1
|
Linke D, Hernandez Mejia J, Eche Navarro VNP, Salinas Sánchez L, de Gusmão Ribeiro P, Elias M, Matos-Maraví P. Reduced palatability, fast flight, and tails: decoding the defence arsenal of Eudaminae skipper butterflies in a Neotropical locality. J Evol Biol 2024; 37:1064-1075. [PMID: 39044333 DOI: 10.1093/jeb/voae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Prey often rely on multiple defences against predators, such as flight speed, attack deflection from vital body parts, or unpleasant taste, but our understanding on how often and why they are co-exhibited remains limited. Eudaminae skipper butterflies use fast flight and mechanical defences (hindwing tails), but whether they use other defences like unpalatability (consumption deterrence) and how these defences interact have not been assessed. We tested the palatability of 12 abundant Eudaminae species in Peru, using training and feeding experiments with domestic chicks. Further, we approximated the difficulty of capture based on flight speed and quantified it by wing loading. We performed phylogenetic regressions to find any association between multiple defences, body size, and habitat preference. We found a broad range of palatability in Eudaminae, within and among species. Contrary to current understanding, palatability was negatively correlated with wing loading, suggesting that faster butterflies tend to have lower palatability. The relative length of hindwing tails did not explain the level of butterfly palatability, showing that attack deflection and consumption deterrence are not mutually exclusive. Habitat preference (open or forested environments) did not explain the level of palatability either, although butterflies with high wing loading tended to occupy semi-closed or closed habitats. Finally, the level of unpalatability in Eudaminae is size dependent. Larger butterflies are less palatable, perhaps because of higher detectability/preference by predators. Altogether, our findings shed light on the contexts favouring the prevalence of single versus multiple defensive strategies in prey.
Collapse
Affiliation(s)
- Daniel Linke
- Biology Centre CAS (Czech Academy of Sciences), Institute of Entomology, České Budějovice, Czechia
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jacqueline Hernandez Mejia
- Departamento de Ornitología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Letty Salinas Sánchez
- Departamento de Ornitología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Pedro de Gusmão Ribeiro
- Biology Centre CAS (Czech Academy of Sciences), Institute of Entomology, České Budějovice, Czechia
- Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Pável Matos-Maraví
- Biology Centre CAS (Czech Academy of Sciences), Institute of Entomology, České Budějovice, Czechia
| |
Collapse
|
2
|
van den Berg CP, Santon M, Endler JA, Drummond L, Dawson BR, Santiago C, Weber N, Cheney KL. Chemical defences indicate bold colour patterns with reduced variability in aposematic nudibranchs. Proc Biol Sci 2024; 291:20240953. [PMID: 39013421 PMCID: PMC11251778 DOI: 10.1098/rspb.2024.0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/18/2024] Open
Abstract
The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.
Collapse
Affiliation(s)
- Cedric P. van den Berg
- Marine Sensory Ecology Group, School of the Environment, The University of Queensland, Brisbane4072, Australia
- Ecology of Vision Laboratory, School of Biological Sciences, University of Bristol, BristolBS8 1TQ, UK
| | - Matteo Santon
- Ecology of Vision Laboratory, School of Biological Sciences, University of Bristol, BristolBS8 1TQ, UK
| | - John A. Endler
- Zoology and Ecology, Tropical Environments Sciences, College of Science & Engineering, James Cook University, Cairns, QLD4878, Australia
| | - Leon Drummond
- Marine Sensory Ecology Group, School of the Environment, The University of Queensland, Brisbane4072, Australia
| | - Bethany R. Dawson
- Marine Sensory Ecology Group, School of the Environment, The University of Queensland, Brisbane4072, Australia
| | - Carl Santiago
- Marine Sensory Ecology Group, School of the Environment, The University of Queensland, Brisbane4072, Australia
| | - Nathalie Weber
- Faculty of Biology and Medicine, School of Biological Sciences, The University of Lausanne, Lausanne1015, Switzerland
| | - Karen L. Cheney
- Marine Sensory Ecology Group, School of the Environment, The University of Queensland, Brisbane4072, Australia
| |
Collapse
|
3
|
Rubiano-Buitrago P, Pradhan S, Aceves AA, Mohammadi S, Paetz C, Rowland HM. Cardenolides in the defensive fluid of adult large milkweed bugs have differential potency on vertebrate and invertebrate predator Na +/K +-ATPases. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231735. [PMID: 39100152 PMCID: PMC11296140 DOI: 10.1098/rsos.231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Aposematic animals rely on diverse secondary metabolites for defence. Various hypotheses, such as competition, life history and multifunctionality, have been posited to explain defence variability and diversity. We investigate the compound selectivity hypothesis using large milkweed bugs, Oncopeltus fasciatus, to determine if distinct cardenolides vary in toxicity to different predators. We quantify cardenolides in the bug's defensive secretions and body tissues and test the individual compounds against predator target sites, the Na+/K+-ATPases, that are predicted to differ in sensitivity. Frugoside, gofruside, glucopyranosyl frugoside and glucopyranosyl gofruside were the dominant cardenolides in the body tissues of the insects, whereas the two monoglycosidic cardenolides-frugoside and gofruside-were the most abundant in the defensive fluid. These monoglycosidic cardenolides were highly toxic (IC50 < 1 μM) to an invertebrate and a sensitive vertebrate enzyme, in comparison to the glucosylated compounds. Gofruside was the weakest inhibitor for a putatively resistant vertebrate predator. Glucopyranosyl calotropin, found in only 60% of bugs, was also an effective inhibitor of sensitive vertebrate enzymes. Our results suggest that the compounds sequestered by O. fasciatus probably provide consistency in protection against a range of predators and underscore the need to consider predator communities in prey defence evolution.
Collapse
Affiliation(s)
- P. Rubiano-Buitrago
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S. Pradhan
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - A. A. Aceves
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S. Mohammadi
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - C. Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - H. M. Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
4
|
Agrawal AA, Hastings AP, Duplais C. Testing the selective sequestration hypothesis: Monarch butterflies preferentially sequester plant defences that are less toxic to themselves while maintaining potency to others. Ecol Lett 2024; 27:e14340. [PMID: 38017619 DOI: 10.1111/ele.14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/30/2023]
Abstract
Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, New York, USA
| |
Collapse
|
5
|
Gawel L, Powell EC, Brock M, Taylor LA. Conspicuous stripes on prey capture attention and reduce attacks by foraging jumping spiders. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230907. [PMID: 38026030 PMCID: PMC10663800 DOI: 10.1098/rsos.230907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Many animals avoid predation using aposematic displays that pair toxic/dangerous defences with conspicuous achromatic warning patterns, such as high-contrast stripes. To understand how these prey defences work, we need to understand the decision-making of visual predators. Here we gave two species of jumping spiders (Phidippus regius and Habronattus trimaculatus) choice tests using live termites that had their back patterns manipulated using paper capes (solid white, solid black, striped). For P. regius, black and striped termites were quicker to capture attention. Yet despite this increased attention, striped termites were attacked at lower rates than either white or black. This suggests that the termite's contrast with the background elicits attention, but the internal striped body patterning reduces attacks. Results from tests with H. trimaculatus were qualitatively similar but did not meet the threshold for statistical significance. Additional exploratory analyses suggest that attention to and aversion to stripes is at least partially innate and provide further insight into how decision-making played out during trials. Because of their rich diversity (over 6500 species) that includes variation in natural history, toxin susceptibility and degree of colour vision, jumping spiders are well suited to test broad generalizations about how and why aposematic displays work.
