1
|
Internalization of B cell receptors in human EU12 μHC⁺ immature B cells specifically alters downstream signaling events. BIOMED RESEARCH INTERNATIONAL 2013; 2013:807240. [PMID: 24222917 PMCID: PMC3809603 DOI: 10.1155/2013/807240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
It has been recognized for a long time that engagement of B cell antigen receptors (BCRs) on immature B cells or mature B cells leads to completely opposite cell fate decisions. The underlying mechanism remains unclear. Here, we show that crosslinking of BCRs on human EU12 μHC+ immature B cells resulted in complete internalization of cell surface BCRs. After loss of cell surface BCRs, restimulation of EU12 μHC+ cells showed impaired Ca2+ flux, delayed SYK phosphorylation, and decreased CD19 and FOXO1 phosphorylation, which differ from those in mature Daudi or Ramos B cells with partial internalization of BCRs. In contrast, sustained phosphorylation and reactivation of ERK upon restimulation were observed in the EU12 μHC+ cells after BCR internalization. Taken together, these results show that complete internalization of cell surface BCRs in EU12 μHC+ cells specifically alters the downstream signaling events, which may favor receptor editing versus cell activation.
Collapse
|
2
|
Briney BS, Jr. JEC. Secondary mechanisms of diversification in the human antibody repertoire. Front Immunol 2013; 4:42. [PMID: 23483107 PMCID: PMC3593266 DOI: 10.3389/fimmu.2013.00042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/05/2013] [Indexed: 12/25/2022] Open
Abstract
V(D)J recombination and somatic hypermutation (SHM) are the primary mechanisms for diversification of the human antibody repertoire. These mechanisms allow for rapid humoral immune responses to a wide range of pathogenic challenges. V(D)J recombination efficiently generate a virtually limitless diversity through random recombination of variable (V), diversity (D), and joining (J) genes with diverse non-templated junctions between the selected gene segments. Following antigen stimulation, affinity maturation by SHM produces antibodies with refined specificity mediated by mutations typically focused in complementarity determining regions (CDRs), which form the bulk of the antigen recognition site. While V(D)J recombination and SHM are responsible for much of the diversity of the antibody repertoire, there are several secondary mechanisms that, while less frequent, make substantial contributions to antibody diversity including V(DD)J recombination (or D-D fusion), SHM-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody. In addition to enhanced diversity, these mechanisms allow the production of antibodies that are critical to response to a variety of viral and bacterial pathogens but that would be difficult to generate using only the primary mechanisms of diversification.
Collapse
Affiliation(s)
- Bryan S. Briney
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - James E. Crowe Jr.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- The Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
3
|
Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, Butler JE. Antibody repertoire development in fetal and neonatal piglets. XXII. λ Rearrangement precedes κ rearrangement during B-cell lymphogenesis in swine. Immunology 2012; 137:149-59. [PMID: 22724577 PMCID: PMC3461396 DOI: 10.1111/j.1365-2567.2012.03615.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/01/2023] Open
Abstract
VDJ and VJ rearrangements, expression of RAG-1, Tdt and VpreB, and the presence of signal joint circles (SJC) were used to identify sites of B-cell lymphogenesis. VDJ, VλJλ but not VκJκ rearrangements or SJC were recovered from yolk sac (YS) at 20 days of gestation (DG) along with strong expression of VpreB and RAG-1 but weak Tdt expression. VλJλ rearrangements but not VκJκ rearrangements were recovered from fetal liver at 30-50 DG. SJC were pronounced in bone marrow at 95 DG where VκJκ rearrangements were first recovered. The VλJλ rearrangements recovered at 20-50 DG used some of the same Vλ and Jλ segments seen in older fetuses and adult animals. Hence the textbook paradigm for the order of light-chain rearrangement does not apply to swine. Consistent with weak Tdt expression in early sites of lymphogenesis, N-region additions in VDJ rearrangements were more frequent at 95 DG. Junctional diversity in VλJλ rearrangement was limited at all stages of development. There was little evidence for B-cell lymphogenesis in the ileal Peyer's patches. The widespread recovery of VpreB transcripts in whole, non-lymphoid tissue was unexpected as was its recovery from bone marrow and peripheral blood monocytes. Based on recovery of SJC, B-cell lymphogenesis continues for at least 5 weeks postpartum.
Collapse
Affiliation(s)
- Xiuzhu Sun
- Department of Microbiology and Interdisciplinary Immunology Program, University of Iowa College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Enforced expression of the apoptosis inhibitor Bcl-2 ablates tolerance induction in DNA-reactive B cells through a novel mechanism. J Autoimmun 2011; 37:18-27. [PMID: 21458954 DOI: 10.1016/j.jaut.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022]
Abstract
How self tolerance is maintained during B cell development in the bone marrow has been a focal area of study in immunology. Receptor editing, anergy and clonal deletion all play important roles in the regulation of autoimmunity in the immature population. The mechanisms of tolerance induction in the periphery, however, are less well characterized. Overexpression of the apoptosis inhibitor Bcl-2 rescues autoreactive B cells from deletion and can contribute to the development of autoimmune disease in certain genetic backgrounds. Using a peptide-induced autoimmunity model, we recently identified a peripheral tolerance checkpoint in antigen-activated B cells that have undergone class switching and somatic hypermutation. At this checkpoint, receptor editing, induced by antigen engagement, dampened the autoantibody response. In this study, we show that receptor editing fails to be induced in antigen-activated DNA-reactive B cells that overexpress Bcl-2 (Bcl-2 Tg). The failure to induce RAG and receptor editing is likely due, at least partially, to the lack of self antigen. First, the levels of circulating DNA and of apoptotic bodies in the spleen of Bcl-2 Tg mice are significantly lower than in control mice. Second, in Bcl-2 Tg mice, RAG can be induced in a population of antigen-activated B cells by providing exogenous soluble antigen. These data suggest that, in addition to its anti-apoptotic activity, Bcl-2 may indirectly inhibit tolerance induction in B cells acquiring anti-nuclear antigen reactivity after peripheral activation by limiting the availability of self antigen.
Collapse
|
5
|
Sukumar S, Schlissel MS. Receptor editing as a mechanism of B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2011; 186:1301-2. [PMID: 21248267 DOI: 10.4049/jimmunol.1090129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Selvakumar Sukumar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
6
|
Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 2011; 1217:96-121. [PMID: 21251012 DOI: 10.1111/j.1749-6632.2010.05877.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.
Collapse
Affiliation(s)
- Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
7
|
Novak R, Jacob E, Haimovich J, Avni O, Melamed D. The MAPK/ERK and PI3K pathways additively coordinate the transcription of recombination-activating genes in B lineage cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:3239-47. [PMID: 20709952 DOI: 10.4049/jimmunol.1001430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rag-1 and Rag-2 are essential for the construction of the BCR repertoire. Regulation of Rag gene expression is tightly linked with BCR expression and signaling during B cell development. Earlier studies have shown a major role of the PI(3)K/Akt pathway in regulating the transcription of Rag genes. In this study, by using the 38c13 murine B cell lymphoma we show that transcription of Rag genes is also regulated by the MEK/ERK pathways, and that both pathways additively coordinate in this regulation. The additive effect is observed for both ligand-dependent (upon BCR ligation) and ligand independent (tonic) signals. However, whereas the PI(3)K/Akt regulation of Rag transcription is mediated by Foxo1, we show in this study that the MEK/ERK pathway coordinates with the regulation of Rag by controlling the phosphorylation and turnover of E47 and its consequential binding to the Rag enhancer regions. Our results suggest that the PI(3)K and MEK/ERK pathways additively coordinate in the regulation of Rag transcription in an independent manner.
Collapse
Affiliation(s)
- Rostislav Novak
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
8
|
Guth A, Detanico T, Smith D, Tung KSK, Bonorino C, Wysocki LJ. Spontaneous autoimmunity in mice that carry an IghV partial transgene: a required arginine in VHCDR3. Lupus 2009; 18:299-308. [PMID: 19276297 DOI: 10.1177/0961203308097480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We describe a unique spontaneous mouse model of autoimmunity, which occurs on a non-autoimmune-prone SWR genetic background. In this model, SWR mice carry an IghV partial transgene (pTg) encoding only the heavy chain variable domain of an antibody directed against chromatin. Autoimmune disease in pTg mice was manifested by some of the features of systemic lupus erythematosus (SLE), including the presence of serum anti-nuclear antibodies, splenomegaly, skin lesions and a moderate degree of kidney pathology, in various combinations among individuals. Autoimmunity was observed in three independent transgenic lines, but not in three control lines carrying a nearly identical pTg, in which a VHCDR3 codon for Arg was replaced by one for Ser to ablate chromatin reactivity. Various features of disease were often but not always accompanied by anti-chromatin antibodies. Unexpectedly, the anti-chromatin antibodies detected in seropositive animals were not encoded by the pTg. These observations strongly implicate a role for the transgene product in disease initiation but not necessarily for end-state pathology, and they raise the possibility that autoreactive B cells may play a previously unappreciated role in initiating the development of systemic autoimmunity.
