1
|
Wu X, Yang Z, Zou J, Gao H, Shao Z, Li C, Lei P. Protein kinases in neurodegenerative diseases: current understandings and implications for drug discovery. Signal Transduct Target Ther 2025; 10:146. [PMID: 40328798 PMCID: PMC12056177 DOI: 10.1038/s41392-025-02179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025] Open
Abstract
Neurodegenerative diseases (e.g., Alzheimer's, Parkinson's, Huntington's disease, and Amyotrophic Lateral Sclerosis) are major health threats for the aging population and their prevalences continue to rise with the increasing of life expectancy. Although progress has been made, there is still a lack of effective cures to date, and an in-depth understanding of the molecular and cellular mechanisms of these neurodegenerative diseases is imperative for drug development. Protein phosphorylation, regulated by protein kinases and protein phosphatases, participates in most cellular events, whereas aberrant phosphorylation manifests as a main cause of diseases. As evidenced by pharmacological and pathological studies, protein kinases are proven to be promising therapeutic targets for various diseases, such as cancers, central nervous system disorders, and cardiovascular diseases. The mechanisms of protein phosphatases in pathophysiology have been extensively reviewed, but a systematic summary of the role of protein kinases in the nervous system is lacking. Here, we focus on the involvement of protein kinases in neurodegenerative diseases, by summarizing the current knowledge on the major kinases and related regulatory signal transduction pathways implicated in diseases. We further discuss the role and complexity of kinase-kinase networks in the pathogenesis of neurodegenerative diseases, illustrate the advances of clinical applications of protein kinase inhibitors or novel kinase-targeted therapeutic strategies (such as antisense oligonucleotides and gene therapy) for effective prevention and early intervention.
Collapse
Affiliation(s)
- Xiaolei Wu
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangzhong Yang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinjun Zou
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Digman A, Pajarillo E, Kim S, Ajayi I, Son DS, Aschner M, Lee E. Tamoxifen induces protection against manganese toxicity by REST upregulation via the ER-α/Wnt/β-catenin pathway in neuronal cells. J Biol Chem 2025; 301:108529. [PMID: 40280417 DOI: 10.1016/j.jbc.2025.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, with symptoms resembling Parkinson's disease (PD). The repressor element-1 silencing transcription factor (REST) has been shown to be neuroprotective in several neurological disorders, including PD, suggesting that identifying REST upregulation mechanisms is an important avenue for the development of novel therapeutics. 17β-estradiol (E2) activates the Wnt/β-catenin signaling, which is known to increase REST transcription. E2 and tamoxifen (TX), a selective estrogen receptor modulator, exerted protection against Mn toxicity. In this study, we tested if TX upregulates REST potentially via Wnt/β-catenin signaling in Cath.a-differentiated (CAD) neuronal cells using luciferase assay, qPCR, Western blot analysis, immunocytochemistry, mutagenesis, chromatin immunoprecipitation, and electrophoretic mobility shift assay. TX (1 μM) increased REST promoter activities and mRNA/protein levels and attenuated Mn (250 μM)-decreased REST transcription in parallel with TX's protective effects against Mn-induced toxicity, potentially via Wnt. TX activated Wnt/β-catenin signaling by preventing β-catenin degradation via inactivation of glycogen synthase kinase-3 beta, leading to increased β-catenin levels and its nuclear translocation and binding to T-cell factor/lymphoid enhancer binding factor sites on Wnt-responsive elements (WRE) of the REST promoter. Mutation of WRE abolished TX-induced REST promoter activity. TX-induced Wnt signaling activation was primarily via the estrogen receptor (ER)-α, although ER-β and G protein-coupled estrogen receptor 1 also mediated TX's action on REST transcription. These findings underscore the critical role of Wnt/β-catenin signaling in TX-induced REST transcription, affording protection mechanisms against Mn toxicity and neurological disorders associated with REST dysfunction.
Collapse
Affiliation(s)
- Alexis Digman
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
3
|
Penalva YCM, Paschkowsky S, Yang J, Recinto SJ, Cinkornpumin JK, Ruelas M, Xiao B, Nitu A, Kwon SY, Wu HYL, Munter HM, Michalski B, Fahnestock M, Pastor WA, Bennett DA, Munter LM. Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model. Cell Death Dis 2025; 16:280. [PMID: 40221411 PMCID: PMC11993729 DOI: 10.1038/s41419-025-07579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aβ peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBDL4 cleaves APP in HEK293T cells, leading to decreased total APP and Aβ. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4-/-) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and amyloidogenic processing when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNA-seq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active β-catenin due to decreased proteasomal clearance. Decreased β-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of β-catenin, contributing to cognitive impairment.
Collapse
Affiliation(s)
- Ylauna Christine Mégane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sherilyn Junelle Recinto
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
| | | | - Marina Ruelas
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Bin Xiao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Albert Nitu
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada
| | - Sin Young Kwon
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada
| | | | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada.
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
5
|
Huang H, Jiang NN, Lu GW, Xu F, Sun LL, Zhu J, Dong Z, Zhang ZJ, Liu S. CircMETTL9 targets CCAR2 to induce neuronal oxidative stress and apoptosis via mitochondria-mediated pathways following traumatic brain injury. Free Radic Biol Med 2025; 228:44-61. [PMID: 39709098 DOI: 10.1016/j.freeradbiomed.2024.12.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Traumatic brain injury (TBI) remains a principal factor in neurological disorders, often resulting in significant morbidity due to secondary neuroinflammatory and oxidative stress responses. While circular RNAs are recognized for their high expression levels in the nervous system and play crucial roles in various neurological processes, their specific contributions to the pathophysiology of TBI remain underexplored. In this study, the possible molecular mechanisms through which circMETTL9 modulated oxidative stress and neurological outcomes following TBI were investigated. In vitro model of oxidative stress utilizing SH-SY5Y cells revealed that circMETTL9 knockdown significantly attenuated H₂O₂-induced reactive oxygen species (ROS) production, reduced apoptosis, and preserved mitochondrial function. Additionally, CCAR2 has been identified as a circMETTL9-binding protein by mass spectrometry and RNA immunoprecipitation, with circMETTL9 positively regulating CCAR2 expression. Meanwhile, on the basis of silencing CCAR2, it was verified that the regulation of oxidative stress in SH-SY5Y cells by circMETTL9 was mediated by CCAR2. In vivo experiments using a TBI rat model further confirmed that CCAR2 knockdown alleviated central nervous system (CNS) injury, reduced oxidative stress and apoptosis, and protected mitochondrial integrity following TBI. These findings suggest a novel mechanism by which circMETTL9 targets CCAR2 via mitochondria-mediated Bax/Bcl-2/caspase-3 signaling to regulate apoptosis. CircMETTL9 may provide a viable therapeutic target for mitigating neurological dysfunction following TBI, offering new insights into potential interventions aimed at reducing secondary brain injury.
Collapse
Affiliation(s)
- Hao Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; School of Nursing and Rehabilitation, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Nan-Nan Jiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; School of Nursing and Rehabilitation, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Gui-Wei Lu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China; School of Nursing and Rehabilitation, Nantong University, Nantong, 226001, Jiangsu Province, China; Department of Rehabilitation Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu Province, China
| | - Feng Xu
- The Second People's Hospital of Nantong, Nantong, 226002, Jiangsu Province, China
| | - Lu-Lu Sun
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zhao Dong
- Nanjing Vocational Health College, Nanjing, 210038, Jiangsu Province, China.