Collapse
Affiliation(s)
- Lauren Gawel
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Erin C. Powell
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Division of Plant Industry, 1911 SW 34th St, Gainesville, FL 32608, USA
| | - Michelle Brock
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Lisa A. Taylor
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Johnson AE, Cornell A, Hermann S, Zhu F, Hoover K. Using community science to identify predators of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), in North America. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:637-644. [PMID: 37614127 DOI: 10.1017/s0007485323000317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an invasive insect that was first detected in the United States in 2014 and feeds on a wide variety of plants, with economic impacts on the agricultural, ornamental, and timber industries. Part of what likely contributes to the success of L. delicatula in its invaded range is that it appears to be chemically defended by sequestering toxins from its host plant(s), which may deter predators in the introduced range. To determine the identity and behavior of North American predators that feed on spotted lanternfly, we performed a community science study in which we asked members of the public to contribute reports of animals feeding on spotted lanternfly through a Facebook page. The largest group of reported predators was arthropods followed by birds. Araneae was the arthropod order with the most reports and Phasianidae was the most frequently reported bird family. Using Pearson's χ2 tests, we also identified significant relationships between predator behavior and (1) taxonomic group of the predator, (2) L. delicatula life stage, and (3) host plant L. delicatula was observed on. These results can help to guide future research on predator host shifting to spotted lanternfly and potential for biocontrol as a management tactic.
Collapse
Affiliation(s)
- Anne E Johnson
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Alison Cornell
- Division of Mathematics and Natural Sciences, The Pennsylvania State University, Altoona, PA 16601
| | - Sara Hermann
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Fang Zhu
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| | - Kelli Hoover
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
7
|
Niknafs S, Navarro M, Schneider ER, Roura E. The avian taste system. Front Physiol 2023; 14:1235377. [PMID: 37745254 PMCID: PMC10516129 DOI: 10.3389/fphys.2023.1235377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Taste or gustation is the sense evolving from the chemo-sensory system present in the oral cavity of avian species, which evolved to evaluate the nutritional value of foods by detecting relevant compounds including amino acids and peptides, carbohydrates, lipids, calcium, salts, and toxic or anti-nutritional compounds. In birds compared to mammals, due to the relatively low retention time of food in the oral cavity, the lack of taste papillae in the tongue, and an extremely limited secretion of saliva, the relevance of the avian taste system has been historically undermined. However, in recent years, novel data has emerged, facilitated partially by the advent of the genomic era, evidencing that the taste system is as crucial to avian species as is to mammals. Despite many similarities, there are also fundamental differences between avian and mammalian taste systems in terms of anatomy, distribution of taste buds, and the nature and molecular structure of taste receptors. Generally, birds have smaller oral cavities and a lower number of taste buds compared to mammals, and their distribution in the oral cavity appears to follow the swallowing pattern of foods. In addition, differences between bird species in the size, structure and distribution of taste buds seem to be associated with diet type and other ecological adaptations. Birds also seem to have a smaller repertoire of bitter taste receptors (T2Rs) and lack some taste receptors such as the T1R2 involved in sweet taste perception. This has opened new areas of research focusing on taste perception mechanisms independent of GPCR taste receptors and the discovery of evolutionary shifts in the molecular function of taste receptors adapting to ecological niches in birds. For example, recent discoveries have shown that the amino acid taste receptor dimer T1R1-T1R3 have mutated to sense simple sugars in almost half of the living bird species, or SGLT1 has been proposed as a part of a T1R2-independent sweet taste sensing in chicken. The aim of this review is to present the scientific data known to date related to the avian taste system across species and its impact on dietary choices including domestic and wild species.
Collapse
Affiliation(s)
- Shahram Niknafs
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Marta Navarro
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eve R. Schneider
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
9
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
10
|
Riley JL, Haff TM, Ryeland J, Drinkwater E, Umbers KDL. The protective value of the colour and shape of the mountain katydid's antipredator defence. J Evol Biol 2022. [PMID: 35960499 DOI: 10.1111/jeb.14067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022]
Abstract
Deimatic behaviour is performed by prey when attacked by predators as part of an antipredator strategy. The behaviour is part of a sequence that consists of several defences, for example they can be preceded by camouflage and followed by a hidden putatively aposematic signal that is only revealed when the deimatic behaviour is performed. When displaying their hidden signal, mountain katydids (Acripeza reticulata) hold their wings vertically, exposing striking red and black stripes with blue spots and oozing an alkaloid-rich chemical defence derived from its Senecio diet. Understanding differences and interactions between deimatism and aposematism has proven problematic, so in this study we isolated the putative aposematic signal of the mountain katydid's antipredator strategy to measure its survival value in the absence of their deimatic behaviour. We manipulated two aspects of the mountain katydid's signal, colour pattern and whole body shape during display. We deployed five kinds of clay models, one negative control and four katydid-like treatments, in 15 grids across part of the mountain katydid's distribution to test the hypothesis that their hidden signal is aposematic. If this hypothesis holds true, we expected that the models, which most closely resembled real katydids would be attacked the least. Instead, we found that models that most closely resembled real katydids were the most likely to be attacked. We suggest several ideas to explain these results, including that the deimatic phase of the katydid's display, the change from a camouflaged state to exposing its hidden signal, may have important protective value.
Collapse
Affiliation(s)
- Julia L Riley
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Tonya M Haff
- Australian National Wildlife Collection, CSIRO, Acton, Australian Capital Territory, Australia
| | - Julia Ryeland
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Eleanor Drinkwater
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.,Department of Biology, University of York, York, UK
| | - Kate D L Umbers
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia.,School of Science, Western Sydney University, Penrith, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
11
|
Singh P, Grone N, Tewes LJ, Müller C. Chemical defense acquired via pharmacophagy can lead to protection from predation for conspecifics in a sawfly. Proc Biol Sci 2022; 289:20220176. [PMID: 35858054 PMCID: PMC9257289 DOI: 10.1098/rspb.2022.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemical defense is a widespread anti-predator strategy exhibited by organisms, with individuals either synthesizing or extrinsically acquiring defensive chemicals. In some species, such defences can also be transferred among conspecifics. Here, we tested the effects of pharmacophagy on the defense capability of the turnip sawfly, Athalia rosae, which can acquire neo-clerodane diterpenoids (clerodanoids) via pharmacophagy when having access to the plant Ajuga reptans. We show that clerodanoid access mediates protection against predation by mantids for the sawflies, both in a no-choice feeding assay and a microcosm setup. Even indirect access to clerodanoids, via nibbling on conspecifics that had access to the plant, resulted in protection against predation albeit to a lower degree than direct access. Furthermore, sawflies that had no direct access to clerodanoids were consumed less frequently by mantids when they were grouped with conspecifics that had direct access. Most, but not all, of such initially undefended sawflies could acquire clerodanoids from conspecifics that had direct access to the plant, although in low quantities. Together our results demonstrate that clerodanoids serve as a chemical defense that can also be transferred by interactions among conspecifics. Moreover, the presence of chemically defended individuals in a group can confer protection onto conspecifics that had no direct access to clerodanoids.