Collapse
Affiliation(s)
- A Guth
- Integrated Department of Immunology, National Jewish Health, Denver, USA
| | | | | | | | | | | |
Collapse
|
9
|
Hillion S, Rochas C, Youinou P, Jamin C. Signaling pathways regulating RAG expression in B lymphocytes. Autoimmun Rev 2009; 8:599-604. [PMID: 19393209 DOI: 10.1016/j.autrev.2009.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Development of B-cell lymphopoiesis is dependent on the presence of recombination activating genes RAG1 and RAG2 enzymes. They control the rearrangements of immunoglobulin variable, diversity and joining region segments, and allow progression of the cellular maturation. RAG1 and RAG2 are successively up- and down-regulated at each B-cell stage to progressively generate a B-cell receptor for which unforeseeable antigenic specificity results from a stochastic process. Therefore, in autoreactive immature B cells, new round of RAG re-expression can be observed to eliminate self-reactivity. In some circumstances, RAG up-regulation can also be found in peripheral mature B lymphocytes, specifically in autoimmune diseases. It is therefore of utmost importance to unravel signaling pathways that trigger RAG induction in normal and pathological conditions. Therapeutic modulation of cytokines or intracellular contacts involved in RAG expression might restrict the development of inappropriate autoimmune repertoire.
Collapse
|
10
|
Wang JH, Alt FW, Gostissa M, Datta A, Murphy M, Alimzhanov MB, Coakley KM, Rajewsky K, Manis JP, Yan CT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. ACTA ACUST UNITED AC 2008; 205:3079-90. [PMID: 19064702 PMCID: PMC2605230 DOI: 10.1084/jem.20082271] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre–mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of Igκ and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving Igκ or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro–B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy.
Collapse
Affiliation(s)
- Jing H Wang
- Howard Hughes Medical Institute, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang YH, Diamond B. B cell receptor revision diminishes the autoreactive B cell response after antigen activation in mice. J Clin Invest 2008; 118:2896-907. [PMID: 18636122 DOI: 10.1172/jci35618] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 06/11/2008] [Indexed: 12/16/2022] Open
Abstract
Autoreactive B cells are regulated in the BM during development through mechanisms, including editing of the B cell receptor (BCR), clonal deletion, and anergy. Peripheral B cell tolerance is also important for protection from autoimmune damage, although the mechanisms are less well defined. Here we demonstrated, using a mouse model of SLE-like serology, that during an autoimmune response, RAG was reinduced in antigen-activated early memory or preplasma B cells. Expression of RAG was specific to antigen-reactive B cells, required the function of the IL-7 receptor (IL-7R), and contributed to maintenance of humoral tolerance. We also showed that soluble antigen could diminish a non-autoreactive antibody response through induction of BCR revision. These data suggest that tolerance induction operates in B cells at a postactivation checkpoint and that BCR revision helps regulate autoreactivity generated during an ongoing immune response.
Collapse
Affiliation(s)
- Ying-Hua Wang
- Department of Microbiology, Columbia University Medical Center, New York, New York, USA
| | | |
Collapse
|
12
|
Schram BR, Tze LE, Ramsey LB, Liu J, Najera L, Vegoe AL, Hardy RR, Hippen KL, Farrar MA, Behrens TW. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. THE JOURNAL OF IMMUNOLOGY 2008; 180:4728-41. [PMID: 18354197 DOI: 10.4049/jimmunol.180.7.4728] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.
Collapse
Affiliation(s)
- Brian R Schram
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carrillo J, Puertas MC, Planas R, Pastor X, Alba A, Stratmann T, Pujol-Borrell R, Ampudia RM, Vives-Pi M, Verdaguer J. Anti-peripherin B lymphocytes are positively selected during diabetogenesis. Mol Immunol 2008; 45:3152-62. [PMID: 18433871 DOI: 10.1016/j.molimm.2008.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/04/2008] [Accepted: 03/06/2008] [Indexed: 01/06/2023]
Abstract
Rearrangement analysis of immunoglobulin genes is an exceptional opportunity to look back at the B lymphocyte differentiation during ontogeny and the subsequent immune response, and thus to study the selective pressures involved in autoimmune disorders. In a recent study to characterize the antigenic specificity of B lymphocytes during T1D progression, we generated hybridomas of islet-infiltrating B lymphocytes from NOD mice and other related strains developing insulitis, but with different degrees of susceptibility to T1D. We found that a sizable proportion of hybridomas produced monoclonal antibodies reactive to peripherin, an intermediate filament protein mainly found in the peripheral nervous system. Moreover, we found that anti-peripherin antibody-producing hybridomas originated from B lymphocytes that had undergone immunoglobulin class switch recombination, a characteristic of secondary immune response. Therefore, in the present study we performed immunoglobulin VL and VH analysis of these hybridomas to ascertain whether they were derived from B lymphocytes that had undergone antigen-driven selection. The results indicated that whereas some anti-peripherin hybridomas showed signs of oligoclonality, somatic hypermutation and/or secondary rearrangements (receptor edition and receptor revision), others seemed to directly derive from the preimmune repertoire. In view of these results, we conclude that anti-peripherin B lymphocytes are positively selected and primed in the course of T1D development in NOD mice, and reinforce the idea that peripherin is a relevant autoantigen targeted during T1D development in this animal model.
Collapse
Affiliation(s)
- Jorge Carrillo
- Laboratory of Immunobiology for Research and Application to Diagnosis & Center for Transfusion and Tissue Bank (BST), Institut d'Investigacio Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zouali M. Receptor editing and receptor revision in rheumatic autoimmune diseases. Trends Immunol 2008; 29:103-9. [DOI: 10.1016/j.it.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022]
|
15
|
Hillion S, Dueymes M, Youinou P, Jamin C. IL-6 contributes to the expression of RAGs in human mature B cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:6790-8. [PMID: 17982069 DOI: 10.4049/jimmunol.179.10.6790] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mature B cells acquire the capacity to revise rearranged Ig V region genes in secondary lymphoid organs. In previous studies, we demonstrated that cross-linking the BCR and the CD40 induces the expression of the RAG1 and RAG2 enzymes and, thereby, secondary rearrangements. We examine herein the mechanism that underpins RAG1 and RAG2 expression in peripheral and tonsil B cells. Coordinated engagement of the BCR and CD40 promoted the synthesis of IL-6 and, thereby, up-regulation of its receptor on activated B lymphocytes. Furthermore, we provide evidence that IL-6 initiates the expression of RAGs in circulating B cells, and extends those in tonsil B cells. Thus, neutralization of IL-6 or blocking of its receptor inhibits RAG expression. Moreover, we demonstrate that IL-6 impedes BCR-mediated termination of RAG gene expression in both population of B cells. The recovered inhibition of RAG gene transcription by IL-6 receptor blockade supports the notion that once recombination is launched, its termination is also regulated by IL-6. Taken together, these studies provide new insight into the dual role of IL-6 in inducing and terminating expression of the recombinase machinery for secondary rearrangements in mature human B cells.
Collapse
Affiliation(s)
- Sophie Hillion
- Laboratory of Immunology, Brest University Medical School Hospital, Brest, France
| | | | | | | |
Collapse
|
16
|
Hillion S, Garaud S, Devauchelle V, Bordron A, Berthou C, Youinou P, Jamin C. Interleukin-6 is responsible for aberrant B-cell receptor-mediated regulation of RAG expression in systemic lupus erythematosus. Immunology 2007; 122:371-80. [PMID: 17608810 PMCID: PMC2266017 DOI: 10.1111/j.1365-2567.2007.02649.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Defective regulation of secondary immunoglobulin V(D)J gene rearrangement promotes the production of autoantibodies in systemic lupus erythematosus (SLE). It remains unclear, however, whether the regulation of the recombination-activating genes RAG1 and RAG2 is effective in SLE. RAG1 and RAG2 messenger RNA expression was analysed before and after in vitro activation of sorted CD19(+) CD5(-) B cells with anti-immunoglobulin M antibodies, in 20 SLE patients and 17 healthy controls. The expression of CDK2 and p27(Kip1) regulators of the RAG2 protein, were examined. The levels of interleukin-6 (IL-6) and its influence on RAG regulation were also evaluated in vitro. SLE patients had increased frequency of RAG-positive B cells. B-cell receptor (BCR) engagement induced a shift in the frequency of kappa- and lambda-positive cells, associated with a persistence of RAG messenger RNA and the maintenance of RAG2 protein within the nucleus. While expression of the RAG2-negative regulator CDK2 was normal, the positive regulator p27(Kip1) was up-regulated and enhanced by BCR engagement. This effect was the result of the aberrant production of IL-6 by SLE B cells. Furthermore, IL-6 receptor blockade led to a reduction in p27(Kip1) expression, and allowed the translocation of RAG2 from the nucleus to the cytoplasm. Our study indicates that aberrant production of IL-6 contributes to the inability of SLE B cells to terminate RAG protein production. Therefore, we hypothesize that because of constitutive IL-6 signalling in association with BCR engagement, SLE B cells would become prone to secondary immunoglobulin gene rearrangements and autoantibody production.
