1
|
Wijerathna HMSM, Shanaka KASN, Raguvaran SS, Jayamali BPMV, Kim SH, Kim MJ, Jung S, Lee J. CRISPR/Cas9-Mediated fech Knockout Zebrafish: Unraveling the Pathogenesis of Erythropoietic Protoporphyria and Facilitating Drug Screening. Int J Mol Sci 2024; 25:10819. [PMID: 39409147 PMCID: PMC11476521 DOI: 10.3390/ijms251910819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit EPP, for therapeutic screening and biological studies remains unexplored. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated fech-knockout zebrafish larvae as a model of EPP1 for drug screening. CRISPR/Cas9 was employed to generate fech-knockout zebrafish larvae exhibiting morphological defects without lethality prior to 9 days post-fertilization (dpf). To assess the suitability of this model for drug screening, ursodeoxycholic acid (UDCA), a common treatment for cholestatic liver disease, was employed. This treatment significantly reduced PPIX fluorescence and enhanced bile-secretion-related gene expression (abcb11a and abcc2), indicating the release of PPIX. Acridine orange staining and quantitative reverse transcription polymerase chain reaction analysis of the bax/bcl2 ratio revealed apoptosis in fech-/- larvae, and this was reduced by UDCA treatment, indicating suppression of the intrinsic apoptosis pathway. Neutral red and Sudan black staining revealed increased macrophage and neutrophil production, potentially in response to PPIX-induced cell damage. UDCA treatment effectively reduced macrophage and neutrophil production, suggesting its potential to alleviate cell damage and liver injury in EPP1. In conclusion, CRISPR/Cas9-mediated fech-/- zebrafish larvae represent a promising model for screening drugs against EPP1.
Collapse
Affiliation(s)
- Hitihami M. S. M. Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Department of Aquaculture and Seafood Technology, Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Colombo 01500, Sri Lanka
| | - Kateepe A. S. N. Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Sarithaa S. Raguvaran
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Bulumulle P. M. V. Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
| | - Seok-Hyung Kim
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si 37242, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Xie L, Tao Y, Shen Z, Deng H, Duan X, Xue Y, Chen D, Li Y. Congenital asplenia impairs heme-iron recycling during erythropoiesis in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105108. [PMID: 38040044 DOI: 10.1016/j.dci.2023.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
The spleen is postulated to be a hematopoietic tissue in adult fish; however, clear evidence is still lacking to define its role in hematopoietic activity. In our previous study, a congenitally asplenic zebrafish was generated though gene editing, which provided a new perspective for studying the role of fish spleen in hematopoiesis. In this study, HSC-regulated and erythrocyte marker genes, such as gata1a, gata2, klf1, hbaa1, hbaa2, hbba1 and hbba2 were significantly reduced in congenitally asplenic zebrafish when compared with wild-type (WT). Subsequently, we conducted the transcriptome profiles of whole kidneys from WT and congenitally asplenic zebrafish to explore the possible molecular mechanisms underlying the impaired erythropoiesis caused by congenital asplenia. Our results demonstrated that congenital asplenia might impair heme-iron recycling during erythropoiesis, as evidenced by significant down-regulation of genes associated with iron acquisition (tfr1a, tfa, steap3 and slc25a37) and heme biosynthesis and transport (alas2, fech, uros, urod, copx, ppox and abcb10) in congenitally asplenic zebrafish. In addition, the down-regulation of hemopoiesis-related GO terms, including heme binding, tetrapyrrole binding, iron ion binding, heme metabolic process, heme biosynthetic process, erythrocyte differentiation, iron ion homeostasis and hemoglobin metabolic process confirmed the impaired erythropoiesis induced by congenital asplenia. Our study provides an in-depth understanding of spleen function in regulating heme-iron homeostasis during hematopoiesis, thereby providing valuable insights into pathological responses in splenectomized or congenitally asplenic patients.
Collapse
Affiliation(s)
- Lang Xie
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, Hubei, 430223, China; Aquaculture Engineering Technology Research Center of Southwest University, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yixi Tao
- Aquaculture Engineering Technology Research Center of Southwest University, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Ziwei Shen
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, Hubei, 430223, China
| | - Huatang Deng
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, Hubei, 430223, China
| | - Xinbin Duan
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, Hubei, 430223, China
| | - Yang Xue
- Chongqing Fisheries Technical Extension Center, Chongqing, 400020, China
| | - Daqing Chen
- National Agricultural Science Observing and Experimental Station of Chongqing, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, Hubei, 430223, China
| | - Yun Li
- Aquaculture Engineering Technology Research Center of Southwest University, College of Fisheries, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Adhish M, Manjubala I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023; 9:e14557. [PMID: 36950605 PMCID: PMC10025926 DOI: 10.1016/j.heliyon.2023.e14557] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Understanding the detailed mechanism behind every human disease, disorder, defect, and deficiency is a daunting task concerning the clinical diagnostic tools for patients. Hence, a closely resembling living or simulated model is of paramount interest for the development and testing of a probable novel drug for rectifying the conditions pertaining to the various ailments. The animal model that can be easily genetically manipulated to suit the study of the therapeutic motive is an indispensable asset and within the last few decades, the zebrafish models have proven their effectiveness by becoming such potent human disease models with their use being extended to various avenues of research to understand the underlying mechanisms of the diseases. As zebrafish are explored as model animals in understanding the molecular basis and genetics of many diseases owing to the 70% genetic homology between the human and zebrafish genes; new and fascinating facts about the diseases are being surfaced, establishing it as a very powerful tool for upcoming research. These prospective research areas can be explored in the near future using zebrafish as a model. In this review, the effectiveness of the zebrafish as an animal model against several human diseases such as osteoporosis, atrial fibrillation, Noonan syndrome, leukemia, autism spectrum disorders, etc. has been discussed.
Collapse
Affiliation(s)
- Mazumder Adhish
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| | - I. Manjubala
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, India
| |
Collapse
|
4
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Using the Zebrafish as a Genetic Model to Study Erythropoiesis. Int J Mol Sci 2021; 22:ijms221910475. [PMID: 34638816 PMCID: PMC8508994 DOI: 10.3390/ijms221910475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond–Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria. The molecular mechanisms of erythropoiesis are highly conserved between fish and mammals, and the zebrafish (Danio rerio) has provided a powerful genetic model for studying erythropoiesis. Studies in zebrafish have yielded important insights into RBC development and established a number of models for human blood diseases. Here, we focus on latest discoveries of the molecular processes and mechanisms regulating zebrafish erythropoiesis and summarize newly established zebrafish models of human anemias.
Collapse
|
6
|
Salehpour A, Rezaei M, Khoradmehr A, Tahamtani Y, Tamadon A. Which Hyperglycemic Model of Zebrafish ( Danio rerio) Suites My Type 2 Diabetes Mellitus Research? A Scoring System for Available Methods. Front Cell Dev Biol 2021; 9:652061. [PMID: 33791308 PMCID: PMC8005598 DOI: 10.3389/fcell.2021.652061] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Despite extensive studies on type 2 diabetes mellitus (T2DM), there is no definitive cure, drug, or prevention. Therefore, for developing new therapeutics, proper study models of T2DM is necessary to conduct further preclinical researches. Diabetes has been induced in animals using chemical, genetic, hormonal, antibody, viral, and surgical methods or a combination of them. Beside different approaches of diabetes induction, different animal species have been suggested. Although more than 85% of articles have proposed rat (genus Rattus) as the proper model for diabetes induction, zebrafish (Danio rerio) models of diabetes are being used more frequently in diabetes related studies. In this systematic review, we compare different aspects of available methods of inducing hyperglycemia referred as T2DM in zebrafish by utilizing a scoring system. Evaluating 26 approved models of T2DM in zebrafish, this scoring system may help researchers to compare different T2DM zebrafish models and select the best one regarding their own research theme. Eventually, glyoxalase1 (glo1-/-) knockout model of hyperglycemia achieved the highest score. In addition to assessment of hyperglycemic induction methods in zebrafish, eight most commonly proposed diabetic induction approval methods are suggested to help researchers confirm their subsequent proposed models.
