1
|
Zhang X, Zhang L, Si Y, Wen X, Wang L, Song L. Unveiling the functional diversity of ionotropic glutamate receptors in the Pacific oyster ( Crassostrea gigas) by systematic studies. Front Physiol 2023; 14:1280553. [PMID: 37965105 PMCID: PMC10642201 DOI: 10.3389/fphys.2023.1280553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs), pivotal in mediating excitatory neurosignals within the central nervous system, are instrumental in environmental stress responses. In this investigation, 12 iGluRs identified in the Pacific oyster are herein designated as CgiGluRs, and further categorized into three distinct subfamilies based on their transmembrane domains. Cross-species evolutionary analysis unveiled a high degree of conservation in the sequence and structural attributes of these CgiGluRs. These receptors are ubiquitously distributed across various tissues, with pronounced expression in the oyster's mantle, labial palps, and gills, underlining their integral role in the oyster's environmental sensing mechanisms. Post the D-shaped larval stage, a marked upward trend in CgiGluRs expression was observed, denoting their critical involvement in oyster development beyond this phase. Exposure to five metals-cadmium (Cd), copper (Cu), zinc (Zn), mercury (Hg), and lead (Pb)-elicited a significant upregulation of CgGRIA4 expression, indicating a robust response to metal stress. A KEGG enrichment analysis on 142 genes, exhibiting parallel expression trends with CgGRIA4 under metal stress, suggests that CgGRIA4 could augment excitatory signal transmission by activating glutamatergic and dopaminergic synapses, thereby contributing to the metal stress response in the oyster. This inquiry not only bolsters our comprehension of the iGluRs gene family in metal stress response but also paves the way for future exploration of its cardinal role in cellular signaling and environmental adaptability.
Collapse
Affiliation(s)
- Xueshu Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linfang Zhang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Yiran Si
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xue Wen
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
2
|
Kumar J, Popescu GK, Gantz SC. GluD receptors are functional ion channels. Biophys J 2023; 122:2383-2395. [PMID: 37177782 PMCID: PMC10323023 DOI: 10.1016/j.bpj.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Membrane Protein Biology, Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, SUNY, Buffalo, New York
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
3
|
Zhang R, Lun X, Zhang Y, Zhao Y, Xu X, Zhang Z. Characterization of Ionotropic Receptor Gene EonuIR25a in the Tea Green Leafhopper, Empoasca onukii Matsuda. PLANTS (BASEL, SWITZERLAND) 2023; 12:2034. [PMID: 37653951 PMCID: PMC10223087 DOI: 10.3390/plants12102034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 09/02/2023]
Abstract
Ionotropic receptors (IRs) play a central role in detecting chemosensory information from the environment and guiding insect behaviors and are potential target genes for pest control. Empoasca onukii Matsuda is a major pest of the tea plant Camellia sinensis (L.) O. Ktze, and seriously influences tea yields and quality. In this study, the ionotropic receptor gene EonuIR25a in E. onukii was cloned, and the expression pattern of EonuIR25a was detected in various tissues. Behavioral responses of E. onukii to volatile compounds emitted by tea plants were determined using olfactometer bioassay and field trials. To further explore the function of EonuIR25a in olfactory recognition of compounds, RNA interference (RNAi) of EonuIR25a was carried out by ingestion of in vitro synthesized dsRNAs. The coding sequence (CDS) length of EonuIR25a was 1266 bp and it encoded a 48.87 kD protein. EonuIR25a was enriched in the antennae of E. onukii. E. onukii was more significantly attracted by 1-phenylethanol at a concentration of 100 µL/mL. Feeding with dsEonuIR25a significantly downregulated the expression level of EonuIR25a, after 3 h of treatment, which disturbed the behavioral responses of E. onukii to 1-phenylethanol at a concentration of 100 µL/mL. The response rate of E. onukii to 1-phenylethanol was significantly decreased after dsEonuIR25a treatment for 12 h. In summary, the ionotropic receptor gene EonuIR25a was highly expressed in the antennae of E. onukii and was involved in olfactory recognition of the tea plant volatile 1-phenylethanol. The present study may help us to use the ionotropic receptor gene as a target for the behavioral manipulation of E. onukii in the future.
Collapse
Affiliation(s)
- Ruirui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiaoyue Lun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Yunhe Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| | - Xiuxiu Xu
- Tea Research Institute, Shandong Academy of Agricultural Science, Ji’nan 250100, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (R.Z.)
| |
Collapse
|
4
|
Yu B, Liu N, Tang S, Qin T, Huang J. Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. PLANTS (BASEL, SWITZERLAND) 2022; 11:3450. [PMID: 36559561 PMCID: PMC9782139 DOI: 10.3390/plants11243450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are the homologues of ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in mammals, and they play important roles in various plant-specific physiological processes, such as pollen tube growth, sexual reproduction, root meristem proliferation, internode cell elongation, stomata aperture regulation, and innate immune and wound responses. Notably, these biological functions of GLRs have been mostly linked to the Ca2+-permeable channel activity as GLRs can directly channel the transmembrane flux of Ca2+, which acts as a key second messenger in plant cell responses to both endogenous and exogenous stimuli. Thus, it was hypothesized that GLRs are mainly involved in Ca2+ signaling processes in plant cells. Recently, great progress has been made in GLRs for their roles in long-distance signal transduction pathways mediated by electrical activity and Ca2+ signaling. Here, we review the recent progress on plant GLRs, and special attention is paid to recent insights into the roles of GLRs in response to environmental stimuli via Ca2+ signaling, electrical activity, ROS, as well as hormone signaling networks. Understanding the roles of GLRs in integrating internal and external signaling for plant developmental adaptations to a changing environment will definitely help to enhance abiotic stress tolerance.
Collapse
|
5
|
de Souza Pereira G, Batista MT, Dos Santos NFB, Passos HM, da Silva DA, Ferreira EL, de Souza Ferreira LC, de Cássia Café Ferreira R. Streptococcus mutans glutamate binding protein (GlnH) as antigen target for a mucosal anti-caries vaccine. Braz J Microbiol 2022; 53:1941-1949. [PMID: 36098933 PMCID: PMC9679091 DOI: 10.1007/s42770-022-00823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In recent years, several studies have demonstrated that bacterial ABC transporters present relevant antigen targets for the development of vaccines against bacteria such as Streptococcus pneumoniae and Enterococcus faecalis. In Streptococcus mutans, the glutamate transporter operon (glnH), encoding an ABC transporter, is associated with acid tolerance and represents an important virulence-associated factor for the development of dental caries. RESULTS In this study, we generated a recombinant form of the S. mutans GlnH protein (rGlnH) in Bacillus subtilis. Mice immunized with this protein antigen elicited strong antigen-specific antibody responses after sublingual administration of a vaccine formulation containing a mucosal adjuvant, a non-toxic derivative of the heat-labile toxin (LTK63) originally produced by enterotoxigenic Escherichia coli (ETEC) strains. Serum anti-rGlnH antibodies reduced adhesion of S. mutans to the oral cavity of naïve mice. Moreover, mice actively immunized with rGlnH were partially protected from oral colonization after exposure to the S. mutans NG8 strain. CONCLUSIONS Our results indicate that S. mutans rGlnH is a potential target antigen capable of inducing specific and protective antibody responses after immunization. Overall, these observations raise the prospect of the development of mucosal anti-caries vaccines.