Collapse
Affiliation(s)
- Sophie Hillion
- EA Immunologie et Pathologie, Brest University Medical School, Brest, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Rochas C, Hillion S, Youinou P, Jamin C, Devauchelle-Pensec V. RAG-mediated secondary rearrangements of B-cell antigen receptors in rheumatoid synovial tissue. Autoimmun Rev 2007; 7:155-9. [PMID: 18035327 DOI: 10.1016/j.autrev.2007.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) induces major changes in synovial tissue (ST) and cartilage and bone destruction. Still, its pathogenesis is poorly understood. Accumulating evidence points to an important role for B lymphocytes. Rheumatoid-ST is characterized by activation of the synoviocytes and infiltrated by various inflammatory cells such as B and T lymphocytes. The infiltrate is diffuse or organized as germinal centers (GCs). These accommodate the immune response and favor self-tolerance breakdown. Receptor revision in B cells results from re-expression of the recombination activating genes (RAGs) which reinitiate immunoglobulin gene recombination, and modify the B-cell antigen receptor accordingly. In rheumatoid ST, secondary VDJ rearrangements occur and RAG proteins are detected. The mechanism that triggers and controls this revision remains elusive. We favor the hypothesis that such an uncontrolled process leads to autoimmunity.
Collapse
Affiliation(s)
- Caroline Rochas
- Laboratory of Immunology, Brest University Medical School Hospital, BP 824, F 29609 Brest, France
| | | | | | | | | |
Collapse
|
18
|
van Zelm MC, Szczepanski T, van der Burg M, van Dongen JJM. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. ACTA ACUST UNITED AC 2007; 204:645-55. [PMID: 17312005 PMCID: PMC2137914 DOI: 10.1084/jem.20060964] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The contribution of proliferation to B lymphocyte homeostasis and antigen responses is largely unknown. We quantified the replication history of mouse and human B lymphocyte subsets by calculating the ratio between genomic coding joints and signal joints on kappa-deleting recombination excision circles (KREC) of the IGK-deleting rearrangement. This approach was validated with in vitro proliferation studies. We demonstrate that naive mature B lymphocytes, but not transitional B lymphocytes, undergo in vivo homeostatic proliferation in the absence of somatic mutations in the periphery. T cell-dependent B cell proliferation was substantially higher and showed higher frequencies of somatic hypermutation than T cell-independent responses, fitting with the robustness and high affinity of T cell-dependent antibody responses. More extensive proliferation and somatic hypermutation in antigen-experienced B lymphocytes from human adults compared to children indicated consecutive responses upon additional antigen exposures. Our combined observations unravel the contribution of proliferation to both B lymphocyte homeostasis and antigen-induced B cell expansion. We propose an important role for both processes in humoral immunity. These new insights will support the understanding of peripheral B cell regeneration after hematopoietic stem cell transplantation or B cell-directed antibody therapy, and the identification of defects in homeostatic or antigen-induced B cell proliferation in patients with common variable immunodeficiency or another antibody deficiency.
Collapse
Affiliation(s)
- Menno C van Zelm
- Erasmus MC, Department of Immunology, 3015 GE Rotterdam, Netherlands
| | | | | | | |
Collapse
|
19
|
Sirac C, Carrion C, Duchez S, Comte I, Cogné M. Light chain inclusion permits terminal B cell differentiation and does not necessarily result in autoreactivity. Proc Natl Acad Sci U S A 2006; 103:7747-52. [PMID: 16682638 PMCID: PMC1472516 DOI: 10.1073/pnas.0509121103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mice in which the Jkappa cluster was replaced with a VkappaJkappa rearranged gene were studied. More than 90% of B cells from homozygous mutant mice expressed the transgenic kappa chain but showed a slightly reduced level of kappa transcripts compared with WT B lymphocytes. Light chain inclusion was apparent in 10% of B cells from these mice and raised 25% in hemizygous mice with a still lower expression of the knockin kappa chain. Beyond the rules of clonal selection, peripheral B cells developed in such animals, with included cells being activated and differentiating into class-switched or antibody-secreting cells. The high amount of included mature B cells was associated with an increase of hybrid kappa/lambda immunoglobulins but not with the increased prevalence of autoantibodies. Altogether, these data suggest that light chain exclusion prevalent in normal B cells mostly results from ordered rearrangements and stochastic mechanisms but is neither tightly ensured by a stringent cell selection process nor absolutely required for normal B cell function.
Collapse
Affiliation(s)
- C. Sirac
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - C. Carrion
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - S. Duchez
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - I. Comte
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
| | - M. Cogné
- Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, Equipe Labellisée la Ligue, Université de Limoges, F-87025 Limoges, France
- To whom correspondence should be addressed at:
Laboratoire d’Immunologie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6101, 2 Rue du Dr. Marcland, 87025 Limoges Cedex, France. E-mail:
| |
Collapse
|
20
|
Faber C, Morbach H, Singh SK, Girschick HJ. Differential expression patterns of recombination-activating genes in individual mature B cells in juvenile idiopathic arthritis. Ann Rheum Dis 2006; 65:1351-6. [PMID: 16504994 PMCID: PMC1798333 DOI: 10.1136/ard.2005.047878] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Re-expression of the recombination-activating genes (RAG) in peripheral B cells may be relevant in the development of autoreactive antibodies in autoimmune diseases. The presence of antinuclear antibodies (ANA) as a hallmark of oligoarticular juvenile idiopathic arthritis (o-JIA, early-onset type) indicates a breakdown in immunological tolerance. AIM To examine the expression of RAG genes in peripheral blood mature B lymphocytes in patients with o-JIA. METHODS 777 memory B cells from peripheral blood, CD19+ CD27+ CD5+ or CD19+ CD27+ CD5-, isolated from three ANA+ children with o-JIA and three healthy age-matched children, were examined for the expression of RAG1 and RAG2 mRNA. mRNA transcripts of activation-induced cytidine deaminase and immunoglobulin G were searched to further determine their developmental stage. RESULTS mRNA was present for any of the two RAG genes in the B cells of children with JIA and controls. However, the predominance of RAG1 or RAG2 was different. A significantly decreased frequency of RAG2-expressing memory B cells in both CD5+ and CD5- populations was noted in children with JIA (p<0.001), whereas the number of RAG1-expressing B cells was slightly increased. The coordinate expression of both the RAG genes was a rare event, similar in the CD5+ populations (1% in controls, 2% in children with JIA), but different among the CD5- compartments (5% v 0%; p<0.01). CONCLUSION These results argue for a reduced coordinate RAG expression in the peripheral CD5- memory B cells of patients with o-JIA. Thus, it was hypothesised that impaired receptor revision contributes to autoimmune pathogenesis in JIA.
Collapse
Affiliation(s)
- C Faber
- Section of Paediatric Rheumatology and Osteology, Children's Hospital, University of Würzburg, Josef Schneider Str 2, D-97080 Würzburg, Germany
| | | | | | | |
Collapse
|
21
|
Rezanka LJ, Kenny JJ, Longo DL. Dual isotype expressing B cells [kappa(+)/lambda(+)] arise during the ontogeny of B cells in the bone marrow of normal nontransgenic mice. Cell Immunol 2006; 238:38-48. [PMID: 16458869 DOI: 10.1016/j.cellimm.2005.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/09/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Central to the clonal selection theory is the tenet that a single B cell expresses a single receptor with a single specificity. Previously, based on our work in anti-phosphocholine transgenic mouse models, we suggested that B cells escaped clonal deletion by coexpression of more than one receptor on their cell surface. We argued that "receptor dilution" was necessary when: (i) the expressed immunoglobulin receptor is essential for immune protection against pathogens and (ii) this protective receptor is autoreactive and would be clonally deleted, leaving a hole in the B cell repertoire. Here, we demonstrate that dual isotype expressing B cells arise during the normal ontogeny of B cells in the bone marrow and populate both the spleen and peritoneal cavity of nontransgenic mice. Furthermore, single cell analysis of the expressed immunoglobulin light chains suggests that receptor editing may play a role in the generation of a significant fraction of dual isotype expressing B cells.
