1
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
2
|
Rodrigues RJ, Figueira AS, Marques JM. P2Y1 Receptor as a Catalyst of Brain Neurodegeneration. NEUROSCI 2022; 3:604-615. [PMID: 39483765 PMCID: PMC11523754 DOI: 10.3390/neurosci3040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/03/2024] Open
Abstract
Different brain disorders display distinctive etiologies and pathogenic mechanisms. However, they also share pathogenic events. One event systematically occurring in different brain disorders, both acute and chronic, is the increase of the extracellular ATP levels. Accordingly, several P2 (ATP/ADP) and P1 (adenosine) receptors, as well as the ectoenzymes involved in the extracellular catabolism of ATP, have been associated to different brain pathologies, either with a neuroprotective or neurodegenerative action. The P2Y1 receptor (P2Y1R) is one of the purinergic receptors associated to different brain diseases. It has a widespread regional, cellular, and subcellular distribution in the brain, it is capable of modulating synaptic function and neuronal activity, and it is particularly important in the control of astrocytic activity and in astrocyte-neuron communication. In diverse brain pathologies, there is growing evidence of a noxious gain-of-function of P2Y1R favoring neurodegeneration by promoting astrocyte hyperactivity, entraining Ca2+-waves, and inducing the release of glutamate by directly or indirectly recruiting microglia and/or by increasing the susceptibility of neurons to damage. Here, we review the current evidence on the involvement of P2Y1R in different acute and chronic neurodegenerative brain disorders and the underlying mechanisms.
Collapse
Affiliation(s)
- Ricardo J. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana S. Figueira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Joana M. Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
3
|
Dragic M, Mihajlovic K, Adzic M, Jakovljevic M, Kontic MZ, Mitrović N, Laketa D, Lavrnja I, Kipp M, Grković I, Nedeljkovic N. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro. ASN Neuro 2022; 14:17590914221102068. [PMID: 35593054 PMCID: PMC9125070 DOI: 10.1177/17590914221102068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) hydrolyzes extracellular ATP to ADP, which is the ligand for P2Y1,12,13 receptors. The present study describes the distribution of NTPDase2 in adult rat brains in physiological conditions, and in hippocampal neurodegeneration induced by trimethyltin (TMT). The study also describes the regulation of NTPDase2 by inflammatory mediators in primary astrocytes and oligodendroglial cell line OLN93. In physiological conditions, NTPDase2 protein was most abundant in the hippocampus, where it was found in fibrous astrocytes and synaptic endings in the synaptic-rich hippocampal layers. In TMT-induced neurodegeneration, NTPDase2-mRNA acutely decreased at 2-dpi and then gradually recovered to the control level at 7-dpi and 21-dpi. As determined by immunohistochemistry and double immunofluorescence, the decrease was most pronounced in the dentate gyrus (DG), where NTPDase2 withdrew from the synaptic boutons in the polymorphic layer of DG, whereas the recovery of the expression was most profound in the subgranular layer. Concerning the regulation of NTPDase2 gene expression, proinflammatory cytokines IL-6, IL-1β, TNFα, and IFNγ negatively regulated the expression of NTPDase2 in OLN93 cells, while did not altering the expression in primary astrocytes. Different cell-intrinsic stressors, such as depletion of intracellular energy store, oxidative stress, endoplasmic reticulum stress, and activation of protein kinase C, also massively disturbed the expression of the NTPDase2 gene. Together, our results suggest that the expression and the activity of NTPDase2 transiently cease in neurodegeneration and brain injury, most likely as a part of the acute adaptive response designed to promote cell defense, survival, and recovery.
Collapse
Affiliation(s)
- Milorad Dragic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Institute for Biological Research “Sinisa Stankovic”, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Mitrović
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research “Sinisa Stankovic”, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Markus Kipp
- Institute for Anatomy Rostock, University Medicine Rostock, Rostock, Germany
| | - Ivana Grković
- Vinča Institute of Nuclear Sciences, National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
5
|
Homoplastic single nucleotide polymorphisms contributed to phenotypic diversity in Mycobacterium tuberculosis. Sci Rep 2020; 10:8024. [PMID: 32415151 PMCID: PMC7229016 DOI: 10.1038/s41598-020-64895-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Homoplastic mutations are mutations independently occurring in different clades of an organism. The homoplastic changes may be a result of convergence evolution due to selective pressures. Reports on the analysis of homoplastic mutations in Mycobacterium tuberculosis have been limited. Here we characterized the distribution of homoplastic single nucleotide polymorphisms (SNPs) among genomes of 1,170 clinical M. tuberculosis isolates. They were present in all functional categories of genes, with pe/ppe gene family having the highest ratio of homoplastic SNPs compared to the total SNPs identified in the same functional category. Among the pe/ppe genes, the homoplastic SNPs were common in a relatively small number of homologous genes, including ppe18, the protein of which is a component of a promising candidate vaccine, M72/AS01E. The homoplastic SNPs in ppe18 were particularly common among M. tuberculosis Lineage 1 isolates, suggesting the need for caution in extrapolating the results of the vaccine trial to the population where L1 is endemic in Asia. As expected, homoplastic SNPs strongly associated with drug resistance. Most of these mutations are already well known. However, a number of novel mutations associated with streptomycin resistance were identified, which warrants further investigation. A SNP in the intergenic region upstream of Rv0079 (DATIN) was experimentally shown to increase transcriptional activity of the downstream gene, suggesting that intergenic homoplastic SNPs should have effects on the physiology of the bacterial cells. Our study highlights the potential of homoplastic mutations to produce phenotypic changes. Under selective pressure and during interaction with the host, homoplastic mutations may confer advantages to M. tuberculosis and deserve further characterization.
Collapse
|
6
|
Burnstock G. Introduction to Purinergic Signalling in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:1-12. [PMID: 32034706 DOI: 10.1007/978-3-030-30651-9_1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP is a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the brain. There is a widespread presence of both adenosine (P1) and P2 nucleotide receptors in the brain on both neurons and glial cells. Adenosine receptors play a major role in presynaptic neuromodulation, while P2X ionotropic receptors are involved in fast synaptic transmission and synaptic plasticity. P2Y G protein-coupled receptors are largely involved in presynaptic activities, as well as mediating long-term (trophic) signalling in cell proliferation, differentiation and death during development and regeneration. Both P1 and P2 receptors participate in neuron-glial interactions. Purinergic signalling is involved in control of cerebral vascular tone and remodelling and has been implicated in learning and memory, locomotor and feeding behaviour and sleep. There is increasing interest in the involvement of purinergic signalling in the pathophysiology of the CNS, including trauma, ischaemia, epilepsy, neurodegenerative diseases, neuropsychiatric and mood disorders, and cancer, including gliomas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, UK.
| |
Collapse
|
7
|
Aizawa S, Gu T, Kaminoda A, Fujioka R, Ojima F, Sakata I, Sakai T, Ogoshi M, Takahashi S, Takeuchi S. Adenosine stimulates neuromedin U mRNA expression in the rat pars tuberalis. Mol Cell Endocrinol 2019; 496:110518. [PMID: 31344393 DOI: 10.1016/j.mce.2019.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/20/2019] [Accepted: 07/21/2019] [Indexed: 11/26/2022]
Abstract
Neuromedin U (NMU) shows circadian expression in the rat pars tuberalis (PT), and is known to be suppressed by melatonin. Here we examined the involvement of adenosine in the regulation of Nmu expression. We found that the rat PT expressed adenosine receptor A2b and that an adenosine receptor agonist, NECA, stimulated Nmu expression in brain slice cultures. In vitro promoter assays revealed that NECA stimulated Nmu promoter activity via a cAMP response element (CRE) in the presence of adenosine receptor A2b. NECA also increased the levels of phosphorylated CRE-binding protein. These findings suggest that adenosine stimulates Nmu expression by activating the cAMP signaling pathway through adenosine receptor A2b in the rat PT. This is the first report to demonstrate that Nmu expression in the PT is regulated by adenosine, which acts as an intravital central metabolic signal, in addition to melatonin, which acts as an external photoperiodic environmental signal.