Collapse
Affiliation(s)
- Gisela de Souza Pereira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Milene Tavares Batista
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | | | - Hélic Moreira Passos
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Dalva Adelina da Silva
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Ewerton Lucena Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Luís Carlos de Souza Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil
| | - Rita de Cássia Café Ferreira
- Department of Microbiology, Biomedical Science Institute, University of São Paulo, São Paulo, SP, 137405508-900s, Brazil.
| |
Collapse
|
6
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
7
|
Huang Z, Niu L. RNA aptamers for AMPA receptors. Neuropharmacology 2021; 199:108761. [PMID: 34509496 DOI: 10.1016/j.neuropharm.2021.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
RNA aptamers are single-stranded RNA molecules, and they are selected against a target of interest so that they can bind to and modulate the activity of the target, such as inhibiting the target activity, with high potency and selectivity. Antagonists, such as RNA aptamers, acting on AMPA receptors, a major subtype of ionotropic glutamate receptors, are potential drug candidates for treatment of a number of CNS diseases that involve excessive receptor activation and/or elevated receptor expression. Here we review the approach to discover RNA aptamers targeting AMPA receptors from a random sequence library (∼1014 sequences) through a process called systematic evolution of ligands by exponential enrichment (SELEX). As compared with small-molecule compounds, RNA aptamers are a new class of regulatory agents with interesting and desirable pharmacological properties. Some AMPA receptor aptamers we have developed are presented in this review. The promises and challenges of translating RNA aptamers into potential drugs and treatment options are also discussed. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Zhen Huang
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA
| | - Li Niu
- Chemistry Department, Center for Neuroscience Research, University at Albany, State University of New York (SUNY), Albany, NY, USA.
| |
Collapse
|
8
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
9
|
Sania RE, Cardoso JCR, Louro B, Marquet N, Canário AVM. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role. Mol Ecol 2021; 30:6642-6658. [PMID: 34601781 DOI: 10.1111/mec.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022]
Abstract
Chemosensation is a critical signalling process in animals and especially important in sea cucumbers, a group of ecologically and economically important marine echinoderms (class Holothuroidea), which lack audio and visual organs and rely on chemical sensing for survival, feeding and reproduction. The ionotropic receptors are a recently identified family of chemosensory receptors in insects and other protostomes, related to the ionotropic glutamate receptor family (iGluR), a large family of membrane receptors in metazoan. Here we characterize the echinoderm iGluR subunits and consider their possible role in chemical communication in sea cucumbers. Sequence similarity searches revealed that sea cucumbers have in general a higher number of iGluR subunits when compared to other echinoderms. Phylogenetic analysis and sequence comparisons revealed GluH as a specific iGluR subfamily present in all echinoderms. Homologues of the vertebrate GluA (aka α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA), GluK (aka kainate) and GluD (aka delta) were also identified. The GluN (aka N-methyl-d-aspartate, NMDA) as well as the invertebrate deuterostome subfamily GluF (aka phi) are absent in echinoderms. The echinoderm GluH subfamily shares conserved structural protein organization with vertebrate iGluRs and the ligand binding domain (LBD) is the most conserved region; genome analysis indicates evolution via lineage and species-specific tandem gene duplications. GluH genes (named Grih) are the most highly expressed iGluRs subunit genes in tissues in the sea cucumber Holothuria arguinesis, with Griha1, Griha2 and Griha5 exclusively expressed in tentacles, making them candidates to have a chemosensory role in this species. The multiple GluH subunits may provide alternative receptor assembly combinations, thus expanding the functional possibilities and widening the range of compounds detected during aggregation and spawning in echinoderms.
Collapse
Affiliation(s)
- Rubaiyat E Sania
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - João C R Cardoso
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Bruno Louro
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Nathalie Marquet
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| | - Adelino V M Canário
- CCMAR/CIMAR LA, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
10
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
11
|
Baranovic J. AMPA receptors in the synapse: Very little space and even less time. Neuropharmacology 2021; 196:108711. [PMID: 34271021 DOI: 10.1016/j.neuropharm.2021.108711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Glutamate is by far the most abundant neurotransmitter used by excitatory synapses in the vertebrate central nervous system. Once released into the synaptic cleft, it depolarises the postsynaptic membrane and activates downstream signalling pathways resulting in the propagation of the excitatory signal. Initial depolarisation is primarily mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. These ion channels are the first ones to be activated by released glutamate and their kinetics, dynamics and abundance on the postsynaptic membrane defines the strength of the postsynaptic response. This review focuses on native AMPA receptors and synaptic environment they inhabit and considers structural and functional properties of the receptors obtained in heterologous systems in the light of spatial and temporal constraints of the synapse. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Jelena Baranovic
- School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, EH9 3BF, Edinburgh, UK.
| |
Collapse
|
12
|
Green MN, Gangwar SP, Michard E, Simon AA, Portes MT, Barbosa-Caro J, Wudick MM, Lizzio MA, Klykov O, Yelshanskaya MV, Feijó JA, Sobolevsky AI. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4. Mol Cell 2021; 81:3216-3226.e8. [PMID: 34161757 DOI: 10.1016/j.molcel.2021.05.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.
Collapse
Affiliation(s)
- Marriah N Green
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA; Training Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Erwan Michard
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA; Instituto de Ciencias Biológicas, 2 Norte 685, Universidad de Talca, 3460000 Talca, Chile
| | - Alexander A Simon
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Maria Teresa Portes
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Juan Barbosa-Caro
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Michael M Wudick
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA; Institute for Molecular Physiology, Heinrich Heine Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Michael A Lizzio
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Oleg Klykov
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - José A Feijó
- University of Maryland, Department of Cell Biology and Molecular Genetics, 0118 BioScience Research Building, College Park, MD 20742-5815, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
13
|
Mayer ML. Structural biology of kainate receptors. Neuropharmacology 2021; 190:108511. [PMID: 33798545 DOI: 10.1016/j.neuropharm.2021.108511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
This review summarizes structural studies on kainate receptors that explain unique functional properties of this receptor family. A large number of structures have been solved for ligand binding domain dimer assemblies, giving insight into the subtype selective pharmacology of agonists, antagonists, and allosteric modulators. Structures and biochemical studies on the amino terminal domain reveal mechanisms that play a key role in assembly of heteromeric receptors. Surprisingly, structures of full length homomeric GluK2, GluK3 and heteromeric GluK2/GluK5, receptors reveal a novel structure for the desensitized state that is strikingly different from that for AMPA receptors.
Collapse
Affiliation(s)
- Mark L Mayer
- Porter Neuroscience Research Center, NINDS, NIH, 35A Convent Drive Room 3D 904, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Ni L. The Structure and Function of Ionotropic Receptors in Drosophila. Front Mol Neurosci 2021; 13:638839. [PMID: 33597847 PMCID: PMC7882480 DOI: 10.3389/fnmol.2020.638839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ionotropic receptors (IRs) are a highly divergent subfamily of ionotropic glutamate receptors (iGluR) and are conserved across Protostomia, a major branch of the animal kingdom that encompasses both Ecdysozoa and Lophothrochozoa. They are broadly expressed in peripheral sensory systems, concentrated in sensory dendrites, and function in chemosensation, thermosensation, and hygrosensation. As iGluRs, four IR subunits form a functional ion channel to detect environmental stimuli. Most IR receptors comprise individual stimulus-specific tuning receptors and one or two broadly expressed coreceptors. This review summarizes the discoveries of the structure of IR complexes and the expression and function of each IR, as well as discusses the future direction for IR studies.