Collapse
Affiliation(s)
- Aria Salehpour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| | - Yaser Tahamtani
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
- Center of Marine Experimental and Comparative Medicine, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bandar Bushehr, Iran
| |
Collapse
|
7
|
Sharma P, Sharma BS, Verma RJ. CRISPR-based genome editing of zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:69-84. [PMID: 33934838 DOI: 10.1016/bs.pmbts.2021.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9, once discovered as an adaptive immune system in bacteria, has emerged as a disruptive technology in the field of genetic engineering. Technological advancements in the recent past has enhanced the applicability of CRISPR/Cas9 tool for gene editing, gene therapies, developmental studies and mutational analysis in various model organisms. Zebrafish, one of the excellent animal models, is preferred for conducting CRISPR/Cas9 studies to assess the functional implication of specific genes of interest. CRISPR/Cas9 mediated gene editing techniques, such as, knock-out and knock-in approaches, provide evidences to identify the role of different genes through loss-of-function studies. Also, CRISPR/Cas9 has been proved to be an efficient tool for designing disease models for gene expression studies based on phenotypic screening. The present chapter provides an overview of CRISPR/Cas9 mechanism, different strategies for DNA modifications and gene function analysis, highlighting the translational applications for future prospects, such as screening of drug toxicity and efficacy.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Zoology, Biomedical Technology & Human Genetics, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India; PanGenomics International Pvt Ltd, Sterling Accuris Diagnostics, Ellis Bridge, Ahmedabad, Gujarat, India.
| | - B Sharan Sharma
- Rivaara Labs Pvt Ltd, KD Hospital, Vaishnodevi Circle, Ahmedabad, Gujarat, India
| | - Ramtej J Verma
- Department of Zoology, Biomedical Technology & Human Genetics, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
de Oliveira Neves AC, Galván I. Models for human porphyrias: Have animals in the wild been overlooked?: Some birds and mammals accumulate significant amounts of porphyrins in the body without showing the injurious symptoms observed in human porphyrias. Bioessays 2020; 42:e2000155. [PMID: 33155299 DOI: 10.1002/bies.202000155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Indexed: 11/06/2022]
Abstract
Humans accumulate porphyrins in the body mostly during the course of porphyrias, diseases caused by defects in the enzymes of the heme biosynthesis pathway and that produce acute attacks, skin lesions and liver cancer. In contrast, some wild mammals and birds are adapted to accumulate porphyrins without injurious consequences. Here we propose viewing such physiological adaptations as potential solutions to human porphyrias, and suggest certain wild animals as models. Given the enzymatic activity and/or the patterns of porphyrin excretion and accumulation, the fox squirrel, the great bustard and the Eurasian eagle owl may constitute overlooked models for different porphyrias. The Harderian gland of rodents, where large amounts of porphyrins are synthesized, presents an underexplored potential for understanding the carcinogenic/toxic effect of porphyrin accumulation. Investigating how these animals avoid porphyrin pathogenicity may complement the use of laboratory models for porphyrias and provide new insights into the treatment of these disorders.
Collapse
Affiliation(s)
| | - Ismael Galván
- Department of Evolutionary Ecology, Doñana Biological Station, CSIC, Sevilla, 41092, Spain
| |
Collapse
|
9
|
Abstract
Metastasis, the dispersal of cancer cells from a primary tumor to secondary sites within the body, is the leading cause of cancer-related death. Animal models have been an indispensable tool to investigate the complex interactions between the cancer cells and the tumor microenvironment during the metastatic cascade. The zebrafish (Danio rerio) has emerged as a powerful vertebrate model for studying metastatic events in vivo. The zebrafish has many attributes including ex-utero development, which facilitates embryonic manipulation, as well as optically transparent tissues, which enables in vivo imaging of fluorescently labeled cells in real time. Here, we summarize the techniques which have been used to study cancer biology and metastasis in the zebrafish model organism, including genetic manipulation and transgenesis, cell transplantation, live imaging, and high-throughput compound screening. Finally, we discuss studies using the zebrafish, which have complemented and benefited metastasis research.
Collapse
Affiliation(s)
- Katy R Astell
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Dirk Sieger
- The Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| |
Collapse
|
10
|
Zhang J, Hamza I. Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Mol Genet Metab 2019; 128:204-212. [PMID: 30626549 PMCID: PMC6591114 DOI: 10.1016/j.ymgme.2018.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022]
Abstract
Coordination of iron acquisition and heme synthesis is required for effective erythropoiesis. The small teleost zebrafish (Danio rerio) is an ideal vertebrate animal model to replicate various aspects of human physiology and provides an efficient and cost-effective way to model human pathophysiology. Importantly, zebrafish erythropoiesis largely resembles mammalian erythropoiesis. Gene discovery by large-scale forward mutagenesis screening has identified key components in heme and iron metabolism. Reverse genetic screens, using morpholino-knockdown and CRISPR/Cas9, coupled with the genetic tractability of the developing embryo have further accelerated functional studies. Ultimately, the ex utero development of zebrafish embryos combined with their transparency and developmental plasticity could provide a deeper understanding of the role of iron and heme metabolism during early vertebrate embryonic development.
Collapse
Affiliation(s)
- Jianbing Zhang
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Maitra D, Bragazzi Cunha J, Elenbaas JS, Bonkovsky HL, Shavit JA, Omary MB. Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell Injury. Cell Mol Gastroenterol Hepatol 2019; 8:535-548. [PMID: 31233899 PMCID: PMC6820234 DOI: 10.1016/j.jcmgh.2019.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Genetic porphyrias comprise eight diseases caused by defects in the heme biosynthetic pathway that lead to accumulation of heme precursors. Consequences of porphyria include photosensitivity, liver damage and increased risk of hepatocellular carcinoma, and neurovisceral involvement, including seizures. Fluorescent porphyrins that include protoporphyrin-IX, uroporphyrin and coproporphyrin, are photo-reactive; they absorb light energy and are excited to high-energy singlet and triplet states. Decay of the porphyrin excited to ground state releases energy and generates singlet oxygen. Porphyrin-induced oxidative stress is thought to be the major mechanism of porphyrin-mediated tissue damage. Although this explains the acute photosensitivity in most porphyrias, light-induced porphyrin-mediated oxidative stress does not account for the effect of porphyrins on internal organs. Recent findings demonstrate the unique role of fluorescent porphyrins in causing subcellular compartment-selective protein aggregation. Porphyrin-mediated protein aggregation associates with nuclear deformation, cytoplasmic vacuole formation and endoplasmic reticulum dilation. Porphyrin-triggered proteotoxicity is compounded by inhibition of the proteasome due to aggregation of some of its subunits. The ensuing disruption in proteostasis also manifests in cell cycle arrest coupled with aggregation of cell proliferation-related proteins, including PCNA, cdk4 and cyclin B1. Porphyrins bind to native proteins and, in presence of light and oxygen, oxidize several amino acids, particularly methionine. Noncovalent interaction of oxidized proteins with porphyrins leads to formation of protein aggregates. In internal organs, particularly the liver, light-independent porphyrin-mediated protein aggregation occurs after secondary triggers of oxidative stress. Thus, porphyrin-induced protein aggregation provides a novel mechanism for external and internal tissue damage in porphyrias that involve fluorescent porphyrin accumulation.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S Elenbaas
- Medical Scientist Training Program, Washington University in St. Louis, St. Louis, Missouri
| | - Herbert L Bonkovsky
- Gastroenterology & Hepatology, and Molecular Medicine & Translational Science, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, North Carolina
| | - Jordan A Shavit
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; Cell Biology, Faculty of Science and Technology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
12
|
Baeten JT, de Jong JLO. Genetic Models of Leukemia in Zebrafish. Front Cell Dev Biol 2018; 6:115. [PMID: 30294597 PMCID: PMC6158309 DOI: 10.3389/fcell.2018.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
The zebrafish animal model is gaining increasing popularity as a tool for studying human disease. Over the past 15 years, many models of leukemia and other hematological malignancies have been developed in the zebrafish. These confer some significant advantages over similar models in other animals and systems, representing a powerful resource for investigation of the molecular basis of human leukemia. This review discusses the various zebrafish models of lymphoid and myeloid leukemia available, the major discoveries that have been made possible by them, and opportunities for future exploration.