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
6
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Kang M, Farrell JJ, Zhu C, Park H, Kang S, Seo EH, Choi KY, Jun GR, Won S, Gim J, Lee KH, Farrer LA. Whole-genome sequencing study in Koreans identifies novel loci for Alzheimer's disease. Alzheimers Dement 2024; 20:8246-8262. [PMID: 39428694 DOI: 10.1002/alz.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION The genetic basis of Alzheimer's disease (AD) in Koreans is poorly understood. METHODS We performed an AD genome-wide association study using whole-genome sequence data from 3540 Koreans (1583 AD cases, 1957 controls) and single-nucleotide polymorphism array data from 2978 Japanese (1336 AD cases, 1642 controls). Significant findings were evaluated by pathway enrichment and differential gene expression analysis in brain tissue from controls and AD cases with and without dementia prior to death. RESULTS We identified genome-wide significant associations with APOE in the total sample and ROCK2 (rs76484417, p = 2.71×10-8) among APOE ε4 non-carriers. A study-wide significant association was found with aggregated rare variants in MICALL1 (MICAL like 1) (p = 9.04×10-7). Several novel AD-associated genes, including ROCK2 and MICALL1, were differentially expressed in AD cases compared to controls (p < 3.33×10-3). ROCK2 was also differentially expressed between AD cases with and without dementia (p = 1.34×10-4). DISCUSSION Our results provide insight into genetic mechanisms leading to AD and cognitive resilience in East Asians. HIGHLIGHTS Novel genome-wide significant associations for AD identified with ROCK2 and MICALL1. ROCK2 and MICALL1 are differentially expressed between AD cases and controls in the brain. This is the largest whole-genome-sequence study of AD in an East Asian population.
Collapse
Affiliation(s)
- Moonil Kang
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Hyeonseul Park
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
| | - Sarang Kang
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Eun Hyun Seo
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Premedical Science, College of Medicine, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Kolab Inc., Dong-gu, Gwangju, Republic of Korea
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- RexSoft Corps, Gwanak-gu, Seoul, Republic of Korea
| | - Jungsoo Gim
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Well-ageing Medicare Institute, Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Integrative Biological Sciences, Chosun University, Gwangju, Republic of Korea
- Gwangju Alzheimer's and Related Dementia (GARD) Cohort Research Center, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Dong-gu, Gwangju, Republic of Korea
- Korea Brain Research Institute, Dong-gu, Daegu, Republic of Korea
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
- Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell D, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak-Vance MA, Haines JL. Genetic analysis of cognitive preservation in the midwestern Amish reveals a novel locus on chromosome 2. Alzheimers Dement 2024; 20:7453-7464. [PMID: 39376159 PMCID: PMC11567819 DOI: 10.1002/alz.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS A total of 12 single nucleotide polymorphisms (SNPs) demonstrated suggestive association (P ≤ 5 × 10-4) with cognitive preservation. Genetic linkage analyses identified > 100 significant (logarithm of the odds [LOD] ≥ 3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2. HIGHLIGHTS GWAS and linkage identified over 100 loci associated with cognitive preservation. One locus on Chromosome 2 retained significance over multiple analyses. Predicted TFBSs near rs1402906 regulate genes associated with neurocognition.
Collapse
Affiliation(s)
- Leighanne R Main
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristy L Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael L Cuccaro
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paula K Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeffery M Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel A Dorfsman
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura J Caywood
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael B Prough
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Larry D Adams
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jason E Clouse
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sharlene D Herington
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William K Scott
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A Pericak-Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan L Haines
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Zhang W, Liu T, Li J, Singh J, Chan A, Islam A, Petrache A, Peng Y, Harvey K, Ali AB. Decreased extrasynaptic δ-GABA A receptors in PNN-associated parvalbumin interneurons correlates with anxiety in APP and tau mouse models of Alzheimer's disease. Br J Pharmacol 2024; 181:3944-3975. [PMID: 38886118 DOI: 10.1111/bph.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with gradual memory loss and anxiety which affects ~75% of AD patients. This study investigated whether AD-associated anxiety correlated with modulation of extrasynaptic δ-subunit-containing GABAA receptors (δ-GABAARs) in experimental mouse models of AD. EXPERIMENTAL APPROACH We combined behavioural experimental paradigms to measure cognition performance, and anxiety with neuroanatomy and molecular biology, using familial knock-in (KI) mouse models of AD that harbour β-amyloid (Aβ) precursor protein App (AppNL-F) with or without humanized microtubule-associated protein tau (MAPT), age-matched to wild-type control mice at three different age windows. RESULTS AppNL-F KI and AppNL-F/MAPT AD models showed a similar magnitude of cognitive decline and elevated magnitude of anxiety correlated with neuroinflammatory hallmarks, including triggering receptor expressed on myeloid cells 2 (TREM2), reactive astrocytes and activated microglia consistent with accumulation of Aβ, tau and down-regulation of Wnt/β-catenin signalling compared to aged-matched WT controls. In both the CA1 region of the hippocampus and dentate gyrus, there was an age-dependent decline in the expression of δ-GABAARs selectively expressed in parvalbumin (PV)-expressing interneurons, encapsulated by perineuronal nets (PNNs) in the AD mouse models compared to WT mice. In vivo positive allosteric modulation of the δ-GABAARs, using a δ-selective-compound DS2, decreased the level of anxiety in the AD mouse models, which was correlated with reduced hallmarks of neuroinflammation, and 'normalisation' of the expression of δ-GABAARs. CONCLUSIONS Our data show that the δ-GABAARs could potentially be targeted for alleviating symptoms of anxiety, which would greatly improve the quality of life of AD individuals.