Collapse
Affiliation(s)
- Lina Ni
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
15
|
Amin JB, Gochman A, He M, Certain N, Wollmuth LP. NMDA Receptors Require Multiple Pre-opening Gating Steps for Efficient Synaptic Activity. Neuron 2020; 109:488-501.e4. [PMID: 33264592 DOI: 10.1016/j.neuron.2020.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that mediate fast excitatory synaptic transmission in the nervous system. Applying glutamate to outside-out patches containing a single NMDAR, we find that agonist-bound receptors transition to the open state via two conformations, an "unconstrained pre-active" state that contributes to fast synaptic events and a "constrained pre-active" state that does not. To define how glutamate drives these conformations, we decoupled the ligand-binding domains from specific transmembrane segments for GluN1 and GluN2A. Displacements of the pore-forming M3 segments define the energy of fast opening. However, to enter the unconstrained conformation and contribute to fast signaling, the GluN2 pre-M1 helix must be displaced before the M3 segments move. This pre-M1 displacement is facilitated by the flexibility of the S2-M4 of GluN1 and GluN2A. Thus, outer structures-pre-M1 and S2-M4-work in concert to remove constraints and prime the channel for rapid opening, facilitating fast synaptic transmission.
Collapse
Affiliation(s)
- Johansen B Amin
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Aaron Gochman
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Miaomiao He
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Noele Certain
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794-5230, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230, USA.
| |
Collapse
|
16
|
Durham RJ, Latham DR, Sanabria H, Jayaraman V. Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophys J 2020; 119:1929-1936. [PMID: 33096078 PMCID: PMC7732771 DOI: 10.1016/j.bpj.2020.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for investigating the structural dynamics of biological macromolecules. smFRET reveals the conformational landscape and dynamic changes of proteins by building on the static structures found using cryo-electron microscopy, x-ray crystallography, and other methods. Combining smFRET with static structures allows for a direct correlation between dynamic conformation and function. Here, we discuss the different experimental setups, fluorescence detection schemes, and data analysis strategies that enable the study of structural dynamics of glutamate signaling across various timescales. We illustrate the versatility of smFRET by highlighting studies of a wide range of questions, including the mechanism of activation and transport, the role of intrinsically disordered segments, and allostery and cooperativity between subunits in biological systems responsible for glutamate signaling.
Collapse
Affiliation(s)
- Ryan J Durham
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | |
Collapse
|
17
|
Gangwar SP, Green MN, Michard E, Simon AA, Feijó JA, Sobolevsky AI. Structure of the Arabidopsis Glutamate Receptor-like Channel GLR3.2 Ligand-Binding Domain. Structure 2020; 29:161-169.e4. [PMID: 33027636 DOI: 10.1016/j.str.2020.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Glutamate receptor-like channels (GLRs) play important roles in numerous plant physiological processes. GLRs are homologous to ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in vertebrates. Here we determine crystal structures of Arabidopsis thaliana GLR3.2 ligand-binding domain (LBD) in complex with glycine and methionine to 1.58- and 1.75-Å resolution, respectively. Our structures show a fold similar to that of iGluRs, but with several secondary structure elements either missing or different. The closed clamshell conformation of GLR3.2 LBD suggests that both glycine and methionine act as agonists. The mutation R133A strongly increases the constitutive activity of the channel, suggesting that the LBD mutated at the residue critical for agonist binding produces a more stable closed clamshell conformation. Furthermore, our structures explain the promiscuity of GLR activation by different amino acids, confirm evolutionary conservation of structure between GLRs and iGluRs, and predict common molecular principles of their gating mechanisms driven by bilobed clamshell-like LBDs.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Marriah N Green
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Training Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, Columbia University Irving Medical Center, 630 West 168(th) Street, New York, NY 10032, USA
| | - Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park, MD 20742-5815, USA
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park, MD 20742-5815, USA
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park, MD 20742-5815, USA.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
18
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
19
|
Kamalova A, Nakagawa T. AMPA receptor structure and auxiliary subunits. J Physiol 2020; 599:453-469. [PMID: 32004381 DOI: 10.1113/jp278701] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
Fast excitatory synaptic transmission in the mammalian brain is largely mediated by AMPA-type ionotropic glutamate receptors (AMPARs), which are activated by the neurotransmitter glutamate. In synapses, the function of AMPARs is tuned by their auxiliary subunits, a diverse set of membrane proteins associated with the core pore-forming subunits of the AMPARs. Each auxiliary subunit provides distinct functional modulation of AMPARs, ranging from regulation of trafficking to shaping ion channel gating kinetics. Understanding the molecular mechanism of the function of these complexes is key to decoding synaptic modulation and their global roles in cognitive activities, such as learning and memory. Here, we review the structural and molecular complexity of AMPAR-auxiliary subunit complexes, as well as their functional diversity in different brain regions. We suggest that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR-auxiliary subunit complexes.
Collapse
Affiliation(s)
- Aichurok Kamalova
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA.,Center for Structural Biology, Vanderbilt University, School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
20
|
Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000Res 2019; 8:F1000 Faculty Rev-1940. [PMID: 31807283 PMCID: PMC6871362 DOI: 10.12688/f1000research.18949.1] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Rapid advances in sequencing technology have led to an explosive increase in the number of genetic variants identified in patients with neurological disease and have also enabled the assembly of a robust database of variants in healthy individuals. A surprising number of variants in the GRIN genes that encode N-methyl-D-aspartate (NMDA) glutamatergic receptor subunits have been found in patients with various neuropsychiatric disorders, including autism spectrum disorders, epilepsy, intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. This review compares and contrasts the available information describing the clinical and functional consequences of genetic variations in GRIN2A and GRIN2B. Comparison of clinical phenotypes shows that GRIN2A variants are commonly associated with an epileptic phenotype but that GRIN2B variants are commonly found in patients with neurodevelopmental disorders. These observations emphasize the distinct roles that the gene products serve in circuit function and suggest that functional analysis of GRIN2A and GRIN2B variation may provide insight into the molecular mechanisms, which will allow more accurate subclassification of clinical phenotypes. Furthermore, characterization of the pharmacological properties of variant receptors could provide the first opportunity for translational therapeutic strategies for these GRIN-related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Scott J Myers
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Hongjie Yuan
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt Brain Institute, Vanderbilt Kennedy Center of Human Development, Vanderbilt University, Nashville, TN, USA
| | - Francis Chee Kuan Tan
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen F Traynelis
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University, Atlanta, GA, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Chian-Ming Low
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Revealing the ultrastructure of the membrane pores of intact Serratia marcescens cells by atomic force microscopy. Heliyon 2019; 5:e02636. [PMID: 31692582 PMCID: PMC6806401 DOI: 10.1016/j.heliyon.2019.e02636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022] Open
Abstract
This study aimed to characterize the surface ultrastructure of intact Serratia marcescens cells under physiological conditions. Topographic information of membrane pores of the cells was obtained by atomic force microscope (AFM). Three types of membrane pores (CH-1-Pore A, CH-1-Pore B and CH-1-Pore C) were observed and the spatial arrangements of membrane-spanning subunits in membranes were defined. High-resolution images revealed that the doughnut-shaped structures of CH-1-Pore A and CH-1-Pore B were composed of six-to-eight and four transmembrane subunits. The inverted teepee-shaped structure of CH-1-Pore C was segmented into two transmembrane subunits straddling a single funnel-like pore. This study, to the best of authors' knowledge, represents the first direct characterization of the surface ultrastructure of the membrane pores of Serratia marcescens CH-1 cells at the nanometer scale and offers new prospects of mapping membrane pores on intact prokaryotic cells.