Collapse
Affiliation(s)
| | - Jill L. O. de Jong
- Department of Pediatrics, University of Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Rissone A, Burgess SM. Rare Genetic Blood Disease Modeling in Zebrafish. Front Genet 2018; 9:348. [PMID: 30233640 PMCID: PMC6127601 DOI: 10.3389/fgene.2018.00348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/06/2023] Open
Abstract
Hematopoiesis results in the correct formation of all the different blood cell types. In mammals, it starts from specific hematopoietic stem and precursor cells residing in the bone marrow. Mature blood cells are responsible for supplying oxygen to every cell of the organism and for the protection against pathogens. Therefore, inherited or de novo genetic mutations affecting blood cell formation or the regulation of their activity are responsible for numerous diseases including anemia, immunodeficiency, autoimmunity, hyper- or hypo-inflammation, and cancer. By definition, an animal disease model is an analogous version of a specific clinical condition developed by researchers to gain information about its pathophysiology. Among all the model species used in comparative medicine, mice continue to be the most common and accepted model for biomedical research. However, because of the complexity of human diseases and the intrinsic differences between humans and other species, the use of several models (possibly in distinct species) can often be more helpful and informative than the use of a single model. In recent decades, the zebrafish (Danio rerio) has become increasingly popular among researchers, because it represents an inexpensive alternative compared to mammalian models, such as mice. Numerous advantages make it an excellent animal model to be used in genetic studies and in particular in modeling human blood diseases. Comparing zebrafish hematopoiesis to mammals, it is highly conserved with few, significant differences. In addition, the zebrafish model has a high-quality, complete genomic sequence available that shows a high level of evolutionary conservation with the human genome, empowering genetic and genomic approaches. Moreover, the external fertilization, the high fecundity and the transparency of their embryos facilitate rapid, in vivo analysis of phenotypes. In addition, the ability to manipulate its genome using the last genome editing technologies, provides powerful tools for developing new disease models and understanding the pathophysiology of human disorders. This review provides an overview of the different approaches and techniques that can be used to model genetic diseases in zebrafish, discussing how this animal model has contributed to the understanding of genetic diseases, with a specific focus on the blood disorders.
Collapse
Affiliation(s)
- Alberto Rissone
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Cornet C, Di Donato V, Terriente J. Combining Zebrafish and CRISPR/Cas9: Toward a More Efficient Drug Discovery Pipeline. Front Pharmacol 2018; 9:703. [PMID: 30018554 PMCID: PMC6037853 DOI: 10.3389/fphar.2018.00703] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
The use of zebrafish larvae in basic and applied research has grown exponentially during the last 20 years. The reasons for this success lay in its specific experimental advantages: on the one hand, the small size, the large number of progeny and the fast life cycle greatly facilitate large-scale approaches while maintaining 3Rs amenability; on the other hand, high genetic and physiological homology with humans and ease of genetic manipulation make zebrafish larvae a highly robust model for understanding human disease. Together, these advantages allow using zebrafish larvae for performing high-throughput research, both in terms of chemical and genetic phenotypic screenings. Therefore, the zebrafish larva as an animal model is placed between more reductionist in vitro high-throughput screenings and informative but low-throughput preclinical assays using mammals. However, despite its biological advantages and growing translational validation, zebrafish remains scarcely used in current drug discovery pipelines. In a context in which the pharmaceutical industry is facing a productivity crisis in bringing new drugs to the market, the combined advantages of zebrafish and the CRISPR/Cas9 system, the most powerful technology for genomic editing to date, has the potential to become a valuable tool for streamlining the generation of models mimicking human disease, the validation of novel drug targets and the discovery of new therapeutics. This review will focus on the most recent advances on CRISPR/Cas9 implementation in zebrafish and all their potential uses in biomedical research and drug discovery.
Collapse
Affiliation(s)
- Carles Cornet
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| | - Vincenzo Di Donato
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| | - Javier Terriente
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), Barcelona, Spain
| |
Collapse
|
15
|
Abstract
Iron is a crucial component of heme- and iron-sulfur clusters, involved in vital cellular functions such as oxygen transport, DNA synthesis, and respiration. Both excess and insufficient levels of iron and heme-precursors cause human disease, such as iron-deficiency anemia, hemochromatosis, and porphyrias. Hence, their levels must be tightly regulated, requiring a complex network of transporters and feedback mechanisms. The use of zebrafish to study these pathways and the underlying genetics offers many advantages, among others their optical transparency, ex-vivo development and high genetic and physiological conservations. This chapter first reviews well-established methods, such as large-scale mutagenesis screens that have led to the initial identification of a series of iron and heme transporters and the generation of a variety of mutant lines. Other widely used techniques are based on injection of RNA, including complementary morpholino knockdown and gene overexpression. In addition, we highlight several recently developed approaches, most notably endonuclease-based gene knockouts such as TALENs or the CRISPR/Cas9 system that have been used to study how loss of function can induce human disease phenocopies in zebrafish. Rescue by chemical complementation with iron-based compounds or small molecules can subsequently be used to confirm causality of the genetic defect for the observed phenotype. All together, zebrafish have proven to be - and will continue to serve as an ideal model to advance our understanding of the pathogenesis of human iron and heme-related diseases and to develop novel therapies to treat these conditions.
Collapse
Affiliation(s)
| | - Barry H. Paw
- Brigham & Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Dana-Farber Cancer Institute, Boston, MA, United States
- Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Elenbaas JS, Maitra D, Liu Y, Lentz SI, Nelson B, Hoenerhoff MJ, Shavit JA, Omary MB. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress. FASEB J 2016; 30:1798-810. [PMID: 26839379 DOI: 10.1096/fj.201500111r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/06/2016] [Indexed: 01/24/2023]
Abstract
Protoporphyria is a metabolic disease that causes excess production of protoporphyrin IX (PP-IX), the final biosynthetic precursor to heme. Hepatic PP-IX accumulation may lead to end-stage liver disease. We tested the hypothesis that systemic administration of porphyrin precursors to zebrafish larvae results in protoporphyrin accumulation and a reproducible nongenetic porphyria model. Retro-orbital infusion of PP-IX or the iron chelator deferoxamine mesylate (DFO), with the first committed heme precursor α-aminolevulinic acid (ALA), generates high levels of PP-IX in zebrafish larvae. Exogenously infused or endogenously produced PP-IX accumulates preferentially in the liver of zebrafish larvae and peaks 1 to 3 d after infusion. Similar to patients with protoporphyria, PP-IX is excreted through the biliary system. Porphyrin accumulation in zebrafish liver causes multiorganelle protein aggregation as determined by mass spectrometry and immunoblotting. Endoplasmic reticulum stress and induction of autophagy were noted in zebrafish larvae and corroborated in 2 mouse models of protoporphyria. Furthermore, electron microscopy of zebrafish livers from larvae administered ALA + DFO showed hepatocyte autophagosomes, nuclear membrane ruffling, and porphyrin-containing vacuoles with endoplasmic reticulum distortion. In conclusion, systemic administration of the heme precursors PP-IX or ALA + DFO into zebrafish larvae provides a new model of acute protoporphyria with consequent hepatocyte protein aggregation and proteotoxic multiorganelle alterations and stress.-Elenbaas, J. S., Maitra, D., Liu, Y., Lentz, S. I., Nelson, B., Hoenerhoff, M. J., Shavit, J. A., Omary, M. B. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress.