Collapse
Affiliation(s)
- Pragya Singh
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Neil Grone
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Lisa Johanna Tewes
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Caroline Müller
- Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
12
|
Pocius VM, Cibotti S, Ray S, Ankoma-Darko O, McCartney NB, Schilder RJ, Ali JG. Impacts of larval host plant species on dispersal traits and free-flight energetics of adult butterflies. Commun Biol 2022; 5:469. [PMID: 35577926 PMCID: PMC9110344 DOI: 10.1038/s42003-022-03396-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight. The growth of muscle and flight performance in monarch butterflies is influenced by the plant species the larvae grow on.
Collapse
Affiliation(s)
- Victoria M Pocius
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Staci Cibotti
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Swayamjit Ray
- Department of Plant Pathology, Cornell University, Ithaca, NY, USA
| | - Obenewa Ankoma-Darko
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Nathaniel B McCartney
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Rudolf J Schilder
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Whiteman NK. Evolution in small steps and giant leaps. Evolution 2022; 76:67-77. [PMID: 35040122 PMCID: PMC9387839 DOI: 10.1111/evo.14432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023]
Abstract
The first Editor of Evolution was Ernst Mayr. His foreword to the first issue of Evolution published in 1947 framed evolution as a "problem of interaction" that was just beginning to be studied in this broad context. First, I explore progress and prospects on understanding the subsidiary interactions identified by Mayr, including interactions between parts of organisms, between individuals and populations, between species, and between the organism and its abiotic environment. Mayr's overall "problem of interaction" framework is examined in the context of coevolution within and among levels of biological organization. This leads to a comparison in the relative roles of biotic versus abiotic agents of selection and fluctuating versus directional selection, followed by stabilizing selection in shaping the genomic architecture of adaptation. Oligogenic architectures may be typical for traits shaped more by fluctuating selection and biotic selection. Conversely, polygenic architectures may be typical for traits shaped more by directional followed by stabilizing selection and abiotic selection. The distribution of effect sizes and turnover dynamics of adaptive alleles in these scenarios deserves further study. Second, I review two case studies on the evolution of acquired toxicity in animals, one involving cardiac glycosides obtained from plants and one involving bacterial virulence factors horizontally transferred to animals. The approaches used in these studies and the results gained directly flow from Mayr's vision of an evolutionary biology that revolves around the "problem of interaction."
Collapse
Affiliation(s)
- Noah K. Whiteman
- Department of Integrative Biology, University of California, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720
| |
Collapse
|
14
|
Hämäläinen L, M. Rowland H, Mappes J, Thorogood R. Social information use by predators: expanding the information ecology of prey defences. OIKOS 2021. [DOI: 10.1111/oik.08743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Hannah M. Rowland
- Max Planck Inst. for Chemical Ecology Jena Germany
- Dept of Zoology, Univ. of Cambridge Cambridge UK
| | - Johanna Mappes
- Research Programme in Organismal&Evolutionary Biology, Faculty of Biological and Environmental Sciences, Univ. of Helsinki Helsinki Finland
- Dept of Biological and Environmental Sciences, Univ. of Jyväskylä Jyväskylä Finland
| | - Rose Thorogood
- Research Programme in Organismal&Evolutionary Biology, Faculty of Biological and Environmental Sciences, Univ. of Helsinki Helsinki Finland
- HiLIFE Helsinki Inst. of Life Science, Univ. of Helsinki Helsinki Finland
| |
Collapse
|
15
|
Abstract
Some animals have evolved chemical weapons to deter predators. Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) can eject toxic chemicals at temperatures of 100 °C from the tips of their abdomens, ‘bombing’ the attackers. Although some bombardier beetles can reportedly deter predators, few studies have tested whether bombing is essential for successful defence. Praying mantises (Mantodea) are ambush predators that attack various arthropods. However, it is unclear whether bombardier beetles deter mantises. To test the defensive function of bombing against praying mantises, I observed three mantis species, Tenodera sinensis, Tenodera angustipennis, and Hierodula patellifera (Mantidae), attacking the bombardier beetle Pheropsophus jessoensis (Carabidae: Brachininae: Brachinini) under laboratory conditions. All mantises easily caught the beetles using their raptorial forelegs, but released them immediately after being bombed. All of the counterattacked mantises were observed to groom the body parts sprayed with hot chemicals after releasing the beetles. When treated P. jessoensis that were unable to eject hot chemicals were provided, all mantises successfully caught and devoured the treated beetles. Therefore, bombing is essential for the successful defence of P. jessoensis against praying mantises. Consequently, P. jessoensis can always deter mantises.
Collapse
Affiliation(s)
- Shinji Sugiura
- Graduate School of Agricultural Science, Kobe University, Kobe City, Hyogo Prefecture, Japan
| |
Collapse
|
16
|
Erb M, Züst T, Robert CAM. Using plant chemistry to improve interactions between plants, herbivores and their natural enemies: challenges and opportunities. Curr Opin Biotechnol 2021; 70:262-265. [PMID: 34242994 DOI: 10.1016/j.copbio.2021.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/15/2022]
Abstract
Plant secondary (or specialized) metabolites determine multitrophic interaction dynamics. Herbivore natural enemies exploit plant volatiles for host location and are negatively affected by plant defense chemicals that are transferred through herbivores. Recent work shows that herbivore natural enemies can evolve resistance to plant defense chemicals, and that generating plant defense resistance through forward evolution enhances their capacity to prey on herbivores. Here, we discuss how this knowledge can be used to engineer better biocontrol agents. We argue that herbivore natural enemies which are adapted to plant chemistry will likely enhance the efficacy of future pest control efforts. Detailed phenotyping and field experiments will be necessary to quantify costs and benefits of optimizing chemical links between plants and higher trophic levels.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| | - Tobias Züst
- Department of Systematic and Evolutionary Botany, University of Zürich, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
17
|
Weinstein SB, Malanga KN, Agwanda B, Maldonado JE, Dearing MD. The secret social lives of African crested rats, Lophiomys imhausi. J Mammal 2020; 101:1680-1691. [PMID: 33510587 DOI: 10.1093/jmammal/gyaa127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
The crested rat, Lophiomys imhausi, is the only mammal known to sequester plant toxins. Found in eastern Africa, this large rodent is thought to defend against predation by coating specialized hairs along its sides with cardenolide toxins from the poison arrow tree, Acokanthera schimperi. To better understand the ecology of this unusual poisonous mammal, we used camera traps, livetrapping, and captive behavioral observations, to study L. imhausi in central Kenya. Although crested rats were rarely detected with camera traps, 25 individuals were caught in live traps, with estimated densities of up to 15 rats/km2 at one of nine trapping sites. Trapping records and behavioral observations suggest that L. imhausi live in male-female pairs, with juveniles that might exhibit delayed dispersal. We observed chewing of A. schimperi and/or anointing in 10 of 22 individuals, confirming the previous poison sequestration observation. We monitored crested rat activity using cameras and found that chewing on A. schimperi and cardenolide exposure had no effect on feeding, movement, or total activity. One crested rat also fed on milkweed (Gomphocarpus physocarpus; Gentaniales: Apocynaceae), but did not anoint with this cardenolide containing plant. This observation, combined with L. imhausi's selective use of A. schimperi, suggests the potential for use of alternative poison sources. This research provides novel insight into the ecology of L. imhausi, while also suggesting that more field observations, feeding trials, and chemical analyses are needed to understand their behavior and physiology. Furthermore, their complex social interactions, slow life history, and fragmented populations suggest that L. imhausi could be at risk of decline.
