 26 years old is presented. Molecular diagnosis revealed the presence of a heterozygous nonsense variant WFS1 c.1943G>A (p.Trp648*), and a heterozygous missense variant WFS1 c.1675G>C (p.Ala559Pro). Results: The molecular diagnosis of the patient confirmed the presence of a heterozygous nonsense variant and a heterozygous missense variant in the WFS1 gene, correlating with the clinical presentation of Wolfram syndrome type 1. Both allelic variants found in our patient have been previously described in other patients, whilst this combination has not been described before. Conclusions: This case report and review underscores the critical role of early recognition and diagnosis in Wolfram syndrome, facilitated by genetic testing. By identifying pathogenic variants in the WFS1 gene, genetic testing not only confirms diagnosis but also guides clinical management and informs genetic counseling for affected families. Timely intervention based on genetic insights can potentially reduce the progressive multisystem manifestations of the syndrome, thereby improving the quality of life and outcomes for patients.
Collapse
Affiliation(s)
- Alexandru Daniel Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
| | - Larisa Bianca Galea-Holhos
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania
| | | | - Diter Atasie
- Departament II Medical Clinic, Faculty of Medicine, University “Lucian Blaga of Sibiu”, Lucian Blaga Street 2A, 550169 Sibiu, Romania;
| | - Codruta Diana Petchesi
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| | - Emilia Severin
- Genetics Department, “Carol Davila” University of Medicine and Pharmacy, 020027 Bucharest, District 2, Romania
| | - Claudia Maria Jurca
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410081 Oradea, Romania; (A.D.J.); (C.D.P.); (C.M.J.)
- Regional Center of Medical Genetics Bihor, County Emergency Clinical Hospital Oradea (Part of ERN-ITHACA), 410469 Oradea, Romania
| |
Collapse
|
16
|
Siegler PN, Shaughnessy EK, Horman B, Vierling TT, King DH, Patisaul HB, Huhman KL, Alexander GM, Dudek SM. Identification of hippocampal area CA2 in hamster and vole brain. J Comp Neurol 2024; 532:e25603. [PMID: 38497661 PMCID: PMC10950058 DOI: 10.1002/cne.25603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. Hippocampal area CA2 is known to play a key role in these behaviors in mice and responds to social stimuli in rats, but CA2 has yet to be characterized in hamsters or voles, which are also used in studies of social behaviors. Here, we used immunofluorescence to determine whether CA2 could be molecularly identified in tissue from voles and hamsters. We found that staining for many CA2 markers was similar in these three species, with labeling seen in neurons at the distal end of the mossy fibers . In contrast, although perineuronal nets (PNNs) surround CA2 cells in mice, PNN staining differed across species. In voles, both CA2 and CA3 were labeled, whereas in hamsters, labeling was seen primarily in CA3. These results demonstrate that CA2 can be molecularly distinguished from neighboring CA1 and CA3 areas in voles and hamsters with several antibodies commonly used in mice. However, PNN staining is not useful for identifying CA2 in voles or hamsters, suggestive of differing roles for either PNNs or for the hippocampal subregions in social behavior. These findings reveal commonalities across species in the molecular profile of CA2 and should facilitate future studies of CA2 in these species.
Collapse
Affiliation(s)
- Preston Nicole Siegler
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | | | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Tia T. Vierling
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Darron H. King
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Kim L. Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Georgia M. Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
17
|
Hu R, Chen X, Su Q, Wang Z, Wang X, Gong M, Xu M, Le R, Gao Y, Dai P, Zhang ZN, Shao L, Li W. ISR inhibition reverses pancreatic β-cell failure in Wolfram syndrome models. Cell Death Differ 2024; 31:322-334. [PMID: 38321214 PMCID: PMC10923889 DOI: 10.1038/s41418-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Pancreatic β-cell failure by WFS1 deficiency is manifested in individuals with wolfram syndrome (WS). The lack of a suitable human model in WS has impeded progress in the development of new treatments. Here, human pluripotent stem cell derived pancreatic islets (SC-islets) harboring WFS1 deficiency and mouse model of β cell specific Wfs1 knockout were applied to model β-cell failure in WS. We charted a high-resolution roadmap with single-cell RNA-seq (scRNA-seq) to investigate pathogenesis for WS β-cell failure, revealing two distinct cellular fates along pseudotime trajectory: maturation and stress branches. WFS1 deficiency disrupted β-cell fate trajectory toward maturation and directed it towards stress trajectory, ultimately leading to β-cell failure. Notably, further investigation of the stress trajectory identified activated integrated stress response (ISR) as a crucial mechanism underlying WS β-cell failure, characterized by aberrant eIF2 signaling in WFS1-deficient SC-islets, along with elevated expression of genes in regulating stress granule formation. Significantly, we demonstrated that ISRIB, an ISR inhibitor, efficiently reversed β-cell failure in WFS1-deficient SC-islets. We further validated therapeutic efficacy in vivo with β-cell specific Wfs1 knockout mice. Altogether, our study provides novel insights into WS pathogenesis and offers a strategy targeting ISR to treat WS diabetes.
Collapse
Affiliation(s)
- Rui Hu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiangyi Chen
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiang Su
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhaoyue Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xushu Wang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mengting Gong
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Minglu Xu
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yawei Gao
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Peng Dai
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhen-Ning Zhang
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No. 1800 Yuntai Road, Pudong District, Shanghai, 200123, China.
| | - Weida Li
- Medical Innovation Center and State Key Laboratory of Cardiology, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
18
|
Morikawa S, Tanabe K, Kaneko N, Hishimura N, Nakamura A. Comprehensive overview of disease models for Wolfram syndrome: toward effective treatments. Mamm Genome 2024; 35:1-12. [PMID: 38351344 DOI: 10.1007/s00335-023-10028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024]
Abstract
Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.
Collapse
Affiliation(s)
- Shuntaro Morikawa
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan.
| | - Katsuya Tanabe
- Division of Endocrinology, Metabolism, Haematological Science and Therapeutics, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoya Kaneko
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Nozomi Hishimura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| | - Akie Nakamura
- Department of Pediatrics, Hokkaido University Hospital, North 14, West 5, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
19
|
Menon JC, Singh P, Archana A, Singh P, Mittal M, Kanga U, Mandal K, Seth A, Bhatia V, Dabadghao P, Sudhanshu S, Garg A, Vishwakarma R, Sarangi AN, Verma S, Singh SK, Bhatia E. High Frequency of Recessive WFS1 Mutations Among Indian Children With Islet Antibody-negative Type 1 Diabetes. J Clin Endocrinol Metab 2024; 109:e1072-e1082. [PMID: 37931151 DOI: 10.1210/clinem/dgad644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND While the frequency of islet antibody-negative (idiopathic) type 1 diabetes mellitus (T1DM) is reported to be increased in Indian children, its aetiology has not been studied. We investigated the role of monogenic diabetes in the causation of islet antibody-negative T1DM. METHODS We conducted a multicenter, prospective, observational study of 169 Indian children (age 1-18 years) with recent-onset T1DM. All were tested for antibodies against GAD65, islet antigen-2, and zinc transporter 8 using validated ELISA. Thirty-four islet antibody-negative children underwent targeted next-generation sequencing for 31 genes implicated in monogenic diabetes using the Illumina platform. All mutations were confirmed by Sanger sequencing. RESULTS Thirty-five (21%) children were negative for all islet antibodies. Twelve patients (7% of entire cohort, 34% of patients with islet antibody-negative T1DM) were detected to have pathogenic or likely pathogenic genetic variants. The most frequently affected locus was WFS1, with 9 patients (5% of entire cohort, 26% of islet antibody-negative). These included 7 children with homozygous and 1 patient each with a compound heterozygous and heterozygous mutation. Children with Wolfram syndrome 1 (WS) presented with severe insulin-requiring diabetes (including 3 patients with ketoacidosis), but other syndromic manifestations were not detected. In 3 patients, heterozygous mutations in HNF4A, ABCC8, and PTF1A loci were detected. CONCLUSION Nearly one-quarter of Indian children with islet antibody-negative T1DM had recessive mutations in the WFS1 gene. These patients did not exhibit other features of WS at the time of diagnosis. Testing for monogenic diabetes, especially WS, should be considered in Indian children with antibody-negative T1DM.