Collapse
Affiliation(s)
| | | | - Yang Liu
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Hematology and Oncology
| | | | | | - Mark J Hoenerhoff
- In-Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA; and
| | - Jordan A Shavit
- Department of Pediatrics and Communicable Diseases, Division of Pediatric Hematology and Oncology
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, and Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 2015; 88:275-289. [PMID: 26130508 PMCID: PMC4698826 DOI: 10.1016/j.freeradbiomed.2015.06.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
| | - Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
18
|
Qin W, Liang F, Feng Y, Bai H, Yan R, Li S, Lin S. Expansion of CRISPR/Cas9 genome targeting sites in zebrafish by Csy4-based RNA processing. Cell Res 2015; 25:1074-7. [PMID: 26238401 PMCID: PMC4559817 DOI: 10.1038/cr.2015.95] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Wei Qin
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Shengjie Biotech Co., Ltd., Shenzhen 518055, China
| | - Fang Liang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yan Feng
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haipeng Bai
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruibin Yan
- Shenzhen Shengjie Biotech Co., Ltd., Shenzhen 518055, China
| | - Song Li
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Shengjie Biotech Co., Ltd., Shenzhen 518055, China
| | - Shuo Lin
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Chiabrando D, Mercurio S, Tolosano E. Heme and erythropoieis: more than a structural role. Haematologica 2015; 99:973-83. [PMID: 24881043 DOI: 10.3324/haematol.2013.091991] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Italy
| | - Sonia Mercurio
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, Italy
| |
Collapse
|
20
|
Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 2015; 32:756-64. [PMID: 25752963 PMCID: PMC4379706 DOI: 10.1016/j.devcel.2015.01.032] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/08/2014] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish, it allows the rapid generation of knockout lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knockout and greatly broadens the scope of loss-of-function studies in zebrafish.
Collapse
Affiliation(s)
- Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Ellen M Durand
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Carroll KJ, North TE. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol 2014; 42:684-96. [PMID: 24816275 PMCID: PMC4461861 DOI: 10.1016/j.exphem.2014.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/28/2014] [Accepted: 05/02/2014] [Indexed: 01/09/2023]
Abstract
Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease.
Collapse
Affiliation(s)
- Kelli J Carroll
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trista E North
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
22
|
Of fish and men: using zebrafish to fight human diseases. Trends Cell Biol 2014; 23:584-6. [PMID: 24275383 DOI: 10.1016/j.tcb.2013.09.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/18/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Long restricted to the field of developmental biology, the use of the zebrafish (Danio rerio) has extended to the study of human pathogenesis. Fostered by the rapid adaptation of new technologies, the design and analysis of fish models of human diseases have contributed important findings that are now making their way from aquariums to clinics. Here we outline the clinical relevance of the zebrafish as a model organism.
Collapse
|
23
|
Wager K, Mahmood F, Russell C. Modelling inborn errors of metabolism in zebrafish. J Inherit Metab Dis 2014; 37:483-95. [PMID: 24797558 DOI: 10.1007/s10545-014-9696-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
Abstract
The majority of human inborn errors of metabolism are fatal multisystem disorders that lack proper treatment and have a poorly understood mechanistic basis. Novel technologies are required to address this issue, and the use of zebrafish to model these diseases is an emerging field. Here we present the published zebrafish models of inborn metabolic diseases, discuss their validity, and review the novel mechanistic insights that they have provided. We also review the available methods for creating and studying zebrafish disease models, advantages and disadvantages of using this model organism, and successful examples of the use of zebrafish for drug discovery and development. Using a zebrafish to model inborn errors of metabolism in vivo, although still in its infancy, shows promise for a deeper understanding of disease pathomechanisms, onset, and progression, and also for the development of specific therapies.
Collapse
Affiliation(s)
- Kim Wager
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | | | | |
Collapse
|
24
|
Zhang S, Xu M, Huang J, Tang L, Zhang Y, Wu J, Lin S, Wang H. Heme acts through the Bach1b/Nrf2a-MafK pathway to regulate exocrine peptidase precursor genes in porphyric zebrafish. Dis Model Mech 2014; 7:837-45. [PMID: 24652768 PMCID: PMC4073273 DOI: 10.1242/dmm.014951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a zebrafish model of hepatoerythropoietic porphyria (HEP), we identify a previously unknown mechanism underlying heme-mediated regulation of exocrine zymogens. Zebrafish bach1b, nrf2a and mafK are all expressed in the zebrafish exocrine pancreas. Overexpression of bach1b or knockdown of nrf2a result in the downregulation of the expression of the exocrine zymogens, whereas overexpression of nrf2a or knockdown of bach1b cause their upregulation. In vitro luciferase assays demonstrate that heme activates the zymogens in a dosage-dependent manner and that the zymogen promoter activities require the integral Maf recognition element (MARE) motif. The Bach1b-MafK heterodimer represses the zymogen promoters, whereas the Nrf2a-MafK heterodimer activates them. Furthermore, chromatin immunoprecipitation (ChIP) assays show that MafK binds to the MARE sites in the 5' regulatory regions of the zymogens. Taken together, these data indicate that heme stimulates the exchange of Bach1b for Nrf2a at MafK-occupied MARE sites and that, particularly in heme-deficient porphyria, the repressive Bach1b-MafK heterodimer dominates, which can be exchanged for the activating Nrf2a-MafK heterodimer upon treatment with hemin. These results provide novel insights into the regulation of exocrine function, as well as the pathogenesis of porphyria, and should be useful for designing new therapies for both types of disease.
Collapse
Affiliation(s)
- Shuqing Zhang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Minrui Xu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian Huang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Lili Tang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanqing Zhang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jingyao Wu
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095-1606, USA
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, Jiangsu, China. School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
25
|
Wei CY, Wang HP, Zhu ZY, Sun YH. Transcriptional factors smad1 and smad9 act redundantly to mediate zebrafish ventral specification downstream of smad5. J Biol Chem 2014; 289:6604-6618. [PMID: 24488494 DOI: 10.1074/jbc.m114.549758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play crucial roles during embryonic development and cell fate determination. Nuclear transduction of BMP signals requires the receptor type Smad proteins, Smad1, Smad5, and Smad9. However, how these Smad proteins cooperate in vivo to regulate various developmental processes is largely unknown. In zebrafish, it was widely believed that the maternally expressed smad5 is essential for dorso-ventral (DV) patterning, and the zygotically transcribed smad1 is not required for normal DV axis establishment. In the present study, we have identified zygotically expressed smad9, which cooperates with smad1 downstream of smad5, to mediate zebrafish early DV patterning in a functional redundant manner. Although knockdown of smad1 or smad9 alone does not lead to visible dorsalization, double knockdown strongly dorsalizes zebrafish embryos, which cannot be efficiently rescued by smad5 overexpression, whereas the dorsalization induced by smad5 knockdown can be fully rescued by overexpression of smad1 or smad9. We have further revealed that the transcription initiations of smad1 and smad9 are repressed by each other, that they are direct transcriptional targets of Smad5, and that smad9, like smad1, is required for myelopoiesis. In conclusion, our study uncovers that smad1 and smad9 act redundantly to each other downstream of smad5 to mediate ventral specification and to regulate embryonic myelopoiesis.