Collapse
Affiliation(s)
- Sara B Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.,Mpala Research Centre, Nanyuki, Kenya
| | - Katrina Nyawira Malanga
- Mpala Research Centre, Nanyuki, Kenya.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.,Department of Biology and Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Hämäläinen L, Mappes J, Thorogood R, Valkonen JK, Karttunen K, Salmi T, Rowland HM. Predators’ consumption of unpalatable prey does not vary as a function of bitter taste perception. Behav Ecol 2019. [DOI: 10.1093/beheco/arz199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Many prey species contain defensive chemicals that are described as tasting bitter. Bitter taste perception is, therefore, assumed to be important when predators are learning about prey defenses. However, it is not known how individuals differ in their response to bitter taste, and how this influences their foraging decisions. We conducted taste perception assays in which wild-caught great tits (Parus major) were given water with increasing concentrations of bitter-tasting chloroquine diphosphate until they showed an aversive response to bitter taste. This response threshold was found to vary considerably among individuals, ranging from chloroquine concentrations of 0.01 mmol/L to 8 mmol/L. We next investigated whether the response threshold influenced the consumption of defended prey during avoidance learning by presenting birds with novel palatable and defended prey in a random sequence until they refused to attack defended prey. We predicted that individuals with taste response thresholds at lower concentrations would consume fewer defended prey before rejecting them, but found that the response threshold had no effect on the birds’ foraging choices. Instead, willingness to consume defended prey was influenced by the birds’ body condition. This effect was age- and sex-dependent, with adult males attacking more of the defended prey when their body condition was poor, whereas body condition did not have an effect on the foraging choices of juveniles and females. Together, our results suggest that even though taste perception might be important for recognizing prey toxicity, other factors, such as predators’ energetic state, drive the decisions to consume chemically defended prey.
Collapse
Affiliation(s)
- Liisa Hämäläinen
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Cambridge, UK
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Janne K Valkonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Kaijamari Karttunen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tuuli Salmi
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Hannah M Rowland
- Department of Zoology, University of Cambridge, Cambridge, UK
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
19
|
Abstract
Certain adapted insect herbivores utilize plant toxins for self-defense against their own enemies. These adaptations structure ecosystems and limit our capacity to use biological control agents to manage specialized agricultural pests. We show that entomopathogenic nematodes that are exposed to the western corn rootworm, an important agricultural pest that sequesters defense metabolites from maize, can evolve resistance to these defenses. Resisting the plant defense metabolites likely allows the nematodes to infect and kill the western corn rootworm more efficiently. These findings illustrate how predators can counter the plant-based resistance strategies of specialized insect herbivores. Breeding or engineering biological control agents that resist plant defense metabolites may improve their capacity to kill important agricultural pests such as the western corn rootworm. Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.
Collapse
|
20
|
Oberhauser KS, Alonso A, Malcolm SB, Williams EH, Zalucki MP. Lincoln Brower, Champion for Monarchs. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Wilcox AAE, Flockhart DTT, Newman AEM, Norris DR. An Evaluation of Studies on the Potential Threats Contributing to the Decline of Eastern Migratory North American Monarch Butterflies (Danaus plexippus). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
23
|
Umbers KDL, White TE, De Bona S, Haff T, Ryeland J, Drinkwater E, Mappes J. The protective value of a defensive display varies with the experience of wild predators. Sci Rep 2019; 9:463. [PMID: 30679660 PMCID: PMC6346059 DOI: 10.1038/s41598-018-36995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/28/2018] [Indexed: 11/09/2022] Open
Abstract
Predation has driven the evolution of diverse adaptations for defence among prey, and one striking example is the deimatic display. While such displays can resemble, or indeed co-occur with, aposematic 'warning' signals, theory suggests deimatic displays may function independently of predator learning. The survival value of deimatic displays against wild predators has not been tested before. Here we used the mountain katydid Acripeza reticulata to test the efficacy of a putative deimatic display in the wild. Mountain katydids have a complex defence strategy; they are camouflaged at rest, but reveal a striking red-, blue-, and black-banded abdomen when attacked. We presented live katydids to sympatric (experienced) and allopatric (naive) natural predators, the Australian magpie Cracticus tibicen, and observed bird reactions and katydid behaviors and survival during repeated interactions. The efficacy of the katydids' defence differed with predator experience. Their survival was greatest when faced with naïve predators, which provided clear evidence of the protective value of the display. In contrast, katydid survival was consistently less likely when facing experienced predators. Our results suggest that sympatric predators have learned to attack and consume mountain katydids despite their complex defense, and that their post-attack display can be an effective deterrent, particularly against naïve predators. These results suggest that deimatism does not require predator learning to afford protection, but that a predator can learn to expect the display and subsequently avoid it or ignore it. That sympatric predators learn to ignore the defense is a possible explanation for the mountain katydid's counter-intuitive behavior of revealing warning colors only after tactile stimuli from predator attack.
Collapse
Affiliation(s)
- Kate D L Umbers
- School of Science & Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Thomas E White
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sebastiano De Bona
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tonya Haff
- School of Science & Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Julia Ryeland
- School of Science & Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Johanna Mappes
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
24
|
Decker LE, Soule AJ, de Roode JC, Hunter MD. Phytochemical changes in milkweed induced by elevated CO
2
alter wing morphology but not toxin sequestration in monarch butterflies. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leslie E. Decker
- Department of Biology Stanford University Stanford California
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| | - Abrianna J. Soule
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
- Department of Biology University of Utah Salt Lake City Utah
| | | | - Mark D. Hunter
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan
| |
Collapse
|
25
|
Ricono A, Dixon R, Eaton I, Brightbill CM, Yaziji Y, Puzey JR, Dalgleish HJ. Long- and short-term responses of Asclepias species differ in respect to fire, grazing, and nutrient addition. AMERICAN JOURNAL OF BOTANY 2018; 105:2008-2017. [PMID: 30485407 DOI: 10.1002/ajb2.1197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/29/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY The tallgrass prairie ecosystem has experienced a dramatic reduction over the past 150 yr. This reduction has impacted the abundance of native grassland species, including milkweeds (Asclepias). METHODS We used two long-term (27 yr) data sets to examine how fire, grazing, and nutrient addition shape milkweed abundance in tallgrass prairie. We compared these results to those of a greenhouse experiment that varied nutrient levels in the absence of competition, herbivory, and mutualistic relationships. KEY RESULTS Asclepias species exhibited broad patterns in response to burning regimes that did not include grazing, but experienced more species-specific patterns in other combinations. Asclepias syriaca was the only species to increase in abundance in plots that included burning and nutrient addition. In the greenhouse we found that nitrogen significantly increased biomass, while no effect of phosphorus was detected. CONCLUSIONS These results indicate that A. syriaca will do best in settings with high nutrient loads, low competition, and no grazers. These characteristics define a small portion of the tallgrass prairie but exemplify modern agricultural settings, which have replaced prairies. However, other milkweeds examined did not share this pattern, which indicates that milkweed species will respond differently when exposed to agricultural settings, with some less able to cope with land conversion to pasture or row-crop agriculture.