Collapse
|
10
|
Varshini MS, Reddy RA, Krishnamurthy PT, Wadhwani A. Harmony of Wnt pathway in Alzheimer's: Navigating the multidimensional progression from preclinical to clinical stages. Neurosci Biobehav Rev 2024; 165:105863. [PMID: 39179059 DOI: 10.1016/j.neubiorev.2024.105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
The Wnt pathway stands out as a pivotal signal transduction pathway, operating through two distinct modes of signaling: the canonical/β-catenin pathway and the non-canonical pathway. Among these, the canonical pathway assumes a paramount role in various physiological and pathological processes within the human body. Particularly in the brain, Wnt exhibits involvement in fundamental physiological events including neuronal differentiation/survival, axonogenesis, neural stem cell regulation, synaptic plasticity, and cell cycle modulation. Notably, scientific evidence underscores the critical role of the Wnt pathway in the pathogenesis of Alzheimer's disease (AD), correlating with its involvement in key pathological features such as tau tangles, Amyloid-β plaques, synaptic dysfunction, oxidative stress, mitochondrial dysfunction, cognitive impairments, and disruption of the blood-brain barrier integrity. This review aims to comprehensively explore the involvement and significance of Wnt signaling in Alzheimer's. Furthermore, it delves into recent advancements in research on Wnt signaling, spanning from preclinical investigations to clinical trials.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India
| | | | - Ashish Wadhwani
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, TN 643001, India; Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Vacoas 73304, Mauritius
| |
Collapse
|
11
|
Erkert L, Gamez-Belmonte R, Kabisch M, Schödel L, Patankar JV, Gonzalez-Acera M, Mahapatro M, Bao LL, Plattner C, Kühl AA, Shen J, Serneels L, De Strooper B, Neurath MF, Wirtz S, Becker C. Alzheimer's disease-related presenilins are key to intestinal epithelial cell function and gut immune homoeostasis. Gut 2024; 73:1618-1631. [PMID: 38684238 DOI: 10.1136/gutjnl-2023-331622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Li-Li Bao
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute@UCL, University College London, London, UK
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
12
|
Megane Penalva YC, Paschkowsky S, Yang J, Recinto SJ, Cinkorpumin J, Hernandez MR, Xiao B, Nitu A, Yee-Li Wu H, Munter HM, Michalski B, Fahnestock M, Pastor W, Bennett DA, Munter LM. Loss of the APP regulator RHBDL4 preserves memory in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.579698. [PMID: 38464180 PMCID: PMC10925189 DOI: 10.1101/2024.02.22.579698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Characteristic cerebral pathological changes of Alzheimer's disease (AD) such as glucose hypometabolism or the accumulation of cleavage products of the amyloid precursor protein (APP), known as Aβ peptides, lead to sustained endoplasmic reticulum (ER) stress and neurodegeneration. To preserve ER homeostasis, cells activate their unfolded protein response (UPR). The rhomboid-like-protease 4 (RHBDL4) is an enzyme that participates in the UPR by targeting proteins for proteasomal degradation. We demonstrated previously that RHBLD4 cleaves APP in HEK293T cells, leading to decreased total APP and Aβ. More recently, we showed that RHBDL4 processes APP in mouse primary mixed cortical cultures as well. Here, we aim to examine the physiological relevance of RHBDL4 in the brain. We first found that brain samples from AD patients and an AD mouse model (APPtg) showed increased RHBDL4 mRNA and protein expression. To determine the effects of RHBDL4's absence on APP physiology in vivo, we crossed APPtg mice to a RHBDL4 knockout (R4-/-) model. RHBDL4 deficiency in APPtg mice led to increased total cerebral APP and amyloidogenic processing when compared to APPtg controls. Contrary to expectations, as assessed by cognitive tests, RHBDL4 absence rescued cognition in 5-month-old female APPtg mice. Informed by unbiased RNAseq data, we demonstrated in vitro and in vivo that RHBDL4 absence leads to greater levels of active β-catenin due to decreased proteasomal clearance. Decreased β-catenin activity is known to underlie cognitive defects in APPtg mice and AD. Our work suggests that RHBDL4's increased expression in AD, in addition to regulating APP levels, leads to aberrant degradation of β-catenin, contributing to cognitive impairment.
Collapse
Affiliation(s)
- Ylauna Christine Megane Penalva
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Sandra Paschkowsky
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sherilyn Junelle Recinto
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | | | - Marina Ruelas Hernandez
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Bin Xiao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Albert Nitu
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada H3A 2B4
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| | - Helen Yee-Li Wu
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
| | - Hans Markus Munter
- Department of Human Genetics, McGill University, Montreal, QC, Canada H3A 0C7
| | - Bernadeta Michalski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - William Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 0B1
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lisa Marie Munter
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada H3G 0B1
- Cell Information Systems group, Bellini Life Sciences Complex, McGill University, Montreal, QC, Canada H3G 0B1
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montréal H3G 0B1, Québec, Canada
| |
Collapse
|
13
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
14
|
Eccles MK, Main N, Carlessi R, Armstrong AM, Sabale M, Roberts-Mok B, Tirnitz-Parker JEE, Agostino M, Groth D, Fraser PE, Verdile G. Quantitative comparison of presenilin protein expression reveals greater activity of PS2-γ-secretase. FASEB J 2024; 38:e23396. [PMID: 38156414 DOI: 10.1096/fj.202300954rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-β. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.
Collapse
Affiliation(s)
- Melissa K Eccles
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Nathan Main
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Rodrigo Carlessi
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Ayeisha Milligan Armstrong
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Miheer Sabale
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Brigid Roberts-Mok
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Mark Agostino
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - David Groth
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Giuseppe Verdile
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Bentley, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
15
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell MD, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak-Vance MA, Haines JL. Genetic analysis of cognitive preservation in the midwestern Amish reveals a novel locus on chromosome 2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.13.23299932. [PMID: 38168325 PMCID: PMC10760262 DOI: 10.1101/2023.12.13.23299932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Alzheimer disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS 12 SNPs demonstrated suggestive association (P≤5×10-4) with cognitive preservation. Genetic linkage analyses identified >100 significant (LOD≥3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2.
Collapse
Affiliation(s)
- Leighanne R Main
- Departments of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Kristy L Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Michael L Cuccaro
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Paula K Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, 11100 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| | - Jeffery M Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - M Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
| | - Daniel A Dorfsman
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Laura J Caywood
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Michael B Prough
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Larry D Adams
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Jason E Clouse
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Sharlene D Herington
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - William K Scott
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Margaret A Pericak-Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, 1501 NW 10th Ave, Miami, FL, USA, 33136
| | - Jonathan L Haines
- Departments of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA, 44106
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44016
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, USA, 44106
| |
Collapse
|
16
|
Shah A, Mir PA, Adnan M, Patel M, Maqbool M, Mir RH, Masoodi MH. Synthetic and Natural Bioactive Molecules in Balancing the Crosstalk among Common Signaling Pathways in Alzheimer's Disease: Understanding the Neurotoxic Mechanisms for Therapeutic Intervention. ACS OMEGA 2023; 8:39964-39983. [PMID: 37929080 PMCID: PMC10620788 DOI: 10.1021/acsomega.3c05662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The structure and function of the brain greatly rely on different signaling pathways. The wide variety of biological processes, including neurogenesis, axonal remodeling, the development and maintenance of pre- and postsynaptic terminals, and excitatory synaptic transmission, depends on combined actions of these molecular pathways. From that point of view, it is important to investigate signaling pathways and their crosstalk in order to better understand the formation of toxic proteins during neurodegeneration. With recent discoveries, it is established that the modulation of several pathological events in Alzheimer's disease (AD) due to the mammalian target of rapamycin (mTOR), Wnt signaling, 5'-adenosine monophosphate activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), and sirtuin 1 (Sirt1, silent mating-type information regulator 2 homologue 1) are central to the key findings. These include decreased amyloid formation and inflammation, mitochondrial dynamics control, and enhanced neural stability. This review intends to emphasize the importance of these signaling pathways, which collectively determine the fate of neurons in AD in several ways. This review will also focus on the role of novel synthetic and natural bioactive molecules in balancing the intricate crosstalk among different pathways in order to prolong the longevity of AD patients.