Collapse
Affiliation(s)
- Chang-Yong Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China
| | - Zuo-Yan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan 430072, China.
| |
Collapse
|
26
|
King-Heiden TC, Mehta V, Xiong KM, Lanham KA, Antkiewicz DS, Ganser A, Heideman W, Peterson RE. Reproductive and developmental toxicity of dioxin in fish. Mol Cell Endocrinol 2012; 354:121-38. [PMID: 21958697 PMCID: PMC3306500 DOI: 10.1016/j.mce.2011.09.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) is a global environmental contaminant and the prototypical ligand for investigating aryl hydrocarbon receptor (AHR)-mediated toxicity. Environmental exposure to TCDD results in developmental and reproductive toxicity in fish, birds and mammals. To resolve the ecotoxicological relevance and human health risks posed by exposure to dioxin-like AHR agonists, a vertebrate model is needed that allows for toxicity studies at various levels of biological organization, assesses adverse reproductive and developmental effects and establishes appropriate integrative correlations between different levels of effects. Here we describe the reproductive and developmental toxicity of TCDD in feral fish species and summarize how using the zebrafish model to investigate TCDD toxicity has enabled us to characterize the AHR signaling in fish and to better understand how dioxin-like chemicals induce toxicity. We propose that such studies can be used to predict the risks that AHR ligands pose to feral fish populations and provide a platform for integrating risk assessments for both ecologically relevant organisms and humans.
Collapse
Affiliation(s)
- Tisha C. King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Vatsal Mehta
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Kong M. Xiong
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | - Kevin A. Lanham
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | | | - Alissa Ganser
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Warren Heideman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Richard E. Peterson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| |
Collapse
|
27
|
Rampon C, Bouzaffour M, Ostuni MA, Dufourcq P, Girard C, Freyssinet JM, Lacapere JJ, Schweizer-Groyer G, Vriz S. Translocator protein (18 kDa) is involved in primitive erythropoiesis in zebrafish. FASEB J 2009; 23:4181-92. [PMID: 19723704 DOI: 10.1096/fj.09-129262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The translocator protein (18 kDa) (TSPO), also known as peripheral-type benzodiazepine receptor, is directly or indirectly associated with many biological processes. Although extensively characterized, the specific function of TSPO during development remains unclear. It has been reported that TSPO is involved in a variety of mechanisms, including cell proliferation, apoptosis, regulation of mitochondrial functions, cholesterol transport and steroidogenesis, and porphyrin transport and heme synthesis. Although the literature has reported a murine knockout model, the experiment did not generate information because of early lethality. We then used the zebrafish model to address the function of tspo during development. Information about spatiotemporal expression showed that tspo has a maternal and a zygotic contribution which, during somatogenesis, seems to be erythroid restricted to the intermediate cell mass. Genetic and pharmacological approaches used to invalidate Tspo function resulted in embryos with specific erythropoietic cell depletion. Although unexpected, this lack of blood cells is independent of the Tspo cholesterol binding site and reveals a new in vivo key role for Tspo during erythropoiesis.
Collapse
Affiliation(s)
- Christine Rampon
- CNRS UMR 8542, Chaire des Processes Morphogénètiques, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Zebrafish has many advantages as a model of human pediatric research. Given the physical and ethical problems with performing experiments on human patients, biomedical research has focused on using model organisms to study biologic processes conserved between humans and lower vertebrates. The most common model organisms are small mammals, usually rats and mice. Although these models have significant advantages, they are also expensive to maintain, difficult to manipulate embryonically, and limited for large-scale genetic studies. The zebrafish model nicely complements these deficiencies in mammalian experimental models. The low cost, small size, and external development of zebrafish make it an excellent model for vertebrate development biology. Techniques for large-scale genome mutagenesis and gene mapping, transgenesis, protein overexpression or knockdown, cell transplantation and chimeric embryo analysis, and chemical screens have immeasurably increased the power of this model organism. It is now possible to rapidly determine the developmental function of a gene of interest in vivo, and then identify genetic and chemical modifiers of the processes involved. Discoveries made in zebrafish can be further validated in mammals. With novel technologies being regularly developed, the zebrafish is poised to significantly improve our understanding of vertebrate development under normal and pathologic conditions.
Collapse
Affiliation(s)
- Matthew B Veldman
- Department of Molecular, Cellular, and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
29
|
McReynolds LJ, Tucker J, Mullins MC, Evans T. Regulation of hematopoiesis by the BMP signaling pathway in adult zebrafish. Exp Hematol 2008; 36:1604-1615. [PMID: 18973974 DOI: 10.1016/j.exphem.2008.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 08/12/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The zebrafish is an established model system for studying the embryonic emergence of tissues and organs, including the hematopoietic system. We hypothesized that key signaling pathways controlling embryonic hematopoiesis continue to be important in the adult, and we sought to develop approaches to test this in zebrafish, focused on the bone morphogenetic protein (BMP) signaling pathway. Functions for this pathway in adult hematopoiesis have been challenging to probe in other models. MATERIALS AND METHODS Several approaches tested the function of BMP signaling during adult zebrafish hematopoiesis. First, we evaluated steady-state hematopoiesis in adult fish that are heterozygous for mutant alleles of Smad5, or are homozygous for mutant alleles, and rescued to adulthood by injection of RNA encoding Smad5. Second, we tested the relative ability of smad5 mutant fish to recover from hemolytic anemia. Third, we generated a transgenic line that targets the expression of a dominant-negative BMP receptor to adult-stage Gata1+ progenitor cells. RESULTS Adult fish with a strong mutant smad5 allele are anemic at steady state and, in addition, respond to hemolytic anemia with kinetics that are altered compared to wild-type fish. Fish expressing a mutant BMP receptor in early Gata1+ definitive progenitors generate excessive eosinophils. CONCLUSIONS Our study provides proof of principle that regulation of adult hematopoiesis can be studied in zebrafish by altering specific pathways. We show that the BMP signaling pathway is relevant for adult hematopoiesis to maintain steady state erythropoiesis, control the erythropoietic response following stress anemia, and to generate normal numbers of eosinophils.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
30
|
Danilova N, Sakamoto KM, Lin S. Role of p53 family in birth defects: Lessons from zebrafish. ACTA ACUST UNITED AC 2008; 84:215-27. [DOI: 10.1002/bdrc.20129] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Dooley KA, Fraenkel PG, Langer NB, Schmid B, Davidson AJ, Weber G, Chiang K, Foott H, Dwyer C, Wingert RA, Zhou Y, Paw BH, Zon LI. montalcino, A zebrafish model for variegate porphyria. Exp Hematol 2008; 36:1132-42. [PMID: 18550261 DOI: 10.1016/j.exphem.2008.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/27/2008] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Inherited or acquired mutations in the heme biosynthetic pathway leads to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. MATERIALS AND METHODS Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with reverse transcriptase polymerase chain reaction was utilized to identify the genetic mutation, which was confirmed via allele-specific oligo hybridizations. Whole mount in situ hybridizations and o-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. RESULTS Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hours post-fertilization are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. CONCLUSION In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria.