Collapse
Affiliation(s)
- Sayaka Aizawa
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan.
| | - Tingting Gu
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Arisa Kaminoda
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Ryuya Fujioka
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Fumiya Ojima
- Department of Natural Sciences and Biology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Takafumi Sakai
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakuraku, Saitama, 338-8570, Japan
| | - Maho Ogoshi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Sumio Takahashi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| | - Sakae Takeuchi
- Department of Biology, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530, Japan
| |
Collapse
|
8
|
P2X7 Receptor Signaling in Stress and Depression. Int J Mol Sci 2019; 20:ijms20112778. [PMID: 31174279 PMCID: PMC6600521 DOI: 10.3390/ijms20112778] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
Stress exposure is considered to be the main environmental cause associated with the development of depression. Due to the limitations of currently available antidepressants, a search for new pharmacological targets for treatment of depression is required. Recent studies suggest that adenosine triphosphate (ATP)-mediated signaling through the P2X7 receptor (P2X7R) might play a prominent role in regulating depression-related pathology, such as synaptic plasticity, neuronal degeneration, as well as changes in cognitive and behavioral functions. P2X7R is an ATP-gated cation channel localized in different cell types in the central nervous system (CNS), playing a crucial role in neuron-glia signaling. P2X7R may modulate the release of several neurotransmitters, including monoamines, nitric oxide (NO) and glutamate. Moreover, P2X7R stimulation in microglia modulates the innate immune response by activating the NLR family pyrin domain containing 3 (NLRP3) inflammasome, consistent with the neuroimmune hypothesis of MDD. Importantly, blockade of P2X7R leads to antidepressant-like effects in different animal models, which corroborates the findings that the gene encoding for the P2X7R is located in a susceptibility locus of relevance to depression in humans. This review will discuss recent findings linked to the P2X7R involvement in stress and MDD neuropathophysiology, with special emphasis on neurochemical, neuroimmune, and neuroplastic mechanisms.
Collapse
|
9
|
Larson TA, Winkler MC, Stafford J, Levis SC, O’Neill CE, Bachtell RK. Role of dopamine D 2-like receptors and their modulation by adenosine receptor stimulation in the reinstatement of methamphetamine seeking. Psychopharmacology (Berl) 2019; 236:1207-1218. [PMID: 30470862 PMCID: PMC6533169 DOI: 10.1007/s00213-018-5126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE AND OBJECTIVE Previous work has demonstrated that dopamine and adenosine receptors are involved in drug-seeking behaviors, yet the pharmacological interactions between these receptors in methamphetamine (MA) seeking are not well characterized. The present studies examined the role of the dopamine D2-like receptors in MA seeking and identified the interactive effects of adenosine receptor stimulation. METHODS Adult male Sprague-Dawley rats were trained to lever press for MA in daily 2-h self-administration sessions on a fixed-ratio 1 schedule for 10 consecutive days. After 1 day of abstinence, lever pressing was extinguished in six daily extinction sessions. Treatments were administered systemically prior to a 2-h reinstatement test session. RESULTS An increase in MA seeking was observed following the administration of the dopamine D2-like agonist, quinpirole, or the D3 receptor agonist, 7-OH-DPAT. Stimulation of D2 or D4 receptors was ineffective at inducing MA seeking. Quinpirole-induced MA seeking was inhibited by D3 receptor antagonism (SB-77011A or PG01037), an adenosine A1 agonist, CPA, and an adenosine A2A agonist, CGS 21680. MA seeking induced by a MA priming injection or D3 receptor stimulation was inhibited by a pretreatment with the adenosine A1 agonist, CPA, but not the adenosine A2A agonist, CGS 21680. CONCLUSIONS These results demonstrate the sufficiency of dopamine D3 receptors to reinstate MA seeking that is inhibited when combined with adenosine A1 receptor stimulation.
Collapse
|
10
|
Yamashiro K, Fujii Y, Maekawa S, Morita M. Multiple pathways for elevating extracellular adenosine in the rat hippocampal CA1 region characterized by adenosine sensor cells. J Neurochem 2016; 140:24-36. [PMID: 27896810 DOI: 10.1111/jnc.13888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine in the brain, which modulates various physiological and pathological processes, fluctuates in a complicated manner that reflects the circadian cycle, neuronal activity, metabolism, and disease states. The dynamics of extracellular adenosine in the brain are not fully understood, largely because of the lack of simple and reliable methods of measuring time-dependent changes in tissue adenosine distribution. This study describes the development of a biosensor, designated an adenosine sensor cell, expressing adenosine A1 receptor, and a genetically modified G protein. This biosensor was used to characterize extracellular adenosine elevation in brain tissue by measuring intracellular calcium elevation in response to adenosine. Placement of adenosine sensor cells below hippocampal slices successfully detected adenosine releases from these slices in response to neuronal activity and astrocyte swelling by conventional calcium imaging. Pharmacological analyses indicated that high-frequency electrical stimulation-induced post-synaptic adenosine release in a manner dependent on L-type calcium channels and calcium-induced calcium release. Adenosine release following treatments that cause astrocyte swelling is independent of calcium channels, but dependent on aquaporin 4, an astrocyte-specific water channel subtype. The ability of ectonucleotidase inhibitors to inhibit adenosine release following astrocyte swelling, but not electrical stimulation, suggests that the former reflects astrocytic ATP release and subsequent enzymatic breakdown, whereas the latter reflects direct adenosine release from neurons. These results suggest that distinct mechanisms are responsible for extracellular adenosine elevations by neurons and astrocytes, allowing exquisite regulation of extracellular adenosine in the brain.
Collapse
Affiliation(s)
- Kunihiko Yamashiro
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Yuki Fujii
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
11
|
Adzic M, Stevanovic I, Josipovic N, Laketa D, Lavrnja I, Bjelobaba IM, Bozic I, Jovanovic M, Milosevic M, Nedeljkovic N. Extracellular ATP induces graded reactive response of astrocytes and strengthens their antioxidative defense in vitro. J Neurosci Res 2016; 95:1053-1066. [PMID: 27714837 DOI: 10.1002/jnr.23950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1β release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marija Adzic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Centre for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Natasa Josipovic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Ivana M Bjelobaba
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Iva Bozic
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Marija Jovanovic
- Institute for Biological Research "Sinisa Stankovic,", University of Belgrade, Belgrade, Serbia
| | - Milena Milosevic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Centre for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Rodrigues RJ, Tomé AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci 2015; 9:148. [PMID: 25972780 PMCID: PMC4412015 DOI: 10.3389/fnins.2015.00148] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection.
Collapse
Affiliation(s)
- Ricardo J Rodrigues
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Institute for Interdisciplinary Research, University of Coimbra Coimbra, Portugal
| | - Angelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Faculty of Medicine, University of Coimbra Coimbra, Portugal
| |
Collapse
|
13
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
14
|
Role of adenosine receptor subtypes in methamphetamine reward and reinforcement. Neuropharmacology 2014; 89:265-73. [PMID: 25301277 DOI: 10.1016/j.neuropharm.2014.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/07/2014] [Accepted: 09/24/2014] [Indexed: 11/22/2022]
Abstract
The neurobiology of methamphetamine (MA) remains largely unknown despite its high abuse liability. The present series of studies explored the role of adenosine receptors on MA reward and reinforcement and identified alterations in the expression of adenosine receptors in dopamine terminal areas following MA administration in rats. We tested whether stimulating adenosine A1 or A2A receptor subtypes would influence MA-induced place preference or MA self-administration on fixed and progressive ratio schedules in male Sprague-Dawley rats. Stimulation of either adenosine A1 or A2A receptors significantly reduced the development of MA-induced place preference. Stimulating adenosine A1, but not A2A, receptors reduced MA self-administration responding. We next tested whether repeated experimenter-delivered MA administration would alter the expression of adenosine receptors in the striatal areas using immunoblotting. We observed no change in the expression of adenosine receptors. Lastly, rats were trained to self-administer MA or saline for 14 days and we detected changes in adenosine A1 and A2A receptor expression using immunoblotting. MA self-administration significantly increased adenosine A1 in the nucleus accumbens shell, caudate-putamen and prefrontal cortex. MA self-administration significantly decreased adenosine A2A receptor expression in the nucleus accumbens shell, but increased A2A receptor expression in the amygdala. These findings demonstrate that MA self-administration produces selective alterations in adenosine receptor expression in the nucleus accumbens shell and that stimulation of adenosine receptors reduces several behavioral indices of MA addiction. Together, these studies shed light onto the neurobiological alterations incurred through chronic MA use that may aid in the development of treatments for MA addiction.