Collapse
Affiliation(s)
- Abdul
Jalil Shah
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Prince Ahad Mir
- Khalsa
College of Pharmacy, G.T. Road, Amritsar 143002, Punjab, India
| | - Mohd Adnan
- Department
of Biology, College of Science, University
of Ha’il, Ha’il 81451, Saudi Arabia
| | - Mitesh Patel
- Research
and Development Cell, Department of Biotechnology, Parul Institute
of Applied Sciences, Parul University, Vadodara 391760, India
| | - Mudasir Maqbool
- Pharmacy
Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical
Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| |
Collapse
|
17
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
18
|
Kostes WW, Brafman DA. The Multifaceted Role of WNT Signaling in Alzheimer's Disease Onset and Age-Related Progression. Cells 2023; 12:1204. [PMID: 37190113 PMCID: PMC10136584 DOI: 10.3390/cells12081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
19
|
Kornsuthisopon C, Tompkins KA, Osathanon T. Tideglusib enhances odontogenic differentiation in human dental pulp stem cells in vitro. Int Endod J 2023; 56:369-384. [PMID: 36458950 DOI: 10.1111/iej.13877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
AIM Tideglusib is a small molecule agonist of the canonical Wnt pathway. The present study investigated the influence of Tideglusib on human dental pulp stem cell (hDPSC) proliferation, apoptosis, migration and odonto/osteogenic differentiation. METHODOLOGY hDPSCs were treated with 50, 100 nM or 200 nM Tideglusib. β-catenin accumulation was detected by immunofluorescence staining. Colony-forming unit ability was assessed by staining with Coomassie blue. Cell cycle progression and cell apoptosis were investigated using flow cytometry. Cell migration was examined using an in vitro wound-healing assay. Osteogenic differentiation was examined using alkaline phosphatase (ALP) staining, alizarin red S staining and osteogenic-related gene expression. The gene expression profile was examined using a high-throughput RNA sequencing technique. All experiments were repeated using cells derived from at least four different donors (n = 4). The Mann-Whitney U-test was used to identify significant differences between two independent group comparisons. For three or more group comparisons, statistical differences were assessed using the Kruskal-Wallis test followed by pairwise comparison. The significance level was set at 5% (p < .05). RESULTS Tideglusib activated the Wnt signalling pathway in hDPSCs as demonstrated by an increase in cytoplasmic β-catenin accumulation and nuclear translocation. Tideglusib did not affect hDPSC proliferation, cell cycle progression, cell apoptosis or cell migration. In contrast, 50 and 100 nM Tideglusib significantly enhanced mineralization and osteogenic marker gene expression (RUNX2, ALP, BMP2 and DSPP; p < .05). CONCLUSIONS Tideglusib enhanced the odonto/osteogenic differentiation of hDPSCs. Therefore, incorporating this bioactive molecule in a pulp-capping material could be a promising strategy to promote dentine repair.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
21
|
Lin CH, Hsieh YS, Sun YC, Huang WH, Chen SL, Weng ZK, Lin TH, Wu YR, Chang KH, Huang HJ, Lee GC, Hsieh-Li HM, Lee-Chen GJ. Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity. Biomol Ther (Seoul) 2023; 31:127-138. [PMID: 35790892 PMCID: PMC9810448 DOI: 10.4062/biomolther.2022.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogen-activated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Shao Hsieh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Wun-Han Huang
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shu-Ling Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Zheng-Kui Weng
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
| | - Guan-Chiun Lee
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Hsiu Mei Hsieh-Li
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan,Corresponding Authors E-mail: (Lee GC), (Hsieh-Li HM), (Lee-Chen GJ), Tel:+886-2-7749-6351 (Lee GC), +886-2-7749-6354 (Hsieh-Li HM), +886-2-7749-6359 (Lee-Chen GJ), Fax:+886-2-2931-2904 (Lee GC), +886-2-2931-2904 (Hsieh-Li HM), +886-2-2931-2904 (Lee-Chen GJ)
| |
Collapse
|
22
|
Predes D, Maia LA, Matias I, Araujo HPM, Soares C, Barros-Aragão FGQ, Oliveira LFS, Reis RR, Amado NG, Simas ABC, Mendes FA, Gomes FCA, Figueiredo CP, Abreu JG. The Flavonol Quercitrin Hinders GSK3 Activity and Potentiates the Wnt/β-Catenin Signaling Pathway. Int J Mol Sci 2022; 23:ijms232012078. [PMID: 36292931 PMCID: PMC9602613 DOI: 10.3390/ijms232012078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
The Wnt/β-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer’s disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3β S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-β oligomers (AβO) in mice. Finally, quercitrin rescues AβO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/β-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments.
Collapse
Affiliation(s)
- Danilo Predes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lorena A. Maia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Carolina Soares
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Luiz F. S. Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Renata R. Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Nathalia G. Amado
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alessandro B. C. Simas
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Fabio A. Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Flávia C. A. Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Jose G. Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-21-3938-6486
| |
Collapse
|
23
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
24
|
Contreras W, Wiesehöfer C, Schreier D, Leinung N, Peche P, Wennemuth G, Gentzel M, Schröder B, Mentrup T. C11orf94/Frey is a key regulator for male fertility by controlling Izumo1 complex assembly. SCIENCE ADVANCES 2022; 8:eabo6049. [PMID: 35960805 PMCID: PMC9374335 DOI: 10.1126/sciadv.abo6049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
Although gamete fusion represents the central event in sexual reproduction, the required protein machinery is poorly defined. In sperm cells, Izumo1 and several Izumo1-associated proteins play an essential role for this process. However, so far, the mechanisms underlying transport and maturation of Izumo1 and its incorporation into high molecular weight complexes are incompletely defined. Here, we provide a detailed characterization of the C11orf94 protein, which we rename Frey, which provides a platform for the assembly of Izumo1 complexes. By retaining Izumo1 in the endoplasmic reticulum, Frey facilitates its incorporation into high molecular weight complexes. To fulfill its function, the unstable Frey protein is stabilized within the catalytic center of an intramembrane protease. Loss of Frey results in reduced assembly of Izumo1 complexes and male infertility due to impaired gamete fusion. Collectively, these findings provide mechanistic insights into the early biogenesis and functional relevance of Izumo1 complexes.
Collapse
Affiliation(s)
- Whendy Contreras
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Caroline Wiesehöfer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dora Schreier
- CRISPR-Cas9 Facility, Experimental Center of the Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Leinung
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Petra Peche
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Marc Gentzel
- Core Facility Molecular Analysis–Mass Spectrometry, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
El-Safty H, Ismail A, Abdelsalam RM, El-Sahar AE, Saad MA. Dapagliflozin diminishes memory and cognition impairment in Streptozotocin induced diabetes through its effect on Wnt/β-Catenin and CREB pathway. Brain Res Bull 2022; 181:109-120. [PMID: 35093471 DOI: 10.1016/j.brainresbull.2022.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Diabetic neuropathy is a chronic condition that affects a significant number of individuals with diabetes. Streptozotocin injection intraperitoneally to rodents produces pancreatic islet β-cell destruction causing hyperglycemia, which affect the brain leading to memory and cognition impairment. Dapagliflozin may be able to reverse beta-cell injury and alleviate this impairment. This effect may be via neuroprotective effect or possible involvement of the antioxidant, and anti-apoptotic properties. Forty rats were divided into four groups as follows: The normal control group, STZ-induced diabetes group, STZ-induced diabetic rats followed by treatment with oral dapagliflozin group and normal rats treated with oral dapagliflozin. Behavioral tests (Object location memory task and Morris water maze) were performed. Serum biomarkers (blood glucose and insulin) were measured and then the homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. In the hippocampus the followings were determined; calmodulin, ca-calmodulin kinase Ⅳ (CaMKIV), protein kinase A (PKA) and cAMP-responsive element-binding protein to determine the transcription factor CREB and its signaling pathway also Wnt signaling pathway and related parameters (WnT, B-catenin, lymphoid enhancer binding factor LEF, glycogen synthase kinase 3β). Moreover, nuclear receptor-related protein-1, acetylcholine and its hydrolyzing enzyme acetylcholine esterase, oxidative stress parameter malondialdehyde (MDA) and apoptotic parameter caspase-3 were determined. STZ was able to cause destruction to pancreatic β-cells which was reflected on glucose levels causing diabetes. Diabetic neuropathy was clear in the rats performing the behavioral tests. Memory and cognition parameters in the hippocampus were negatively affected. Oxidative stress and apoptotic parameter were elevated while the electrical activity was declined. Dapagliflozin was able to reverse the previously mentioned parameters and behavior. Thus, to say dapagliflozin significantly showed neuroprotective action along with antioxidant, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hala El-Safty
- National Institute of Diabetes and Endocrinology, Cairo, Egypt.