Collapse
Affiliation(s)
- Louis J Rezanka
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
22
|
Rezanka LJ, Kenny JJ, Longo DL. 2 BCR or NOT 2 BCR - receptor dilution: a unique mechanism for preventing the development of holes in the protective B cell repertoire. Immunobiology 2005; 210:769-74. [PMID: 16325496 DOI: 10.1016/j.imbio.2005.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Accepted: 08/30/2005] [Indexed: 11/17/2022]
Abstract
The clonal selection theory and the associated corollaries have had a major influence in shaping our thinking about lymphoid cell development as well as how these cells respond to antigenic challenges. Among these concepts are that a single B cell expresses a single receptor with a single antigen specificity. While these hypotheses have proven invaluable in expanding our understanding of immune response, over time numerous observations have been made that suggest that the single cell, single receptor, single specificity model is not absolute. In this manuscript, we review this literature as it pertains to B cells and provide a summary that supports the notion that in certain situations, the over-arching rules by which we consider development and response of immune cells may be compromised. The result of compromising allelic and isotype exclusion is a small but real population of dual receptor expressing B cells. A number of mechanisms that have been proposed for generating these dual expressing B cells are presented and discussed. We also consider the negative implications of dual receptor expression on regulating and controlling autoreactive B cell populations as well as its beneficial contributions to preserving essential receptor specificities and thereby preventing the development of holes in the immune repertoire. Previously, the dual receptor expressing population has received relatively little attention. Improvements in the tools available to examine individual B cell populations have resulted in our identification of and discrimination between novel populations of B cells, including novel dual receptor expressing populations. This combined with continuing increases in our understanding of how the immune repertoire relates to a protective immune response will strengthen and further define this novel aspect of immune cell development.
Collapse
Affiliation(s)
- Louis J Rezanka
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
23
|
Hillion S, Saraux A, Youinou P, Jamin C. Expression of RAGs in Peripheral B Cells outside Germinal Centers Is Associated with the Expression of CD5. THE JOURNAL OF IMMUNOLOGY 2005; 174:5553-61. [PMID: 15843554 DOI: 10.4049/jimmunol.174.9.5553] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have indicated that mature B cells reactivate secondary V(D)J recombination inside and outside the germinal center (GC) of peripheral lymphoid organs. The nature of the B cells undergoing Ig rearrangement before they enter GC is unknown. In this study, we present evidence that activated mature CD5-positive human tonsil B cells coexpress both RAG1 and RAG2 mRNA and protein, and display DNA cleavage resulting from their recombinase activity. Furthermore, in vitro activation of CD5-negative naive mature B cells by IgR and CD40 cross-linking induces expression of CD5 on a subset of cells, and leads to the up-regulation of RAG1 and RAG2 only in cells turned positive for CD5. Thus, RAG gene expression is closely related to CD5 expression outside GCs. These data suggest that CD5 is associated with receptor revision in activated mature B cells and likely to promote expression of suitable IgR capable of initiating the GC reaction.
Collapse
Affiliation(s)
- Sophie Hillion
- Laboratory of Immunology, Brest University Medical School Hospital, Brest, France
| | | | | | | |
Collapse
|
24
|
Perfetti V, Vignarelli MC, Palladini G, Navazza V, Giachino C, Merlini G. Insights into the regulation of immunoglobulin light chain gene rearrangements via analysis of the kappa light chain locus in lambda myeloma. Immunology 2004; 112:420-7. [PMID: 15196210 PMCID: PMC1782513 DOI: 10.1046/j.1365-2567.2004.01902.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence indicates that B cells may undergo sequential rearrangements at the light chain loci, despite already expressing light chain receptors. This phenomenon may occur in the bone marrow and, perhaps, in germinal centers. As immunoglobulin (Ig)kappa light chains usually rearrange before Iglambda light chains, we analysed, by polymerase chain reaction, the Igkappa locus of bone marrow mononuclear cells from 29 patients with Iglambda myeloma to identify earlier recombinations in marrow plasma cells. The results demonstrated that Igkappa alleles were inactivated via the kappa-deleting element, presumably prior to V(kappa)-J(kappa) rearrangement, in many cases. Eighteen alleles (16 myeloma clones, 55%) showed V(kappa)-J(kappa) rearrangements, with increased utilization of 5' distant V(kappa) and 3' distant Jkappa gene segments (Jkappa4, 56%), an indication of multiple sequential rearrangements. In-frame, potentially functional V(kappa)-J(kappa) rearrangements were found in approximately one-third of available rearrangements (as expected by chance), each one in different myeloma clones: three were germline encoded, while one had several nucleotide substitutions, suggesting inactivation after the onset of somatic hypermutation. Three of four potentially functional V(kappa)-J(kappa)rearrangements involved V(kappa)4-1, a segment considered to be associated with autoimmunity. These findings provide insights into the regulation of light chain rearrangements and support the view that B cells may occasionally undergo sequential light chain rearrangements after the onset of somatic hypermutation.
Collapse
Affiliation(s)
- Vittorio Perfetti
- Internal Medicine and Medical Oncology, IRCCS Policlinico S. Matteo-University of Pavia, Pavia, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Ueda Y, Yang K, Foster SJ, Kondo M, Kelsoe G. Inflammation controls B lymphopoiesis by regulating chemokine CXCL12 expression. ACTA ACUST UNITED AC 2004; 199:47-58. [PMID: 14707114 PMCID: PMC1887733 DOI: 10.1084/jem.20031104] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation removes developing and mature lymphocytes from the bone marrow (BM) and induces the appearance of developing B cells in the spleen. BM granulocyte numbers increase after lymphocyte reductions to support a reactive granulocytosis. Here, we demonstrate that inflammation, acting primarily through tumor necrosis factor α (TNFα), mobilizes BM lymphocytes. Mobilization reflects a reduced CXCL12 message and protein in BM and changes to the BM environment that prevents homing by cells from naive donors. The effects of TNFα are potentiated by interleukin 1 β (IL-1β), which acts primarily to expand the BM granulocyte compartment. Our observations indicate that inflammation induces lymphocyte mobilization by suppressing CXCL12 retention signals in BM, which, in turn, increases the ability of IL-1β to expand the BM granulocyte compartment. Consistent with this idea, lymphocyte mobilization and a modest expansion of BM granulocyte numbers follow injections of pertussis toxin. We propose that TNFα and IL-1β transiently specialize the BM to support acute granulocytic responses and consequently promote extramedullary lymphopoiesis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD/genetics
- B-Lymphocytes/immunology
- Bone Marrow Cells/immunology
- Chemokine CXCL12
- Chemokines, CXC/genetics
- Colony-Forming Units Assay
- Female
- Gene Expression Regulation/immunology
- Inflammation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Stromal Cells/immunology
Collapse
Affiliation(s)
- Yoshihiro Ueda
- Department of Immunology, Box 3010, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Nagafuchi H, Yoshikawa H, Takeba Y, Nara K, Miura K, Kurokawa MS, Suzuki N. Recombination activating genes (RAG) induce secondary Ig gene rearrangement in and subsequent apoptosis of human peripheral blood circulating B lymphocytes. Clin Exp Immunol 2004; 136:76-84. [PMID: 15030517 PMCID: PMC1808993 DOI: 10.1111/j.1365-2249.2004.02423.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recombination activating gene (RAG) re-expression and secondary Ig gene rearrangement in mature B lymphocytes have been reported. Here, we have studied RAG expression of peripheral blood B lymphocytes in humans. Normal B cells did not express RAG1 and RAG2 spontaneously. More than a half of circulating B cells expressed RAG proteins, when activated with Staphylococcus aureus Cowan I (SAC) + IL-2. DNA binding activity of the RAG complex has been verified by a gel shift assay employing the recombination signal sequence (RSS). Secondary Ig light chain rearrangement in the RAG-expressing B cells was confirmed by linker-mediated (LM)-PCR. Highly purified surface kappa+ B cells activated by SAC + IL-2 became RAG+, and thereafter they started to express lambda chain mRNA. 2 colour immunofluorescence analysis disclosed that a part of the RAG+ cells derived from the purified kappa+ B cells activated by SAC + IL-2 turned to lambda+ phenotype in vitro. Similarly, apoptosis induction was observed in a part of the RAG+ B cells. Our study suggests that a majority of peripheral blood B cells re-expresses RAG and the RAG+ B lymphocytes could be eliminated from the B cell repertoire either by changing Ag receptor specificity due to secondary rearrangement or by apoptosis induction. Thus, RAG expression of mature B cells in peripheral blood would contribute to not only receptor revision for further diversification of B cell repertoire but in some cases (or in some B cell subsets) to prevention or induction of autoAb responses at this differentiation stage in humans.