Collapse
|
15
|
Introduction to Purinergic Signalling in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:1-12. [DOI: 10.1007/978-94-007-4719-7_1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Hobson BD, Merritt KE, Bachtell RK. Stimulation of adenosine receptors in the nucleus accumbens reverses the expression of cocaine sensitization and cross-sensitization to dopamine D2 receptors in rats. Neuropharmacology 2012; 63:1172-81. [PMID: 22749927 DOI: 10.1016/j.neuropharm.2012.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 12/16/2022]
Abstract
Adenosine receptors co-localize with dopamine receptors on medium spiny nucleus accumbens (NAc) neurons where they antagonize dopamine receptor activity. It remains unclear whether adenosine receptor stimulation in the NAc restores cocaine-induced enhancements in dopamine receptor sensitivity. The goal of these studies was to determine whether stimulating A(1) or A(2A) receptors in the NAc reduces the expression of cocaine sensitization. Rats were sensitized with 7 daily treatments of cocaine (15 mg/kg, i.p.). Following one-week withdrawal, the effects of intra-NAc microinjections of the adenosine kinase inhibitor (ABT-702), the adenosine deaminase inhibitor (deoxycoformycin; DCF), the specific A(1) receptor agonist (CPA) and the specific A(2A) receptor agonist (CGS 21680) were tested on the behavioral expression of cocaine sensitization. The results indicate that intra-NAc pretreatment of ABT-702 and DCF dose-dependently blocked the expression of cocaine sensitization while having no effects on acute cocaine sensitivity, suggesting that upregulation of endogenous adenosine in the accumbens is sufficient to non-selectively stimulate adenosine receptors and reverse the expression of cocaine sensitization. Intra-NAc treatment of CPA significantly inhibited the expression of cocaine sensitization, which was reversed by both A(1) and A(2A) receptor antagonism. Intra-NAc treatment of CGS 21680 also significantly inhibited the expression of cocaine sensitization, which was selectively reversed by A(2A), but not A(1), receptor antagonism. Finally, CGS 21680 also inhibited the expression of quinpirole cross-sensitization. Together, these findings suggest that adenosine receptor stimulation in the NAc is sufficient to reverse the behavioral expression of cocaine sensitization and that A(2A) receptors blunt cocaine-induced sensitization of postsynaptic D(2) receptors.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, USA
| | | | | |
Collapse
|
17
|
Durnin L, Dai Y, Aiba I, Shuttleworth CW, Yamboliev IA, Mutafova-Yambolieva VN. Release, neuronal effects and removal of extracellular β-nicotinamide adenine dinucleotide (β-NAD⁺) in the rat brain. Eur J Neurosci 2012; 35:423-35. [PMID: 22276961 DOI: 10.1111/j.1460-9568.2011.07957.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent evidence supports an emerging role of β-nicotinamide adenine dinucleotide (β-NAD(+) ) as a novel neurotransmitter and neuromodulator in the peripheral nervous system -β-NAD(+) is released in nerve-smooth muscle preparations and adrenal chromaffin cells in a manner characteristic of a neurotransmitter. It is currently unclear whether this holds true for the CNS. Using a small-chamber superfusion assay and high-sensitivity high-pressure liquid chromatography techniques, we demonstrate that high-K(+) stimulation of rat forebrain synaptosomes evokes overflow of β-NAD(+) , adenosine 5'-triphosphate, and their metabolites adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate, adenosine, ADP-ribose (ADPR) and cyclic ADPR. The high-K(+) -evoked overflow of β-NAD(+) is attenuated by cleavage of SNAP-25 with botulinum neurotoxin A, by inhibition of N-type voltage-dependent Ca(2+) channels with ω-conotoxin GVIA, and by inhibition of the proton gradient of synaptic vesicles with bafilomycin A1, suggesting that β-NAD(+) is likely released via vesicle exocytosis. Western analysis demonstrates that CD38, a multifunctional protein that metabolizes β-NAD(+) , is present on synaptosomal membranes and in the cytosol. Intact synaptosomes degrade β-NAD(+) . 1,N (6) -etheno-NAD, a fluorescent analog of β-NAD(+) , is taken by synaptosomes and this uptake is attenuated by authentic β-NAD(+) , but not by the connexin 43 inhibitor Gap 27. In cortical neurons local applications of β-NAD(+) cause rapid Ca(2+) transients, likely due to influx of extracellular Ca(2+) . Therefore, rat brain synaptosomes can actively release, degrade and uptake β-NAD(+) , and β-NAD(+) can stimulate postsynaptic neurons, all criteria needed for a substance to be considered a candidate neurotransmitter in the brain.
Collapse
Affiliation(s)
- Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lalo U, Verkhratsky A, Burnstock G, Pankratov Y. P2X receptor-mediated synaptic transmission. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Goswami R, Chakravartty S, Krishna J, Bose E, Das D, Chaudhury S, Mukherjee S, Saha P, Mukherjee U, Das P, Banerjee R. AC conductivity and dielectric analysis of graphite–clay nanocomposite. CANADIAN JOURNAL OF PHYSICS 2011; 89:1255-1260. [DOI: 10.1139/p11-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Affiliation(s)
- R. Goswami
- B.P. Poddar Institute of Management and Technology, 137, V.I.P. Road, Kolkata 700052, India
| | - S.C. Chakravartty
- B.P. Poddar Institute of Management and Technology, 137, V.I.P. Road, Kolkata 700052, India
| | - J.B.M. Krishna
- UGC-DAE CSR, Kolkata Center, Sector III/ LB – 8, Bidhan Nagar, Kolkata 700098, India
| | - E. Bose
- B.P. Poddar Institute of Management and Technology, 137, V.I.P. Road, Kolkata 700052, India
| | - D. Das
- UGC-DAE CSR, Kolkata Center, Sector III/ LB – 8, Bidhan Nagar, Kolkata 700098, India
| | - S.K. Chaudhury
- UGC-DAE CSR, Kolkata Center, Sector III/ LB – 8, Bidhan Nagar, Kolkata 700098, India
| | - S. Mukherjee
- B.P. Poddar Institute of Management and Technology, 137, V.I.P. Road, Kolkata 700052, India
| | - P. Saha
- B.P. Poddar Institute of Management and Technology, 137, V.I.P. Road, Kolkata 700052, India
| | - U. Mukherjee
- B.P. Poddar Institute of Management and Technology, 137, V.I.P. Road, Kolkata 700052, India
| | - P.K. Das
- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Jadavpur Kolkata 700032, India
| | - R. Banerjee
- Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Jadavpur Kolkata 700032, India
| |
Collapse
|
20
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
21
|
Ruby CL, Adams CA, Knight EJ, Nam HW, Choi DS. An essential role for adenosine signaling in alcohol abuse. ACTA ACUST UNITED AC 2011; 3:163-74. [PMID: 21054262 DOI: 10.2174/1874473711003030163] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 09/20/2010] [Indexed: 12/16/2022]
Abstract
In the central nervous system (CNS), adenosine plays an important role in regulating neuronal activity and modulates signaling by other neurotransmitters, including GABA, glutamate, and dopamine. Adenosine suppresses neurotransmitter release, reduces neuronal excitability, and regulates ion channel function through activation of four classes of G protein-coupled receptors, A(1), A(2A), A(2B), and A(3). Central adenosine are largely controlled by nucleoside transporters, which transport adenosine levels across the plasma membrane. Adenosine has been shown to modulate cortical glutamate signaling and ventral-tegmental dopaminergic signaling, which are involved in several aspects of alcohol use disorders. Acute ethanol elevates extracellular adenosine levels by selectively inhibiting the type 1 equilibrative nucleoside transporter, ENT1. Raised adenosine levels mediate the ataxic and sedative/hypnotic effects of ethanol through activation of A(1) receptors in the cerebellum, striatum, and cerebral cortex. Recently, we have shown that pharmacological inhibition or genetic deletion of ENT1 reduces the expression of excitatory amino acid transporter 2 (EAAT2), the primary regulator of extracellular glutamate, in astrocytes. These lines of evidence support a central role for adenosine-mediated glutamate signaling and the involvement of astrocytes in regulating ethanol intoxication and preference. In this paper, we discuss recent findings on the implication of adenosine signaling in alcohol use disorders.
Collapse
Affiliation(s)
- Christina L Ruby
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
22
|
Dale N, Frenguelli BG. Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 2010; 7:160-79. [PMID: 20190959 PMCID: PMC2769001 DOI: 10.2174/157015909789152146] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/15/2009] [Accepted: 05/01/2009] [Indexed: 12/17/2022] Open
Abstract
Eighty years ago Drury & Szent-Györgyi described the actions of adenosine, AMP (adenylic acid) and ATP (pyrophosphoric or diphosphoric ester of adenylic acid) on the mammalian cardiovascular system, skeletal muscle, intestinal and urinary systems. Since then considerable insight has been gleaned on the means by which these compounds act, not least of which in the distinction between the two broad classes of their respective receptors, with their many subtypes, and the ensuing diversity in cellular consequences their activation invokes. These myriad actions are of course predicated on the release of the purines into the extracellular milieu, but, surprisingly, there is still considerable ambiguity as to how this occurs in various physiological and pathophysiological conditions. In this review we summarise the release of ATP and adenosine during seizures and cerebral ischemia and discuss mechanisms by which the purines adenosine and ATP may be released from cells in the CNS under these conditions.