Collapse
|
22
|
Tian Z, Clark BLM, Menard F. Kainic Acid-Based Agonists of Glutamate Receptors: SAR Analysis and Guidelines for Analog Design. ACS Chem Neurosci 2019; 10:4190-4198. [PMID: 31550120 DOI: 10.1021/acschemneuro.9b00349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A comprehensive survey of kainic acid analogs that have been tested for their biological activity is presented. Specifically, this review (1) gathers and compares over 100 kainoids according to a relative activity scale, (2) exposes structural features required to optimize affinity for kainate receptors, and (3) suggests design rules to create next-generation KA analogs. Literature SAR data are analyzed systematically and combined with the most recent crystallographic studies. In view of the renewed interest in neuroactive molecules, this review aims to help guide the efforts of organic synthesis laboratories, as well as to inform newcomers to KA/GluK research.
Collapse
Affiliation(s)
- Zhenlin Tian
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Brianna L. M. Clark
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Frederic Menard
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
23
|
Hardouin C, Pin F, Giffard JF, Hervouet Y, Hublet J, Janvier S, Penloup C, Picard J, Pinault N, Schiavi B, Zhang P, Zhao W, Zhu X. Large Scale Synthesis of an Ampakine-type Active Pharmaceutical Ingredient Based on a Telescoped Regioselective Double Amidation Reaction. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Christophe Hardouin
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Frédéric Pin
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Jean-François Giffard
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Yvon Hervouet
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Julie Hublet
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Solenn Janvier
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Christine Penloup
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Julien Picard
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Nathalie Pinault
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Bruno Schiavi
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210 Bolbec, France
| | - Peng Zhang
- Shanghai Institute of Pharmaceutical Indus China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, People’s Republic of China
| | - Weiwei Zhao
- Shanghai Institute of Pharmaceutical Indus China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, People’s Republic of China
| | - Xueyan Zhu
- Shanghai Institute of Pharmaceutical Indus China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong District, Shanghai 201203, People’s Republic of China
| |
Collapse
|
24
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Dudić A, Reiner A. Quinoxalinedione deprotonation is important for glutamate receptor binding. Biol Chem 2019; 400:927-938. [PMID: 30903748 DOI: 10.1515/hsz-2018-0464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Abstract
Quinoxalinediones are an important class of competitive antagonists at ionotropic glutamate receptors (iGluRs), where they are widely used to block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptor responses. In this study we utilize two prototypic quinoxalinedione antagonists, namely DNQX and CNQX, which quench the intrinsic fluorescence of the ligand binding domain (LBD), to perform in vitro binding assays. We find that binding of DNQX and CNQX at the AMPA receptor GluA2 LBD is strongly pH dependent, whereas glutamate binding is not affected by pH. We also show that the deprotonation of DNQX, CNQX and other quinoxalinediones (NBQX and YM90K) occurs close to physiological pH, which can be explained by the lactam-lactim tautomerization of the quinoxalinedione scaffold. Analysis of our binding data indicates that quinoxalinedione deprotonation is a key requirement for binding, as we find a >100-fold higher affinity for binding of the monoanionic form compared to the neutral form. This suggests a large electrostatic contribution to the interaction with a conserved arginine residue located in the binding pocket of iGluRs. The strong pH dependence of quinoxalinedione binding, which has not previously been reported, is relevant for structure-function studies, but also for the use of quinoxalinediones in physiological experiments and envisioned therapeutic applications.
Collapse
Affiliation(s)
- Adela Dudić
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| |
Collapse
|
26
|
Developing RNA aptamers for potential treatment of neurological diseases. Future Med Chem 2019; 11:551-565. [PMID: 30912676 DOI: 10.4155/fmc-2018-0364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AMPA receptor antagonists are drug candidates for potential treatment of a number of CNS diseases that involve excessive receptor activation. To date, small-molecule compounds are the dominating drug candidates in the field. However, lower potency, cross activity and poor water solubility are generally associated with these compounds. Here we show the potential of RNA-based antagonists or RNA aptamers as drug candidates and some strategies to discover these aptamers from a random sequence library (∼1014 sequences). As an alternative to small molecule compounds, our aptamers exhibit higher potency and selectivity toward AMPA receptors. Because aptamers are RNA molecules, they are naturally water soluble. We also discuss the major challenges of translating RNA aptamers as lead molecules into drugs/treatment options.
Collapse
|
27
|
Yuan C, Shi EY, Srinivasan J, Ptak CP, Oswald RE, Nowak LM. Modulation of AMPA Receptor Gating by the Anticonvulsant Drug, Perampanel. ACS Med Chem Lett 2019; 10:237-242. [PMID: 30891119 PMCID: PMC6421588 DOI: 10.1021/acsmedchemlett.8b00322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Postsynaptic AMPA/glutamate receptors, essential for neuronal excitability, are important targets for anticonvulsant therapy. This single channel study of the selective noncompetitive AMPA receptor antagonist, perampanel, was performed on homotetrameric GluA3 receptor-channels that open in a stepwise manner to four distinct conductance levels through independent subunit activation. Previous structural studies show that perampanel binds to four sites located within the extracellular/transmembrane boundary of closed AMPA receptor-channel subunits. We found that channels exposed to 1 or 2 μM perampanel opened mainly to the two lower conductance levels in a dose-dependent manner. Comparison of the single channel results in the structures of the full length AMPA receptor in the closed state bound to perampanel, and the open state provide insights into the mechanism of allosteric reduction of AMPA-receptor-mediated excitation in epilepsy.
Collapse
Affiliation(s)
| | | | - Jayasri Srinivasan
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850 United States
| | - Christopher P. Ptak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850 United States
| | - Robert E. Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850 United States
| | - Linda M. Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14850 United States
| |
Collapse
|
28
|
Laulumaa S, Hansen KV, Masternak M, Drapier T, Francotte P, Pirotte B, Frydenvang K, Kastrup JS. Crystal Structures of Potent Dimeric Positive Allosteric Modulators at the Ligand-Binding Domain of the GluA2 Receptor. ACS Med Chem Lett 2019; 10:243-247. [PMID: 30891120 DOI: 10.1021/acsmedchemlett.8b00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/04/2018] [Indexed: 11/30/2022] Open
Abstract
The ionotropic glutamate receptor GluA2 is considered to be an attractive target for positive allosteric modulation for the development of pharmacological tools or cognitive enhancers. Here, we report a detailed structural characterization of two recently reported dimeric positive allosteric modulators, TDPAM01 and TDPAM02, with nanomolar potency at GluA2. Using X-ray crystallography, TDPAM01 and TDPAM02 were crystallized in the ligand-binding domain of the GluA2 flop isoform as well as in the flip-like mutant N775S and the preformed dimer L504Y-N775S. In all structures, one modulator molecule binds at the dimer interface with two characteristic hydrogen bonds being formed from the modulator to Pro515. Whereas the GluA2 dimers and modulator binding mode are similar when crystallized in the presence of l-glutamate, the shape of the binding site differs when no l-glutamate is present. TDPAM02 has no effect on domain closure in both apo and l-glutamate bound GluA2 dimers compared to structures without modulator.