Collapse
Affiliation(s)
- H Nagafuchi
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Rosenquist R, Menestrina F, Lestani M, Küppers R, Hansmann ML, Bräuninger A. Indications for peripheral light-chain revision and somatic hypermutation without a functional B-cell receptor in precursors of a composite diffuse large B-cell and Hodgkin's lymphoma. J Transl Med 2004; 84:253-62. [PMID: 14688797 DOI: 10.1038/labinvest.3700025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Composite lymphomas are rare combinations of Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma in the same patient, where clonal relatedness has been observed in most of the few cases analyzed. Here, we report a composite classical HL and diffuse large B-cell lymphoma (DLBCL) with interesting molecular features. Micromanipulation of single cells and analysis of V gene rearrangements revealed clonal relatedness with shared and distinct mutations, indicative of derivation from a common germinal center (GC) B-cell precursor and also of further development of both lymphomas in a GC. In the DLBCL, a very high mutation load, including inactivating mutations, and two copies of the same clonal rearrangement with different mutations in single cells were observed. Intriguingly, in the DLBCL precursor somatic hypermutation activity continued after acquisition of destructive V gene mutations, a feature previously found only in Epstein-Barr virus (EBV) infected B-cell expansions. Furthermore, we found evidence of light-chain receptor revision in the lymphoma precursor during a GC reaction. Re-expression of the V(D)J recombination machinery may enhance genomic instability in GC B cells and contribute to lymphomagenesis.
Collapse
MESH Headings
- Aged
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Base Sequence
- Clone Cells
- Cyclophosphamide/administration & dosage
- DNA, Neoplasm/analysis
- Doxorubicin/administration & dosage
- Female
- Gene Rearrangement, B-Lymphocyte, Light Chain/genetics
- Hodgkin Disease/drug therapy
- Hodgkin Disease/genetics
- Hodgkin Disease/pathology
- Humans
- Immunoglobulin Light Chains/genetics
- Immunophenotyping
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Sequence Data
- Neoplasms, Multiple Primary/drug therapy
- Neoplasms, Multiple Primary/genetics
- Neoplasms, Multiple Primary/pathology
- Prednisone/administration & dosage
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Somatic Hypermutation, Immunoglobulin/genetics
- Treatment Outcome
- Vincristine/administration & dosage
Collapse
|
28
|
Chen M, Aosai F, Mun HS, Norose K, Piao LX, Yano A. Correlation between the avidity maturation of anti-HSP70 IgG autoantibody and recombination activating gene expressions in peripheral lymphoid tissues of Toxoplasma gondii-infected mice. Microbiol Immunol 2003; 47:217-21. [PMID: 12725292 DOI: 10.1111/j.1348-0421.2003.tb03390.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The avidity maturation of anti-TgHSP70 IgG antibody produced by B-2 cells of BALB/c mice (a resistant strain) and that of anti-mHSP70 IgG autoantibody produced by B-1 cells of C57BL/6 mice (B6; a susceptible strain) was observed after Toxoplasma gondii infection. Recombination-activating genes (RAGs) were predominantly expressed in B-1 cells from peritoneal exudate cells (PECs) of T. gondii-infected B6 mice, while RAGs were expressed in B-2 cells from PECs of BALB/c mice. These results suggest that the involvement of RAG gene activations in the peripheral lymphoid tissues in the avidity maturation of anti-TgHSP70 IgG antibody and anti-mHSP70 IgG autoantibody in T. gondii-infected mice.
Collapse
Affiliation(s)
- Mei Chen
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol 2003; 15:182-9. [PMID: 12633668 DOI: 10.1016/s0952-7915(03)00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clonal selection is central to immune function, but it is complemented by "receptor selection", which regulates the immune repertoire not by cell death or proliferation but through the control of antigen receptor gene recombination. Inappropriate receptors, such as those that are autoreactive, underexpressed, or that fail to promote positive selection of thymocytes or B cells, stimulate secondary V-to-J recombinations that destroy and replace receptor genes. These processes play a central role in lymphocyte repertoire development. Recent work on the role of receptor selection in B and T cells has uncovered evidence for and against antigen-induced editing in thymocytes. Many studies suggest that editing plays a central role in B and T lymphocyte repertoire development. Important recent evidence has been uncovered addressing the role of tolerance-induced editing in thymocytes.
Collapse
MESH Headings
- Animals
- Down-Regulation/immunology
- Gene Rearrangement/immunology
- Genes, Immunoglobulin/genetics
- Humans
- Models, Biological
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IM-29, La Jolla, CA 92037, USA.
| | | |
Collapse
|
30
|
Benito C, Gomis R, Fernández-Alvarez J, Usac EF, Gallart T. Transcript expression of two Iglambda rearrangements and RAG-1/RAG-2 in a mature human B cell producing IgMlambda islet cell autoantibody. J Clin Immunol 2003; 23:107-18. [PMID: 12757263 DOI: 10.1023/a:1022524811479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A human B cell clone, EBV-MB91, producing IgMlambda islet cell autoantibody (ICA), obtained by Epstein-Barr virus (EBV) transformation of peripheral CD5- surface Ig+ B cells from a Type 1 diabetic child, and an EBV-MB91-derived hetrohybridoma, HY-MB91, were analyzed for rearranged Ig genes. Both EBV-MB91 and HY-MB91 contained and expressed a unique IgH chain rearrangement (unmutated VH5-51-D6-19-JH5) but contained and expressed two Iglambda chain rearrangements: (i) Vlambda1-4-Jlambda3-Clambda3, which encoded the Iglambda chains (pI, 8.0) of IgMlambda-ICA, showing few mutations but consistent with Ag-driven selection according to the multinomial probability model; and (ii) Vlambda4-1-Jlambda3-Clambda3, with more mutations but inconsistent with antigen-driven selection and involving stop codons that precluded Iglambda synthesis. HY-MB91 showed a progressive loss of IgMlambda-ICA secretion, which was coupled with transcripts of the aberrant Vlambda4-1-Jlambda3-Clambda3 predominating (1.7-fold) over those of Vlambda1-4-Jlambda3-Clambda3. EBV-MB91 also showed the loss of IgMlambda-ICA secretion, associated with cell death. RAG-1 and RAG-2 transcripts occurred in EBV-MB91 but not in HY-MB91, indicating that the former but not the latter might have been able to exhibit V(D)J recombinase activity. Data show that a mature nonmalignant human B cell clone producing IgMlambda-ICA can express RAG-1/RAG-2 transcripts. That the aberrant Vlambda4-1-Jlambda3-Clambda3 was a nonproductive rearrangement occurring at the pre-B cell stage cannot be excluded. However, the hypothetical possibility that one of the two rearrangements corresponded to a secondary rearrangement occurring in the mature B cell represented by the EBV-MB91 clone might also be considered and is discussed.
Collapse
Affiliation(s)
- Carmen Benito
- Endocrinology and Diabetes Service, Hospital Clínic Universitari, IDIBAPS, Faculty of Medicine, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Serra P, Amrani A, Han B, Yamanouchi J, Thiessen SJ, Santamaria P. RAG-dependent peripheral T cell receptor diversification in CD8+ T lymphocytes. Proc Natl Acad Sci U S A 2002; 99:15566-71. [PMID: 12432095 PMCID: PMC137757 DOI: 10.1073/pnas.242321099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rearrangement of T cell receptor (TCR) genes is driven by transient expression of V(D)J recombination-activating genes (RAGs) during lymphocyte development. Immunological dogma holds that T cells irreversibly terminate RAG expression before exiting the thymus, and that all of the progeny arising from mature T cells express the parental TCRs. When single pancreatic islet-derived, NRP-A7 peptide-reactive CD8(+) T cells from nonobese diabetic (NOD) mice were repeatedly stimulated with peptide-pulsed dendritic cells, daughter T cells reexpressed RAGs, lost their ability to bind to NRP-A7K(d) tetramers, ceased to transcribe tetramer-specific TCR genes, and, instead, expressed a vast array of other TCR rearrangements. Pancreatic lymph node (PLN) CD8(+) T cells from animals expressing a transgenic NRP-A7-reactive TCR transcribed and translated RAGs in vivo and displayed endogenous TCRs on their surface. RAG reexpression also occurred in the PLN CD8(+) T cells of wild-type NOD mice and could be induced in the peripheral CD8(+) T cells of nondiabetes-prone TCR-transgenic B10.H2(g7) mice by stimulation with peptide-pulsed dendritic cells. In contrast, reexpression of RAGs could not be induced in the CD8(+) T cells of B6 mice expressing an ovalbumin-specific, K(b)-restricted TCR, or in the CD8(+) T cells of NOD mice expressing a lymphocytic choriomeningitis virus-specific, D(b)-restricted TCR. Extra-thymic reexpression of the V(D)J recombination machinery in certain CD8(+) T cell subpopulations, therefore, enables further diversification of the peripheral T cell repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells/immunology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/physiology
- Dendritic Cells/immunology
- Gene Expression Regulation
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, RAG-1
- H-2 Antigens/immunology
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/physiology
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Pau Serra
- Department of Microbiology and Infectious Diseases, and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive N.W., AB, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Jane Seagal
- Department of Immunology, Bruce Rappaport Faculty of Medicine and Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | |
Collapse
|
33
|
Goldmit M, Schlissel M, Cedar H, Bergman Y. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J 2002; 21:5255-61. [PMID: 12356741 PMCID: PMC129040 DOI: 10.1093/emboj/cdf518] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Gene rearrangement in the immune system is always preceded by DNA demethylation and increased chromatin accessibility. Using a model system in which rearrangement of the endogenous immunoglobulin kappa locus is prevented, we demonstrate that these epigenetic and chromatin changes actually occur on one allele with a higher probability than the other. It may be this process that, together with feedback inhibition, serves as the basis for allelic exclusion.