Collapse
Affiliation(s)
- Nicholas Dale
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
23
|
Milenkovic I, Rinke I, Witte M, Dietz B, Rübsamen R. P2 receptor-mediated signaling in spherical bushy cells of the mammalian cochlear nucleus. J Neurophysiol 2009; 102:1821-33. [PMID: 19571200 DOI: 10.1152/jn.00186.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purinoreceptors of the P2 family contribute strongly to signaling in the cochlea, but little is known about the effects of purinergic neurotransmission in the central auditory system. Here we examine P2 receptor-mediated signaling in the large spherical bushy cells (SBCs) of Mongolian gerbils around the onset of acoustically evoked signal processing (P9-P14). Brief adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) application evoked inward current, membrane depolarization, and somatic Ca2+ signals. Moreover, ATPgammaS changed the SBCs firing pattern from phasic to tonic, when the application was synchronized with depolarizing current injection. This bursting discharge activity was dependent on [Ca2+]i and Ca2+-dependent protein kinase (PKC) activity and is presumably caused by modulation of low-threshold K+ conductance. Activation of P2Y1 receptors could not evoke these changes per se, thus it was concluded that the involvement of P2X receptors seems to be necessary. Ca2+ imaging data showed that both P2X and P2Y1 receptors mediate Ca2+ signals in SBCs where P2Y1 receptors most likely activate the PLC-IP3 (inositol trisphosphate) pathway and release Ca2+ from internal stores. Immunohistochemical staining confirmed the expression of P2X2 and P2Y1 receptor proteins in SBCs, providing additional evidence for the involvement of both receptors in signal transduction in these neurons. Purinergic signaling might modulate excitability of SBCs and thereby contribute to regulation of synaptic strength. Functionally, the increase in firing rate mediated by P2 receptors could reduce temporal precision of the postsynaptic firing, e.g., phase locking, which has an immediate effect on signal processing related to sound localization. This might provide a mechanism for adaptation to the ambient acoustic environment.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Institute of Biology II, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Talstrasse 33, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
24
|
Abstract
An account is given of how a sensitive bioassay system for measurement of the neurotransmitter acetylcholine serendipitously led to the identification of adenosine triphosphate (ATP) released in vitro from active skeletal muscle. Subsequent application of the identification procedures to exercising human muscle in vivo, cardiac muscle cells in vitro, and human erythrocytes exposed to hypoxia gave rise to the general concept of ATP as a molecule that could influence cell function from the extracellular direction. Mechanisms of ATP release from cells in terms of “trigger” events such as mechanical distortion of the membrane, depolarization of the membrane, and exposure to hypoxia are discussed. Potential therapeutic uses of extracellular ATP in cancer therapy, radiation therapy, and a possible influence upon aging are discussed. Possible roles (distant and local) of extracellular ATP released from muscle during whole body exercise are discussed.
Collapse
|
25
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
26
|
Pankratov Y, Lalo U, Verkhratsky A, North RA. Vesicular release of ATP at central synapses. Pflugers Arch 2006; 452:589-97. [PMID: 16639550 DOI: 10.1007/s00424-006-0061-x] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 12/21/2022]
Abstract
Adenosine triphosphate (ATP) acts as a fast excitatory transmitter in several regions of the central nervous system (CNS) including the medial habenula, dorsal horn, locus coeruleus, hippocampus, and somatosensory cortex. Postsynaptic actions of ATP are mediated through an extended family of P2X receptors, widely expressed throughout the CNS. ATP is released via several pathways, including exocytosis from presynaptic terminals and diffusion through large transmembrane pores (e.g., hemichannels, P2X(7) receptors, or volume-sensitive chloride channels) expressed in astroglial membranes. In presynaptic terminals, ATP is accumulated and stored in the synaptic vesicles. In different presynaptic terminals, these vesicles may contain ATP only or ATP and another neurotransmitter [e.g., gamma-amino-butyric acid (GABA) or glutamate]; in the latter case, two transmitters can be coreleased. Here, we discuss the mechanisms of vesicular release of ATP in the CNS and present our own data, which indicate that in central neuronal terminals, ATP is primarily stored and released from distinct pool of vesicles; the release of ATP is not synchronized either with GABA or with glutamate.
Collapse
Affiliation(s)
- Yuri Pankratov
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
27
|
Ogata T, Chuai M, Morino T, Yamamoto H, Nakamura Y, Schubert P. Adenosine triphosphate inhibits cytokine release from lipopolysaccharide-activated microglia via P2y receptors. Brain Res 2003; 981:174-83. [PMID: 12885439 DOI: 10.1016/s0006-8993(03)03028-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microglial proliferation and activation have been reported to occur after several central nervous system injuries. In this study, we tested the effects of adenosine triphosphate (ATP) on cultured microglia obtained from the spinal cord of rat embryos. The amounts of tumor necrosis factor alpha (TNF-alpha), interleukin 1beta and interleukin 6 released from the microglia, which were stimulated by lipopolysaccharide (LPS; 100 ng/ml), were inhibited by the simultaneous addition of ATP in a dose dependent manner (10-300 microM). We examined the effect of several endogenous purines (ATP, ADP, CTP, UDP, UTP) and P(2)y receptor agonists (ADPbetaS and 2-methylthio-ATP) on LPS-induced TNF-alpha release. The rank order of inhibitory potency of endogenous purines on TNF-alpha release was: ATP>ADP>>UTP>UDP>CTP. The latter three were much less potent than the former two. The addition of 10 microM 2-methylthio-ATP showed a potency similar to 100 microM ATP. The addition of ADPbetaS, however, showed less effect. These endogenous purines and selective ATP receptor agonists showed a similar inhibitory effect in their rank order on LPS-induced interleukin 6 release. We demonstrate that ATP inhibits cytokine release from LPS-activated microglia via metabotropic receptors. The application of P(2)y receptor agonists might be considered as a pharmacological treatment of several pathological conditions of the spinal cord, including toxic immunoreactions.
Collapse
Affiliation(s)
- Tadanori Ogata
- Department of Orthopaedic Surgery, School of Medicine, Ehime University, Shigenobu, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Igarashi H, Yokofujita J, Murakami K, Okada A, Kuroda M. Microglial ecto-Ca(2+)-ATPase activity in a rat model of focal homologous blood clot embolic cerebral ischemia: an enzyme histochemical study. Brain Res Bull 2003; 60:93-104. [PMID: 12725897 DOI: 10.1016/s0361-9230(03)00028-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-ischemic changes in ecto-Ca(2+)-ATPase activity in microglia and the infarcted tissue were studied in a rat model of focal embolic cerebral ischemia using an enzyme histochemical method. Ecto-Ca(2+)-ATPase activity was observed in whole brains in non-operated and sham-operated control animals. In addition, this enzyme activity was determined to be localized in ramified microglia. At 30 min after ischemia, non-microglial ecto-Ca(2+)-ATPase activity in the infarcted tissue slightly decreased and continued to decrease thereafter. The ecto-Ca(2+)-ATPase activity in microglia did not appear changed at this time. The decrease of enzyme activity in the infarcted tissue made it much easier to clearly observe ecto-Ca(2+)-ATPase-positive microglia. The enzyme activity of microglia in the ischemic area began to decrease 2 or 4h after embolization and remarkably decreased, except in the perinuclear cytoplasm, apical parts of the processes, and several parts along the processes, 8h after ischemia. By 12h after onset of embolization, the enzyme activity of microglia and infarcted tissue had almost completely disappeared. Ecto-Ca(2+)-ATPase of microglia is likely to play an important role in the metabolism of extracellular nucleotides in the ischemic area immediately after the onset of embolization by means of ecto-enzymes. Thus, the findings of the present study suggest that microglia might serve to protect the infarcted tissue in the ischemic brain.