Collapse
Affiliation(s)
- Jayakrishnan C Menon
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Pratibha Singh
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Archana Archana
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Singh
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Medha Mittal
- Department of Paediatrics, Chacha Nehru Bal Chikitsalay, Delhi 110031, India
| | - Uma Kanga
- Department of Immunogenetics and Transplant Immunology, All India Institute of Medical Sciences, Delhi 110029, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Anju Seth
- Department of Paediatrics, Lady Hardinge Medical College, Delhi 110001, India
| | - Vijayalakshmi Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Siddhnath Sudhanshu
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Atul Garg
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Ruchira Vishwakarma
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Aditya Narayan Sarangi
- Department of Genome Analytics, BaseSolve Informatics Pvt Ltd, Ahmedabad, Gujrat 380006, India
| | - Shivendra Verma
- Department of General Medicine, GSVM Medical College, Kanpur, Uttar Pradesh 208002, India
| | - Surya Kumar Singh
- Department of Endocrinology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
20
|
Siegler PN, Shaughnessy EK, Horman B, Vierling TT, King DH, Patisaul HB, Huhman KL, Alexander GM, Dudek SM. Identification of hippocampal area CA2 in hamster and vole brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579957. [PMID: 38405991 PMCID: PMC10888814 DOI: 10.1101/2024.02.12.579957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and rats (Rattus norvegicus, for example) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. The CA2 region of the hippocampus is known to play a key role in social memory and aggression in mice and responds to social stimuli in rats, likely owing to its high expression of oxytocin and vasopressin 1b receptors. However, CA2 has yet to be identified and characterized in hamsters or voles. In this study, we sought to determine whether CA2 could be identified molecularly in vole and hamster. To do this, we used immunofluorescence with primary antibodies raised against known molecular markers of CA2 in mice and rats to stain hippocampal sections from voles and hamsters in parallel with those from mice. Here, we report that, like in mouse and rat, staining for many CA2 proteins in vole and hamster hippocampus reveals a population of neurons that express regulator of G protein signaling 14 (RGS14), Purkinje cell protein 4 (PCP4) and striatal-enriched protein tyrosine phosphatase (STEP), which together delineate the borders with CA3 and CA1. These cells were located at the distal end of the mossy fiber projections, marked by the presence of Zinc Transporter 3 (ZnT-3) and calbindin in all three species. In addition to staining the mossy fibers, calbindin also labeled a layer of CA1 pyramidal cells in mouse and hamster but not in vole. However, Wolframin ER transmembrane glycoprotein (WFS1) immunofluorescence, which marks all CA1 neurons, was present in all three species and abutted the distal end of CA2, marked by RGS14 immunofluorescence. Staining for two stress hormone receptors-the glucocorticoid (GR) and mineralocorticoid (MR) receptors-was also similar in all three species, with GR staining found primarily in CA1 and MR staining enriched in CA2. Interestingly, although perineuronal nets (PNNs) are known to surround CA2 cells in mouse and rat, we found that staining for PNNs differed across species in that both CA2 and CA3 showed staining in voles and primarily CA3 in hamsters with only some neurons in proximal CA2 showing staining. These results demonstrate that, like in mouse, CA2 in voles and hamsters can be molecularly distinguished from neighboring CA1 and CA3 areas, but PNN staining is less useful for identifying CA2 in the latter two species. These findings reveal commonalities across species in molecular profile of CA2, which will facilitate future studies of CA2 in these species. Yet to be determined is how differences in PNNs might relate to differences in social behavior across species.
Collapse
Affiliation(s)
- Preston Nicole Siegler
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC
| | | | - Brian Horman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Tia T. Vierling
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Darron H. King
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Heather B. Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Kim L. Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Georgia M. Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
21
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024:AD.2024.0112. [PMID: 38300645 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People's Hospital), Hangzhou, Zhejiang, China
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Del Negro I, Pauletto G, Verriello L, Spadea L, Salati C, Ius T, Zeppieri M. Uncovering the Genetics and Physiology behind Optic Neuritis. Genes (Basel) 2023; 14:2192. [PMID: 38137014 PMCID: PMC10742654 DOI: 10.3390/genes14122192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Optic neuritis (ON) is an inflammatory condition affecting the optic nerve, leading to vision impairment and potential vision loss. This manuscript aims to provide a comprehensive review of the current understanding of ON, including its definition, epidemiology, physiology, genetics, molecular pathways, therapy, ongoing clinical studies, and future perspectives. ON is characterized by inflammation of the optic nerve, often resulting from an autoimmune response. Epidemiological studies have shown a higher incidence in females and an association with certain genetic factors. The physiology of ON involves an immune-mediated attack on the myelin sheath surrounding the optic nerve, leading to demyelination and subsequent impairment of nerve signal transmission. This inflammatory process involves various molecular pathways, including the activation of immune cells and the release of pro-inflammatory cytokines. Genetic factors play a significant role in the susceptibility to ON. Several genes involved in immune regulation and myelin maintenance have been implicated in the disease pathogenesis. Understanding the genetic basis can provide insights into disease mechanisms and potential therapeutic targets. Therapy for ON focuses on reducing inflammation and promoting nerve regeneration. Future perspectives involve personalized medicine approaches based on genetic profiling, regenerative therapies to repair damaged myelin, and the development of neuroprotective strategies. Advancements in understanding molecular pathways, genetics, and diagnostic tools offer new opportunities for targeted therapies and improved patient outcomes in the future.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| | - Giada Pauletto
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Lorenzo Verriello
- Neurology Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy; (G.P.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, Head-Neck and Neurosciences Department, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy
| |
Collapse
|
24
|
Scott EN, Joseph AA, Dhanda A, Tanoshima R, Brooks B, Rassekh SR, Ross CJD, Carleton BC, Loucks CM. Systematic Critical Review of Genetic Factors Associated with Cisplatin-induced Ototoxicity: Canadian Pharmacogenomics Network for Drug Safety 2022 Update. Ther Drug Monit 2023; 45:714-730. [PMID: 37726872 DOI: 10.1097/ftd.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Cisplatin is commonly used to treat solid tumors; however, its use can be complicated by drug-induced hearing loss (ie, ototoxicity). The presence of certain genetic variants has been associated with the development/occurrence of cisplatin-induced ototoxicity, suggesting that genetic factors may be able to predict patients who are more likely to develop ototoxicity. The authors aimed to review genetic associations with cisplatin-induced ototoxicity and discuss their clinical relevance. METHODS An updated systematic review was conducted on behalf of the Canadian Pharmacogenomics Network for Drug Safety, based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 statement. Pharmacogenomic studies that reported associations between genetic variation and cisplatin-induced ototoxicity were included. The evidence on genetic associations was summarized and evaluated, and knowledge gaps that can be used to inform future pharmacogenomic studies identified. RESULTS Overall, 40 evaluated reports, considering 47 independent patient populations, captured associations involving 24 genes. Considering GRADE criteria, genetic variants in 2 genes were strongly (ie, odds ratios ≥3) and consistently (ie, replication in ≥3 independent populations) predictive of cisplatin-induced ototoxicity. Specifically, an ACYP2 variant has been associated with ototoxicity in both children and adults, whereas TPMT variants are relevant in children. Encouraging evidence for associations involving several other genes also exists; however, further research is necessary to determine potential clinical relevance. CONCLUSIONS Genetic variation in ACYP2 and TPMT may be helpful in predicting patients at the highest risk of developing cisplatin-induced ototoxicity. Further research (including replication studies considering diverse pediatric and adult patient populations) is required to determine whether genetic variation in additional genes may help further identify patients most at risk.