| | - Ashraf Ismail
- Research and Training Center, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| |
Collapse
|
26
|
Jiang L, Qin Y, Zhao YW, Zeng Q, Pan HX, Liu ZH, Sun QY, Xu Q, Tan JQ, Yan XX, Li JC, Tang BS, Guo JF. PSEN1 G417S mutation in a Chinese pedigree causing early-onset parkinsonism with cognitive impairment. Neurobiol Aging 2022; 115:70-76. [DOI: 10.1016/j.neurobiolaging.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
27
|
Jha NK, Chen WC, Kumar S, Dubey R, Tsai LW, Kar R, Jha SK, Gupta PK, Sharma A, Gundamaraju R, Pant K, Mani S, Singh SK, Maccioni RB, Datta T, Singh SK, Gupta G, Prasher P, Dua K, Dey A, Sharma C, Mughal YH, Ruokolainen J, Kesari KK, Ojha S. Molecular mechanisms of developmental pathways in neurological disorders: a pharmacological and therapeutic review. Open Biol 2022; 12:210289. [PMID: 35291879 PMCID: PMC8924757 DOI: 10.1098/rsob.210289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Wei-Chih Chen
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rajni Dubey
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 110, Taiwan
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era deemed to be University Dehradun Uttarakhand, 248002 Dehradun, India
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago de Chile, Chile
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, 302017 Jagatpura, Jaipur, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
- Department of Applied Physics, School of Science, and
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Yasir Hayat Mughal
- Department of Health Administration, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | | | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, and
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
Wen J, Li X, Zhao QX, Yang XF, Wu ML, Yan Q, Chang J, Wang H, Jin X, Su X, Deng K, Chen L, Wang JH. Pharmacological suppression of glycogen synthase kinase-3 reactivates HIV-1 from latency via activating Wnt/β-catenin/TCF1 axis in CD4 + T cells. Emerg Microbes Infect 2022; 11:391-405. [PMID: 34985411 PMCID: PMC8812804 DOI: 10.1080/22221751.2022.2026198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACTHIV-1 latency posts a major obstacle for HIV-1 eradication. Currently, no desirable latency reversing agents (LRAs) have been implicated in the "Shock and Kill" strategy to mobilize the latently infected cells to be susceptible for clearance by immune responses. Identification of key cellular pathways that modulate HIV-1 latency helps to develop efficient LRAs. In this study, we demonstrate that the Wnt downstream β-catenin/TCF1 pathway is a crucial modulator for HIV-1 latency. The pharmacological activation of the β-catenin/TCF1 pathway with glycogen synthase kinase-3 (GSK3) inhibitors promoted transcription of HIV-1 proviral DNA and reactivated latency in CD4+ T cells; the GSK3 kinase inhibitor 6-bromoindirubin-3'-oxime (6-BIO)-induced HIV-1 reactivation was subsequently confirmed in resting CD4+ T cells from cART-suppressed patients and SIV-infected rhesus macaques. These findings advance our understanding of the mechanisms responsible for viral latency, and provide the potent LRA that can be further used in conjunction of immunotherapies to eradicate viral reservoirs.
Collapse
Affiliation(s)
- Jing Wen
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qing-Xia Zhao
- Department of Infection, Zhengzhou Sixth People's Hospital, Zhengzhou, People's Republic of China
| | - Xiao-Fan Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Li Wu
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Qihong Yan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Junbiao Chang
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Haikun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xia Jin
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jian-Hua Wang
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, Mateos-Díaz JC, Sánchez-González VJ, Canales-Aguirre AA. Presenilin mutations and their impact on neuronal differentiation in Alzheimer's disease. Neural Regen Res 2022; 17:31-37. [PMID: 34100423 PMCID: PMC8451546 DOI: 10.4103/1673-5374.313016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The presenilin genes (PSEN1 and PSEN2) are mainly responsible for causing early-onset familial Alzheimer's disease, harboring ~300 causative mutations, and representing ~90% of all mutations associated with a very aggressive disease form. Presenilin 1 is the catalytic core of the γ-secretase complex that conducts the intramembranous proteolytic excision of multiple transmembrane proteins like the amyloid precursor protein, Notch-1, N- and E-cadherin, LRP, Syndecan, Delta, Jagged, CD44, ErbB4, and Nectin1a. Presenilin 1 plays an essential role in neural progenitor maintenance, neurogenesis, neurite outgrowth, synaptic function, neuronal function, myelination, and plasticity. Therefore, an imbalance caused by mutations in presenilin 1/γ-secretase might cause aberrant signaling, synaptic dysfunction, memory impairment, and increased Aβ42/Aβ40 ratio, contributing to neurodegeneration during the initial stages of Alzheimer's disease pathogenesis. This review focuses on the neuronal differentiation dysregulation mediated by PSEN1 mutations in Alzheimer's disease. Furthermore, we emphasize the importance of Alzheimer's disease-induced pluripotent stem cells models in analyzing PSEN1 mutations implication over the early stages of the Alzheimer's disease pathogenesis throughout neuronal differentiation impairment.
Collapse
Affiliation(s)
- Mercedes A Hernandez-Sapiens
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Edwin E Reza-Zaldívar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Ulises Gómez-Pinedo
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Jorge Matias-Guiu
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Madrid, España
| | - Ricardo R Cevallos
- Biochemistry and Molecular Genetics Department, University of Alabama, Birmingham, Alabama
| | - Juan C Mateos-Díaz
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
30
|
Shim HS, Horner JW, Wu CJ, Li J, Lan ZD, Jiang S, Xu X, Hsu WH, Zal T, Flores II, Deng P, Lin YT, Tsai LH, Wang YA, DePinho RA. Telomerase Reverse Transcriptase Preserves Neuron Survival and Cognition in Alzheimer's Disease Models. NATURE AGING 2021; 1:1162-1174. [PMID: 35036927 PMCID: PMC8759755 DOI: 10.1038/s43587-021-00146-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Amyloid-induced neurodegeneration plays a central role in Alzheimer's disease (AD) pathogenesis. Here, we show that telomerase reverse transcriptase (TERT) haploinsufficiency decreases BDNF and increases amyloid-β (Aβ) precursor in murine brain. Moreover, prior to disease onset, the TERT locus sustains accumulation of repressive epigenetic marks in murine and human AD neurons, implicating TERT repression in amyloid-induced neurodegeneration. To test the impact of sustained TERT expression on AD pathobiology, AD mouse models were engineered to maintain physiological levels of TERT in adult neurons, resulting in reduced Aβ accumulation, improved spine morphology, and preserved cognitive function. Mechanistically, integrated profiling revealed that TERT interacts with β-catenin and RNA polymerase II at gene promoters and upregulates gene networks governing synaptic signaling and learning processes. These TERT-directed transcriptional activities do not require its catalytic activity nor telomerase RNA. These findings provide genetic proof-of-concept for somatic TERT gene activation therapy in attenuating AD progression including cognitive decline.