Collapse
Affiliation(s)
- Saara Laulumaa
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Kathrine Voigt Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Magdalena Masternak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Thomas Drapier
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, Avenue Hippocrate,15, B36, B-4000 Liège, Belgium
| | - Pierre Francotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, Avenue Hippocrate,15, B36, B-4000 Liège, Belgium
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), ULiège, Quartier Hôpital, Avenue Hippocrate,15, B36, B-4000 Liège, Belgium
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Piotrowska DG, Głowacka IE, Wróblewski AE, Lubowiecka L. Synthesis of nonracemic hydroxyglutamic acids. Beilstein J Org Chem 2019; 15:236-255. [PMID: 30745997 PMCID: PMC6350885 DOI: 10.3762/bjoc.15.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/22/2018] [Indexed: 11/24/2022] Open
Abstract
Glutamic acid is involved in several cellular processes though its role as the neurotransmitter is best recognized. For detailed studies of interactions with receptors a number of structural analogues of glutamic acid are required to map their active sides. This review article summarizes syntheses of nonracemic hydroxyglutamic acid analogues equipped with functional groups capable for the formation of additional hydrogen bonds, both as donors and acceptors. The majority of synthetic strategies starts from natural products and relies on application of chirons having the required configuration at the carbon atom bonded to nitrogen (e.g., serine, glutamic and pyroglutamic acids, proline and 4-hydroxyproline). Since various hydroxyglutamic acids were identified as components of complex natural products, syntheses of orthogonally protected derivatives of hydroxyglutamic acids are also covered.
Collapse
Affiliation(s)
- Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej E Wróblewski
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Liwia Lubowiecka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
30
|
Shi EY, Yuan CL, Sipple MT, Srinivasan J, Ptak CP, Oswald RE, Nowak LM. Noncompetitive antagonists induce cooperative AMPA receptor channel gating. J Gen Physiol 2019; 151:156-173. [PMID: 30622133 PMCID: PMC6363417 DOI: 10.1085/jgp.201812209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
Glutamate activates individual subunits of AMPA receptors in a stepwise manner. Shi et al. reveal that two noncompetitive antagonists disrupt this gating pattern and that their binding sites at the boundary between the transmembrane and extracellular linker domains is a tunable locus for gating. Glutamate is released from presynaptic nerve terminals in the central nervous system (CNS) and spreads excitation by binding to and activating postsynaptic iGluRs. Of the potential glutamate targets, tetrameric AMPA receptors mediate fast, transient CNS signaling. Each of the four AMPA subunits in the receptor channel complex is capable of binding glutamate at its ligand-binding domains and transmitting the energy of activation to the pore domain. Homotetrameric AMPA receptor channels open in a stepwise manner, consistent with independent activation of individual subunits, and they exhibit complex kinetic behavior that manifests as temporal shifts between four different conductance levels. Here, we investigate how two AMPA receptor-selective noncompetitive antagonists, GYKI-52466 and GYKI-53655, disrupt the intrinsic step-like gating patterns of maximally activated homotetrameric GluA3 receptors using single-channel recordings from cell-attached patches. Interactions of these 2,3-benzodiazepines with residues in the boundary between the extracellular linkers and transmembrane helical domains reorganize the gating behavior of channels. Low concentrations of modulators stabilize open and closed states to different degrees and coordinate the activation of subunits so that channels open directly from closed to higher conductance levels. Using kinetic and structural models, we provide insight into how the altered gating patterns might arise from molecular contacts within the extracellular linker-channel boundary. Our results suggest that this region may be a tunable locus for AMPA receptor channel gating.
Collapse
Affiliation(s)
- Edward Y Shi
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Christine L Yuan
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Matthew T Sipple
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | | | | | - Robert E Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Linda M Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
31
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
32
|
Yoo J, Aksimentiev A. New tricks for old dogs: improving the accuracy of biomolecular force fields by pair-specific corrections to non-bonded interactions. Phys Chem Chem Phys 2018; 20:8432-8449. [PMID: 29547221 DOI: 10.1039/c7cp08185e] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In contrast to ordinary polymers, the vast majority of biological macromolecules adopt highly ordered three-dimensional structures that define their functions. The key to folding of a biopolymer into a unique 3D structure or to an assembly of several biopolymers into a functional unit is a delicate balance between the attractive and repulsive forces that also makes such self-assembly reversible under physiological conditions. The all-atom molecular dynamics (MD) method has emerged as a powerful tool for studies of individual biomolecules and their functional assemblies, encompassing systems of ever increasing complexity. However, advances in parallel computing technology have outpaced the development of the underlying theoretical models-the molecular force fields, pushing the MD method into an untested territory. Recent tests of the MD method have found the most commonly used molecular force fields to be out of balance, overestimating attractive interactions between charged and hydrophobic groups, which can promote artificial aggregation in MD simulations of multi-component protein, nucleic acid, and lipid systems. One route towards improving the force fields is through the NBFIX corrections method, in which the intermolecular forces are calibrated against experimentally measured quantities such as osmotic pressure by making atom pair-specific adjustments to the non-bonded interactions. In this article, we review development of the NBFIX (Non-Bonded FIX) corrections to the AMBER and CHARMM force fields and discuss their implications for MD simulations of electrolyte solutions, dense DNA systems, Holliday junctions, protein folding, and lipid bilayer membranes.
Collapse
Affiliation(s)
- Jejoong Yoo
- Center for the Physics of Living Cells, Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA. and Center for Self-assembly and Complexity, Institute for Basic Science, Pohang, 37363, Republic of Korea
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Krieger J, Lee JY, Greger IH, Bahar I. Activation and desensitization of ionotropic glutamate receptors by selectively triggering pre-existing motions. Neurosci Lett 2018; 700:22-29. [PMID: 29481851 PMCID: PMC6107436 DOI: 10.1016/j.neulet.2018.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 01/03/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are key players in synaptic transmission and plasticity. They are composed of four subunits, each containing four functional domains, the quaternary packing and collective structural dynamics of which are important determinants of their molecular mechanism of function. With the explosion of structural studies on different members of the family, including the structures of activated open channels, the mechanisms of action of these central signaling machines are now being elucidated. We review the current state of computational studies on two major members of the family, AMPA and NMDA receptors, with focus on molecular simulations and elastic network model analyses that have provided insights into the coupled movements of extracellular and transmembrane domains. We describe the newly emerging mechanisms of activation, allosteric signaling and desensitization, as mainly a selective triggering of pre-existing soft motions, as deduced from computational models and analyses that leverage structural data on intact AMPA and NMDA receptors in different states.