Collapse
Affiliation(s)
- Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Akshaya A Joseph
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Angie Dhanda
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| | - Reo Tanoshima
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
- YCU Center for Novel and Exploratory Clinical Trials, Yokohama City University Hospital, Yokohama, Japan
| | - Beth Brooks
- Audiology and Speech Pathology Department, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
- School of Audiology and Speech Science, UBC, Vancouver, British Columbia, Canada
| | - S Rod Rassekh
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, British Columbia Children's Hospital and UBC, Vancouver, British Columbia, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, UBC, Vancouver, British Columbia, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children's Hospital, Vancouver, British Columbia, Canada; and
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Hammad MM, Abu-Farha M, Hebbar P, Anoop E, Chandy B, Melhem M, Channanath A, Al-Mulla F, Thanaraj TA, Abubaker J. The miR-668 binding site variant rs1046322 on WFS1 is associated with obesity in Southeast Asians. Front Endocrinol (Lausanne) 2023; 14:1185956. [PMID: 37859980 PMCID: PMC10583568 DOI: 10.3389/fendo.2023.1185956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
The Wolfram syndrome 1 gene (WFS1) is the main causative locus for Wolfram syndrome, an inherited condition characterized by childhood-onset diabetes mellitus, optic atrophy, and deafness. Global genome-wide association studies have listed at least 19 WFS1 variants that are associated with type 2 diabetes (T2D) and metabolic traits. It has been suggested that miRNA binding sites on WFS1 play a critical role in the regulation of the wolframin protein, and loss of WFS1 function may lead to the pathogenesis of diabetes. In the Hungarian population, it was observed that a 3' UTR variant from WFS1, namely rs1046322, influenced the affinity of miR-668 to WFS1 mRNA, and showed a strong association with T2D. In this study, we genotyped a large cohort of 2067 individuals of different ethnicities residing in Kuwait for the WFS1 rs1046322 polymorphism. The cohort included 362 Southeast Asians (SEA), 1045 Arabs, and 660 South Asians (SA). Upon performing genetic association tests, we observed significant associations between the rs1046322 SNP and obesity traits in the SEA population, but not in the Arab or SA populations. The associated traits in SEA cohort were body mass index, BMI (β=1.562, P-value=0.0035, Pemp=0.0072), waist circumference, WC (β=3.163, P-value=0.0197, Pemp=0.0388) and triglyceride, TGL (β=0.224, P-value=0.0340). The association with BMI remained statistically significant even after multiple testing correction. Among the SEA individuals, carriers of the effect allele at the SNP had significantly higher BMI [mean of 27.63 (3.6) Kg/m2], WC [mean of 89.9 (8.1) cm], and TGL levels [mean of 1.672 (0.8) mmol/l] than non-carriers of the effect allele. Our findings suggest a role for WFS1 in obesity, which is a risk factor for diabetes. The study also emphasizes the significant role the ethnic background may play in determining the effect of genetic variants on susceptibility to metabolic diseases.
Collapse
Affiliation(s)
- Maha M. Hammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait, Kuwait
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Emil Anoop
- Special Service Facility Department, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Betty Chandy
- Special Service Facility Department, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Motasem Melhem
- Special Service Facility Department, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait, Kuwait
| | | | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait, Kuwait
| |
Collapse
|
26
|
Kõks S. Genomics of Wolfram Syndrome 1 (WFS1). Biomolecules 2023; 13:1346. [PMID: 37759745 PMCID: PMC10527379 DOI: 10.3390/biom13091346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Wolfram Syndrome (WFS) is a rare, autosomal, recessive neurogenetic disorder that affects many organ systems. It is characterised by diabetes insipidus, diabetes mellites, optic atrophy, and deafness and, therefore, is also known as DIDMOAD. Nearly 15,000-30,000 people are affected by WFS worldwide, and, on average, patients suffering from WFS die at 30 years of age, usually from central respiratory failure caused by massive brain atrophy. The more prevalent of the two kinds of WFS is WFS1, which is a monogenic disease and caused by the loss of the WFS1 gene, whereas WFS2, which is more uncommon, is caused by mutations in the CISD2 gene. Currently, there is no treatment for WFS1 to increase the life expectancy of patients, and the treatments available do not significantly improve their quality of life. Understanding the genetics and the molecular mechanisms of WFS1 is essential to finding a cure. The inability of conventional medications to treat WFS1 points to the need for innovative strategies that must address the fundamental cause: the deletion of the WFS1 gene that leads to the profound ER stress and disturbances in proteostasis. An important approach here is to understand the mechanism of the cell degeneration after the deletion of the WFS1 gene and to describe the differences in these mechanisms for the different tissues. The studies so far have indicated that remarkable clinical heterogeneity is caused by the variable vulnerability caused by WFS1 mutations, and these differences cannot be attributed solely to the positions of mutations in the WFS1 gene. The present review gives a broader overview of the results from genomic studies on the WFS1 mouse model.
Collapse
Affiliation(s)
- Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
27
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
28
|
Jauregui R, Abreu NJ, Golan S, Panarelli JF, Sigireddi M, Nayak GK, Gold DM, Rucker JC, Galetta SL, Grossman SN. Neuro-Ophthalmologic Variability in Presentation of Genetically Confirmed Wolfram Syndrome: A Case Series and Review. Brain Sci 2023; 13:1030. [PMID: 37508961 PMCID: PMC10376978 DOI: 10.3390/brainsci13071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Wolfram syndrome is a neurodegenerative disorder caused by pathogenic variants in the genes WFS1 or CISD2. Clinically, the classic phenotype is composed of optic atrophy, diabetes mellitus type 1, diabetes insipidus, and deafness. Wolfram syndrome, however, is phenotypically heterogenous with variable clinical manifestations and age of onset. We describe four cases of genetically confirmed Wolfram syndrome with variable presentations, including acute-on-chronic vision loss, dyschromatopsia, and tonic pupils. All patients had optic atrophy, only three had diabetes, and none exhibited the classic Wolfram phenotype. MRI revealed a varying degree of the classical features associated with the syndrome, including optic nerve, cerebellar, and brainstem atrophy. The cohort's genotype and presentation supported the reported phenotype-genotype correlations for Wolfram, where missense variants lead to milder, later-onset presentation of the Wolfram syndrome spectrum. When early onset optic atrophy and/or diabetes mellitus are present in a patient, a diagnosis of Wolfram syndrome should be considered, as early diagnosis is crucial for the appropriate referrals and management of the associated conditions. Nevertheless, the condition should also be considered in otherwise unexplained, later-onset optic atrophy, given the phenotypic spectrum.
Collapse
Affiliation(s)
- Ruben Jauregui
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nicolas J Abreu
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shani Golan
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph F Panarelli
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Meenakshi Sigireddi
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gopi K Nayak
- Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Doria M Gold
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Janet C Rucker
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Steven L Galetta
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Ophthalmology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Scott N Grossman
- Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
29
|
Hao H, Song L, Zhang L. Wolfram syndrome 1 regulates sleep in dopamine receptor neurons by modulating calcium homeostasis. PLoS Genet 2023; 19:e1010827. [PMID: 37399203 DOI: 10.1371/journal.pgen.1010827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
Sleep disruptions are quite common in psychological disorders, but the underlying mechanism remains obscure. Wolfram syndrome 1 (WS1) is an autosomal recessive disease mainly characterized by diabetes insipidus/mellitus, neurodegeneration and psychological disorders. It is caused by loss-of function mutations of the WOLFRAM SYNDROME 1 (WFS1) gene, which encodes an endoplasmic reticulum (ER)-resident transmembrane protein. Heterozygous mutation carriers do not develop WS1 but exhibit 26-fold higher risk of having psychological disorders. Since WS1 patients display sleep abnormalities, we aimed to explore the role of WFS1 in sleep regulation so as to help elucidate the cause of sleep disruptions in psychological disorders. We found in Drosophila that knocking down wfs1 in all neurons and wfs1 mutation lead to reduced sleep and dampened circadian rhythm. These phenotypes are mainly caused by lack of wfs1 in dopamine 2-like receptor (Dop2R) neurons which act to promote wake. Consistently, the influence of wfs1 on sleep is blocked or partially rescued by inhibiting or knocking down the rate-limiting enzyme of dopamine synthesis, suggesting that wfs1 modulates sleep via dopaminergic signaling. Knocking down wfs1 alters the excitability of Dop2R neurons, while genetic interactions reveal that lack of wfs1 reduces sleep via perturbation of ER-mediated calcium homeostasis. Taken together, we propose a role for wfs1 in modulating the activities of Dop2R neurons by impinging on intracellular calcium homeostasis, and this in turn influences sleep. These findings provide a potential mechanistic insight for pathogenesis of diseases associated with WFS1 mutations.