Collapse
Affiliation(s)
- Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - James W. Horner
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Zheng D. Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shan Jiang
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xueping Xu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tomasz Zal
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ivonne I. Flores
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Pingna Deng
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yuan-Ta Lin
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y. Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
31
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
32
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
33
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
34
|
Martínez M, Inestrosa NC. The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neurosci Biobehav Rev 2021; 128:454-466. [PMID: 34224789 DOI: 10.1016/j.neubiorev.2021.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder primarily affecting the elderly. The disease manifests as progressive deterioration in cognitive functions, leading to a loss of autonomy. The identification of transcriptional changes in susceptible signaling pathways has provided clues to the origin and progression of AD and has pinpointed synapse loss as the prominent event in early stages of the disease. Synapse failure represents a key pathological correlate of cognitive decline in patients. Genetics and transcriptomics studies have also identified novel genes, processes, and pathways associated with AD. This evidence suggests that a deficiency in Wnt signaling pathway contributes to AD pathogenesis by inducing synaptic dysfunction and neuronal degeneration. In the adult nervous system, Wnt signaling plays a crucial role in synaptic physiology, modulating the synaptic vesicle cycle, trafficking neurotransmitter receptors, and modulating the expression of different genes associated with these processes. In this review, we describe the general transcriptional landscape associated with AD, specifically transcriptional changes associated with the Wnt signaling pathway and their effects in the context of disease.
Collapse
Affiliation(s)
- Milka Martínez
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
35
|
Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021; 157:944-962. [PMID: 33349931 PMCID: PMC8248322 DOI: 10.1111/jnc.15280] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Alicia Dubinski
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Christine Vande Velde
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| |
Collapse
|
36
|
Li Y, Huang H, Zhu M, Bai H, Huang X. Roles of the MYST Family in the Pathogenesis of Alzheimer's Disease via Histone or Non-histone Acetylation. Aging Dis 2021; 12:132-142. [PMID: 33532133 PMCID: PMC7801277 DOI: 10.14336/ad.2020.0329] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/29/2020] [Indexed: 11/01/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a major cause of death among elderly individuals. The etiology of AD involves a combination of genetic, environmental, and lifestyle factors. A number of epigenetic alterations in AD have recently been reported; for example, studies have found an increase in histone acetylation in patients with AD and the protective function of histone deacetylase inhibitors. The histone acetylases in the MYST family are involved in a number of key nuclear processes, such as gene-specific transcriptional regulation, DNA replication, and DNA damage response. Therefore, it is not surprising that they contribute to epigenetic regulation as an intermediary between genetic and environmental factors. MYST proteins also exert acetylation activity on non-histone proteins that are closely associated with the pathogenesis of AD. In this review, we summarized the current understanding of the roles of MYST acetyltransferases in physiological functions and pathological processes related to AD. Additionally, using published RNA-seq, ChIP-seq, and ChIP-chip data, we identified enriched pathways to further evaluate the correlation between MYST and AD. The recent research described in this review supports the importance of epigenetic modifications and the MYST family in AD, providing a basis for future functional studies.
Collapse
Affiliation(s)
- Yuhong Li
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,2Yunnan Institute of Tropical Crops, Jinghong, China
| | - Hui Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Man Zhu
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Hua Bai
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.,3College of Public Health, Kunming Medical University, Kunming, China
| | - Xiaowei Huang
- 1State Key Lab for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
37
|
Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021; 269:357-382. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer's disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Laboratory of Neurobiology of Aging, Facultad de Medicina y Ciencia, Universidad de San Sebastián, Sede Los Leones, Santiago, Chile
| | - Waldo Cerpa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
38
|
Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci 2020; 10:E902. [PMID: 33255414 PMCID: PMC7761504 DOI: 10.3390/brainsci10120902] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signalling system is essential for both the developing and adult central nervous system. It regulates numerous cellular functions ranging from neurogenesis to blood brain barrier biology. Dysregulated Wnt signalling can thus have significant consequences for normal brain function, which is becoming increasingly clear in Alzheimer's disease (AD), an age-related neurodegenerative disorder that is the most prevalent form of dementia. AD exhibits a range of pathophysiological manifestations including aberrant amyloid precursor protein processing, tau pathology, synapse loss, neuroinflammation and blood brain barrier breakdown, which have been associated to a greater or lesser degree with abnormal Wnt signalling. Here we provide a comprehensive overview of the role of Wnt signalling in the CNS, and the research that implicates dysregulated Wnt signalling in the ageing brain and in AD pathogenesis. We also discuss the opportunities for therapeutic intervention in AD via modulation of the Wnt signalling pathway, and highlight some of the challenges and the gaps in our current understanding that need to be met to enable that goal.
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Hanqing Jin
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Paul J. Whiting
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
- ARUK Drug Discovery Institute (DDI), University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
39
|
Menet R, Bourassa P, Calon F, ElAli A. Dickkopf-related protein-1 inhibition attenuates amyloid-beta pathology associated to Alzheimer's disease. Neurochem Int 2020; 141:104881. [PMID: 33068684 DOI: 10.1016/j.neuint.2020.104881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) constitutes the leading cause of dementia worldwide. It is associated to amyloid-β (Aβ) aggregation and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Evidence suggests that the canonical Wnt pathway is deregulated in AD. Pathway activity is mediated by β-catenin stabilization in the cytosol, and subsequent translocation to the nucleus to regulate the expression of several genes implicated in brain homeostasis and functioning. It was recently proposed that Dickkopf-related protein-1 (DKK1), an endogenous antagonist of the pathway, might be implicated in AD pathogenesis. Here, we hypothesized that canonical Wnt pathway deactivation associated to DKK1 induction contributes to late-onset AD pathogenesis, and thus DKK1 neutralization could attenuate AD pathology. For this purpose, human post-mortem AD brain samples were used to assess pathway activity, and aged APPswe/PS1 mice were used to investigate DKK1 in late-onset AD-like pathology and therapy. Our findings indicate that β-catenin levels progressively decrease in the brain of AD patients, correlating with the duration of symptoms. Next, we found that Aβ pathology in APPswe/PS1 mediates DKK1 induction in the brain. Pharmacological neutralization of DKK1's biological activity in APPswe/PS1 mice restores pathway activity by stabilizing β-catenin, attenuates Aβ pathology, and ameliorates the memory of mice. Attenuation of AD-like pathology upon DKK1 inhibition is accompanied by a reduced protein expression of beta-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1). Moreover, DKK1 inhibition enhances vascular density, promotes blood-brain barrier (BBB) integrity by increasing claudin 5, glucose transporter-1 (GLUT1), and ATP-binding cassette sub-family B member-1 (ABCB1) protein expression, as well as ameliorates synaptic plasticity by increasing brain-derived neurotrophic factor (BDNF), and postsynaptic density protein-95 (PSD-95) protein expression. DKK1 conditional induction reduces claudin 5, abcb1, and psd-95 mRNA expression, validating its inhibition effects. Our results indicate that neutralization of DKK1's biological activity attenuates AD-like pathology by restoring canonical Wnt pathway activity.