Collapse
Affiliation(s)
- Hiroaki Igarashi
- Department of Anatomy, Toho University School of Medicine, 5-21-16 Ohmorinishi, Ohta-ku, Tokyo 143-8540, Japan.
| | | | | | | | | |
Collapse
|
29
|
Kalinchuk AV, Urrila AS, Alanko L, Heiskanen S, Wigren HK, Suomela M, Stenberg D, Porkka-Heiskanen T. Local energy depletion in the basal forebrain increases sleep. Eur J Neurosci 2003; 17:863-9. [PMID: 12603276 DOI: 10.1046/j.1460-9568.2003.02532.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sleep saves energy, but can brain energy depletion induce sleep? We used 2,4-dinitrophenol (DNP), a molecule which prevents the synthesis of ATP, to induce local energy depletion in the basal forebrain of rats. Three-hour DNP infusions induced elevations in extracellular concentrations of lactate, pyruvate and adenosine, as well as increases in non-REM sleep during the following night. Sleep was not affected when DNP was administered to adjacent brain areas, although the metabolic changes were similar. The amount and the timing of the increase in non-REM sleep, as well as in the concentrations of lactate, pyruvate and adenosine with 0.5-1.0 mM DNP infusion, were comparable to those induced by 3 h of sleep deprivation. Here we show that energy depletion in localized brain areas can generate sleep. The energy depletion model of sleep induction could be applied to in vitro research into the cellular mechanisms of prolonged wakefulness.
Collapse
Affiliation(s)
- Anna V Kalinchuk
- Department of Physiology, Institute of Biomedicine, PO Box 63, 00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Forrester T. A Purine Signal for Functional Hyperemia in Skeletal and Cardiac Muscle. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J Neurosci 2002. [PMID: 12122056 DOI: 10.1523/jneurosci.22-14-05938.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
P2X(7) receptor subunits form homomeric ATP-gated, calcium-permeable cation channels. In this study, we used Western blots and immunocytochemistry to demonstrate that P2X(7) receptors are abundant on presynaptic terminals of mossy fiber synapses in the rat hippocampus. P2X(7)-immunoreactive protein was detected using a specific P2X(7) antibody in Western blots of protein isolated from whole hippocampus and from a subcellular fraction containing mossy fiber synaptosomes. P2X(7) immunoreactivity was colocalized with syntaxin 1A/B-immunoreactivity in mossy fiber terminals in the dentate hilus and stratum lucidum of CA3. Extracellular and whole-cell voltage-clamp recordings in CA3 revealed that bath application of the potent P2X(7) agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP) caused a long-lasting inhibition of neurotransmission at mossy fiber-CA3 synapses. Consistent with a presynaptic action at mossy fiber synapses, Bz-ATP had no significant effect on neurotransmission at associational-commissural synapses in CA3 but increased paired-pulse facilitation during depression of mossy fiber evoked currents. In addition, Bz-ATP had no postsynaptic effect on holding current or conductance of CA3 neurons. Bz-ATP-induced mossy fiber synaptic depression was blocked by the P2X(7) antagonist oxidized ATP but not by the P2X(1-3,5,6) antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid or the P2Y antagonist reactive blue 2. Finally, an antagonist of p38 MAP kinase activation [4-(4-fluorophenyl)2-(4-methylsulfinylphenyl)5-(4-pyridyl)imidazole] but not extracellular signal-regulated kinase 1/2 MAP kinase (2'-amino-3'-methoxyflavone) blocked the synaptic depression mediated by Bz-ATP, suggesting that this presynaptic inhibition was mediated by activation of p38 MAP kinase. The results of the present study demonstrate that activation of presynaptic P2X(7) receptors depresses mossy fiber-CA3 synaptic transmission through activation of p38 MAP kinase.
Collapse
|
32
|
Abstract
Adenosine is a modulator that has a pervasive and generally inhibitory effect on neuronal activity. Tonic activation of adenosine receptors by adenosine that is normally present in the extracellular space in brain tissue leads to inhibitory effects that appear to be mediated by both adenosine A1 and A2A receptors. Relief from this tonic inhibition by receptor antagonists such as caffeine accounts for the excitatory actions of these agents. Characterization of the effects of adenosine receptor agonists and antagonists has led to numerous hypotheses concerning the role of this nucleoside. Previous work has established a role for adenosine in a diverse array of neural phenomena, which include regulation of sleep and the level of arousal, neuroprotection, regulation of seizure susceptibility, locomotor effects, analgesia, mediation of the effects of ethanol, and chronic drug use.
Collapse
Affiliation(s)
- T V Dunwiddie
- Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|
33
|
Abstract
Adenosine triphosphate (ATP) has a fundamental intracellular role as the universal source of energy for all living cells. The demonstration of its release into the extracellular space and the identification and localisation of specific receptors on target cells have been essential in establishing, after considerable resistance, its extracellular physiological roles. It is now generally accepted that ATP is a genuine neurotransmitter both in the central and peripheral nervous systems. As such, there are numerous arguments which prove that the release of ATP by nerve terminals is by exocytosis. In some non-neuronal cells, however, recent evidence suggests that ATP release could also be carrier-mediated and would involve ATP-binding cassette proteins (ABC), an ubiquitous family of transport ATPases.
Collapse
Affiliation(s)
- P Bodin
- Autonomic Neuroscience Institute, Royal Free and University College School of Medicine, University College London, UK
| | | |
Collapse
|
34
|
Di Iorio P, Caciagli F, Giuliani P, Ballerini P, Ciccarelli R, Sperling O, Zoref-Shani E, Benowitz L, Traversa U, Bombi G, Florio T, Virgilio A, Andrew CM, Crocker CE, Werstiuk ES, Middlemiss PJ, Rathbone MP. Purine nucleosides protect injured neurons and stimulate neuronal regeneration by intracellular and membrane receptor-mediated mechanisms. Drug Dev Res 2001. [DOI: 10.1002/ddr.1128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Sugiyama T, Shinoe T, Ito Y, Misawa H, Tojima T, Ito E, Yoshioka T. A novel function of synapsin II in neurotransmitter release. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:133-43. [PMID: 11146115 DOI: 10.1016/s0169-328x(00)00231-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although synapsin has been localized to presynaptic structures, its function remains poorly understood. In the present study, we investigated the presynaptic function of synapsin II using a synaptic vesicle recycling process using synapsin-II-overexpressing NG108-15 cells. Western blot analysis with antibodies for synaptic-vesicle-associated protein indicated that the number of synaptic vesicles was approximately doubled in synapsin II transfectants as reported previously. In differentiated synapsin-II-overexpressing and control cells, the application of high potassium induced strong intracellular calcium elevation along neurites and varicosities after differentiation and a weak calcium rise in the cell bodies. The uptake and release of the fluorescent dye FM1-43 revealed that synaptic vesicle recycling in synapsin-II-transfected cells occurred with the same kinetics in the cell body and neuritic varicosities. Furthermore, the area labeled with FM1-43 fluorescence in the synapsin-II-transfected cells was approximately twice as much as in control cells after stimulation, and ATP released after synaptic vesicle fusion with the plasma membrane in synapsin-II-expressing cells was significantly elevated relative to controls. The number of synaptic vesicles paralleled the amount of transmitter released from the cells leading to the conclusion that the number of releasable synaptic vesicles were increased by synapsin II transfection into NG108-15 cells, suggesting that synapsin II may have a role in the regulation of synaptic vesicle number in presynapse-like structures in NG108-15 cells.
Collapse
Affiliation(s)
- T Sugiyama
- Department of Molecular Neurobiology, School of Human Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Bodas E, Aleu J, Pujol G, Martin-Satué M, Marsal J, Solsona C. ATP crossing the cell plasma membrane generates an ionic current in xenopus oocytes. J Biol Chem 2000; 275:20268-73. [PMID: 10764752 DOI: 10.1074/jbc.m000894200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The presence of ATP within cells is well established. However, ATP also operates as an intercellular signal via specific purinoceptors. Furthermore, nonsecretory cells can release ATP under certain experimental conditions. To measure ATP release and membrane currents from a single cell simultaneously, we used Xenopus oocytes. We simultaneously recorded membrane currents and luminescence. Here, we show that ATP release can be triggered in Xenopus oocytes by hyperpolarizing pulses. ATP release (3.2 +/- 0.3 pmol/oocyte) generated a slow inward current (2.3 +/- 0.1 microA). During hyperpolarizing pulses, the permeability for ATP(4-) was more than 4000 times higher than that for Cl(-). The sensitivity to GdCl(3) (0. 2 mm) of hyperpolarization-induced ionic current, ATP release and E-ATPase activity suggests their dependence on stretch-activated ion channels. The pharmacological profile of the current inhibition coincides with the inhibition of ecto-ATPase activity. This enzyme is highly conserved among species, and in humans, it has been cloned and characterized as CD39. The translation, in Xenopus oocytes, of human CD39 mRNA encoding enhances the ATP-supported current, indicating that CD39 is directly or indirectly responsible for the electrodiffusion of ATP.