Collapse
Affiliation(s)
- Maya Goldmit
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Mark Schlissel
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Howard Cedar
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| | - Yehudit Bergman
- The Hubert H.Humphrey Center for Experimental Medicine and Cancer Research, Department of Cellular Biochemistry and Human Genetics, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA Corresponding author e-mail:
| |
Collapse
|
34
|
Ohmori H, Magari M, Nakayama Y, Kanayama N, Hikida M. Role for complement receptors (CD21/CD35) in the regulation of recombination activating gene expression in murine peripheral B cells. Immunol Lett 2002; 83:95-9. [PMID: 12067757 DOI: 10.1016/s0165-2478(02)00083-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A population of peripheral B cells have been shown to express recombination activating gene products, RAG-1 and RAG-2, which are considered to be involved in revising the B cell antigen receptor (BCR) in the periphery. BCR engagement has been reported to turn off RAG expression in peripheral B cells, whereas the same treatment has an opposite effect on immature B cells in the bone marrow. In contrast to receptor editing that is involved in the removal of autoreactivity in immature B cells, it has been shown that secondary V(D)J rearrangement in peripheral B cells, termed receptor revision, contributes to affinity maturation of antibodies. Here, we show that RAG-2 expression in murine splenic B cells was abrogated by the coligation of BCR with complement receptors (CD21/CD35) much more efficiently than by the engagement of BCR alone. On the other hand, the same coligation augmented proliferation of anti-CD40-stimulated B cells. These findings suggest a crucial role for CD21/CD35 in directing the conservation or the revision of BCRs in peripheral B cells.
Collapse
Affiliation(s)
- Hitoshi Ohmori
- Department of Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, Japan.
| | | | | | | | | |
Collapse
|
35
|
Nemazee D, Mårtensson A, Verkoczy L. Haplotype exclusion and receptor editing: irreconcilable differences? Semin Immunol 2002; 14:191-8; discussion 222-4. [PMID: 12160646 DOI: 10.1016/s1044-5323(02)00042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Features of antibody genes and their regulation hinder two properties thought to be critical for clonal selection: haplotype exclusion and receptor diversity. These properties include: (1) the retention of multiple independent L-chain isotypes, which compounds the problem of allelic exclusion with one of isotype exclusion; (2) the process of receptor editing, in which recombination continues in cells already expressing antigen receptors; and (3) non-random associations and quasi-ordered rearrangements of the elements that generate light chain genes, which promote editing at the expense of allelic exclusion and receptor diversification. In contrast, heavy chain gene structure seems to promote haplotype exclusion and receptor diversity. It appears that requirements of receptor selection, such as the need for receptor editing as an immune tolerance mechanism and positive selection as a quality control checkpoint for receptor functionality, impose independent selections that shape the organization and regulation of the antibody genes. Despite these features, B cell development still achieves a significant level of phenotypic haplotype exclusion, suggesting that there is indeed significant selection for antibody monospecificity that is accommodated along with receptor editing. Thus, the immune system achieves both receptor selection and clonal selection, despite their partly antagonistic mechanisms.
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
36
|
Buch T, Rieux-Laucat F, Förster I, Rajewsky K. Failure of HY-specific thymocytes to escape negative selection by receptor editing. Immunity 2002; 16:707-18. [PMID: 12049722 DOI: 10.1016/s1074-7613(02)00312-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Editing of autoreactive antigen receptors by secondary V(D)J recombination efficiently rescues B lymphocyte precursors from apoptosis induced by negative selection, but its role has not been rigorously assessed in T cell development. We therefore generated a transgenic mouse model in which self-reactive thymocytes could edit their TCR by secondary recombination at the TCR alpha locus. For this purpose, the V alpha J alpha exon of a male-specific TCR was inserted into the TCR alpha locus followed by Cre-loxP-mediated deletion of the TCR delta locus. In this model, only few thymocytes escaped negative selection by change of specificity, probably through recombination before encounter of autoantigen. In the absence of the restricting MHC element, however, developing thymocytes replaced the inserted TCR alpha exon efficiently.
Collapse
MESH Headings
- Animals
- Autoantigens/immunology
- Base Sequence
- Clonal Deletion
- Female
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- H-Y Antigen/immunology
- Homozygote
- Immunoglobulin J-Chains/genetics
- Immunoglobulin Variable Region/genetics
- Integrases/metabolism
- Male
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Mutagenesis, Insertional
- Organ Culture Techniques
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombination, Genetic
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Thorsten Buch
- Institute for Genetics, University of Cologne, Weyertal 121, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
37
|
Magari M, Sawatari T, Kawano Y, Cascalho M, Wabl M, Kanayama N, Hikida M, Ohmori H. Contribution of light chain rearrangement in peripheral B cells to the generation of high-affinity antibodies. Eur J Immunol 2002; 32:957-66. [PMID: 11920561 DOI: 10.1002/1521-4141(200204)32:4<957::aid-immu957>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, peripheral B cells have been shown to undergo secondary V(D)J rearrangement of immunoglobulin genes, but the physiological role of this event has not been fully elucidated. To investigate whether rearrangement of L chain genes in the periphery is involved in the generation of high-affinity antibodies (Ab), we used the 17.2.25 rearranged VHDJH gene (VHT)-knockin mouse whose B cell diversity is limited due to the expression of the site-directed transgene. Immunization of the mouse with p-nitrophenylacetyl (pNP)-conjugated chicken gamma-globulin preferentially led to the production of anti-pNP IgG Ab comprised of non-VHT-encoded H chains and lambda chains. lambda(+) IgG constituted a majority of high-affinity Ab to this hapten. RAG-2 mRNA and the recombination signal sequence break of the lambda1 gene increased in the draining lymph node of immunized mice, but not of nonimmunized animals. There was a close correlation between the levels of these parameters implicating lambda gene rearrangement and the production of lambda(+ )high-affinity anti-pNP IgG. These observations were reproduced in RAG-1-deficient mice that were reconstituted with the spleen cells ofthe knockin mouse. Thus, our findings suggest that L chain rearrangement that occurs in the periphery can contribute to affinity maturation of Ab.
Collapse
Affiliation(s)
- Masaki Magari
- Department of Biotechnology, Faculty of Engineering, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Meru N, Jung A, Baumann I, Niedobitek G. Expression of the recombination-activating genes in extrafollicular lymphocytes but no apparent reinduction in germinal center reactions in human tonsils. Blood 2002; 99:531-7. [PMID: 11781235 DOI: 10.1182/blood.v99.2.531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination in lymphocytes is mediated by 2 recombination-activating genes, RAG1 and RAG2, which are expressed during lymphocyte development in bone marrow and thymus. Prompted by studies reporting re-expression of the RAGs in germinal center B cells, the expression of RAGs and terminal deoxynucleotidyl transferase (TdT) in human lymphoid tissues was examined using in situ hybridization and immunohistochemistry, respectively. Here it is shown that RAGs and TdT are not reinduced in germinal center reactions. However, RAG(+)/TdT(+) cells are frequently present in extrafollicular areas of tonsils mainly at the boundary between lymphoid tissue and fibrous scaffold. Phenotypic analyses suggest that these cells are B cells. Finally, it is shown that RAG(+)/TdT(+) cells are found more frequently in tonsils than in other peripheral lymphoid tissues. This may reflect an increased influx of RAG(+)/TdT(+) cells as a result of higher antigenic stimulation at this site. Alternatively, this observation may indicate that the tonsils are an additional site of lymphocyte ontogeny.