Collapse
Affiliation(s)
- Kimberly A Dooley
- Division of Hematology/Oncology, Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhu H, Zon LI. Use of zebrafish models for the analysis of human disease. ACTA ACUST UNITED AC 2008; Chapter 15:Unit 15.3. [PMID: 18428328 DOI: 10.1002/0471142905.hg1503s34] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The zebrafish has emerged as a powerful animal model for human diseases. While it has long informed us about the biology of early development, it has recently come into favor for the investigation of clinically relevant problems. Genes conserved from fish to humans can be rapidly analyzed using the zebrafish embryo in what is essentially a transparent in vivo assay. This unit describes methodologies including genetic screening, targeted knockdowns, ectopic overexpression, and transgenesis.
Collapse
Affiliation(s)
- Hao Zhu
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | |
Collapse
|
33
|
Transgenic Leishmania model for delta-aminolevulinate-inducible monospecific uroporphyria: cytolytic phototoxicity initiated by singlet oxygen-mediated inactivation of proteins and its ablation by endosomal mobilization of cytosolic uroporphyrin. EUKARYOTIC CELL 2008; 7:1146-57. [PMID: 18487349 DOI: 10.1128/ec.00365-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inherent deficiencies of Leishmania in heme biosynthesis were genetically complemented for delta-aminolevulinate-inducible biosynthesis and accumulation of light-excitable uroporphyrin. The phototoxic flagellar immobilization and cytolysis phenotypes and porphyrin mobilization noted previously were further analyzed biochemically and cytologically to delineate the mechanism of phototoxicity and detoxification in this monoporphyric model. Under optimal conditions of induction for approximately 3 days, cells remained viable but became increasingly uroporphyric, peaking at > or =90% of the population by approximately day 2; thereafter, a small population of less porphyric or aporphyric cells emerged. On exposure to light, the flagella of porphyric cells were immobilized in milliseconds, and singlet oxygen became detectable in their lysates. Both photosensitive phenotypes increased proportionally with the cellular uroporphyric levels and were susceptible to inhibition by azide, but not by D-mannitol. Brief irradiation of the uroporphyric cells produced no appreciable protein degradation but inactivated cytosolic neomycin phosphotransferase and significantly bleached cytosolic green fluorescent protein, which was azide reversible. These cells were irreparably photodamaged, as indicated by their subsequent loss of membrane permeability and viability. This is the first in situ demonstration that early inactivation of functional proteins by singlet oxygen initiates the cytolytic phototoxicity in uroporphyria. Detoxification appears to involve endocytic/exocytic mobilization of uroporphyrin from cytosol to "porphyrinosomes" for its eventual extracellular expulsion. This is proposed as the sole mechanism of detoxification, since it is attributable to the reversion of porphyric to aporphyric cells during uroporphyrinogenesis and repeated cycles of this event plus photolysis selected no resistant mutants, only aporphyric clones of the parental phenotypes. Further characterization of the transport system for uroporphyrin in this model is expected to benefit not only our understanding of the cellular mechanism for disposal of toxic soluble wastes but also potentially the effective management of human uroporphyria and the use of uroporphyric Leishmania for vaccine/drug delivery.
Collapse
|
34
|
Wang H, Zhou Q, Kesinger JW, Norris C, Valdez C. Heme regulates exocrine peptidase precursor genes in zebrafish. Exp Biol Med (Maywood) 2007; 232:1170-80. [PMID: 17895525 DOI: 10.3181/0703-rm-77] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously determined that yquem harbors a mutation in the gene encoding uroporphyrinogen decarboxylase (UROD), the fifth enzyme in heme biosynthesis, and established zebrafish yquem (yqe(tp61)) as a vertebrate model for human hepatoery-thropoietic porphyria (HEP). Here we report that six exocrine peptidase precursor genes, carboxypeptidase A, trypsin precursor, trypsin like, chymotrypsinogen B1, chymotrypsinogen 1-like, and elastase 2 like, are downregulated in yquem/urod (-/-), identified initially by microarray analysis of yquem/urod zebrafish and, subsequently, confirmed by in situ hybridization. We then determined downregulation of these six zymogens specifically in the exocrine pancreas of sauternes (sau(tb223)) larvae, carrying a mutation in the gene encoding delta-amino-levulinate synthase (ALAS2), the first enzyme in heme biosynthesis. We also found that ptf1a, a transcription factor regulating exocrine zymogens, is downregulated in both yquem/urod (-/-) and sau/alas2 (-/-) larvae. Further, hemin treatment rescues expression of ptf1a and these six zymogens in both yquem/urod (-/-) and sauternes/alas2 (-/-) larvae. Thus, it appears that heme deficiency downregulates ptf1a, which, in turn, leads to downregulation of exocrine zymogens. Our findings provide a better understanding of heme deficiency pathogenesis and enhance our ability to diagnose and treat patients with porphyria or pancreatic diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Zoology and Stephenson Research & Technology Center, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | | | |
Collapse
|
35
|
King Heiden TC, Dengler E, Kao WJ, Heideman W, Peterson RE. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 2007; 225:70-9. [PMID: 17764713 PMCID: PMC6886473 DOI: 10.1016/j.taap.2007.07.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 07/12/2007] [Accepted: 07/16/2007] [Indexed: 11/17/2022]
Abstract
Biological molecules and intracellular structures operate at the nanoscale; therefore, development of nanomedicines shows great promise for the treatment of disease by using targeted drug delivery and gene therapies. PAMAM dendrimers, which are highly branched polymers with low polydispersity and high functionality, provide an ideal architecture for construction of effective drug carriers, gene transfer devices and imaging of biological systems. For example, dendrimers bioconjugated with selective ligands such as Arg-Gly-Asp (RGD) would theoretically target cells that contain integrin receptors and show potential for use as drug delivery devices. While RGD-conjugated dendrimers are generally considered not to be cytotoxic, there currently exists little information on the risks that such materials pose to human health. In an effort to compliment and extend the knowledge gleaned from cell culture assays, we have used the zebrafish embryo as a rapid, medium throughput, cost-effective whole-animal model to provide a more comprehensive and predictive developmental toxicity screen for nanomaterials such as PAMAM dendrimers. Using the zebrafish embryo, we have assessed the developmental toxicity of low generation (G3.5 and G4) PAMAM dendrimers, as well as RGD-conjugated forms for comparison. Our results demonstrate that G4 dendrimers, which have amino functional groups, are toxic and attenuate growth and development of zebrafish embryos at sublethal concentrations; however, G3.5 dendrimers, with carboxylic acid terminal functional groups, are not toxic to zebrafish embryos. Furthermore, RGD-conjugated G4 dendrimers are less potent in causing embryo toxicity than G4 dendrimers. RGD-conjugated G3.5 dendrimers do not elicit toxicity at the highest concentrations tested and warrant further study for use as a drug delivery device.