Collapse
Affiliation(s)
- Angela Ricono
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| | - Robin Dixon
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| | - Isabel Eaton
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| | - Caroline M Brightbill
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| | - Yahya Yaziji
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| | - Joshua R Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| | - Harmony J Dalgleish
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23185, USA
| |
Collapse
|
26
|
Bramer C, Schweizer C, Dobler S. Cardenolide-defended milkweed bugs do not evoke learning inNephila senegalensisspiders. Ethology 2018. [DOI: 10.1111/eth.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Christiane Bramer
- Johann-Friedrich-Blumenbach-Institut; Georg-August-Universität; Göttingen Germany
- Institut für Zoologie; Universität Hamburg; Hamburg Germany
| | | | - Susanne Dobler
- Institut für Zoologie; Universität Hamburg; Hamburg Germany
| |
Collapse
|
27
|
Malcolm SB. Anthropogenic Impacts on Mortality and Population Viability of the Monarch Butterfly. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:277-302. [PMID: 28977776 DOI: 10.1146/annurev-ento-020117-043241] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Monarch butterflies (Danaus plexippus) are familiar herbivores of milkweeds of the genus Asclepias, and most monarchs migrate each year to locate these host plants across North American ecosystems now dominated by agriculture. Eastern migrants overwinter in high-elevation forests in Mexico, and western monarchs overwinter in trees on the coast of California. Both populations face three primary threats to their viability: (a) loss of milkweed resources for larvae due to genetically modified crops, pesticides, and fertilizers; (b) loss of nectar resources from flowering plants; and (c) degraded overwintering forest habitats due to commercially motivated deforestation and other economic activities. Secondary threats to population viability include (d) climate change effects on milkweed host plants and the dynamics of breeding, overwintering, and migration; (e) the influence of invasive plants and natural enemies; (f) habitat fragmentation and coalescence that promote homogeneous, species-depleted landscapes; and (g) deliberate culture and release of monarchs and invasive milkweeds.
Collapse
Affiliation(s)
- Stephen B Malcolm
- Department of Biological Sciences, Western Michigan University, Kalamazoo, Michigan 49008;
| |
Collapse
|
28
|
Bowers MD, Brown IL, Wheye D. BIRD PREDATION AS A SELECTIVE AGENT IN A BUTTERFLY POPULATION. Evolution 2017; 39:93-103. [PMID: 28563638 DOI: 10.1111/j.1558-5646.1985.tb04082.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1983] [Accepted: 06/25/1984] [Indexed: 11/28/2022]
Abstract
In a population of the checkerspot butterfly, Euphydryas chalcedona, the detached wings of 309 individuals that had been attacked and eaten by birds were collected during a single flight season. During this time period a representative sample of 296 live butterflies in this population was photographed. Comparison of sex ratio and coloration of those butterflies that had been attacked with those that had not showed, first, that birds attacked slightly more females than males; and second, that among males, which are extremely variable in the amount of red on the forewing, birds attacked the less red individuals.
Collapse
Affiliation(s)
- M Deane Bowers
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138
| | | | - Darryl Wheye
- Department of Biological Sciences, Stanford University, Stanford, CA, 94305
| |
Collapse
|
29
|
Brower LP, Calvert WH. FORAGING DYNAMICS OF BIRD PREDATORS ON OVERWINTERING MONARCH BUTTERFLIES IN MEXICO. Evolution 2017; 39:852-868. [PMID: 28561370 DOI: 10.1111/j.1558-5646.1985.tb00427.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/1984] [Accepted: 05/08/1985] [Indexed: 11/29/2022]
Abstract
By suspending nets within and adjacent to a 2.25 hectare overwintering colony of monarch butterflies in Mexico, we estimated that black-backed orioles and black-headed grosbeaks killed 4,550 to 34,300 and an average of 15,067 butterflies per day. A conservative calculation of mortality through the 135 day overwintering season was 2.034 million butterflies, or about 9% of the colony. The birds preyed selectively upon male butterflies, possibly because of a difference in fat content, or possibly because females contain higher concentrations and larger amounts of cardenolide or other defensive chemicals. The risk to individual monarchs of being killed was much greater on the colony periphery and in thinned areas of the forest. Bird predation thus is sufficient to have played a major role in shaping the evolution of the monarch's overwintering and aggregation behavior. Substantial daily variation in predation intensity occurred, 26% of which was attributable to the birds eating more butterflies on colder days, and 30% of which was attributable to a 7.85 day predation cycle. The hypothesis is put forward that the birds feed cyclically because they build up toxic levels of cardenolides or other defensive chemicals contained in the butterflies. The cyclic predation may reduce total predation on the colony by as much as 50%. Such chemical-based group protection is interpreted as a fortuitous by-product of the evolution of unpalatability through selective processes acting on other phases of the monarch's life history.
Collapse
Affiliation(s)
- Lincoln P Brower
- Department of Zoology, University of Florida, Gainesville, FL, 32611
| | - William H Calvert
- Department of Zoology, University of Florida, Gainesville, FL, 32611
| |
Collapse
|
30
|
Murray EM, Bolton SK, Berg T, Saporito RA. Arthropod predation in a dendrobatid poison frog: does frog life stage matter? ZOOLOGY 2016; 119:169-174. [PMID: 26831358 DOI: 10.1016/j.zool.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/02/2015] [Accepted: 01/09/2016] [Indexed: 01/21/2023]
Abstract
Frogs in the family Dendrobatidae are well known for their conspicuous colors and variable alkaloid-based chemical defenses. The aposematic coloration in dendrobatid frogs appears to deter predators with color vision, but relatively little is known about how these frogs are protected and their defenses are perceived by non-color vision dominated predators. The neotropical bullet ant Paraponera clavata and the red-legged banana spider Cupiennius coccineus are predators that avoid adults of the dendrobatid Oophaga pumilio, but readily consume non-toxic frogs. Juvenile O. pumilio possess the same warning coloration as adult O. pumilio, but may be more palatable given that they have lower quantities of defensive chemicals. This may provide juvenile O. pumilio protection from color-sighted predators, while leaving them susceptible to predators that use chemoreception. To test this hypothesis, we presented juveniles and adults of both O. pumilio and the non-chemically defended frog Craugastor bransfordii to bullet ants and banana spiders. Both bullet ants and banana spiders preyed upon C. bransfordii significantly more than on O. pumilio. Adult and juvenile C. bransfordii experienced similar predation rates by both predators. The life stage of O. pumilio significantly predicted predation by bullet ants, with juveniles being consumed significantly more often than adults. However, the life stage of O. pumilio did not predict predation by banana spiders, as no adults or juveniles were consumed. Our study provides evidence that bullet ants can detect differences in chemical defenses between juvenile and adult O. pumilio, resulting in differential predation on the more palatable juvenile frogs. The avoidance of both adults and juveniles by C. coccineus suggests the alkaloids in O. pumilio act as an effective chemical deterrent to banana spiders, regardless of quantity. Overall, our results suggest that differences in alkaloid defenses among life stages in O. pumilio correspond to differences in relative palatability to at least one arthropod predator.