Collapse
Affiliation(s)
- E Bodas
- Laboratory of Molecular Neurobiology, Department of Cell Biology and Pathology, Medical School, Hospital of Bellvitge, University of Barcelona, Campus of Bellvitge, Feixa Llarga s/n, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Abe K, Saito H. Effect of ATP on astrocyte stellation is switched from suppressive to stimulatory during development. Brain Res 1999; 850:150-7. [PMID: 10629759 DOI: 10.1016/s0006-8993(99)02121-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adenosine 5'-triphosphate (ATP) functions as a neurotransmitter or neuromodulator in the brain. To understand the role of ATP during brain development, we investigated the effects of ATP on morphology of cultured astrocytes obtained from the cerebral cortices of embryonic day 18 (E18) and postnatal day 2 (PN2) rats. In E18 astrocytes, ATP (10-1000 microM) alone did not affect astrocyte morphology, but significantly suppressed astrocyte stellation induced by the beta-adrenoceptor agonist isoproterenol or the membrane-permeable cyclic AMP analog dibutyryl cyclic AMP. The suppressive effect of ATP in embryonic astrocytes was selectively mimicked by P2U purinoceptor agonists. ATP had no effect on stellation induced by the protein kinase C (PKC) activator phorbol ester. It is probable that ATP, via P2U purinoceptors, suppresses cyclic AMP-dependent regulatory mechanism for stellation in embryonic astrocytes. On the other hand, PN2 astrocytes differentiated into stellate cells in response to ATP. The ATP-stimulated stellation in PN2 astrocytes was mimicked by adenosine, and blocked by P1 purinoceptor antagonists. It is probable that ATP is broken down into adenosine, which stimulates P1 purinoceptors, inducing stellation in postnatal astrocytes. These findings suggest that the effect of ATP on astrocyte stellation is switched from suppressive (P2U purinoceptor-mediated) to stimulatory (P1 purinoceptor-mediated) during late embryonic to neonatal stages. ATP may be a critical factor that determines timing of astrocyte differentiation during development.
Collapse
Affiliation(s)
- K Abe
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, University of Tokyo, Japan.
| | | |
Collapse
|
38
|
Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MA, Reed JK, Ciccarelli R, Di Iorio P, Caciagli F. Trophic effects of purines in neurons and glial cells. Prog Neurobiol 1999; 59:663-90. [PMID: 10845757 DOI: 10.1016/s0301-0082(99)00017-9] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In addition to their well known roles within cells, purine nucleotides such as adenosine 5' triphosphate (ATP) and guanosine 5' triphosphate (GTP), nucleosides such as adenosine and guanosine and bases, such as adenine and guanine and their metabolic products xanthine and hypoxanthine are released into the extracellular space where they act as intercellular signaling molecules. In the nervous system they mediate both immediate effects, such as neurotransmission, and trophic effects which induce changes in cell metabolism, structure and function and therefore have a longer time course. Some trophic effects of purines are mediated via purinergic cell surface receptors, whereas others require uptake of purines by the target cells. Purine nucleosides and nucleotides, especially guanosine, ATP and GTP stimulate incorporation of [3H]thymidine into DNA of astrocytes and microglia and concomitant mitosis in vitro. High concentrations of adenosine also induce apoptosis, through both activation of cell-surface A3 receptors and through a mechanism requiring uptake into the cells. Extracellular purines also stimulate the synthesis and release of protein trophic factors by astrocytes, including bFGF (basic fibroblast growth factor), nerve growth factor (NGF), neurotrophin-3, ciliary neurotrophic factor and S-100beta protein. In vivo infusion into brain of adenosine analogs stimulates reactive gliosis. Purine nucleosides and nucleotides also stimulate the differentiation and process outgrowth from various neurons including primary cultures of hippocampal neurons and pheochromocytoma cells. A tonic release of ATP from neurons, its hydrolysis by ecto-nucleotidases and subsequent re-uptake by axons appears crucial for normal axonal growth. Guanosine and GTP, through apparently different mechanisms, are also potent stimulators of axonal growth in vitro. In vivo the extracellular concentration of purines depends on a balance between the release of purines from cells and their re-uptake and extracellular metabolism. Purine nucleosides and nucleotides are released from neurons by exocytosis and from both neurons and glia by non-exocytotic mechanisms. Nucleosides are principally released through the equilibratory nucleoside transmembrane transporters whereas nucleotides may be transported through the ATP binding cassette family of proteins, including the multidrug resistance protein. The extracellular purine nucleotides are rapidly metabolized by ectonucleotidases. Adenosine is deaminated by adenosine deaminase (ADA) and guanosine is converted to guanine and deaminated by guanase. Nucleosides are also removed from the extracellular space into neurons and glia by transporter systems. Large quantities of purines, particularly guanosine and, to a lesser extent adenosine, are released extracellularly following ischemia or trauma. Thus purines are likely to exert trophic effects in vivo following trauma. The extracellular purine nucleotide GTP enhances the tonic release of adenine nucleotides, whereas the nucleoside guanosine stimulates tonic release of adenosine and its metabolic products. The trophic effects of guanosine and GTP may depend on this process. Guanosine is likely to be an important trophic effector in vivo because high concentrations remain extracellularly for up to a week after focal brain injury. Purine derivatives are now in clinical trials in humans as memory-enhancing agents in Alzheimer's disease. Two of these, propentofylline and AIT-082, are trophic effectors in animals, increasing production of neurotrophic factors in brain and spinal cord. Likely more clinical uses for purine derivatives will be found; purines interact at the level of signal-transduction pathways with other transmitters, for example, glutamate. They can beneficially modify the actions of these other transmitters.
Collapse
Affiliation(s)
- M P Rathbone
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kasai Y, Ito S, Kitamura N, Ohta T, Nakazato Y. On-line measurement of adenosine triphosphate and catecholamine released from adrenal chromaffin cells. Comp Biochem Physiol A Mol Integr Physiol 1999; 122:363-8. [PMID: 10356764 DOI: 10.1016/s1095-6433(99)00020-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine triphosphate (ATP) and catecholamine (CA) released from cultured porcine adrenal chromaffin cells were continuously measured with an ATP photometer (luciferin-luciferase method) and electrochemical detector, respectively. Application of acetylcholine (ACh, 0.1 mM) or high K+ (60 mM) caused increases of ATP and CA in perfused effluent with the same time course. The peak molar ratio of CA to ATP in the effluent was about 10 for ACh and high K+ stimulation. The high-performance liquid chromatographic (HPLC) analysis of adenine nucleotides in the collected effluent revealed that the relative amounts of ATP, ADP and AMP were almost the same throughout the period of stimulation, suggesting that ATP breakdown in the effluent was constant. Changes in the peak molar ratio of CA to ATP appearing in the effluent did not occur with repetitive high K+ or sustained Ba2+ stimulation (5 mM). The similarity between the time courses of ATP and CA appearing in the effluent suggests that releasable chromaffin granules have a constant molar ratio of CA to ATP. The on-line system developed is a simple and rapid method for examining ATP and CA secretion, simultaneously.
Collapse
Affiliation(s)
- Y Kasai
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
40
|
Pintor J, Díaz-Hernández M, Bustamante C, Gualix J, de Terreros FJ, Miras-Portugal MT. Presence of dinucleotide and ATP receptors in human cerebrocortical synaptic terminals. Eur J Pharmacol 1999; 366:159-65. [PMID: 10082196 DOI: 10.1016/s0014-2999(98)00922-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human cerebrocortical synaptic terminals elicited concentration-dependent Ca2+ transients after Ap5A (diadenosine pentaphosphate) and ATP stimulation, with EC50 values of 23.44 +/- 3.70 microM and 11.48 +/- 2.12 microM, respectively. The lack of cross-desensitisation and the selective antagonism by Ip5I (diinosine pentaphosphate), suggests the activation of a dinucleotide receptor by Ap5A, and a P2X receptor by ATP. Ap5A Ca2+ transients were partially abolished by omega-conotoxin GVI-A (53%), suggesting the participation of a N-type Ca2+ channel in the dinucleotide response. ATP effect on Ca2+ entry was abolished by nicardipine (44%) and by omega-conotoxin GVI-A (52%), suggesting the participation of L- and N-type Ca2+ channels. These data suggest that Ap5A and ATP activate dinucleotide and P2X receptors, respectively, in human brain synaptic terminals.