Collapse
Affiliation(s)
- Tisha C. King Heiden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705
| | - Emelyne Dengler
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705
| | - Weiyuan John Kao
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, Madison, WI 53705
| | - Warren Heideman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705
| | - Richard E. Peterson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705
- Corresponding author: Richard E Peterson, University of Wisconsin, School of Pharmacy, 777 Highland Ave., Madison, WI 53705-2222., TEL: + 1-608-263-5453, FAX: +1-608-265-3316,
| |
Collapse
|
36
|
Kari G, Rodeck U, Dicker AP. Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 2007; 82:70-80. [PMID: 17495877 DOI: 10.1038/sj.clpt.6100223] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo studies represent an essential step in drug development and currently rely largely on mice, yet limitations of mammalian models motivated the search for complementary vertebrate model systems. This review focuses on zebrafish, Danio rerio, as a facile model system to study human disease and drug responses. Zebrafish are particularly suited for this purpose because they represent a vertebrate species, their genome is sequenced, and a large number of synchronously developing, transparent embryos can be produced. Zebrafish embryos are permeable to drugs and can easily be manipulated using well-established genetic and molecular approaches. Here, we summarize recent work on drug discovery and toxicity in zebrafish embryos. In addition, we provide a synopsis of current efforts to establish disease models in zebrafish focusing on neoplasia. The results of these studies highlight the potential of zebrafish as a viable addition to established animal models by offering medium and, potentially, high throughput capabilities.
Collapse
Affiliation(s)
- G Kari
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
37
|
Abstract
Despite the pre-eminence of the mouse in modelling human disease, several aspects of murine biology limit its routine use in large-scale genetic and therapeutic screening. Many researchers who are interested in an embryologically and genetically tractable disease model have now turned to zebrafish. Zebrafish biology allows ready access to all developmental stages, and the optical clarity of embryos and larvae allow real-time imaging of developing pathologies. Sophisticated mutagenesis and screening strategies on a large scale, and with an economy that is not possible in other vertebrate systems, have generated zebrafish models of a wide variety of human diseases. This Review surveys the achievements and potential of zebrafish for modelling human diseases and for drug discovery and development.
Collapse
Affiliation(s)
- Graham J Lieschke
- Cancer and Haematology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3050, Australia.
| | | |
Collapse
|
38
|
Sakamoto D, Kudo H, Inohaya K, Yokoi H, Narita T, Naruse K, Mitani H, Araki K, Shima A, Ishikawa Y, Imai Y, Kudo A. A mutation in the gene for delta-aminolevulinic acid dehydratase (ALAD) causes hypochromic anemia in the medaka, Oryzias latipes. Mech Dev 2005; 121:747-52. [PMID: 15210182 DOI: 10.1016/j.mod.2004.03.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 03/31/2004] [Accepted: 03/31/2004] [Indexed: 11/17/2022]
Abstract
A genetic screen for mutations affecting embryogenesis in the medaka, Oryzias latipes, identified a mutant, whiteout (who), that exhibited hypochromic anemia. The who mutant initially had the normal number of blood cells, but it then gradually decreased during the embryonic and larval stages. The blood cells in the who mutants show an elongated morphology and little hemoglobin activity. Genetic mapping localized who to the vicinity of a LG12 marker, olgc1. By utilizing the highly conserved synteny between medaka and pufferfish, we identified a gene for delta-aminolevulinic acid dehydratase (ALAD), which is the second enzyme in the heme synthetic pathway, as a candidate for who. We found a missense mutation in the alad gene that was tightly linked to the who phenotype, strongly suggesting that the hypochromic anemia phenotype in the who mutant is caused by a loss of the alad function. Thus, who mutants represent a model for the human disease ALAD-deficiency porphyria.
Collapse
Affiliation(s)
- Daigo Sakamoto
- Department of Biological Information, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The zebrafish has recently emerged as an important model for the study of vascular embryogenesis. Its genetic accessibility, external development, and optically clear embryo are just a few of the features that set the zebrafish apart as a particularly well-suited model for studying vascular development. However, there is little precedent for its use as a tool for the experimental study of therapeutic angiogenesis. Here, we review the use of the zebrafish for studying vascular development and patterning, and discuss how the zebrafish might be used more directly as a model for developing and testing effective therapeutic angiogenesis approaches.
Collapse
Affiliation(s)
- Kameha R Kidd
- Laboratory of Molecular Genetics, NICHD, NIH, Building 6B, Room 309, 6 Center Drive, Bethesda, MD 20892, U.S.A
| | - Brant M Weinstein
- Laboratory of Molecular Genetics, NICHD, NIH, Building 6B, Room 309, 6 Center Drive, Bethesda, MD 20892, U.S.A
- Author for correspondence:
| |
Collapse
|
40
|
Abstract
Progressive advances using zebrafish as a model organism have provided hematologists with an additional genetic system to study blood cell formation and hematological malignancies. Despite extensive evolutionary divergence between bony fish (teleosts) and mammals, the molecular pathways governing hematopoiesis have been highly conserved. As a result, most (if not all) of the critical hematopoietic transcription factor genes identified in mammals have orthologues in zebrafish. As in other vertebrates, all of the teleost blood lineages are believed to originate from a pool of pluripotent, self-renewing hematopoietic stem cells. Here, we provide a detailed review of the timing, anatomical location, and transcriptional regulation of zebrafish 'primitive' and 'definitive' hematopoiesis as well as discuss a model of T-cell leukemia and recent advances in blood cell transplantation. Given that many of the regulatory genes that control embryonic hematopoiesis have been implicated in oncogenic pathways in adults, an understanding of blood cell ontogeny is likely to provide insights into the pathophysiology of human leukemias.
Collapse
Affiliation(s)
- Alan J Davidson
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Urtishak KA, Choob M, Tian X, Sternheim N, Talbot WS, Wickstrom E, Farber SA. Targeted gene knockdown in zebrafish using negatively charged peptide nucleic acid mimics. Dev Dyn 2004; 228:405-13. [PMID: 14579379 DOI: 10.1002/dvdy.10394] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Negatively charged homo-oligomers of alternating trans-4-hydroxy-L-proline/phosphonate polyamides with DNA bases (HypNA-pPNA) display excellent hybridization properties toward DNA and RNA, while preserving the mismatch discrimination, nuclease resistance, and protease resistance of peptide nucleic acids (PNAs). Similar properties are associated with morpholino phosphorodiamidate (MO) DNA mimics, which have been used in the model vertebrate zebrafish (Danio rerio) for genome-wide, sequence-based, reverse genetic screens during embryonic development. We evaluated mixed sequence HypNA-pPNAs as an alternative to MOs, and found that even a single central DNA mismatch lowered the HypNA-pPNA melting temperature by 16 degrees C. We then observed that the melting temperatures of HypNA-pPNA 18-mers hybridized to RNA 25-mers were comparable to the melting temperatures of MO 25-mers, and that two HypNA-pPNA mismatches lowered the melting temperature with RNA by 18 degrees C. In zebrafish embryos we observed that HypNA-pPNA 18-mers displayed comparable potency to MO 25-mers as knockdown agents against chordin, notail, and uroD, with greater mismatch stringency. Finally we observed that a specific HypNA-pPNA 18-mer elicited the dharma (bozozok)(-/-) phenotype in zebrafish embryos, which MO 25-mers do not. HypNA-pPNAs designed to inhibit translation of specific zebrafish RNA targets thus demonstrated stringent hybridization properties, relative to DNA and MO oligomers, and present a valuable alternative for reverse genetic studies, enabling the targeting of previously inaccessible genes.
Collapse
Affiliation(s)
- Karen A Urtishak
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Zebrafish have emerged as a useful vertebrate model system in which unbiased large-scale screens have revealed hundreds of mutations affecting vertebrate development. Many zebrafish mutants closely resemble known human disorders, thus providing intriguing prospects for uncovering the genetic basis of human diseases and for the development of pharmacologic agents that inhibit or correct the progression of developmental disorders. The rapid pace of advances in genomic sequencing and map construction, in addition to morpholino targeting and transgenic techniques, have facilitated the identification and analysis of genes associated with zebrafish mutants, thus promoting the development of zebrafish as a model for human disorders. This review aims to illustrate how the zebrafish has been used to identify unknown genes, to assign function to known genes, and to delineate genetic pathways, all contributing valuable leads toward understanding human pathophysiology.