Collapse
Affiliation(s)
- Erin M Murray
- Department of Biology, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA
| | - Sarah K Bolton
- Department of Biology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH 44118, USA
| | - Torsten Berg
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| | - Ralph A Saporito
- Department of Biology, John Carroll University, 1 John Carroll Boulevard, University Heights, OH 44118, USA.
| |
Collapse
|
31
|
Brower LP, Seiber JN, Nelson CJ, Lynch SP, Holland MM. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus L. Reared on milkweed plants in California: 2.Asclepias speciosa. J Chem Ecol 2013; 10:601-39. [PMID: 24318600 DOI: 10.1007/bf00994224] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1983] [Revised: 07/21/1983] [Indexed: 11/30/2022]
Abstract
The pattern of variation in gross cardenolide concentration of 111Asclepias speciosa plants collected in six different areas of California is a positively skewed distribution which ranges from 19 to 344 μg of cardenolide per 0.1 g dry weight with a mean of 90 μg per 0.1 g. Butterflies reared individually on these plants in their native habitats ranged from 41 to 547 μg of cardenolide per 0.1 g dry weight with a mean of 179 μg. Total cardenolide per butterfly ranged from 54 to 1279 μg with a mean of 319 μg. Differences in concentrations and total cardenolide contents in the butterflies from the six geographic areas appeared minor, and there were no differences between the males and the females, although the males did weigh significantly more than females. The uptake of cardenolide by the butterflies was found to be a logarithmic function of the plant concentration. This results in regulation: larvae which feed on low-concentration plants produce butterflies with increased cardenolide concentrations relative to those of the plants, and those which feed on high-concentration plants produce butterflies with decreased concentrations. No evidence was adduced that high concentrations of cardenolides in the plants affected the fitness of the butterflies. The mean emetic potencies of the powdered plant and butterfly material were 5.62 and 5.25 blue jay emetic dose fifty units per milligram of cardenolide and the number of ED50 units per butterfly ranged from 0.28 to 6.7 with a mean of 1.67. Monarchs reared onA. speciosa, on average, are only about one tenth as emetic as those reared onA. eriocarpa. UnlikeA. eriocarpa which is limited to California,A. speciosa ranges from California to the Great Plains and is replaced eastwards byA. syriaca L. These two latter milkweed species appear to have a similar array of chemically identical cardenolides, and therefore both must produce butterflies of relatively low emetic potency to birds, with important ecological implications. About 80% of the lower emetic potency of monarchs reared on A. speciosa compared to those reared onA. eriocarpa appears attributable to the higher polarity of the cardenolides inA. speciosa. Thin-layer Chromatographie separation of the cardenolides in two different solvent systems showed that there are 23 cardenolides in theA. speciosa plants of which 20 are stored by the butterflies. There were no differences in the cardenolide spot patterns due either to geographic origin or the sex of the butterflies. As when reared onA. eriocarpa, the butterflies did not store the plant cardenolides withR f values greater than digitoxigenin. However, metabolic transformation of the cardenolides by the larvae appeared minor in comparison to when they were reared onA. eriocarpa. AlthoughA. eriocarpa andA. speciosa contain similar numbers of cardenolides and both contain desglucosyrioside, the cardenolides ofA. speciosa overall are more polar. ThusA. speciosa has no or only small amounts of the nonpolar labriformin and labriformidin, whereas both occur in high concentrations inA. eriocarpa. A. speciosa plants and butterflies also contain uzarigen, syriogenin, and possibly other polar cardenolides withR f values lower than digitoxin. The cardenolide concentration in the leaves is not only considerably less than inA. eriocarpa, but the latex has little to immeasurable cardenolide, whereas that ofA. eriocarpa has very high concentrations of several cardenolides. Quantitative analysis ofR f values of the cardenolide spots, their intensities, and their probabilities of occurrence in the chloroform-methanol-formamide TLC system produced a cardenolide fingerprint pattern very different from that previously established for monarchs reared onA. eriocarpa. This dispels recently published skepticism about the predictibility of chemical fingerprints based upon ingested secondary plant chemicals.
Collapse
Affiliation(s)
- L P Brower
- Department of Zoology, Univerisly of Florida, 32611, Gainesville, Florida
| | | | | | | | | |
Collapse
|
32
|
Marty MA, Krieger RI. Metabolism of uscharidin, a milkweed cardenolide, by tissue homogenates of monarch butterfly larvae,Danaus plexippus L. J Chem Ecol 2013; 10:945-56. [PMID: 24318786 DOI: 10.1007/bf00987975] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/1983] [Revised: 09/22/1983] [Indexed: 11/24/2022]
Abstract
Midgut and fat body homogenates of monarch butterfly larvae,Danaus plexippus L. (Lepidoptera:Danaidae), were examined for microsomal monooxygenase activity usingp-chloro-N-methylanilineN-demethylation and for the ability to metabolize a milkweed (Asclepias spp.) cardenolide (C23 steroid glycoside), uscharidin. All homogenates tested had bothN-demethylation and uscharidin biotransformation activities. Both transformations required NADPH. The monooxygenase inhibitors sesamex, SKF525A, and carbon monoxide inhibitedN-demethylation but not uscharidin biotransformation. Subsequent subcellular fractionation revealed the uscharidin biotransformation occurs in the soluble fraction and not the microsomal fraction, whileN-demethylation occurs in the microsomal fraction and not the soluble fraction. The larval NADPH-dependent microsomal monooxygenase apparently is not involved in the metabolism of uscharidin.
Collapse
Affiliation(s)
- M A Marty
- Department of Environmental Toxicology, University of California Davis, 95616, California
| | | |
Collapse
|
33
|
Lynch SP, Martin RA. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,danaus plexippus L., and their larval host-plant milkweed,asclepias viridis walt., in northwestern louisiana. J Chem Ecol 2013; 13:47-70. [PMID: 24301359 DOI: 10.1007/bf01020351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/1985] [Accepted: 01/13/1986] [Indexed: 11/28/2022]
Abstract
This paper is the first in a series on cardenolide fingerprinting of monarch butterflies and their host-plant milkweeds in the eastern United States. Spectrophotometric determinations of the gross cardenolide content of 60Asclepias viridis plants in northwestern Louisiana indicate a positively skewed variation ranging from 95 to 432 υg/0.1 g dry weight with a mean of 245 υg/0.1 g. Butterflies reared individually on these plants contained a normal cardenolide distribution ranging from 73 to 591 υg/0.1 g dry weight with a mean of 337 υg/0.1 g. The uptake of cardenolide by the butterflies best fit a logarithmic function of the plant concentration. Female monarchs (385 υg/0.l g) contained significantly greater mean cardenolide concentrations than did males (287 υg/0.1 g). No indications of a metabolic cost for either cardenolide ingestion or storage were adduced from size or dry weight data. Thin-layer chromatograms of 24 individual plant-butterfly pairs developed in two solvent systems resolved 21 individual spots in the plants and 15 in the butterflies.A. viridis plants appear to contain several relatively nonpolar cardenolides of the calotropagenin series which are metabolized to the more polar 3'-hydroxy derivatives calactin and calotropin as well as to calotropagenin in the butterflies. The epoxy cardenolides labriformin and labriformidin were absent, although desglucosyrioside (a 3'-hydroxy derivative) appeared present in both plants and butterflies. Quantitative evaluation of theR f values, spot intensities, and probabilities of occurrence in the chloroform-methanol-formamide TLC system produced a cardenolide fingerprint clearly distinct from those previously established for monarchs reared on otherAsclepias species, supporting the use of fingerprints to make ecological predictions concerning larval host-plant utilization.A. viridis is the predominant early spring milkweed throughout most of the south central United States and may be important in providing chemical protection to spring and early summer generation monarchs in the eastern United States.