Collapse
Affiliation(s)
- Romain Menet
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Bourassa
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Frédéric Calon
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec - Université Laval, Quebec City, QC, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
40
|
Pizzo P, Basso E, Filadi R, Greotti E, Leparulo A, Pendin D, Redolfi N, Rossini M, Vajente N, Pozzan T, Fasolato C. Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks. Cells 2020; 9:E2166. [PMID: 32992716 PMCID: PMC7601421 DOI: 10.3390/cells9102166] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Presenilin-2 (PS2) is one of the three proteins that are dominantly mutated in familial Alzheimer's disease (FAD). It forms the catalytic core of the γ-secretase complex-a function shared with its homolog presenilin-1 (PS1)-the enzyme ultimately responsible of amyloid-β (Aβ) formation. Besides its enzymatic activity, PS2 is a multifunctional protein, being specifically involved, independently of γ-secretase activity, in the modulation of several cellular processes, such as Ca2+ signalling, mitochondrial function, inter-organelle communication, and autophagy. As for the former, evidence has accumulated that supports the involvement of PS2 at different levels, ranging from organelle Ca2+ handling to Ca2+ entry through plasma membrane channels. Thus FAD-linked PS2 mutations impact on multiple aspects of cell and tissue physiology, including bioenergetics and brain network excitability. In this contribution, we summarize the main findings on PS2, primarily as a modulator of Ca2+ homeostasis, with particular emphasis on the role of its mutations in the pathogenesis of FAD. Identification of cell pathways and molecules that are specifically targeted by PS2 mutants, as well as of common targets shared with PS1 mutants, will be fundamental to disentangle the complexity of memory loss and brain degeneration that occurs in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Nicola Vajente
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35131 Padua, Italy
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| |
Collapse
|
41
|
Inestrosa NC, Tapia-Rojas C, Lindsay CB, Zolezzi JM. Wnt Signaling Pathway Dysregulation in the Aging Brain: Lessons From the Octodon degus. Front Cell Dev Biol 2020; 8:734. [PMID: 32850846 PMCID: PMC7419590 DOI: 10.3389/fcell.2020.00734] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Wnt signaling constitutes a fundamental cellular and molecular pathway, necessary from proper embryogenesis to function-maintenance of fully developed complex organisms. In this regard, Wnt pathway plays a crucial role in both the development of the central nervous system and in maintaining the structure and function of the neuronal circuits, and it has been suggested that its dysregulation is critical in the onset of several pathologies including cancer and neurodegenerative disorders, such as Alzheimer's disease (AD). Due to its relevance in the maintenance of the neuronal activity and its involvement in the outbreak of devastating diseases, we explored the age-related changes in the expression of Wnt key components in the cortex and hippocampus of 7 to 72-months-old Octodon degus (O. degus), a Chilean long-living endemic rodent that has been proposed and used as a natural model for AD. We found a down-regulation in the expression of different Wnt ligands (Wnt3a, Wnt7a, and Wnt5a), as well as in the Wnt co-receptor LRP6. We also observed an increase in the activity of GSK-3β related to the down-regulation of Wnt activity, a fact that was confirmed by a decreased expression of Wnt target genes. Relevantly, an important increase was found in secreted endogenous Wnt inhibitors, including the secreted-frizzled-related protein 1 and 2 (SFRP-1 and SFRP-2) and Dickkopf-1 (Dkk-1), all them antagonists at the cell surface. Furthermore, treatment with Andrographolide, a labdane diterpene obtained from Andrographis paniculata, prevents Wnt signaling loss in aging degus. Taken together, these results suggest that during the aging process Wnt signaling activity decreases in the brain of O. degus.
Collapse
Affiliation(s)
- Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Carolina B. Lindsay
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan Manuel Zolezzi
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Kabir MT, Uddin MS, Setu JR, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM. Exploring the Role of PSEN Mutations in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2020; 38:833-849. [PMID: 32556937 DOI: 10.1007/s12640-020-00232-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mutations of presenilin (PSEN) genes that encode presenilin proteins have been found as the vital causal factors for early-onset familial AD (FAD). AD pathological features such as memory loss, synaptic dysfunction, and formation of plaques have been successfully mimicked in the transgenic mouse models that coexpress FAD-related presenilin and amyloid precursor protein (APP) variants. γ-Secretase (GS) is an enzyme that plays roles in catalyzing intramembranous APP proteolysis to release pathogenic amyloid beta (Aβ). It has been found that presenilins can play a role as the GS's catalytic subunit. FAD-related mutations in presenilins can modify the site of GS cleavage in a way that can elevate the production of longer and highly fibrillogenic Aβ. Presenilins can interact with β-catenin to generate presenilin complexes. Aforesaid interactions have also been studied to observe the mutational and physiological activities in the catenin signal transduction pathway. Along with APP, GS can catalyze intramembrane proteolysis of various substrates that play a vital role in synaptic function. PSEN mutations can cause FAD with autosomal dominant inheritance and early onset of the disease. In this article, we have reviewed the current progress in the analysis of PSENs and the correlation of PSEN mutations and AD pathogenesis.
Collapse
Affiliation(s)
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh. .,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
43
|
Yang Y, Zhang Z. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer's Disease. Front Aging Neurosci 2020; 12:110. [PMID: 32477095 PMCID: PMC7241259 DOI: 10.3389/fnagi.2020.00110] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/30/2020] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) has been a major health issue for more than one century since it was first reported in 1906. As one of the most common neurodegenerative diseases, AD is characterized by the presence of senile plaques and neurofibrillary tangles (NFTs) in the affected brain area. Microglia are the major regulators of neuroinflammation in the brain, and neuroinflammation has become recognized as the core pathophysiological process of various neurodegenerative diseases. In the central nervous system (CNS), microglia play a dual role in AD development. For one thing, they degrade amyloid β (Aβ) to resist its deposition; for another, microglia release pro-inflammatory and inflammatory factors, contributing to neuroinflammation as well as the spreading of Aβ and tau pathology. Wnt pathways are important regulators of cell fate and cell activities. The dysregulation of Wnt pathways is responsible for both abnormal tau phosphorylation and synaptic loss in AD. Recent studies have also confirmed the regulatory effect of Wnt signaling on microglial inflammation. Thus, the study of microglia, Wnt pathways, and their possible interactions may open up a new direction for understanding the mechanisms of neuroinflammation in AD. In this review, we summarize the functions of microglia and Wnt pathways and their roles in AD in order to provide new ideas for understanding the pathogenesis of AD.
Collapse
Affiliation(s)
- Yunying Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
44
|
Subbanna S, Basavarajappa BS. Postnatal Ethanol-Induced Neurodegeneration Involves CB1R-Mediated β-Catenin Degradation in Neonatal Mice. Brain Sci 2020; 10:E271. [PMID: 32370076 PMCID: PMC7288104 DOI: 10.3390/brainsci10050271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022] Open
Abstract
Alcohol consumption by pregnant women may produce neurological abnormalities that affect cognitive processes in children and are together defined as fetal alcohol spectrum disorders (FASDs). However, the molecular underpinnings are still poorly defined. In our earlier studies, we found that ethanol exposure of postnatal day 7 (P7) mice significantly induced widespread neurodegeneration mediated via endocannabinoids (eCBs)/cannabinoid receptor type 1 (CB1R). In the current study, we examined changes in the β-catenin protein levels that are involved in the regulation of neuronal function including neuronal death and survival. We found that moderate- and high-dose postnatal ethanol exposure (PEE) significantly reduced active-β-catenin (ABC) (non-phosphorylated form) protein levels in the hippocampus (HP) and neocortex (NC). In addition, we found that moderate- and high-dose PEE significantly increased the phosphorylated-β-catenin (p-β-catenin)/ABC ratios in the HP and NC. Antagonism/null mutation of CB1R before PEE to inhibit CC3 production mitigated the loss of ABC protein levels. Collectively, these findings demonstrated that the CB1R/β-catenin signaling mechanism causes neurodegeneration in neonatal mouse brains following PEE.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA;
| | - Balapal S. Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA;
- New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
45
|
Chronic hyperglycemia impairs hippocampal neurogenesis and memory in an Alzheimer's disease mouse model. Neurobiol Aging 2020; 92:98-113. [PMID: 32417750 DOI: 10.1016/j.neurobiolaging.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
During aging, lifestyle-related factors shape the brain's response to insults and modulate the progression of neurodegenerative pathologies such as Alzheimer's disease (AD). This is the case for chronic hyperglycemia associated with type 2 diabetes, which reduces the brain's ability to handle the neurodegenerative burden associated with AD. However, the mechanisms behind the effects of chronic hyperglycemia in the context of AD are not fully understood. Here, we show that newly generated neurons in the hippocampal dentate gyrus of triple transgenic AD (3xTg-AD) mice present increased dendritic arborization and a number of synaptic puncta, which may constitute a compensatory mechanism allowing the animals to cope with a lower neurogenesis rate. Contrariwise, chronic hyperglycemia decreases the complexity and differentiation of 3xTg-AD newborn neurons and reduces the levels of β-catenin, a key intrinsic modulator of neuronal maturation. Moreover, synaptic facilitation is depressed in hyperglycemic 3xTg-AD mice, accompanying the defective hippocampal-dependent memory. Our data suggest that hyperglycemia evokes cellular and functional alterations that accelerate the onset of AD-related symptoms, namely memory impairment.