Collapse
Affiliation(s)
- Huanfeng Hao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Song
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, Hubei, China
| |
Collapse
|
30
|
Kumar J, Ahmed A, Khan M, Ahmed Y. There's More Than Meets the Eye: Wolfram Syndrome in a Type I Diabetic Patient. J Med Cases 2023; 14:265-269. [PMID: 37560547 PMCID: PMC10409535 DOI: 10.14740/jmc4128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative and genetic disorder, also known by the synonym DIDMOAD, which stands for diabetes insipidus (DI), childhood-onset diabetes mellitus (DM), optic atrophy (OA), and deafness (D). We present a case of a 25-year-old diabetic patient, using insulin for 15 years, who had increasing polyuria and polydipsia, along with progressive hearing and vision loss. Laboratory tests revealed elevated hemoglobin A1c (HbA1c) and blood sugar levels. Optic nerve, optic chiasm, pons, and brain stem atrophy was seen on magnetic resonance imaging (MRI) of brain. After workup, a diagnosis of DI was made. Once the diagnosis was reached, treatment with subcutaneous insulin and nasal desmopressin improved patient's symptoms. In juvenile diabetic patients presenting with new onset or worsening polyuria and polydipsia, the possibility of WS should be considered. Early diagnosis and initiation of appropriate management leads to improved outcomes and the quality of life.
Collapse
Affiliation(s)
- Jasvindar Kumar
- Internal Medicine at Basset Medical Center, Cooperstown, NY, USA
| | - Atif Ahmed
- Department of Psychiatry, Khyber Medical University, Peshawar, Pakistan
| | - Mashal Khan
- Khyber Medical University, Peshawar, Pakistan
- Department of Internal Medicine, United Health Services Hospitals, Binghamton, NY, USA
| | - Yasir Ahmed
- Department of Internal Medicine, United Health Services Hospitals, Binghamton, NY, USA
| |
Collapse
|
31
|
Gorgogietas V, Rajaei B, Heeyoung C, Santacreu BJ, Marín-Cañas S, Salpea P, Sawatani T, Musuaya A, Arroyo MN, Moreno-Castro C, Benabdallah K, Demarez C, Toivonen S, Cosentino C, Pachera N, Lytrivi M, Cai Y, Carnel L, Brown C, Urano F, Marchetti P, Gilon P, Eizirik DL, Cnop M, Igoillo-Esteve M. GLP-1R agonists demonstrate potential to treat Wolfram syndrome in human preclinical models. Diabetologia 2023; 66:1306-1321. [PMID: 36995380 PMCID: PMC10244297 DOI: 10.1007/s00125-023-05905-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 03/31/2023]
Abstract
AIMS/HYPOTHESIS Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.
Collapse
Grants
- UH3 TR002065 NCATS NIH HHS
- U01 DK127786 NIDDK NIH HHS
- R01 DK132090 NIDDK NIH HHS
- UL1 TR000448 NCATS NIH HHS
- P60 DK020579 NIDDK NIH HHS
- P30 DK020579 NIDDK NIH HHS
- UL1 TR002345 NCATS NIH HHS
- UH2 TR002065 NCATS NIH HHS
- Pandarome project FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme
- Welbio-FNRS
- National Institutes of Health (NIH)/NIDDK
- Philanthropic supports from the Silberman Fund, the Ellie White Foundation for the Rare Genetic Disorders, the Snow Foundation, the Unravel Wolfram Syndrome Fund, the Stowe Fund, the Feiock Fund, the Cachia Fund, the Gildenhorn Fund, the Eye Hope Foundation, Ontario Wolfram League, Associazione Gentian - Sindrome di Wolfram Italia, Alianza de Familias Afectadas por el Sindrome Wolfram Spain, Wolfram syndrome UK, and Association Syndrome de Wolfram France.
- the Walloon Region SPW-EER Win2Wal project BetaSource
- National Institutes of Health Human Islet Research Network Consortium on Beta Cell Death & Survival from Pancreatic β-Cell Gene Networks to Therapy [HIRN-CBDS])
- Eye Hope Foundation
- Fonds Erasme for Medical Research
- Alianza de familias afectadas por el síndrome de Wolfram (AFASW)
- Brussels Region Innoviris (Bridge) project DiaType
- Dutch Diabetes Research Foundation (Innovate2CureType1)
- Fonds National de la Recherche Scientifique (FNRS)
- Francophone Foundation for Diabetes Research (FFRD, that is sponsored by the French Diabetes Federation, Abbott, Eli Lilly,Merck Sharp & Dohme and Novo Nordisk)
- NIH/ National Center for Advancing Translational Sciences (NCATS)
Collapse
Affiliation(s)
- Vyron Gorgogietas
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Bahareh Rajaei
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Chae Heeyoung
- Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Bruxelles, Belgique
| | - Bruno J Santacreu
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Paraskevi Salpea
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Anyishai Musuaya
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - María N Arroyo
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Khadija Benabdallah
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Celine Demarez
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Cristina Cosentino
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nathalie Pachera
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Maria Lytrivi
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Ying Cai
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Cris Brown
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Patrick Gilon
- Institut de Recherche Expérimental et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Université Catholique de Louvain, Bruxelles, Belgique
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
32
|
Esteban-Bueno G, Berenguel Hernández AM, Fernández Fernández N, Navarro Cabrero M, Coca JR. Neurosensory Affectation in Patients Affected by Wolfram Syndrome: Descriptive and Longitudinal Analysis. Healthcare (Basel) 2023; 11:1888. [PMID: 37444722 DOI: 10.3390/healthcare11131888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disease usually of autosomal recessive origin. There is limited research about sensorineural hearing loss, despite it being a fundamental entity. It is important to broaden the study of this disease and specify a set of tests required for an adequate assessment of patients for efficient monitoring and control. The fundamental objective of this research is to understand WS from a biomedical perspective in order to help in its diagnosis, follow-up, and control. Pure tones audiometry, tympanometry, speech perception, the speech intelligibility index without aid, and testing at high frequencies were among the audiological measurements utilised since they were deemed suitable for standardised follow-up. Mixed linear models were used to examine the effects of age, time, or mean interaction in pure-tone (IPT), the average of high frequencies (HFA), auditory brainstem response (ABR), and brainstem auditory evoked potentials (BAEP). The genetic analysis allowed mutations to be classified into three phenotype-genotype groups, where the phenotype indicated the severity of the hearing loss. Patients with homozygous gene changes had a more severe neurosensory phenotype. The early discovery of sensorineural hearing loss and WS is crucial since it allows intensive follow-up and treatment of the person affected from the start.