Collapse
Affiliation(s)
- S P Lynch
- Department of Biological Sciences, Louisiana State University, 71115, Shreveport, Louisiana
| | | |
Collapse
|
34
|
Martin RA, Lynch SP. Cardenolide content and thin-layer chromatography profiles of monarch butterflies,Danaus plexippus L., and their larval host-plant milkweed,Asclepias asperula subsp.Capricornu (woods.) woods., in north central Texas. J Chem Ecol 2013; 14:295-318. [PMID: 24277011 DOI: 10.1007/bf01022548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1986] [Accepted: 02/02/1987] [Indexed: 11/29/2022]
Abstract
This paper is the second in a series on cardenolide fingerprinting of monarch butterflies and their host-plant milkweeds in the eastern United States. Spectrophotometric determinations of the gross cardenolide content ofAsclepias asperula plants in north central Texas indicated wide variation ranging from 341 to 1616 μg/0.1 g dry weight. The mean plant cardenolide concentration (886 μg/0.1 g) is the highest for any milkweed species on which monarch cardenolide profiles have been produced. Forty-one butterflies reared individually on these plants contained a skewed distribution of cardenolide concentrations ranging from 231 to 515 μg/0. 1 g dry weight with a mean of 363μg/0.1 g. The uptake of cardenolide by the butterflies was independent of plant concentration, suggesting that saturation occurs in cardenolide sequestration by monarchs when feeding on cardenolide-rich host-plants. Female monarchs contained significantly greater mean cardenolide concentrations (339 μg/0.1 g) than did males (320 μg/0.1 g). The mean dry weight of the male butterflies (0.211 g) was significantly greater than the female mean (0.191) so that the mean total cardenolide contents of males (675 fig) and females (754 μg) were not significantly different. Butterfly size was not significantly correlated to butterfly cardenolide concentration when differences due to sex and individual host-plant concentration were removed. Thin-layer chrornatograms of 24 individual plant-butterfly pairs developed in two solvent systems resolved 22 individual spots in the plants and 15 in the butterflies.A. asperula plants appear to contain several relatively nonpolar cardenolides of the calotropagenin series which are metabolized to more polar derivatives in the butterflies. Quantitative evaluation of theR f values, spot intensities, and probabilities of occurrence in the chloroform-methanol-formamide TLC system produced a cardenolide fingerprint clearly distinct from those previously established for monarchs reared on otherAsclepias species. Our data support the use of fingerprints to make ecological predictions concerning larval host-plant utilization.A. asperula subsp.capricornu andA. viridis Walt, are the predominant early spring milkweeds throughout most of the south central United States. Cardenolide-rich monarchs reared on these two species may be instrumental in establishing and reinforcing visual avoidance of adults by naive predators throughout their spring and summer breeding cycle in eastern North America.
Collapse
Affiliation(s)
- R A Martin
- Department of Chemistry, Louisiana State University, 71115, Shreveport, Louisiana
| | | |
Collapse
|
35
|
Holzinger F, Wink M. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na(+),K (+)-ATPase. J Chem Ecol 2013; 22:1921-37. [PMID: 24227116 DOI: 10.1007/bf02028512] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1996] [Accepted: 05/16/1996] [Indexed: 12/01/2022]
Abstract
The Monarch butterfly (Danaus plexippus) sequesters cardiac glycosides (CG) for its chemical defense against predators. Larvae and adults of this butterfly are insensitive towards dietary cardiac glycosides, whereas other Lepidoptera are sensitive and intoxicated by ouabain. Ouabain inhibits Na(+),K(+)-ATPase by binding to its α-subunit. We have amplified and cloned the DNA-sequence encoding the respective ouabain binding site. Instead of the amino acid asparagine at position 122 in ouabain-sensitive insects, the Monarch has a histidine in the putative ouabain binding site, which consists of 12 amino acids. Starting with the CG-sensitive Na(+),K(+)-ATPase gene fromDrosophila, we converted pos. 122 to a histidine residue as inDanaus plexippus by site-directed mutagenesis. Human embryonic kidney cells (HEK) (which are sensitive to ouabain) were transfected with the mutated Na(+),K(+)-ATPase gene in a pSVDF-expression vector and showed a transient expression of the mutatedDrosophila Na(+),K(+)-ATPase. When treated with ouabain, the transfected cells tolerated ouabain at a concentration of 50 mM, whereas untransformed controls or controls transfected with the unmutatedDrosophila gene, showed a substantial mortality. This result implies that the asparagine to histidine exchange contributes to ouabain insensitivity in the Monarch. In two other CG-sequestering insects, e.g.,Danaus gilippus andSyntomeida epilais, the pattern of amino acid substitution differed, indicating that the Monarch has acquired this mutation independently during evolution.
Collapse
Affiliation(s)
- F Holzinger
- Institut für Pharmazeutische Biologie, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | | |
Collapse
|
36
|
Chatelain M, Halpin C, Rowe C. Ambient temperature influences birds' decisions to eat toxic prey. Anim Behav 2013; 86:733-740. [PMID: 24109148 PMCID: PMC3791422 DOI: 10.1016/j.anbehav.2013.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/16/2013] [Accepted: 07/03/2013] [Indexed: 02/04/2023]
Abstract
Aposematic prey warn predators of their toxicity using conspicuous signals. However, predators regularly include aposematic prey in their diets, particularly when they are in a poor energetic state and in need of nutrients. We investigated whether or not an environmental factor, ambient temperature, could change the energetic state of predators and lead to an increased intake of prey that they know to contain toxins. We found that European starlings, Sturnus vulgaris, increased their consumption of mealworm, Tenebrio molitor, prey containing quinine (a mild toxin) when the ambient temperature was reduced below their thermoneutral zone from 20 °C to 6 °C. The birds differed in their sensitivity to changes in ambient temperature, with heavier birds increasing the number of toxic prey they ate more rapidly with decreasing temperature compared to birds with lower body mass. This could have been the result of their requiring more nutrients at lower temperatures or being better able to detoxify quinine. Taken together, our results suggest that conspicuous coloration may be more costly at lower temperatures, and that aposematic prey may need to invest more in chemical defences as temperatures decline. Our study also provides novel insights into what factors affect birds' decisions to eat toxic prey, and demonstrates that selection pressures acting on prey defences can vary with changing temperature across days, seasons, climes, and potentially in response to climate change. We investigated the effect of temperature on birds' decisions to eat toxic prey. As it got cooler, birds were more likely to eat prey containing toxins. Heavier birds were more sensitive to changes in temperature. Selection pressures on prey defences will change over days, seasons and climes.