Collapse
Affiliation(s)
- Nadine Meru
- Pathologisches Institut, Friedrich-Alexander-Universität, Erlangen, Germany
| | | | | | | |
Collapse
|
39
|
Davila M, Foster S, Kelsoe G, Yang K. A role for secondary V(D)J recombination in oncogenic chromosomal translocations? Adv Cancer Res 2002; 81:61-92. [PMID: 11430596 DOI: 10.1016/s0065-230x(01)81002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosomal translocations are hallmarks of certain lymphoproliferative disorders. Indeed, in many leukemias and lymphomas, translocations are the transforming event that brings about malignancy. Recurrence of the immunoglobulin (Ig) and T-cell receptor (Tcr) loci at the breakpoints of oncogenic chromosomal translocations has led to speculation that the lymphocyte-specific process of V(D)J rearrangement, which is necessary for the generation of functional Ig and TCR antigen receptors on B and T lymphocytes, mediates translocation. Recent studies have led to a fuller understanding of the molecular mechanisms of V(D)J rearrangement and have revealed that the V(D)J recombinase possesses latent transposase activity. These studies have led to plausible models of illegitimate V(D)J recombination producing chromosomal translocations consistent with those present in lymphomas and leukemias. Errors of V(D)J recombination may even generate lymphomas with the phenotypes of mature cells. For example, follicular and Burkitt's lymphomas have been classified by phenotype and somatic genotype as malignant germinal center (GC) B or post-GC B cells. The GC is a site of affinity maturation where B cells undergo V(D)J hypermutation and Ig class switch; in addition, much evidence has accumulated to suggest that GC B cells may also support secondary V(D)J recombination. Interestingly, all three of these elements, genomic plasticity, mutation, and translocation breakpoints near switch sites or recombinational elements, are characteristic of certain lymphomas. The high frequency of lymphomas carrying these GC markers suggests that the GC reaction may play a significant role in lymphomagenesis.
Collapse
Affiliation(s)
- M Davila
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
40
|
Iglesias A. Maintenance and loss of self-tolerance in B cells. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2001; 23:351-66. [PMID: 11826614 DOI: 10.1007/s281-001-8164-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A Iglesias
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18A, 82152 Martinsried, Germany.
| |
Collapse
|
41
|
Longo NS, Lipsky PE. Somatic hypermutation in human B cell subsets. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2001; 23:367-85. [PMID: 11826615 DOI: 10.1007/s281-001-8165-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- N S Longo
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
42
|
Goossens T, Bräuninger A, Klein U, Küppers R, Rajewsky K. Receptor revision plays no major role in shaping the receptor repertoire of human memory B cells after the onset of somatic hypermutation. Eur J Immunol 2001; 31:3638-48. [PMID: 11745384 DOI: 10.1002/1521-4141(200112)31:12<3638::aid-immu3638>3.0.co;2-g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to determine whether V gene replacement accompanies somatic hypermutation in the germinal center (GC) reaction in the human, we analyzed V(kappa)J(kappa) and V(lambda)J(lambda) joints and the kappa-deleting element in single lambda(+) naive and post GC B cells for rearrangements at the kappa and lambda loci. Among 265 lambda(+) post GC B cells, not a single unequivocal and only two potential examples of a cell that switched to lambda light chain expression after accumulation of (unfavorable) mutations in its productive V(kappa) rearrangement were observed. Taking the PCR efficiency into account, the frequency of such cells is likely below 3 %. In addition, heavy and light chain gene rearrangements were amplified and sequenced from the oligoclonal population of IgD-only peripheral blood post GC B cells which display extensive intraclonal sequence diversity. Among 61 IgD-only B cells belonging to 15 clones with intraclonal diversity, no combination of V gene rearrangements indicating receptor revision during clonal expansion was observed. Moreover, among 124 and 49 V(H) genes amplified from IgD-only and class-switched B cells, respectively, not a single example of V(H) revision through V(H) hybrid generation was detected. These results suggest that in the human GC reaction V gene replacement either does not usually accompany somatic hypermutation or is mostly counterselected.
Collapse
Affiliation(s)
- T Goossens
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
43
|
Muller S, Margolin DH, Min G, Lou D, Nara P, Axthelm MK, Kohler H. Stimulation of antiviral antibody response in SHIV-IIIB-infected macaques. Scand J Immunol 2001; 54:383-95. [PMID: 11555405 DOI: 10.1046/j.1365-3083.2001.00982.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Three macaques infected with SHIV-IIIB and expressing the shared 1F7-idiotypic marker on antibodies against HIV-1 gp120, were injected intravenously with 1F7 monoclonal antibodies (MoAb). As controls, a SHIV-IIIB-infected macaque was injected with a HIV-unrelated mouse monoclonal isotype antibody (TEPC-183) and two healthy, noninfected macaques were injected with MoAb 1F7. 1F7-id-expressing antibodies against gp120-IIIB decreased in two of the three MoAb 1F7-treated macaques and then rebounded. Importantly, antibodies binding to envelope proteins of heterologous HIV-1 strains MN, CM, and SF2, which were low or not detectable before the MoAb 1F7 treatment, increased rapidly following MoAb inoculations in all three 1F7 MoAb treated macaques, but not in the macaque injected with control MoAb TEPC-183. Newly arising antibodies reacting with heterologous virus, i.e. HIV-1 gp120-MN, SF2, and CM did not express 1F7-id. Surprisingly, significant increases of antibodies were also observed in the 1F7-inoculated macaques' antibodies directed to non-HIV antigens (DNP, peptides and BSA). The noninfected control animals did not produce antibodies to these antigens despite MoAb 1F7 treatment. These data show that the MoAb 1F7 injections of chronically SHIV-IIIB-infected macaques resulted in idiotype-specific clonal suppression with broadening the antibody response to HIV envelope proteins.
Collapse
Affiliation(s)
- S Muller
- Immpheron, Inc., Lexington, KY 40503, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The humoral immune response arises from a complex choreography of cells and molecules that interact to produce lasting and effective defenses against pathogens. For more than fifteen years, our laboratory has studied how humoral responses are initiated, how they mature, and how they are remembered. This work has come from many hands and in this brief synopsis, I cannot provide the full recognition that my students, postdoctoral fellows, and collaborators merit. I hope that my colleagues can accept this translucence and know that their efforts are recognized and deeply appreciated, nonetheless.
Collapse
Affiliation(s)
- G Kelsoe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
45
|
Kanayama N, Hukue C, Magari M, Ohtani K, Hikida M, Yamada M, Matsuda S, Ohmori H. Use of secondarily revised VH genes in IgE antibodies produced in mice infected with the nematode Nippostrongylus brasiliensis. Immunol Lett 2001; 77:181-6. [PMID: 11410252 DOI: 10.1016/s0165-2478(01)00216-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although a high level of IgE is produced after primary infection with Nippostrongylus brasiliensis (Nb), most of the IgE antibodies (Abs) are not specific to the worm. Analyses with Western blotting and enzyme-linked immunosorbent assay (ELISA) revealed that the IgE Abs from Nb-infected BALB/c mice did not show reactivity with Nb-derived excretory-secretory proteins (NES) and antigens present in the cell-free extracts of the worm. Monoclonal IgE Abs obtained from the Nb-infected mice were not reactive with these Nb antigen either. To characterize Nb-induced IgE response, we used (QM x C57BL/6)F1 (QBF1) mice that bear the knock-in 17.2.25 VHDJH segment (VHT) encoding a VH region specific to 4-hydroxy-3-nitrophenylacetyl hapten, and express VHT-encoded antigen receptors on 80-85% of their B cells. Consistent with the frequency of VHT-positive B cells, more than 80% of IgE Abs induced in QBF1 B cells that were cultured with LPS plus IL-4 were found to bear VHT-encoded H chains. In contrast, when QBF1 mice were infected with Nb, less than 10% of Nb-induced IgE Abs were found to use VHT. The QBF1-derived IgE did not react with Nb antigens either. Taken together, data suggest that Nb-induced IgE response in mice is not merely the result of polyclonal activation of B cells, but may involve a mechanism that revises Ig genes secondarily.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- Antigens, Helminth/immunology
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Immunoglobulin Class Switching
- Immunoglobulin E/genetics
- Immunoglobulin E/immunology
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nippostrongylus/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Recombination, Genetic
- Strongylida Infections/immunology
Collapse
Affiliation(s)
- N Kanayama
- Department of Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka, 700-8530, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dingjan GM, Middendorp S, Dahlenborg K, Maas A, Grosveld F, Hendriks RW. Bruton's tyrosine kinase regulates the activation of gene rearrangements at the lambda light chain locus in precursor B cells in the mouse. J Exp Med 2001; 193:1169-78. [PMID: 11369788 PMCID: PMC2193329 DOI: 10.1084/jem.193.10.1169] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) is a nonreceptor tyrosine kinase involved in precursor B (pre-B) cell receptor signaling. Here we demonstrate that Btk-deficient mice have an ∼50% reduction in the frequency of immunoglobulin (Ig) λ light chain expression, already at the immature B cell stage in the bone marrow. Conversely, transgenic mice expressing the activated mutant BtkE41K showed increased λ usage. As the κ/λ ratio is dependent on (a) the level and kinetics of κ and λ locus activation, (b) the life span of pre-B cells, and (c) the extent of receptor editing, we analyzed the role of Btk in these processes. Enforced expression of the Bcl-2 apoptosis inhibitor did not alter the Btk dependence of λ usage. Crossing 3-83μδ autoantibody transgenic mice into Btk-deficient mice showed that Btk is not essential for receptor editing. Also, Btk-deficient surface Ig+ B cells that were generated in vitro in interleukin 7-driven bone marrow cultures manifested reduced λ usage. An intrinsic defect in λ locus recombination was further supported by the finding in Btk-deficient mice of reduced λ usage in the fraction of pre-B cells that express light chains in their cytoplasm. These results implicate Btk in the regulation of the activation of the λ locus for V(D)J recombination in pre-B cells.