Collapse
Affiliation(s)
- James Krieger
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States
| | - Ji Young Lee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, United Kingdom
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Ave, Suite 3064 BST3, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
34
|
Wang TT, Si FL, He ZB, Chen B. Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasit Vectors 2018; 11:34. [PMID: 29334982 PMCID: PMC5769321 DOI: 10.1186/s13071-017-2610-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ionotropic glutamate receptors (iGluRs) are conserved ligand-gated ion channel receptors, and ionotropic receptors (IRs) were revealed as a new family of iGluRs. Their subdivision was unsettled, and their characteristics are little known. Anopheles sinensis is a major malaria vector in eastern Asia, and its genome was recently well sequenced and annotated. METHODS We identified iGluR genes in the An. sinensis genome, analyzed their characteristics including gene structure, genome distribution, domains and specific sites by bioinformatic methods, and deduced phylogenetic relationships of all iGluRs in An. sinensis, Anopheles gambiae and Drosophila melanogaster. Based on the characteristics and phylogenetics, we generated the classification of iGluRs, and comparatively analyzed the intron number and selective pressure of three iGluRs subdivisions, iGluR group, Antenna IR and Divergent IR subfamily. RESULTS A total of 56 iGluR genes were identified and named in the whole-genome of An. sinensis. These genes were located on 18 scaffolds, and 31 of them (29 being IRs) are distributed into 10 clusters that are suggested to form mainly from recent gene duplication. These iGluRs can be divided into four groups: NMDA, non-NMDA, Antenna IR and Divergent IR based on feature comparison and phylogenetic analysis. IR8a and IR25a were suggested to be monophyletic, named as Putative in the study, and moved from the Antenna subfamily in the IR family to the non-NMDA group as a sister of traditional non-NMDA. The generated iGluRs of genes (including NMDA and regenerated non-NMDA) are relatively conserved, and have a more complicated gene structure, smaller ω values and some specific functional sites. The iGluR genes in An. sinensis, An. gambiae and D. melanogaster have amino-terminal domain (ATD), ligand binding domain (LBD) and Lig_Chan domains, except for IR8a that only has the LBD and Lig_Chan domains. However, the new concept IR family of genes (including regenerated Antenna IR, and Divergent IR), especially for Divergent IR are more variable, have a simpler gene structure (intron loss phenomenon) and larger ω values, and lack specific functional sites. These IR genes have no other domains except for Antenna IRs that only have the Lig_Chan domain. CONCLUSIONS This study provides a comprehensive information framework for iGluR genes in An. sinensis, and generated the classification of iGluRs by feature and bioinformatics analyses. The work lays the foundation for further functional study of these genes.
Collapse
Affiliation(s)
- Ting-Ting Wang
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Zheng-Bo He
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, People’s Republic of China
| |
Collapse
|
35
|
Zhang W, Eibl C, Weeks AM, Riva I, Li YJ, Plested AJR, Howe JR. Unitary Properties of AMPA Receptors with Reduced Desensitization. Biophys J 2017; 113:2218-2235. [PMID: 28863863 DOI: 10.1016/j.bpj.2017.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023] Open
Abstract
Wild-type AMPA receptors display a characteristic rapidly desensitizing phenotype. Many studies point to the dimer interface between pairs of extracellular ligand binding domains as the key region controlling the rate at which the receptors desensitize. However, mutations at the extracellular end of the pore-forming regions (near the putative ion channel gate) have also been shown to alter desensitization. Here we report the behavior of single GluA4 receptors carrying one of two mutations that greatly reduce desensitization at the level of ensemble currents: the dimer interface mutation L484Y and the Lurcher mutation (A623T, GluA4-Lc) in the extracellular end of M3 (the second true transmembrane helix). Analysis of unitary currents in patches with just one active receptor showed that each mutation greatly prolongs bursts of openings without prolonging the apparent duration of individual openings. Each mutation decreases the frequency with which individual receptors visit desensitized states, but both mutant receptors still desensitize multiple times per second. Cyclothiazide (CTZ) reduced desensitization of wild-type receptors and both types of mutant receptor. Analysis of shut-time distributions revealed a form of short-lived desensitization that was resistant to CTZ and was especially prominent for GluA4-Lc receptors. Despite reducing desensitization of GluA4 L484Y receptors, CTZ decreased the amplitude of ensemble currents through GluA2 and GluA4 LY receptor mutants. Single-channel analysis and comparison of the GluA2 L483Y ligand binding domain dimer in complex with glutamate with and without CTZ is consistent with the conclusion that CTZ binding to the dimer interface prevents effects of the LY mutation to modulate receptor activation, resulting in a reduction in the prevalence of large-conductance substates that accounts for the decrease in ensemble current amplitudes. Together, the results show that similar nondesensitizing AMPA-receptor phenotypes of population currents can arise from distinct underlying molecular mechanisms that produce different types of unitary activity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| | - Clarissa Eibl
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Autumn M Weeks
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Irene Riva
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Yan-Jun Li
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
36
|
Yonkunas M, Buddhadev M, Flores Canales JC, Kurnikova MG. Configurational Preference of the Glutamate Receptor Ligand Binding Domain Dimers. Biophys J 2017; 112:2291-2300. [PMID: 28591602 DOI: 10.1016/j.bpj.2017.04.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
Ionotropic glutamate receptors are a family of tetrameric ion channels with functional states consisting of nonconducting, conducting, and desensitized states that are starting to become well characterized by electrophysiological and biophysical studies. However, the structure and relative energetics of these states beyond the general structure of the receptor are still not well understood. It is known that the interface between monomeric subunits of the tetramer plays a major role in distinguishing these functional states. We have used umbrella sampling and multimicrosecond molecular dynamics simulations of the GluA2 AMPA subtype glutamate receptor ligand-binding domain (LBD) dimers to characterize a natural propensity of the LBD dimers for various configurational states. Our results show a proposed desensitized conformation of the LBD dimer is a highly preferable conformation of the LBD dimer without the influence of other receptor domains or crystallographic conditions. This has been demonstrated by both free protein simulations of 5 μs duration, as well as by computed free energy difference between the active and desensitized states. At the same time, the simulations performed using the same protocols revealed that for the LBD mutant L483Y, known to lack desensitization, the postulated active state of the LBD dimer is indeed the preferred configurational state, which remained stable in the simulations. Our findings pave the path for developing more detailed hypotheses of the full receptor activation mechanism. Combined with the energetics of glutamate binding to the LBD and the energy required to open the transmembrane pore helices, our results strongly support a hypothesis that the low absolute free-energy state is the desensitized state of the intact AMPA receptor.
Collapse
Affiliation(s)
- Michael Yonkunas
- Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Maiti Buddhadev
- Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
37
|
Pang X, Zhou HX. Structural modeling for the open state of an NMDA receptor. J Struct Biol 2017; 200:369-375. [PMID: 28739483 DOI: 10.1016/j.jsb.2017.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022]
Abstract
NMDA receptors are tetrameric ligand-gated ion channels that are crucial for neurodevelopment and higher order processes such as learning and memory, and have been implicated in numerous neurological disorders. The lack of a structure for the channel open state has greatly hampered the understanding of the normal gating process and mechanisms of disease-associated mutations. Here we report the structural modeling for the open state of an NMDA receptor. Staring from the crystal structure of the closed state, we repacked the pore-lining helices to generate an initial open model. This model was modified to ensure tight packing between subunits and then refined by a molecular dynamics simulation in explicit membrane. We identify Cα-H…O hydrogen bonds, between the Cα of a conserved glycine in one transmembrane helix and a carbonyl oxygen of a membrane-parallel helix, at the extracellular side of the transmembrane domain as important for stabilizing the open state. This observation explains why mutations of the glycine are associated with neurological diseases and lead to significant decrease in channel open probability.