Collapse
Affiliation(s)
- J Pintor
- Departamento de Bioquímica, E.U. Optica, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Sperlágh B, András I, Vizi S. Effect of subtype-specific Ca(2+)-antagonists and Ca(2+)-free media on the field stimulation-evoked release of ATP and [3H]acetylcholine from rat habenula slices. Neurochem Res 1997; 22:967-75. [PMID: 9239752 DOI: 10.1023/a:1022470725132] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The involvement of different subtypes of voltage-sensitive (Ca2+ channels in the initiation of field stimulation-induced endogenous adenosine triphosphate (ATP) and [3H]acetylcholine ([3H]ACh) release was investigated in the superfused rat habenula slices. ATP, measured by the luciferin-luciferase assay, and [3H]ACH were released simultaneously from the tissue in response to low frequency electrical stimulation (2 Hz, 2.5 msec, 360 shocks). The N-type Ca(2+)-channel blocker omega-conotoxin GVIA (omega-CgTX, 0.01-1 microM) reduced the stimulation-evoked release of ATP and [3H]ACh in a dose-dependent manner. Similarly, the P-type Ca2+ channel antagonist omega-agatoxin IVA (omega-Aga IVA) (0.05 microM) and the inorganic Ca(2+)-channel blocker Ca2+ (0.2 mM) inhibited the outflow of both transmitters, while Ni2+ (0.1 mM) was without significant effect. A high correlation was observed between the percent inhibition of ATP release and percent inhibition of ACh release caused by the different Ca2+ antagonists. Long-term perfusion (i.e., 90 min) with Ca(2+)-free solution inhibited the evoked-release of ATP and [3H]ACh. In contrast, perfusion of slices with the same media for a shorter time (i.e., 20 min) did not reduce the release of [3H]ACh and ATP but even increased the evoked-release of ATP about fourfold. The breakdown of extracellular ATP was not blocked under low [Ca2+]0 condition, measured by the creatine phosphokinase assay and HPLC-UV technique. Application of extra- or intracellular Ca2+ chelators, and dipyridamole (2 microM), the nucleoside transporter inhibitor, did not reduce the excess release of ATP after short-term perfusion with Ca(2+)-free media. Tetrodotoxin (TTX, 1 microM), while inhibiting the majority of ATP release under normal conditions, was also unable to reduce release under low [Ca2+]0 conditions. In summary, we showed that both N- and P-type Ca2+ channels are involved in the initiation of electrical stimulation-evoked release of ATP and [3H]ACh in the rat habenula under normal extracellular calcium concentration. Under low [CA2+]0 conditions an additional release of ATP occurs, which is not associated with action potential propagation.
Collapse
Affiliation(s)
- B Sperlágh
- Department of Pharmacology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
42
|
Salgado AH, Prado MA, Moraes-Santos T, Romano-Silva MA, Gomez MV. Tityustoxin-induced release of ATP from rat brain cortical synaptosomes. Neurosci Lett 1997; 229:113-6. [PMID: 9223604 DOI: 10.1016/s0304-3940(97)00436-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tityustoxin, a scorpion toxin that alters the Na+ channel activity, induces release of ATP from rat brain cortical synaptosomes. The effect of tityustoxin is dependent on its concentration and incubation time. Continuously or cumulative release of ATP evoked by tityustoxin was calcium-dependent and interestingly only partially inhibited by tetrodotoxin. We suggest that tityustoxin mainly releases ATP from the vesicular pool but other pools may also be involved.
Collapse
Affiliation(s)
- A H Salgado
- Departamento de Fisiologia e Biofisica, Faculdade de Farmácia, -UFMG, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
43
|
Dunigan CD, Shamoo AE. Cation requirements of basal and ATP-regulated dopamine transport in rat pheochromocytoma cells. Neuroscience 1996; 74:275-82. [PMID: 8843092 DOI: 10.1016/0306-4522(96)00105-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transport of dopamine into presynaptic nerve terminals is the primary mechanism for the termination of dopaminergic neurotransmission. This transport process has recently been found to be composed of two components, a basal dopamine transport pathway which exists in the absence of extracellular ATP and an ATP-regulated moiety which comprises approximately 66% of the total transport system [Cao C. J. et al. (1990) Biochem. Pharmac. 39, R9-R14; Cao C. J. et al. (1989) Biochemistry 8, 207-220; Dunigan C. D. and Shamoo A. E. (1995) Neuroscience 65, 1-4; Eshleman A. et al. (1995) Life Sci. 56, 1613-1621]. Using a rat pheochromocytoma cell line and a Krebs bicarbonate buffering system, the present study examined the effect of several cations on both basal and ATP-regulated dopamine transport. In the absence of extracellular ATP, dopamine transport had an absolute dependence on the presence of Na+, but exhibited no requirement for Mg2+. Kinetically, the addition of 120 mM NaCl increased the Vmax of basal dopamine transport by approximately 150%. In contrast, the ATP-regulated dopamine transport pathway displayed a different sensitivity to Na+ and was completely dependent upon the presence of Mg2+. The addition of 1.2 mM MgSO4 increased the Vmax of transport in the presence of 0.7 mM extracellular ATP by 222%. Both basal and ATP-regulated transport were unaffected by the removal of either Ca2+ or K+ from the assay buffer. When the effects of ouabain, a potent inhibitor of Na+, K(+)-ATPase, were tested in the rat pheochromocytoma cell model, it was found that concentrations of ouabain as high as 1 mM were ineffective at inhibiting either the basal or ATP-regulated dopamine transport components. These results imply that the Na+ gradient supplied by Na+, K(+)-ATPase is not the sole provider of energy needed to drive either transport process. The ionic requirements of the basal and ATP-regulated dopamine transport pathways demonstrate the distinction between the two transport processes. In addition, the ionic dependency profile of the ATP-regulated moiety has provided some mechanistic insights into ATP-regulated catecholamine uptake, as the absolute Mg2+ requirement and the ineffectiveness of Ca2+ argues against the involvement of either purinergic receptors or a Ca(2+)-dependent, Mg(2+)-independent ectokinase in the ATP-regulated transport system.
Collapse
Affiliation(s)
- C D Dunigan
- Department of Biological Chemistry, University of Maryland at Baltimore, School of Medicine 21201, USA
| | | |
Collapse
|
44
|
Salgado AH, Gomez MV, Romano-Silva MA, Prado MA. Effect of vesamicol on the release of ATP from cortical synaptosomes. Neurosci Lett 1996; 204:37-40. [PMID: 8929972 DOI: 10.1016/0304-3940(96)12310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of the present experiments was to test whether vesamicol alters the evoked release of ATP from nerve terminals. Continuous or cumulative release of ATP evoked by 33 mM KC1 from rat cerebrocortical synaptosomes was largely calcium-dependent. Vesamicol interfered with release of ATP from synaptosomes depolarized with KCl (33 mM) in a dose-dependent and stereoselective way. The (-)-vesamicol decreased the output of ATP in doses much lower than (+)-vesamicol. The release of the major excitatory neurotransmitter glutamate from depolarized nerve endings was not impaired by vesamicol. We suggest that vesamicol may alter the release of ATP specifically, probably by interacting with a protein similar to the vesamicol receptor found in cholinergic synaptic vesicles.
Collapse
Affiliation(s)
- A H Salgado
- Departamento de Farmacologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
45
|
Kurjak M, Schusdziarra V, Allescher HD. Release of somatostatin-like immunoreactivity from enriched enteric nerve varicosities of rat ileum. Eur J Pharmacol 1995; 281:295-301. [PMID: 8521913 DOI: 10.1016/0014-2999(95)00261-i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synaptosomes were isolated from rat ileum by various steps of differential centrifugation. The peptide content for somatostatin-like immunoreactivity was used as marker for neuronal membranes. The enriched synaptosomal fraction (P2) showed a good enrichment of somatostatin content (4-fold) in comparison to the post-nuclear supernatant. The basal release of somatostatin-like immunoreactivity was 26 +/- 3 pg/mg tissue protein. KCl-evoked depolarization (65 mM) caused a significant increase of somatostatin-like immunoreactivity release (72 +/- 11 pg/mg, n = 12, P < 0.001) compared to basal release. In Ca(2+)-free medium the evoked release of somatostatin-like immunoreactivity was abolished. A substantial increase of somatostatin-like immunoreactivity release (52 +/- 7 pg/mg, n = 12, P < 0.05) was also observed in the presence of the Ca2+ ionophore A-23187. The cholinergic agonist carbachol elicited a dose-dependent release of somatostatin-like immunoreactivity (10(-7) M: 54 +/- 8 pg/mg, 10(-6) M: 63 +/- 6 pg/mg, 10(-5) M: 53 +/- 5 pg/mg, n = 12, P < 0.001), which was blocked by atropine (10(-6) M: 35 +/- 6 pg/mg, n = 12, P < 0.001), but not by hexamethonium. Other presynaptic modulating substances such as serotonin, the selective neurokinin-B agonist [beta Asp4,MePhe7]neurokinin B-(4-10), neurotensin, cholecystokinin-8, caerulein and pentagastrin had no stimulatory effect on release of somatostatin-like immunoreactivity. In summary, somatostatin-like immunoreactivity can be released from enteric synaptosomes by both depolarization with KCl and cholinergic stimulation via a muscarinic mechanism. The synaptosomes of intrinsic nerves offer an approach to study release of neuronal somatostatin on the subcellular level.