Collapse
Affiliation(s)
- Gema Esteban-Bueno
- Clinical Management Unit Almería Periphery-Almería Health District, Andalusian Health Service, 04120 Costacabana, Almería, Spain
- Spanish Association for the Research and Support of Wolfram Syndrome, 04120 Costacabana, Almería, Spain
| | | | | | - Miguel Navarro Cabrero
- Spanish Association for the Research and Support of Wolfram Syndrome, 04120 Costacabana, Almería, Spain
| | - Juan R Coca
- Social Research Unit on Health and Rare Diseases, Department of Sociology and Social Work, University of Valladolid, 42004 Soria, Castile and León, Spain
| |
Collapse
|
33
|
Richard EM, Brun E, Korchagina J, Crouzier L, Affortit C, Alves S, Cazevieille C, Mausset-Bonnefont AL, Lenoir M, Puel JL, Maurice T, Thiry M, Wang J, Delprat B. Wfs1 E864K knock-in mice illuminate the fundamental role of Wfs1 in endocochlear potential production. Cell Death Dis 2023; 14:387. [PMID: 37386014 PMCID: PMC10310813 DOI: 10.1038/s41419-023-05912-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Wolfram syndrome (WS) is a rare neurodegenerative disorder encompassing diabetes mellitus, diabetes insipidus, optic atrophy, hearing loss (HL) as well as neurological disorders. None of the animal models of the pathology are presenting with an early onset HL, impeding the understanding of the role of Wolframin (WFS1), the protein responsible for WS, in the auditory pathway. We generated a knock-in mouse, the Wfs1E864K line, presenting a human mutation leading to severe deafness in affected individuals. The homozygous mice showed a profound post-natal HL and vestibular syndrome, a collapse of the endocochlear potential (EP) and a devastating alteration of the stria vascularis and neurosensory epithelium. The mutant protein prevented the localization to the cell surface of the Na+/K+ATPase β1 subunit, a key protein for the maintenance of the EP. Overall, our data support a key role of WFS1 in the maintenance of the EP and the stria vascularis, via its binding partner, the Na+/K+ATPase β1 subunit.
Collapse
Affiliation(s)
| | - Emilie Brun
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Lucie Crouzier
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | - Stacy Alves
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | | - Marc Lenoir
- INM, Univ Montpellier, INSERM, Montpellier, France
| | | | - Tangui Maurice
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Liège, Belgique
| | - Jing Wang
- INM, Univ Montpellier, INSERM, Montpellier, France
| | - Benjamin Delprat
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France.
- INM, Univ Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
34
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Zatyka M, Rosenstock TR, Sun C, Palhegyi AM, Hughes GW, Lara-Reyna S, Astuti D, di Maio A, Sciauvaud A, Korsgen ME, Stanulovic V, Kocak G, Rak M, Pourtoy-Brasselet S, Winter K, Varga T, Jarrige M, Polvèche H, Correia J, Frickel EM, Hoogenkamp M, Ward DG, Aubry L, Barrett T, Sarkar S. Depletion of WFS1 compromises mitochondrial function in hiPSC-derived neuronal models of Wolfram syndrome. Stem Cell Reports 2023; 18:1090-1106. [PMID: 37163979 PMCID: PMC10202695 DOI: 10.1016/j.stemcr.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/12/2023] Open
Abstract
Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.
Collapse
Affiliation(s)
- Malgorzata Zatyka
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adina M Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina W Hughes
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Dewi Astuti
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro di Maio
- Tech Hub Microscopy Facility, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Axel Sciauvaud
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France
| | - Miriam E Korsgen
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vesna Stanulovic
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gamze Kocak
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Malgorzata Rak
- Université Paris Cité, INSERM, NeuroDiderot, 75019 Paris, France
| | | | - Katherine Winter
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Thiago Varga
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Margot Jarrige
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France; CECS/AFM, I-STEM, 91100 Corbeil-Essonnes, France
| | | | - Joao Correia
- COMPARE Advanced Imaging Facility, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Douglas G Ward
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laetitia Aubry
- INSERM UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France; Université Paris-Saclay, INSERM, University Evry, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, 91100 Corbeil-Essonnes, France
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Endocrinology, Birmingham Women's and Children's Hospital, Steelhouse Lane, Birmingham B4 6NH, UK
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
36
|
Zhang K, Cui X, Long Y. Clinical management and obstetric outcome in WFS1 Wolfram syndrome spectrum disorder: A case report and literature review. Taiwan J Obstet Gynecol 2023; 62:440-443. [PMID: 37188450 DOI: 10.1016/j.tjog.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE Wolfram Syndrome (WS) is a rare autosomal recessive neurodegenerative disorder caused by mutations in WFS1 or CISD2 (WFS2). We present a rare case report of pregnancy with WFS1 spectrum disorder (WFS1-SD) in our hospital and reviewed literature to provide the management of pregnancy in these patients through multi-disciplinary cooperation. CASE REPORT A 31-year-old (gravida 6, para 1) woman with WFS1-SD conceived naturally. During the pregnancy, she adjusted insulin intermittently to control blood glucose and monitored intraocular pressure changes under the guidance of doctors without any complications. Cesarean section was delivered at 37+4 weeks of gestation due to breech position and uterine scar and the neonatal weight was 3200 g. Apgar score 10 at 1 min, 10 at 5-min and 10 at 10 min, respectively. This rare case had a good maternal and infant outcome under multidisciplinary management. CONCLUSION WS is an extremely rare disease. Limited information is available on the impact and management of WS on maternal physiologic adaptation and fetal outcome. This case provide a guide for clinicians to raise awareness of this rare disease and strengthen the management of pregnancy in these patients.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin Cui
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Long
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
37
|
Lim HD, Lee SM, Yun YJ, Lee DH, Lee JH, Oh SH, Lee SY. WFS1 autosomal dominant variants linked with hearing loss: update on structural analysis and cochlear implant outcome. BMC Med Genomics 2023; 16:79. [PMID: 37041640 PMCID: PMC10088283 DOI: 10.1186/s12920-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Wolfram syndrome type 1 gene (WFS1), which encodes a transmembrane structural protein (wolframin), is essential for several biological processes, including proper inner ear function. Unlike the recessively inherited Wolfram syndrome, WFS1 heterozygous variants cause DFNA6/14/38 and wolfram-like syndrome, characterized by autosomal dominant nonsyndromic hearing loss, optic atrophy, and diabetes mellitus. Here, we identified two WFS1 heterozygous variants in three DFNA6/14/38 families using exome sequencing. We reveal the pathogenicity of the WFS1 variants based on three-dimensional (3D) modeling and structural analysis. Furthermore, we present cochlear implantation (CI) outcomes in WFS1-associated DFNA6/14/38 and suggest a genotype-phenotype correlation based on our results and a systematic review. METHODS We performed molecular genetic test and evaluated clinical phenotypes of three WFS1-associated DFNA6/14/38 families. A putative WFS1-NCS1 interaction model was generated, and the impacts of WFS1 variants on stability were predicted by comparing intramolecular interactions. A total of 62 WFS1 variants associated with DFNA6/14/38 were included in a systematic review. RESULTS One variant is a known mutational hotspot variant in the endoplasmic reticulum (ER)-luminal domain WFS1(NM_006005.3) (c.2051 C > T:p.Ala684Val), and the other is a novel frameshift variant in transmembrane domain 6 (c.1544_1545insA:p.Phe515LeufsTer28). The two variants were pathogenic, based on the ACMG/AMP guidelines. Three-dimensional modeling and structural analysis show that non-polar, hydrophobic substitution of Ala684 (p.Ala684Val) destabilizes the alpha helix and contributes to the loss of WFS1-NCS1 interaction. Also, the p.Phe515LeufsTer28 variant truncates transmembrane domain 7-9 and the ER-luminal domain, possibly impairing membrane localization and C-terminal signal transduction. The systematic review demonstrates favorable outcomes of CI. Remarkably, p.Ala684Val in WFS1 is associated with early-onset severe-to-profound deafness, revealing a strong candidate variant for CI. CONCLUSIONS We expanded the genotypic spectrum of WFS1 heterozygous variants underlying DFNA6/14/38 and revealed the pathogenicity of mutant WFS1, providing a theoretical basis for WFS1-NCS1 interactions. We presented a range of phenotypic traits for WFS1 heterozygous variants and demonstrated favorable functional CI outcomes, proposing p.Ala684Val a strong potential marker for CI candidates.