Collapse
Affiliation(s)
- Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
38
|
Tseng YH, Chuang PH, Huang YR, Chen CL. Computational Investigation into the Interactions of Traditional Chinese Medicine Molecules of WenQingYin with GluR2. Int J Mol Sci 2017; 18:ijms18071443. [PMID: 28678159 PMCID: PMC5535934 DOI: 10.3390/ijms18071443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/21/2017] [Accepted: 07/01/2017] [Indexed: 01/27/2023] Open
Abstract
Docking and molecular dynamics simulations have been carried out to investigate the interaction of a traditional Chinese medicine, WenQingYin, with the glutamate receptor 2 (GluR2) subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. Four representative drug components of WenQingYin, namely 2-(3,4-dihydroxyphenyl)-5,6,7-trihydroxy-4H-chromen-4-one (PHF), 4-hydroxy-3-methoxybenzoic acid (HMB), 4-(2,3-dihydroxy-3-methylbutoxy)-7H-furo[3,2-g]chromen-7-one (DHMBP) and methyl 7-formylcyclopenta[c]pyran-4-carboxylate (cerbinal), and their complexes with GluR2 were simulated. Our results show that PHF, HMB, and DHMBP formed a partial hydrogen bond with GluR2 in its ligand-binding domain. However, cerbinal was not stable in the ligand-binding domain of GluR2 and induced a significant change in the structure of GluR2. Three-dimensional plots represent the contact and movement situation of the traditional Chinese medicine molecules in the ligand-binding domain. The combined results of the docking and molecular dynamics simulations provide insight into the interaction between these traditional Chinese medicine molecules and proteins.
Collapse
Affiliation(s)
- Yu-Hui Tseng
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
| | - Po-Hsiang Chuang
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
| | - Yu-Ren Huang
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
- Department of Applied Science, R.O.C. Naval Academy, 81345 Kaohsiung, Taiwan.
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-Sen University, 80424 Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 2017; 23:494-502. [PMID: 27273633 DOI: 10.1038/nsmb.3214] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
Collapse
|
40
|
Zhou HX. Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology. Acc Chem Res 2017; 50:814-822. [PMID: 28186717 PMCID: PMC5398286 DOI: 10.1021/acs.accounts.6b00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels essential to all aspects of brain function, including higher order processes such as learning and memory. For decades, electrophysiology was the primary means for characterizing the function of iGluRs and gaining mechanistic insight. Since the turn of the century, structures of isolated water-soluble domains and transmembrane-domain-containing constructs have provided the basis for formulating mechanistic hypotheses. Because these structures only represent sparse, often incomplete snapshots during iGluR activation, significant gaps in knowledge remain regarding structures, energetics, and dynamics of key substates along the functional processes. Some of these gaps have recently been filled by molecular dynamics simulations and theoretical modeling. In this Account, I describe our work in the latter arena toward characterizing iGluR gating motions and developing a formalism for calculating thermodynamic and kinetic properties of stationary gating. The structures of iGluR subunits have a highly modular architecture, in which the ligand-binding domain and the transmembrane domain are well separated and connected by flexible linkers. The ligand-binding domain in turn is composed of two subdomains. During activation, agonist binding induces the closure of the intersubdomain cleft. The cleft closure leads to the outward pulling of a linker tethered to the extracellular terminus of the major pore-lining helix of the transmembrane domain, thereby opening the channel. This activation model based on molecular dynamics simulations was validated by residue-specific information from electrophysiological data on cysteine mutants. A further critical test was made through introducing glycine insertions in the linker. Molecular dynamics simulations showed that, with lengthening by glycine insertions, the linker became less effective in pulling the pore-lining helix, leading to weaker stabilization of the channel-open state. In full agreement, single-channel recordings showed that the channel open probability decreased progressively as the linker was lengthened by glycine insertions. Crystal structures of ligand-binding domains showing different degrees of cleft closure between full and partial agonists suggested a simple mechanism for one subtype of iGluRs, but mysteries surrounded a second subtype, where the ligand-binding domains open to similar degrees when bound with either full or partial agonists. Our free energy simulations now suggest that broadening of the free energy basin for cleft closure is a plausible solution. A theoretical basis for these mechanistic hypotheses on partial agonisms was provided by a model for the free energy surface of a full receptor, where the stabilization by cleft closure is transmitted via the linker to the channel-open state. This model can be implemented by molecular dynamics simulations to predict thermodynamic and kinetics properties of stationary gating that are amenable to direct test by single-channel recordings. Close integration between computation and electrophysiology holds great promises in revealing the conformations of key substates in functional processes and the mechanisms of disease-associated mutations.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and
Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
41
|
Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H. Functional Evaluation of a De Novo GRIN2A Mutation Identified in a Patient with Profound Global Developmental Delay and Refractory Epilepsy. Mol Pharmacol 2017; 91:317-330. [PMID: 28126851 PMCID: PMC5363715 DOI: 10.1124/mol.116.106781] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR), a ligand-gated ionotropic glutamate receptor, plays important roles in normal brain development and a wide range of neurologic disorders, including epilepsy. Here, we evaluate for the first time the functional properties of a de novo GRIN2A missense mutation (p.M817V) in the pre-M4 linker in a child with profound global developmental delay and refractory epilepsy. Electrophysiologic recordings revealed that the mutant GluN2A(M817V)-containing receptors showed enhanced agonist potency, reduced sensitivity to endogenous negative inhibitors (Mg2+, proton, and zinc), prolonged synaptic-like response time course, increased single-channel mean open time, and increased channel open probability. These results suggest that the gain-of-function M817V mutation causes overactivation of NMDAR and drives neuronal hyperexcitability, which may contribute to the patient's observed epileptic phenotype. Molecular modeling of the closed channel conformation reveals that this mutation weakens the interaction between GluN2 transmembrane helix M4 and two GluN1 transmembrane helices, and increases atomic fluctuation or movement of the pre-M1 region of GluN1 subunit, suggesting a mechanism by which channel function is enhanced. The functional changes of this mutation on agonist potency occur when the mutation is introduced into all other GluN2 subunits, suggesting a conserved role of this residue in control of NMDAR function through interactions of membrane spanning GluN2 and GluN1 helices. A number of NMDAR-targeted drugs including U.S. Food and Drug Association-approved NMDAR channel blockers were evaluated for their ability to inhibit receptors containing GluN2A(M817V) as a first step to exploring the potential for rescue pharmacology and personalized medicine.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Pharmacology, Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (W.C., A.T., H.K., S.F.T., H.Y.); Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China (W.C.); Department of Chemistry, Emory University, Atlanta, Georgia (P.B.B.); Center for Functional Evaluation of Rare Variants (CFERV), Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (S.F.T., H.Y.)
| | - Anel Tankovic
- Department of Pharmacology, Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (W.C., A.T., H.K., S.F.T., H.Y.); Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China (W.C.); Department of Chemistry, Emory University, Atlanta, Georgia (P.B.B.); Center for Functional Evaluation of Rare Variants (CFERV), Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (S.F.T., H.Y.)
| | - Pieter B Burger
- Department of Pharmacology, Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (W.C., A.T., H.K., S.F.T., H.Y.); Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China (W.C.); Department of Chemistry, Emory University, Atlanta, Georgia (P.B.B.); Center for Functional Evaluation of Rare Variants (CFERV), Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (S.F.T., H.Y.)
| | - Hirofumi Kusumoto
- Department of Pharmacology, Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (W.C., A.T., H.K., S.F.T., H.Y.); Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China (W.C.); Department of Chemistry, Emory University, Atlanta, Georgia (P.B.B.); Center for Functional Evaluation of Rare Variants (CFERV), Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (S.F.T., H.Y.)
| | - Stephen F Traynelis
- Department of Pharmacology, Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (W.C., A.T., H.K., S.F.T., H.Y.); Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China (W.C.); Department of Chemistry, Emory University, Atlanta, Georgia (P.B.B.); Center for Functional Evaluation of Rare Variants (CFERV), Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (S.F.T., H.Y.)