Collapse
Affiliation(s)
- M. Chatelain
- Museum National d'Histoire Naturelle, Paris, France
| | - C.G. Halpin
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle, U.K
| | - C. Rowe
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle, U.K
- Correspondence: C. Rowe, Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Henry Wellcome Building, Framlington Place, Newcastle NE2 4HH, U.K.
| |
Collapse
|
37
|
S. Jones R, C. Davis S, Speed MP. Defence Cheats Can Degrade Protection of Chemically Defended Prey. Ethology 2012. [DOI: 10.1111/eth.12036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca S. Jones
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Sian C. Davis
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| | - Michael P. Speed
- Department of Evolution, Ecology and Behaviour; Faculty of Health & Life Sciences; Institute of Integrative Biology; University of Liverpool; Liverpool; UK
| |
Collapse
|
38
|
|
39
|
Speed MP, Ruxton GD, Mappes J, Sherratt TN. Why are defensive toxins so variable? An evolutionary perspective. Biol Rev Camb Philos Soc 2012; 87:874-84. [PMID: 22540874 DOI: 10.1111/j.1469-185x.2012.00228.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Defensive toxins are widely used by animals, plants and micro-organisms to deter natural enemies. An important characteristic of such defences is diversity both in the quantity of toxins and the profile of specific defensive chemicals present. Here we evaluate evolutionary and ecological explanations for the persistence of toxin diversity within prey populations, drawing together a range of explanations from the literature, and adding new hypotheses. We consider toxin diversity in three ways: (1) the absence of toxicity in a proportion of individuals in an otherwise toxic prey population (automimicry); (2) broad variation in quantities of toxin within individuals in the same population; (3) variation in the chemical constituents of chemical defence. For each of these phenomena we identify alternative evolutionary explanations for the persistence of variation. One important general explanation is diversifying (frequency- or density-dependent) selection in which either costs of toxicity increase or their benefits decrease with increases in the absolute or relative abundance of toxicity in a prey population. A second major class of explanation is that variation in toxicity profiles is itself nonadaptive. One application of this explanation requires that predator behaviour is not affected by variation in levels or profiles of chemical defence within a prey population, and that there are no cost differences between different quantities or forms of toxins found within a population. Finally, the ecology and life history of the animal may enable some general predictions about toxin variation. For example, in animals which only gain their toxins in their immature forms (e.g. caterpillars on host plants) we may expect a decline in toxicity during adult life (or at least no change). By contrast, when toxins are also acquired during the adult form, we may for example expect the converse, in which young adults have less time to acquire toxicity than older adults. One major conclusion that we draw is that there are good reasons to consider within-species variation in defensive toxins as more than mere ecological noise. Rather there are a number of compelling evolutionary hypotheses which can explain and predict variation in prey toxicity.
Collapse
Affiliation(s)
- Michael P Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, UK.
| | | | | | | |
Collapse
|
40
|
Lindstedt C, Eager H, Ihalainen E, Kahilainen A, Stevens M, Mappes J. Direction and strength of selection by predators for the color of the aposematic wood tiger moth. Behav Ecol 2011. [DOI: 10.1093/beheco/arr017] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Skelhorn J, Rowe C. Birds learn to use distastefulness as a signal of toxicity. Proc Biol Sci 2010; 277:1729-34. [PMID: 20129989 DOI: 10.1098/rspb.2009.2092] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aposematic prey advertise their toxicity using conspicuous visual signals that predators quickly learn to avoid. However, it is advantageous for predators not to simply avoid toxic prey, but to learn about the amount of toxin that prey contain, and include them in their diets when the nutritional gains are high relative to the costs of ingesting the toxin. Therefore, when foraging on a defended prey population where individuals vary in their toxin concentration, predators should learn to use cues which distinguish prey with different levels of toxicity in order to include less defended individuals in their diets. In this experiment, we found that European starlings (Sturnus vulgaris) could learn to use a bitter taste to predict the amount of toxin that individual prey contained, and use that information to preferentially ingest less toxic prey to maximize their nutrient intake relative to the amount of toxin ingested. Our results suggest that bitter tastes could evolve as reliable signals of toxicity, and can help to explain why many toxins taste bitter. They also highlight the need to develop new mathematical simulations of the evolution of prey defences which incorporate the adaptive decision-making processes underlying nutrient and toxin management.
Collapse
Affiliation(s)
- John Skelhorn
- Institute of Neuroscience, Newcastle University, Newcastle NE2 4HH, UK.
| | | |
Collapse
|
42
|
|
43
|
Lindstedt C, Lindström L, Mappes J. Thermoregulation constrains effective warning signal expression. Evolution 2008; 63:469-78. [PMID: 19154362 DOI: 10.1111/j.1558-5646.2008.00561.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Evolution of conspicuous signals may be constrained if animal coloration has nonsignaling as well as signaling functions. In aposematic wood tiger moth (Parasemia plantaginis) larvae, the size of a warning signal (orange patch on black body) varies phenotypically and genetically. Although a large warning signal is favored as an antipredator defense, we hypothesized that thermoregulation may constrain the signal size in colder habitats. To test this hypothesis, we conducted a factorial rearing experiment with two selection lines for larval coloration (small and large signal) and with two temperature manipulations (high and low temperature environment). Temperature constrained the size and brightness of the warning signal. Larvae with a small signal had an advantage in the colder environment, which was demonstrated by a faster development time and growth rate in the low temperature treatment, compared to larvae with a large signal. Interestingly, the larvae with a small signal were found more often on the plant than the ones with a large signal, suggesting higher basking activity of the melanic (small signal) individuals in the low temperature. We conclude that the expression of aposematic display is not only defined by its efficacy against predators; variation in temperature may constrain evolution of a conspicuous warning signal and maintain variation in it.
Collapse
Affiliation(s)
- Carita Lindstedt
- Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Sciences, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland.
| | | | | |
Collapse
|
44
|
Chai P. Field observations and feeding experiments on the responses of rufous-tailed jacamars (Galbula ruficauda) to free-flying butterflies in a tropical rainforest. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1986.tb01772.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Anim Behav 2008. [DOI: 10.1016/j.anbehav.2007.10.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
BRAKEFIELD PAULM. Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1985.tb01635.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
KNIGHT AMY, BROWER LINCOLNP, WILLIAMS ERNESTH. Spring remigration of the monarch butterfly, Danaus plexippus (Lepidoptera: Nymphalidae) in north-central Florida: estimating population parameters using mark-recapture. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1999.tb01187.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Saporito RA, Donnelly MA, Jain P, Martin Garraffo H, Spande TF, Daly JW. Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 2007; 50:757-78. [PMID: 17706737 DOI: 10.1016/j.toxicon.2007.06.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/23/2022]
Abstract
A total of 232 alkaloids, representing 21 structural classes were detected in skin extracts from the dendrobatid poison frog Oophaga pumilio, collected from 53 different populations from over 30 years of research. The highly toxic pumiliotoxins and allopumiliotoxins, along with 5,8-disubstitiuted and 5,6,8-trisubstituted indolizidines, all of which are proposed to be of dietary mite origin, were common constituents in most extracts. One decahydroquinoline (DHQ), previously shown be of ant origin, occurred in many extracts often as a major alkaloid, while other DHQs occurred rather infrequently. Histrionicotoxins, thought to be of ant origin, did not appear to possess a specific pattern of occurrence among the populations, but when present, were usually found as major components. Certain 3,5-disubstituted pyrrolizidines and indolizidines, known to be of ant origin, did occur in extracts, but infrequently. Alkaloid composition differed with regard to geographic location of frog populations, and for populations that were sampled two or more times during the 30-year period significant changes in alkaloid profiles sometimes occurred. The results of this study indicate that chemical defense in a dendrobatid poison frog is dependent on geographic location and habitat type, which presumably controls the abundance and nature of alkaloid-containing arthropods.
Collapse
Affiliation(s)
- Ralph A Saporito
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Barnett CA, Bateson M, Rowe C. State-dependent decision making: educated predators strategically trade off the costs and benefits of consuming aposematic prey. Behav Ecol 2007. [DOI: 10.1093/beheco/arm027] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|