Collapse
Affiliation(s)
- Hui Dong Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ye Jin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dae Hee Lee
- CTCELLS, Inc, 21, Yuseong-daero, 1205beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Punapart M, Reimets R, Seppa K, Kirillov S, Gaur N, Eskla KL, Jagomäe T, Vasar E, Plaas M. Chronic Stress Alters Hippocampal Renin-Angiotensin-Aldosterone System Component Expression in an Aged Rat Model of Wolfram Syndrome. Genes (Basel) 2023; 14:genes14040827. [PMID: 37107585 PMCID: PMC10137641 DOI: 10.3390/genes14040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Biallelic mutations in the gene encoding WFS1 underlie the development of Wolfram syndrome (WS), a rare neurodegenerative disorder with no available cure. We have previously shown that Wfs1 deficiency can impair the functioning of the renin-angiotensin-aldosterone system (RAAS). The expression of two key receptors, angiotensin II receptor type 2 (Agtr2) and bradykinin receptor B1 (Bdkrb1), was downregulated both in vitro and in vivo across multiple organs in a rat model of WS. Here, we show that the expression of key RAAS components is also dysregulated in neural tissue from aged WS rats and that these alterations are not normalized by pharmacological treatments (liraglutide (LIR), 7,8-dihydroxyflavone (7,8-DHF) or their combination). We found that the expression of angiotensin II receptor type 1a (Agtr1a), angiotensin II receptor type 1b (Agtr1b), Agtr2 and Bdkrb1 was significantly downregulated in the hippocampus of WS animals that experienced chronic experimental stress. Treatment-naïve WS rats displayed different gene expression patterns, underscoring the effect of prolonged experiment-induced stress. Altogether, we posit that Wfs1 deficiency disturbs RAAS functioning under chronic stressful conditions, thereby exacerbating neurodegeneration in WS.
Collapse
Affiliation(s)
- Marite Punapart
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Riin Reimets
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kadri Seppa
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Silvia Kirillov
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Nayana Gaur
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Toomas Jagomäe
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411 Tartu, Estonia
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia
- Correspondence:
| |
Collapse
|
39
|
Abstract
Monogenic diabetes includes several clinical conditions generally characterized by early-onset diabetes, such as neonatal diabetes, maturity-onset diabetes of the young (MODY) and various diabetes-associated syndromes. However, patients with apparent type 2 diabetes mellitus may actually have monogenic diabetes. Indeed, the same monogenic diabetes gene can contribute to different forms of diabetes with early or late onset, depending on the functional impact of the variant, and the same pathogenic variant can produce variable diabetes phenotypes, even in the same family. Monogenic diabetes is mostly caused by impaired function or development of pancreatic islets, with defective insulin secretion in the absence of obesity. The most prevalent form of monogenic diabetes is MODY, which may account for 0.5-5% of patients diagnosed with non-autoimmune diabetes but is probably underdiagnosed owing to insufficient genetic testing. Most patients with neonatal diabetes or MODY have autosomal dominant diabetes. More than 40 subtypes of monogenic diabetes have been identified to date, the most prevalent being deficiencies of GCK and HNF1A. Precision medicine approaches (including specific treatments for hyperglycaemia, monitoring associated extra-pancreatic phenotypes and/or following up clinical trajectories, especially during pregnancy) are available for some forms of monogenic diabetes (including GCK- and HNF1A-diabetes) and increase patients' quality of life. Next-generation sequencing has made genetic diagnosis affordable, enabling effective genomic medicine in monogenic diabetes.
Collapse
|
40
|
Genetic Variants of HNF4A, WFS1, DUSP9, FTO, and ZFAND6 Genes Are Associated with Prediabetes Susceptibility and Inflammatory Markers in the Saudi Arabian Population. Genes (Basel) 2023; 14:genes14030536. [PMID: 36980809 PMCID: PMC10048403 DOI: 10.3390/genes14030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Prediabetes is a reversible, intermediate stage of type 2 diabetes mellitus (T2DM). Lifestyle changes that include healthy diet and exercise can substantially reduce progression to T2DM. The present study explored the association of 37 T2DM- and obesity-linked single nucleotide polymorphisms (SNPs) with prediabetes risk in a homogenous Saudi Arabian population. A total of 1129 Saudi adults [332 with prediabetes (29%) and 797 normoglycemic controls] were randomly selected and genotyped using the KASPar SNP genotyping method. Anthropometric and various serological parameters were measured following standard procedures. Heterozygous GA of HNF4A-rs4812829 (0.64; 95% CI 0.47–0.86; p < 0.01), heterozygous TC of WFS1-rs1801214 (0.60; 95% confidence interval (CI) 0.44–0.80; p < 0.01), heterozygous GA of DUSP9-rs5945326 (0.60; 95% CI 0.39–0.92; p = 0.01), heterozygous GA of ZFAND6-rs11634397 (0.75; 95% CI 0.56–1.01; p = 0.05), and homozygous AA of FTO-rs11642841 (1.50; 95% CI 0.8–1.45; p = 0.03) were significantly associated with prediabetes, independent of age and body mass index (BMI). Additionally, C-reactive protein (CRP) levels in rs11634397 (AA) with a median of 5389.0 (2767.4–7412.8) were significantly higher than in the heterozygous GA genotype with a median of 1736.3 (1024.4–4452.0) (p < 0.01). In conclusion, only five of the 37 genetic variants previously linked to T2DM and obesity in the Saudi Arabian population [HNF4A-rs4812829, WFS1-rs1801214, DUSP9-rs5945326, ZFAND6-rs11634397, FTO-rs11642841] were associated with prediabetes susceptibility. Prospective studies are needed to confirm the potential clinical value of the studied genetic variants of interest.