| | - Hongjie Yuan
- Department of Pharmacology, Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (W.C., A.T., H.K., S.F.T., H.Y.); Department of Neurology, Xiangya Hospital, Central South University, Changsha, People's Republic of China (W.C.); Department of Chemistry, Emory University, Atlanta, Georgia (P.B.B.); Center for Functional Evaluation of Rare Variants (CFERV), Rollins Research Center, School of Medicine, Emory University, Atlanta, Georgia (S.F.T., H.Y.)
| |
Collapse
|
42
|
Wongrattanakamon P, Lee VS, Nimmanpipug P, Sirithunyalug B, Chansakaow S, Jiranusornkul S. Insight into the molecular mechanism of P-glycoprotein mediated drug toxicity induced by bioflavonoids: an integrated computational approach. Toxicol Mech Methods 2017; 27:253-271. [PMID: 27996361 DOI: 10.1080/15376516.2016.1273428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, molecular docking, pharmacophore modeling and molecular dynamics (MD) simulation were rendered for the mouse P-glycoprotein (P-gp) (code: 4Q9H) and bioflavonoids; amorphigenin, chrysin, epigallocatechin, formononetin and rotenone including a positive control; verapamil to identify protein-ligand interaction features including binding affinities, interaction characteristics, hot-spot amino acid residues and complex stabilities. These flavonoids occupied the same binding site with high binding affinities and shared the same key residues for their binding interactions and the binding region of the flavonoids was revealed that overlapped the ATP binding region with hydrophobic and hydrophilic interactions suggesting a competitive inhibition mechanism of the compounds. Root mean square deviations (RMSDs) analysis of MD trajectories of the protein-ligand complexes and NBD2 residues, and ligands pointed out these residues were stable throughout the duration of MD simulations. Thus, the applied preliminary structure-based molecular modeling approach of interactions between NBD2 and flavonoids may be gainful to realize the intimate inhibition mechanism of P-gp at NBD2 level and on the basis of the obtained data, it can be concluded that these bioflavonoids have the potential to cause herb-drug interactions or be used as lead molecules for the inhibition of P-gp (as anti-multidrug resistance agents) via the NBD2 blocking mechanism in future.
Collapse
Affiliation(s)
- Pathomwat Wongrattanakamon
- a Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Vannajan Sanghiran Lee
- b Department of Chemistry, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Piyarat Nimmanpipug
- c Computational Simulation and Modelling Laboratory (CSML), Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai , Thailand
| | - Busaban Sirithunyalug
- d Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Sunee Chansakaow
- d Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Supat Jiranusornkul
- a Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
43
|
Zhou HX, Wollmuth LP. Advancing NMDA Receptor Physiology by Integrating Multiple Approaches. Trends Neurosci 2017; 40:129-137. [PMID: 28187950 DOI: 10.1016/j.tins.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 01/29/2023]
Abstract
NMDA receptors (NMDARs) are ion channels activated by the excitatory neurotransmitter glutamate and are essential to all aspects of brain function, including learning and memory formation. Missense mutations distributed throughout NMDAR subunits have been associated with an array of neurological disorders. Recent structural, functional, and computational studies have generated many insights into the activation process connecting glutamate binding to ion-channel opening, which is central to NMDAR physiology and pathophysiology. The field appears poised for breakthroughs, including the exciting prospect of resolving the conformations and energetics of elementary steps in the activation process, and atomic-level modeling of the effects of missense mutations on receptor function. The most promising strategy going forward is through strong integration of multiple approaches.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| | - Lonnie P Wollmuth
- Department of Neurobiology and Behavior, and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
44
|
GRIN3B missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders. Genet Res (Camb) 2017; 99:e1. [PMID: 28132660 PMCID: PMC6865172 DOI: 10.1017/s0016672316000148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the most important excitatory neurotransmitter in the brain. The N-methyl-D-aspartate (NMDA) receptor is a glutamate-gated ionotropic cation channel that is composed of several subunits and modulated by a glycine binding site. Many forms of synaptic plasticity depend on the influx of calcium ions through NMDA receptors, and NMDA receptor dysfunction has been linked to a number of neuropsychiatric disorders, including schizophrenia. Whole-exome sequencing was performed in a family with a strong history of psychotic disorders over three generations. We used an iterative strategy to obtain condense and meaningful variants. In this highly affected family, we found a frameshift mutation (rs10666583) in the GRIN3B gene, which codes for the GluN3B subunit of the NMDA receptor in all family members with a psychotic disorder, but not in the healthy relatives. Matsuno et al., also reported this null variant as a risk factor for schizophrenia in 2015. In a broader sample of 22 patients with psychosis, the allele frequency of the rs10666583 mutation variant was increased compared to those of healthy population samples and unaffected relatives. Compared to the 1000 Genomes Project population, we found a significant increase of this variant with a large effect size among patients. The amino acid shift degrades the S1/S2 glycine binding domain of the dominant modulatory GluN3B subunit of the NMDA receptor, which subsequently affects the permeability of the channel pore to calcium ions. A decreased glycine affinity for the GluN3B subunit might cause impaired functional capability of the NMDA receptor and could be an important risk factor for the pathogenesis of psychotic disorders.
Collapse
|
45
|
Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genet 2017; 13:e1006536. [PMID: 28095420 PMCID: PMC5240934 DOI: 10.1371/journal.pgen.1006536] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.
Collapse
|
46
|
Congreve M, Bortolato A, Brown G, Cooke R. Modeling and Design for Membrane Protein Targets. COMPREHENSIVE MEDICINAL CHEMISTRY III 2017:145-188. [DOI: 10.1016/b978-0-12-409547-2.12358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Martins ACV, de-Lima-Neto P, Caetano EWS, Freire VN. An improved quantum biochemistry description of the glutamate–GluA2 receptor binding within an inhomogeneous dielectric function framework. NEW J CHEM 2017. [DOI: 10.1039/c6nj03939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new methodology to define the inhomogeneous dielectric constant of protein residues, to apply to the calculation of protein–ligand properties such as the electrostatic interaction.
Collapse
Affiliation(s)
- A. C. V. Martins
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - P. de-Lima-Neto
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - E. W. S. Caetano
- Federal Institute of Education
- Science and Technology of Ceara
- 60040-531 Fortaleza
- Brazil
| | - V. N. Freire
- Department of Physics
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
48
|
Seppälä S, Solomon KV, Gilmore SP, Henske JK, O'Malley MA. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb Cell Fact 2016; 15:212. [PMID: 27998268 PMCID: PMC5168858 DOI: 10.1186/s12934-016-0611-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.
Collapse
Affiliation(s)
- Susanna Seppälä
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kgs. Lyngby, Denmark.,Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
49
|
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:948-57. [PMID: 27387403 DOI: 10.1016/j.phymed.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. HYPOTHESIS/PURPOSE To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. STUDY DESIGN The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. METHODS The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. RESULTS All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. CONCLUSION We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP.
Collapse
Affiliation(s)
- Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Adriana G Guimarães
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Márcio R V Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil..
| | | |
Collapse
|
50
|
De Bortoli S, Teardo E, Szabò I, Morosinotto T, Alboresi A. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophys Chem 2016; 218:14-26. [PMID: 27586818 DOI: 10.1016/j.bpc.2016.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023]
Abstract
Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species.
Collapse
Affiliation(s)
| | - Enrico Teardo
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | | | | |
Collapse
|