Collapse
Affiliation(s)
- M Kurjak
- Department of Internal Medicine II, Technical University of Munich, Germany
| | | | | |
Collapse
|
46
|
Pintor J, Miras-Portugal MT. A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat midbrain synaptosomes. Br J Pharmacol 1995; 115:895-902. [PMID: 7582517 PMCID: PMC1909007 DOI: 10.1111/j.1476-5381.1995.tb15894.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. Diadenosine polyphosphates, Ap4A and Ap5A, as well as ATP, alpha,beta-MeATP and ADP-beta-S, were able to elicit variable intrasynaptosomal Ca2+ increases in rat midbrain synaptic terminals. The origin of the Ca2+ increment was the extra synaptosomal space since the elimination of extracellular Ca2+ abolished the effect of all the agonists. 2. The P2-purinoceptor antagonist, suramin, did not affect the Ca(2+)-increase evoked by diadenosine polyphosphates but dramatically blocked the Ca2+ entry induced by ATP and its synthetic analogues. 3. The actions of Ap5A and ATP on the intrasynaptosomal Ca2+ increase did not cross-desensitize. 4. Concentration-response studies for diadenosine polyphosphates showed pD2 values of 54.5 +/- 4.2 microM and 55.6 +/- 3.8 microM for Ap4A and Ap5A, respectively. 5. The entry of calcium induced by diadenosine polyphosphates could be separated into two components. The first represented a selective voltage-independent Ca2+ entry; the second, a sustained phase which was voltage-dependent. 6. Studies on the voltage-dependent Ca(2+)-channels involved in the effects of the diadenosine polyphosphates, demonstrated that omega-conotoxin G-VI-A inhibited the sustained Ca(2+)-entry, suggesting the participation of an N-type Ca(2+)-channel. This toxin was unable to abolish the initial cation entry induced by Ap4A or Ap5A. omega-Agatoxin IV-A, tetrodotoxin, or nifedipine did not inhibit the effects of the diadenosine polyphosphates. 7. The effect of ATP on Ca(2+)-entry was abolished by nifedipine and omega-conotoxin G-VI-A, suggesting the participation of L- and N-type Ca(2+)-channels in the response to ATP. 8. These data suggest that Ap4A, Ap5A and ATP activate the same intracellular Ca2+ signal through different receptors and different mechanisms. Ap4A and Ap5A induce a more selective Ca2+-entry in a voltage-independent process. This is the first time that a selective action of diadenosine polyphosphate through receptors other than P1 and P2-purinoceptors has been described.
Collapse
Affiliation(s)
- J Pintor
- Departamento de Bioquimica, Fac. Veterinaria, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
47
|
Sperlágh B, Kittel A, Lajtha A, Vizi ES. ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzymecytochemical evidence. Neuroscience 1995; 66:915-20. [PMID: 7651618 DOI: 10.1016/0306-4522(94)00588-v] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The release of ATP and ADP, the putative central neurotransmitters, from the isolated habenula preparation was investigated in the rat, at rest and during electrical stimulation, using the luciferin-luciferase assay and the creatine phosphokinase assay. Electrical field stimulation (2 Hz, 360 pulses) released a considerable amount of ATP (2450 +/- 280 pmol/g wet tissue) from the tissue; inhibition of the voltage Na+ entry by tetrodotoxin (1 microM) reduced significantly the evoked release (by 66.25 +/- 6.65%), but not the resting release of ATP. Endogenous ADP also appeared in the effluent, but its amount differed during resting condition and after stimulation from that of ATP, suggesting that the majority of the released compound is ATP in response to stimulation. When ATP was added to the tissue, it readily decomposed to ADP and AMP (Km = 811.6 +/- 68.88 microM, vmax = 23.1 +/- 2.75 nmol/min per prep., measured by high-performance liquid chromatography combined with ultraviolet detection), indicating that the habenula contains ectoATPases. In addition, the inactivation of extracellular ATP by the ectoATPase enzyme was also visualized by electron microscopic enzyme cytochemistry. The ectoATPase enzyme was present on the membranes of the dendrites and nerve terminals and in the synapses of the habenula. Taking into account the fact that ATP is ubiquitous in excitable cells (storage) and the findings published by Edwards et al. in 1992 ("ATP receptor-mediated synaptic currents in the central nervous system", Nature, Vol. 359, pp. 144-147), our data provides evidence for the release by axonal stimulation and extracellular decomposition of ATP, all needed for an endogenous substance qualified as a transmitter.
Collapse
Affiliation(s)
- B Sperlágh
- Department of Pharmacology, Hungarian Academy of Sciences, Budapest
| | | | | | | |
Collapse
|
48
|
Chen ZP, Kratzmeier M, Levy A, McArdle CA, Poch A, Day A, Mukhopadhyay AK, Lightman SL. Evidence for a role of pituitary ATP receptors in the regulation of pituitary function. Proc Natl Acad Sci U S A 1995; 92:5219-23. [PMID: 7761477 PMCID: PMC41880 DOI: 10.1073/pnas.92.11.5219] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Despite a rapidly increasing acceptance for a role of ATP as an extracellular mediator in several biological systems, the present report shows that ATP may mediate physiological responses in pituitary cells. We have now been able to demonstrate a specific action of ATP receptors to mediate the release of luteinizing hormone from gonadotropes and have coupled them with further studies that clearly show that ATP can be exocytotically released from cultured rat pituitary cells. Both ATP and UTP (100 microM) caused a > 14-fold increase in the rate of luteinizing hormone release from superfused cells. Adenosine 5'-[alpha, beta-methylene]triphosphate and 5'-[beta,gamma-methylene triphosphate were ineffective, and 2-methylthio-ATP had only a modest stimulatory effect. Homologous and heterologous desensitization occurred with UTP and ATP, and these did not have additive effects. Thus, nucleotides can be effective stimulators of luteinizing hormone release through a single class of ATP receptor (P2U subtype). The calcium ionophore A23187 provoked release of a substantial amount of ATP from pituitary cells in a concentration- and Ca(2+)-dependent manner, which was desensitized by pretreatment with A23187. This implies a possible paracrine and/or autocrine mechanism by which nucleotides may exert their effects on pituitary cells. In conclusion, we have provided strong evidence for a novel role of extracellular nucleotides as mediators in pituitary--in particular, in gonadotrope--function.
Collapse
Affiliation(s)
- Z P Chen
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Catecholamine uptake into PC12 cells, in the presence and absence of ATP, was measured in a bicarbonate-buffered Krebs Ringer. ATP enhanced significantly the uptake in a dose-dependent manner with maximal uptake at 1-3 mM. ATP increased the Vmax of uptake by 3-5 fold for both dopamine and norepinephrine, without a significant change in the Km. ATP-stimulated amine uptake was temperature- and Na(+)-dependent and robust in bicarbonate, but not in HEPES buffer. The ability to enhance uptake was not observed with metabolites of ATP. GTP and UTP were equally effective to ATP in enhancing CA uptake. This uptake was less sensitive to uptake inhibitors in bicarbonate buffered media than in phosphate-buffered media, and more so in the presence of ATP. It is suggested that ATP is an allosteric modulator of the transporter and that a stable ATP analog, with ATP-like enhancement of dopamine uptake, may be an effective cocaine antagonist.
Collapse
Affiliation(s)
- A Eshleman
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | |
Collapse
|
50
|
Abstract
There is now wide acceptance that ATP and other nucleotides are ubiquitous extracellular chemical messengers. ATP and diadenosine polyphosphates can be released from synaptosomes. They act on a large and diverse family of P2 purinoceptors, four of which have been cloned. This receptor family can be divided into two distinct classes: ligand-gated ion channels for P2X receptors and G protein-coupled receptors for P2Y, P2U, P2T and P2D receptors. The P2Y, P2U and P2D receptors have a fairly wide tissue distribution, while the P2X receptor is mainly found in neurons and muscles and the P2T and P2Z receptors confined to platelets and immune cells, respectively. Inositol phosphate and calcium signalling appear to be the predominant mechanisms for transducing the G-protein linked P2 receptor signals. Multiple P2 receptors are expressed by neurons and glia in the CNS and also in neuroendocrine cells. ATP and other nucleotides may therefore have important roles not only as a neurotransmitter but also as a neuroendocrine regulatory messenger.
Collapse
Affiliation(s)
- Z P Chen
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, UK
| | | | | |
Collapse
|