Collapse
|
41
|
Serbis A, Rallis D, Giapros V, Galli-Tsinopoulou A, Siomou E. Wolfram Syndrome 1: A Pediatrician's and Pediatric Endocrinologist's Perspective. Int J Mol Sci 2023; 24:ijms24043690. [PMID: 36835101 PMCID: PMC9960967 DOI: 10.3390/ijms24043690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare autosomal recessive neurodegenerative disease caused by mutations in WFS1 and WFS2 genes that produce wolframin, a protein involved in endoplasmic reticulum calcium homeostasis and cellular apoptosis. Its main clinical features are diabetes insipidus (DI), early-onset non-autoimmune insulin-dependent diabetes mellitus (DM), gradual loss of vision due to optic atrophy (OA) and deafness (D), hence the acronym DIDMOAD. Several other features from different systems have been reported such as urinary tract, neurological, and psychiatric abnormalities. In addition, endocrine disorders that can appear during childhood and adolescence include primary gonadal atrophy and hypergonadotropic hypogonadism in males and menstrual cycle abnormalities in females. Further, anterior pituitary dysfunction with deficient GH and/or ACTH production have been described. Despite the lack of specific treatment for the disease and its poor life expectancy, early diagnosis and supportive care is important for timely identifying and adequately managing its progressive symptoms. The current narrative review focuses on the pathophysiology and the clinical features of the disease, with a special emphasis on its endocrine abnormalities that appear during childhood and adolescence. Further, therapeutic interventions that have been proven to be effective in the management of WS1 endocrine complications are discussed.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
- Correspondence:
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
42
|
Velde HM, Huizenga XJJ, Yntema HG, Haer-Wigman L, Beynon AJ, Oostrik J, Pegge SAH, Kremer H, Lanting CP, Pennings RJE. Genotype and Phenotype Analyses of a Novel WFS1 Variant (c.2512C>T p.(Pro838Ser)) Associated with DFNA6/14/38. Genes (Basel) 2023; 14:457. [PMID: 36833385 PMCID: PMC9957259 DOI: 10.3390/genes14020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
The aim of this study is to contribute to a better description of the genotypic and phenotypic spectrum of DFNA6/14/38 and aid in counseling future patients identified with this variant. Therefore, we describe the genotype and phenotype in a large Dutch-German family (W21-1472) with autosomal dominant non-syndromic, low-frequency sensorineural hearing loss (LFSNHL). Exome sequencing and targeted analysis of a hearing impairment gene panel were used to genetically screen the proband. Co-segregation of the identified variant with hearing loss was assessed by Sanger sequencing. The phenotypic evaluation consisted of anamnesis, clinical questionnaires, physical examination and examination of audiovestibular function. A novel likely pathogenic WFS1 variant (NM_006005.3:c.2512C>T p.(Pro838Ser)) was identified in the proband and found to co-segregate with LFSNHL, characteristic of DFNA6/14/38, in this family. The self-reported age of onset of hearing loss (HL) ranged from congenital to 50 years of age. In the young subjects, HL was demonstrated in early childhood. At all ages, an LFSNHL (0.25-2 kHz) of about 50-60 decibel hearing level (dB HL) was observed. HL in the higher frequencies showed inter-individual variability. The dizziness handicap inventory (DHI) was completed by eight affected subjects and indicated a moderate handicap in two of them (aged 77 and 70). Vestibular examinations (n = 4) showed abnormalities, particularly in otolith function. In conclusion, we identified a novel WFS1 variant that co-segregates with DFNA6/14/38 in this family. We found indications of mild vestibular dysfunction, although it is uncertain whether this is related to the identified WFS1 variant or is an incidental finding. We would like to emphasize that conventional neonatal hearing screening programs are not sensitive to HL in DFNA6/14/38 patients, because high-frequency hearing thresholds are initially preserved. Therefore, we suggest screening newborns in DFNA6/14/38 families with more frequency-specific methods.
Collapse
Affiliation(s)
- Hedwig M. Velde
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Xanne J. J. Huizenga
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Helger G. Yntema
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, The Netherlands
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, The Netherlands
- The Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Andy J. Beynon
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Jaap Oostrik
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Sjoert A. H. Pegge
- Department of Medical Imaging, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Cris P. Lanting
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Ronald J. E. Pennings
- Department of Otorhinolaryngology, Radboudumc, 6525 GA Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
43
|
Guo L, Gu X, Sun Q, Zhang Y, Li H, Du Q. Novel WFS1 mutations in patients with low-to-middle frequency hearing loss. Int J Pediatr Otorhinolaryngol 2023; 167:111484. [PMID: 36958120 DOI: 10.1016/j.ijporl.2023.111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Hearing loss (HL) is the most common sensorineural disorder in human. It is estimated that genetic factors contribute to over 50% of prelingual hearing loss. Most of dominant HHL patients manifest postlingual progressive hearing loss that mainly affect high frequencies. However, mutations in a few dominant HL genes, such as WFS1, TECTA and DIAPH1, cause distinct audiogram that primarily affects the low and middle frequencies. METHODS We recruited twelve independent HL families with worse low or middle frequency audiograms. Each proband of these families was excluded for pathogenic mutations in GJB2, SLC26A4, and MT-RNR1 genes. Mutation screening was performed by whole exome sequencing. Next, candidate variants were validated in each family by sanger sequencing. RESULTS Six heterozygous WFS1 variants were identified in six families, including three novel mutations (c.2519T > G, p.F840C; c.2048T > G, p.M683R and c.2419A > C, p.S807R) and three previously reported variants (c.2005T > C, p.Y669H; c.2590G > A, p.E864K and c.G2389A, p.D797 N). All the novel mutations were absent in 100 ethnically matched controls and were predicted to be deleterious by multiple algorithms. CONCLUSIONS We identified three novel and three previously reported WFS1 mutations in six unrelated Chinese families. Our findings enriched the genotype-phenotype spectrum of WFS1 related NSHL. Additional genotype-phenotype correlation study will clarify the detailed phenotypic range caused by WFS1 mutations.
Collapse
Affiliation(s)
- Luo Guo
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Xiaodong Gu
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Qin Sun
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yike Zhang
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huawei Li
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Qiang Du
- Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology, Fudan University, No. 83, Fenyang Road, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
44
|
Yuan F, Li Y, Hu R, Gong M, Chai M, Ma X, Cha J, Guo P, Yang K, Li M, Xu M, Ma Q, Su Q, Zhang C, Sheng Z, Wu H, Wang Y, Yuan W, Bian S, Shao L, Zhang R, Li K, Shao Z, Zhang ZN, Li W. Modeling disrupted synapse formation in wolfram syndrome using hESCs-derived neural cells and cerebral organoids identifies Riluzole as a therapeutic molecule. Mol Psychiatry 2023; 28:1557-1570. [PMID: 36750736 DOI: 10.1038/s41380-023-01987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Dysregulated neurite outgrowth and synapse formation underlie many psychiatric disorders, which are also manifested by wolfram syndrome (WS). Whether and how the causative gene WFS1 deficiency affects synapse formation remain elusive. By mirroring human brain development with cerebral organoids, WFS1-deficient cerebral organoids not only recapitulate the neuronal loss in WS patients, but also exhibit significantly impaired synapse formation and function associated with reduced astrocytes. WFS1 deficiency in neurons autonomously delays neuronal differentiation with altered expressions of genes associated with psychiatric disorders, and impairs neurite outgrowth and synapse formation with elevated cytosolic calcium. Intriguingly, WFS1 deficiency in astrocytes decreases the expression of glutamate transporter EAAT2 by NF-κB activation and induces excessive glutamate. When co-cultured with wildtype neurons, WFS1-deficient astrocytes lead to impaired neurite outgrowth and increased cytosolic calcium in neurons. Importantly, disrupted synapse formation and function in WFS1-deficient cerebral organoids and impaired neurite outgrowth affected by WFS1-deficient astrocytes are efficiently reversed with Riluzole treatment, by restoring EAAT2 expression in astrocytes. Furthermore, Riluzole rescues the depressive-like behavior in the forced swimming test and the impaired recognition and spatial memory in the novel object test and water maze test in Wfs1 conditional knockout mice. Altogether, our study provides novel insights into how WFS1 deficiency affects synapse formation and function, and offers a strategy to treat this disease.
Collapse
Affiliation(s)
- Fei Yuan
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Hu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mengting Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mengyao Chai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Xuefei Ma
- QuietD Biotechnology, Ltd., Shanghai, 201210, China
| | - Jiaxue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Pan Guo
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaijiang Yang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Qing Ma
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Qiang Su
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Chuan Zhang
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhejin Sheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Heng Wu
- Department of Psychosomatic Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yuan Wang
- Department of Neurology and Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, Sichuan, 610041, China
| | - Wen Yuan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Shan Bian
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Li Shao
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaicheng Li
- QuietD Biotechnology, Ltd., Shanghai, 201210, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhen-Ning Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. .,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China.