Collapse
|
46
|
Hadi F, Akrami H, Shahpasand K, Fattahi MR. Wnt signalling pathway and tau phosphorylation: A comprehensive study on known connections. Cell Biochem Funct 2020; 38:686-694. [PMID: 32232872 DOI: 10.1002/cbf.3530] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022]
Abstract
The Wnt pathway is the most important cascade in the nervous system; evidence has indicated that deregulation of the Wnt pathway induced pathogenic hallmarks of neurodegenerative diseases. Glycogen synthase kinase-3β (GSK-3β) as the main member of the Wnt pathway increases tau inclusions, the main marker in the neurodegenerative diseases. Phosphorylated tau is observed in the pre-tangle of the neurons in the early stage of neurodegenerative diseases. The researchers always try to improve pharmacological approaches of new therapeutic strategies to the treatment of neurodegenerative diseases that are required to represent a significant entry point by understanding the theoretical interactions of the molecular pathways. In this review, we have discussed the recent knowledge about the canonical and non-canonical Wnt signalling pathway, GSK-3β, Wnt/β-catenin antagonists, tau phosphorylation, and their important roles in the neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Hadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad R Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
47
|
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019; 12:104. [PMID: 31801553 PMCID: PMC6894260 DOI: 10.1186/s13041-019-0525-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.
Collapse
Affiliation(s)
- Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
48
|
Jin N, Shi R, Jiang Y, Chu D, Gong CX, Iqbal K, Liu F. Glycogen synthase kinase-3β suppresses the expression of protein phosphatase methylesterase-1 through β-catenin. Aging (Albany NY) 2019; 11:9672-9688. [PMID: 31714894 PMCID: PMC6874473 DOI: 10.18632/aging.102413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is the major tau phosphatase. Its activity toward tau is regulated by the methylation of PP2A catalytic subunit (PP2Ac) at Leu309. Protein phosphatase methylesterase-1 (PME-1) demethylates PP2Ac and suppresses its activity. We previously found that glycogen synthase kinase-3β (GSK-3β) suppresses PME-1 expression. However, the underlying molecular mechanism is unknown. In the present study, we analyzed the promoter of PME-1 gene and found that human PME-1 promoter contains two lymphoid enhancer binding factor-1/T-cell factor (LEF1/TCF) cis-elements in which β-catenin serves as a co-activator. β-catenin acted on these two cis-elements and promoted PME-1 expression. GSK-3β phosphorylated β-catenin and suppressed its function in promoting PME-1 expression. Inhibition and activation of GSK-3β by PI3K-AKT pathway promoted and suppressed, respectively, PME-1 expression in primary cultured neurons, SH-SY5Y cells and in the mouse brain. These findings suggest that GSK-3β phosphorylates β-catenin and suppresses its function on PME-1 expression, resulting in an increase of PP2Ac methylation.
Collapse
Affiliation(s)
- Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ruirui Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yanli Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| |
Collapse
|
49
|
Plucińska K, Crouch B, Yeap JM, Stoppelkamp S, Riedel G, Platt B. Histological and Behavioral Phenotypes of a Novel Mutated APP Knock-In Mouse. J Alzheimers Dis 2019; 65:165-180. [PMID: 30040726 DOI: 10.3233/jad-180336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene mutations within amyloid precursor protein (APP or AβPP) and/or presenilin 1 (PS1) genes are determinants of familial Alzheimer's disease (fAD) and remain fundamental for experimental models. Here, we generated a neuronal knock-in mouse (PLB2APP) with mutated human APPSwe/Lon and investigated histopathology and behavioral phenotypes. Additionally, PLB2APP mice were cross-bred with a presenilin (PS1A246E) line to assess the impact of this gene combination. Immunohistochemistry determined amyloid-β (Aβ) pathology, astrogliosis (via GFAP labelling), and neuronal densities in hippocampal and cortical brain regions. One-year old PLB2APP mice showed higher levels of intracellular Aβ in CA1, dentate gyrus, and cortical regions compared to PLBWT controls. Co-expression of PS1 reduced hippocampal but elevated cortical Aβ build-up. Amyloid plaques were sparse in aged PLB2APP mice, and co-expression of PS1 promoted plaque formation. Heightened GFAP expression followed the region-specific pattern of Aβ in PLB2APP and PLB2APP/PS1 mice. Behaviorally, habituation to a novel environment was delayed in 6-month-old PLB2APP mice, and overall home-cage activity was reduced in both lines at 6 and 12 months, particularly during the dark phase. Spatial learning in the water maze was impaired in PLB2APP mice independent of PS1 expression and associated with reduced spatial navigation strategies. Memory retrieval was compromised in PLB2APP mice only. Our data demonstrate that low expression of APP is sufficient to drive histopathological and cognitive changes in mice without overexpression or excessive plaque deposition. AD-like phenotypes were altered by co-expression of PS1, including a shift from hippocampal to cortical Aβ pathology, alongside reduced deficits in spatial learning.
Collapse
Affiliation(s)
- Kaja Plucińska
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Barry Crouch
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jie M Yeap
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Stoppelkamp
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Bettina Platt
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
50
|
Palomer E, Buechler J, Salinas PC. Wnt Signaling Deregulation in the Aging and Alzheimer's Brain. Front Cell Neurosci 2019; 13:227. [PMID: 31191253 PMCID: PMC6538920 DOI: 10.3389/fncel.2019.00227] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/06/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence suggests that synaptic signaling is compromised in the aging brain and in Alzheimer’s disease (AD), contributing to synaptic decline. Wnt signaling is a prominent pathway at the synapse and is required for synaptic plasticity and maintenance in the adult brain. In this review, we summarize the current knowledge on deregulation of Wnt signaling in the context of aging and AD. Emerging studies suggest that enhancing Wnt signaling could boost synaptic function during aging, and ameliorate synaptic pathology in AD. Although further research is needed to determine the precise contribution of deficient Wnt signaling to AD pathogenesis, targeting Wnt signaling components may provide novel therapeutic avenues for synapse protection or restoration in the brain.
Collapse
Affiliation(s)
- Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Johanna Buechler
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|