Collapse
Affiliation(s)
- Gemma M. Dingjan
- Department of Immunology, Faculty of Medicine, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
| | - Sabine Middendorp
- Department of Immunology, Faculty of Medicine, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
| | - Katarina Dahlenborg
- Department of Immunology, Faculty of Medicine, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
| | - Alex Maas
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
| | - Rudolf W. Hendriks
- Department of Immunology, Faculty of Medicine, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands
| |
Collapse
|
47
|
Igarashi H, Kuwata N, Kiyota K, Sumita K, Suda T, Ono S, Bauer SR, Sakaguchi N. Localization of recombination activating gene 1/green fluorescent protein (RAG1/GFP) expression in secondary lymphoid organs after immunization with T-dependent antigens in rag1/gfp knockin mice. Blood 2001; 97:2680-7. [PMID: 11313258 DOI: 10.1182/blood.v97.9.2680] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secondary rearrangements of immunoglobulin gene segments that generate a new antibody repertoire in peripheral B cells have been described as receptor revision and occur by as yet unknown mechanisms. To determine the importance of recombination activating gene (RAG) expression in receptor revision, heterozygous rag1/green fluorescent protein (gfp) knockin mice were used to examine the location of RAG1 expression in the germinal centers (GCs) of lymphoid follicles after immunization with a variety of T-cell-dependent antigens. Immunization of rag1/gfp heterozygous mice or rag1 homozygous knockout mice reconstituted with rag1/gfp heterozygous spleen cells caused the down-regulation of RAG1/GFP signal in GCs. Although some RAG1/GFP(+) cells appeared in regions surrounding the peanut agglutinin (PNA)(+)GL-7(+) GC area, RAG1/GFP(+) cells did not accumulate in the central region. In addition, the stimulation of spleen B cells with anti-mu antibody plus interleukin-4 (IL-4) or with anti-CD40 monoclonal antibody plus IL-7 did not induce GFP signals at detectable levels in vitro. These results clearly demonstrate that RAG1 re-expression either does not occur or is at extremely low levels in antigen-driven B cells in GCs of secondary lymphoid follicles, suggesting that other mechanisms may mediate the gene rearrangements observed in receptor revision.
Collapse
Affiliation(s)
- H Igarashi
- Departments of Immunology, Pediatrics, and Cell Differentiation (Institute of Molecular Embryology and Genetics), Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zinkernagel RM, LaMarre A, Ciurea A, Hunziker L, Ochsenbein AF, McCoy KD, Fehr T, Bachmann MF, Kalinke U, Hengartner H. Neutralizing antiviral antibody responses. Adv Immunol 2001; 79:1-53. [PMID: 11680006 PMCID: PMC7130890 DOI: 10.1016/s0065-2776(01)79001-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neutralizing antibodies are evolutionarily important effectors of immunity against viruses. Their evaluation has revealed a number of basic insights into specificity, rules of reactivity (tolerance), and memory—namely, (1) Specificity of neutralizing antibodies is defined by their capacity to distinguish between virus serotypes; (2) B cell reactivity is determined by antigen structure, concentration, and time of availability in secondary lymphoid organs; and (3) B cell memory is provided by elevated protective antibody titers in serum that are depending on antigen stimulation. These perhaps slightly overstated rules are simple, correlate with in vivo evidence as well as clinical observations, and appear to largely demystify many speculations about antibodies and B cell physiology. The chapter also considers successful vaccines and compares them with those infectious diseases where efficient protective vaccines are lacking, it is striking to note that all successful vaccines induce high levels of neutralizing antibodies (nAbs) that are both necessary and sufficient to protect the host from disease. Successful vaccination against infectious diseases such as tuberculosis, leprosy, or HIV would require induction of additional long-lasting T cell responses to control infection.
Collapse
Affiliation(s)
- R M Zinkernagel
- Institute of Experimental Immunology, Department of Pathology, University Hospital, CH-8091 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Expression of T-cell receptor and surface immunoglobulins on T and B lymphocytes, respectively, is strictly dependent on the variable, (diversity) joining exon (V(D)J) recombination process, which is initiated by the lymphoid-specific recombinase activating gene proteins 1 and 2 (RAG1 and RAG2). Recent advances have highlighted the functional organization of the RAG1 and RAG2 proteins and have provided important information on the regulation of RAG gene expression. Depending on the severity of their effects on the V(D)J recombination process, mutations of the RAG genes account for a spectrum of combined immune deficiencies in humans.
Collapse
Affiliation(s)
- L D Notarangelo
- Institute of Molecular Medicine Angelo Nocivelli, Department of Pediatrics, University of Brescia, Italy.
| | | | | |
Collapse
|
50
|
Gärtner F, Alt FW, Monroe RJ, Seidl KJ. Antigen-independent appearance of recombination activating gene (RAG)-positive bone marrow B cells in the spleens of immunized mice. J Exp Med 2000; 192:1745-54. [PMID: 11120771 PMCID: PMC2213504 DOI: 10.1084/jem.192.12.1745] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 10/30/2000] [Indexed: 11/13/2022] Open
Abstract
Splenic B lineage cells expressing recombination activation genes (RAG(+)) in mice immunized with 4-hydroxy-3-nitrophenyl-acetyl coupled to chicken gamma-globulin (NP-CGG) and the adjuvant aluminum-hydroxide (alum) have been proposed to be mature B cells that reexpress RAG after an antigen encounter in the germinal center (GC), a notion supported by findings of RAG expression in peripheral B lymphocyte populations activated in vitro. However, recent studies indicate that these cells might be immature B cells that have not yet extinguished RAG expression. Here, we employ RAG2-green fluorescent protein (GFP) fusion gene knock-in mice to show that RAG(+) B lineage cells do appear in the spleen after the administration of alum alone, and that their appearance is independent of T cell interactions via the CD40 pathway. Moreover, splenic RAG(+) B lineage cells were detectable in immunized RAG2-deficient mice adoptively transferred with bone marrow (BM) cells, but not with spleen cells from RAG(+) mice. Although splenic RAG(+) B cells express surface markers associated with GC B cells, we also find the same basic markers on progenitor/precursor BM B cells. Finally, we did not detect RAG gene expression after the in vitro stimulation of splenic RAG(-) mature B cells with mitogens (lipopolysaccharide and anti-CD40) and cytokines (interleukin [IL]-4 and IL-7). Together, our studies indicate that RAG(+) B lineage cells from BM accumulate in the spleen after immunization, and that this accumulation is not the result of an antigen-specific response.
Collapse
Affiliation(s)
- Frank Gärtner
- The Howard Hughes Medical Institute, the Children's Hospital, the Center for Blood Research, and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick W. Alt
- The Howard Hughes Medical Institute, the Children's Hospital, the Center for Blood Research, and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert J. Monroe
- The Howard Hughes Medical Institute, the Children's Hospital, the Center for Blood Research, and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Katherine J. Seidl
- The Howard Hughes Medical Institute, the Children's Hospital, the Center for Blood Research, and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|