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China. .,Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China. .,Reg-Verse Therapeutics (Shanghai) Co. Ltd., Shanghai, 200120, China.
| |
Collapse
|
45
|
Chen Y, Zhang M, Zhou Y, Li P. Case Report: A novel mutation in WFS1 gene (c.1756G>A p.A586T) is responsible for early clinical features of cognitive impairment and recurrent ischemic stroke. Front Genet 2023; 14:1072978. [PMID: 36816038 PMCID: PMC9932685 DOI: 10.3389/fgene.2023.1072978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Wolfram syndrome 1 (WFS1) gene mutations can be dominantly or recessively inherited, and the onset of the clinical picture is highly heterogeneity in both appearance and degree of severity. Different types of WFS1 mutations have been identified. Autosomal recessive mutations in the WFS1 gene will underlie Wolfram syndrome 1 (WS1), a rare and severe neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, deafness, and other neurological, urological and psychiatric abnormalities. Other WFS1-related disorders such as low-frequency sensorineural hearing impairment (LFSNHI) and Wolfram syndrome-like disease with autosomal dominant transmission have been described. It is difficult to establish genotype-phenotype correlations because of the molecular complexity of wolframin protein. In this report, we presented a case of WSF1 gene mutation-related disease with cognitive impairment as the initial symptom and recurrent cerebral infarction in the course of the disease. Brain structural imaging results suggested decreased intracranial volume, dramatically reduced in cerebral cortex and cerebellum regions. Multimodal molecular imaging results suggested Tau protein deposition in the corresponding brain regions without Aβ pathology changes. These pathological changes may indicate a role of WFS1 in neuronal vulnerability to tau pathology associated with neurodegeneration and ischemia-induced damage.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Miao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Pan Li
- Department of Neurology, Tianjin Huanhu Hospital, Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China,Department of Neurology, Tianjin Huanhu Hospital affiliated to Nankai University, Tianjin University Huanhu Hospital, Tianjin, China,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital, Tianjin, China,*Correspondence: Pan Li,
| |
Collapse
|
46
|
Rossi G, Ordazzo G, Vanni NN, Castoldi V, Iannielli A, Di Silvestre D, Bellini E, Bernardo L, Giannelli SG, Luoni M, Muggeo S, Leocani L, Mauri P, Broccoli V. MCT1-dependent energetic failure and neuroinflammation underlie optic nerve degeneration in Wolfram syndrome mice. eLife 2023; 12:81779. [PMID: 36645345 PMCID: PMC9891717 DOI: 10.7554/elife.81779] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Wolfram syndrome 1 (WS1) is a rare genetic disorder caused by mutations in the WFS1 gene leading to a wide spectrum of clinical dysfunctions, among which blindness, diabetes, and neurological deficits are the most prominent. WFS1 encodes for the endoplasmic reticulum (ER) resident transmembrane protein wolframin with multiple functions in ER processes. However, the WFS1-dependent etiopathology in retinal cells is unknown. Herein, we showed that Wfs1 mutant mice developed early retinal electrophysiological impairments followed by marked visual loss. Interestingly, axons and myelin disruption in the optic nerve preceded the degeneration of the retinal ganglion cell bodies in the retina. Transcriptomics at pre-degenerative stage revealed the STAT3-dependent activation of proinflammatory glial markers with reduction of the homeostatic and pro-survival factors glutamine synthetase and BDNF. Furthermore, label-free comparative proteomics identified a significant reduction of the monocarboxylate transport isoform 1 (MCT1) and its partner basigin that are highly enriched on retinal glia and myelin-forming oligodendrocytes in optic nerve together with wolframin. Loss of MCT1 caused a failure in lactate transfer from glial to neuronal cell bodies and axons leading to a chronic hypometabolic state. Thus, this bioenergetic impairment is occurring concurrently both within the axonal regions and cell bodies of the retinal ganglion cells, selectively endangering their survival while impacting less on other retinal cells. This metabolic dysfunction occurs months before the frank RGC degeneration suggesting an extended time-window for intervening with new therapeutic strategies focused on boosting retinal and optic nerve bioenergetics in WS1.
Collapse
Affiliation(s)
- Greta Rossi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Gabriele Ordazzo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Niccolò N Vanni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Valerio Castoldi
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - Angelo Iannielli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Dario Di Silvestre
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Edoardo Bellini
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Bernardo
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | | | - Mirko Luoni
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
| | - Letizia Leocani
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific InstituteMilanItaly
| | - PierLuigi Mauri
- National Research Council of Italy, Institute of Technologies in BiomedicineMilanItaly
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific InstituteMilanoItaly
- National Research Council of Italy, Institute of NeuroscienceMilanoItaly
| |
Collapse
|
47
|
Png D, Yeoh E, Tan C, Lim SC. A Pair of Siblings With Wolfram Syndrome: A Review of the Literature and Treatment Options. J Investig Med High Impact Case Rep 2023; 11:23247096221150631. [PMID: 36644884 PMCID: PMC9846294 DOI: 10.1177/23247096221150631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Wolfram syndrome (WS) is a rare genetic disorder typically characterized by juvenile onset diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, and neurodegeneration. There would be a high index of clinical suspicion for WS when clinical manifestations of type 1 diabetes and optic atrophy present together. Genetic analysis is often required to confirm the diagnosis. We describe a pair of Chinese siblings diagnosed with WS at ages 20 and 24 years, respectively. DNA sequencing of the WFS1 gene which encodes for Wolframin ER Transmembrane Glycoprotein identified a heterozygous nonsense variant NM_006005.3: c.1999C>T p.(Gln667*) and a heterozygous missense variant c.2170C>T p.(Pro724Ser) in exon 8 of the gene for both siblings. There is no curative treatment for WS and management of this debilitating disease is aimed at treating individual clinical manifestations, slowing disease progression, and improving quality of life. Treatment with liraglutide, a glucagon-like-peptide-1 receptor agonist, and tauroursodeoxycholic acid was started for the younger sibling, the proband. There was reduction in insulin requirements and improvement in glycemic control. The other sibling was not offered liraglutide due to her complex treatment regimen for end-organ failure. Genetic testing is a valuable tool to detect WS early to allow precise and prompt diagnosis, thereby facilitating the coordinated care from a multidisciplinary team of clinicians.
Collapse
Affiliation(s)
| | | | | | - Su Chi Lim
- Admiralty Medical Centre, Singapore.,Khoo Teck Puat Hospital, Singapore.,National University of Singapore, Singapore.,Nanyang Technological University, Singapore
| |
Collapse
|
48
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
49
|
Urbanczyk M, Jeyagaran A, Zbinden A, Lu CE, Marzi J, Kuhlburger L, Nahnsen S, Layland SL, Duffy G, Schenke-Layland K. Decorin improves human pancreatic β-cell function and regulates ECM expression in vitro. Matrix Biol 2023; 115:160-183. [PMID: 36592738 DOI: 10.1016/j.matbio.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human β-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated β-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting β-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Aline Zbinden
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Immunology, Leiden University Medical Center Leiden, ZA 2333, the Netherlands
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| | - Laurence Kuhlburger
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Discipline of Anatomy and the Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Advanced Materials for Biomedical Engineering (AMBER), Trinity College Dublin & National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
50
|
The Role of ER Stress in Diabetes: Exploring Pathological Mechanisms Using Wolfram Syndrome. Int J Mol Sci 2022; 24:ijms24010230. [PMID: 36613674 PMCID: PMC9820298 DOI: 10.3390/ijms24010230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cytosolic organelle that plays an essential role in the folding and processing of new secretory proteins, including insulin. The pathogenesis of diabetes, a group of metabolic disorders caused by dysfunctional insulin secretion (Type 1 diabetes, T1DM) or insulin sensitivity (Type 2 diabetes, T2DM), is known to involve the excess accumulation of "poorly folded proteins", namely, the induction of pathogenic ER stress in pancreatic β-cells. ER stress is known to contribute to the dysfunction of the insulin-producing pancreatic β-cells. T1DM and T2DM are multifactorial diseases, especially T2DM; both environmental and genetic factors are involved in their pathogenesis, making it difficult to create experimental disease models. In recent years, however, the development of induced pluripotent stem cells (iPSCs) and other regenerative technologies has greatly expanded research capabilities, leading to the development of new candidate therapies. In this review, we will discuss the mechanism by which dysregulated ER stress responses contribute to T2DM pathogenesis. Moreover, we describe new treatment methods targeting protein folding and ER stress pathways with a particular focus on pivotal studies of Wolfram syndrome, a monogenic form of syndromic diabetes caused by pathogenic variants in the WFS1 gene, which also leads to ER dysfunction.
Collapse
|