Collapse
Affiliation(s)
- Trista E North
- Division of Hematology/Oncology, Department of Medicine, Children's Hospital of Boston, Enders Research Building, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
43
|
Tanaka K, Ohisa S, Orihara N, Sakaguchi S, Horie K, Hibiya K, Konno S, Miyake A, Setiamarga D, Takeda H, Imai Y, Kudo A. Characterization of mutations affecting embryonic hematopoiesis in the medaka, Oryzias latipes. Mech Dev 2004; 121:739-46. [PMID: 15210181 DOI: 10.1016/j.mod.2004.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 03/29/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
In a genetic screen for mutations affecting organogenesis in the medaka, Oryzias latipes, we identified eight mutants with defects in embryonic hematopoiesis. These mutations were classified into seven complementation groups. In this paper, we characterize the five mutants that were confirmed in the next generation. The beni fuji mutant was defective in the generation of blood cells, exhibiting reduced blood cells at the initiation of circulation. Mutations in two genes, lady finger and ryogyoku, caused abnormal morphology of blood cells, i.e., deformation, along with a progressive decrease in the number of blood cells. The sekirei mutant exhibited photosensitivity with autofluorescent blood cells. Mutations in kyoho resulted in huge blood cells that were approximately three times longer than the wild-type blood cells. The spectrum of phenotypes identified in this study is similar to that of the zebrafish hematopoietic mutants except for the huge blood cells in kyoho. Our results demonstrate that medaka, as well as zebrafish, is a useful model to study hematopoiesis.
Collapse
Affiliation(s)
- Kimiko Tanaka
- Department of Biological Information, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shafizadeh E, Peterson RT, Lin S. Induction of reversible hemolytic anemia in living zebrafish using a novel small molecule. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138:245-9. [PMID: 15533782 DOI: 10.1016/j.cca.2004.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/06/2004] [Accepted: 05/06/2004] [Indexed: 11/22/2022]
Abstract
We used zebrafish to screen and identify small molecules that affect the process of vertebrate hematopoietic development. Zebrafish embryos were exposed to a library of 5000 synthetic compounds and screened for defects in primitive erythropoiesis. Here, we present the characterization of hemolytic anemia induced in zebrafish by the small molecule 5115318 (3-[5-methyl-furan 2-yl]-propionic acid N'-phenyl-hydrazide). This compound is capable of generating hemoglobin aggregates and Heinz bodies in red cells in vivo only. The induced anemia is reversible and treated fish recover in about 4 days. This study shows the feasibility of using zebrafish to screen for small molecules that can modulate the specific process of erythropoiesis.
Collapse
Affiliation(s)
- Ebrahim Shafizadeh
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, 621 Charles E. Young Drive, South Life Sciences Building, LS4325, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Jason Berman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
46
|
Nishikawa K, Kobayashi M, Masumi A, Lyons SE, Weinstein BM, Liu PP, Yamamoto M. Self-association of Gata1 enhances transcriptional activity in vivo in zebra fish embryos. Mol Cell Biol 2003; 23:8295-305. [PMID: 14585986 PMCID: PMC262353 DOI: 10.1128/mcb.23.22.8295-8305.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gata1 is a prototype transcription factor that regulates hematopoiesis, yet the molecular mechanisms by which Gata1 transactivates its target genes in vivo remain unclear. We previously showed, in transgenic zebra fish, that Gata1 autoregulates its own expression. In this study, we characterized the molecular mechanisms for this autoregulation by using mutations in the Gata1 protein which impair autoregulation. Of the tested mutations, replacement of six lysine residues with alanine (Gata1KA6), which inhibited self-association activity of Gata1, reduced the Gata1-dependent induction of reporter gene expression driven by the zebra fish gata1 hematopoietic regulatory domain (gata1 HRD). Furthermore, overexpression of wild-type Gata1 but not Gata1KA6 rescued the expression of Gata1 downstream genes in vlad tepes, a germ line gata1 mutant fish. Interestingly, both GATA sites in the double GATA motif in gata1 HRD were critical for the promoter activity and for binding of the self-associated Gata1 complex, whereas only the 3'-GATA site was required for Gata1 monomer binding. These results thus provide the first in vivo evidence that the ability of Gata1 to self-associate critically contributes to the autoregulation of the gata1 gene.
Collapse
Affiliation(s)
- Keizo Nishikawa
- Center for Tsukuba Advanced Research Alliance, and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Tropepe V, Sive HL. Can zebrafish be used as a model to study the neurodevelopmental causes of autism? GENES BRAIN AND BEHAVIOR 2003; 2:268-81. [PMID: 14606692 DOI: 10.1034/j.1601-183x.2003.00038.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The zebrafish has proven to be an excellent model for analyzing issues of vertebrate development. In this review we ask whether the zebrafish is a viable model for analyzing the neurodevelopmental causes of autism. In developing an answer to this question three topics are considered. First, the general attributes of zebrafish as a model are discussed, including low cost maintenance, rapid life cycle and the multitude of techniques available. These techniques include large-scale genetic screens, targeted loss and gain of function methods, and embryological assays. Second, we consider the conservation of zebrafish and mammalian brain development, structure and function. Third, we discuss the impressive use of zebrafish as a model for human disease, and suggest several strategies by which zebrafish could be used to dissect the genetic basis for autism. We conclude that the zebrafish system could be used to make important contributions to understanding autistic disorders.
Collapse
Affiliation(s)
- V Tropepe
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | |
Collapse
|
48
|
Ward AC, McPhee DO, Condron MM, Varma S, Cody SH, Onnebo SMN, Paw BH, Zon LI, Lieschke GJ. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 2003; 102:3238-40. [PMID: 12869502 DOI: 10.1182/blood-2003-03-0966] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized. Transient transgenesis revealed that a 5.3 kilobase promoter fragment immediately upstream of the spi1 coding sequence was sufficient to drive expression of enhanced green fluorescent protein (EGFP) in injected embryos in a manner that largely recapitulated the native spi1 gene expression pattern. This fragment was successfully used to produce a germ line transgenic line of zebrafish with EGFP-expressing myeloid cells. These TG(spi1:EGFP)pA301 transgenic zebrafish represent a valuable tool for further studies of myeloid development and its perturbation.
Collapse
Affiliation(s)
- Alister C Ward
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
50
|
Abstract
Among the wide variety of model organisms commonly used for studies on aging, such as worms, flies and rodents, a wide research gap exists between the invertebrate and vertebrate model systems. In developmental biology, a similar gap has been filled by the zebrafish (Danio rerio). We propose that the zebrafish is uniquely suited to serve as a bridge model for gerontology. With high fecundity and economical husbandry requirements, large populations of zebrafish may be generated quickly and cheaply, facilitating large-scale approaches including demographic studies and mutagenesis screens. A variety of mutants identified in such screens have led to modelling of human disease, including cardiac disorders and cancer. While zebrafish longevity is at least 50% longer than in commonly used mouse strains, as an ectothermic fish species, its life span may be readily modulated by caloric intake, ambient temperature and reproductive activity. These features, coupled with a growing abundance of biological resources, including an ongoing genome sequencing project, make the zebrafish a compelling model organism for studies on aging.
Collapse
Affiliation(s)
- Glenn S Gerhard
- Department of Pathology, Dartmouth Medical School, Hanover, NH, USA.
| | | |
Collapse
|