1
|
Bala NS, Thornburg CD. Gene Therapy in Hemophilia A: Achievements, Challenges, and Perspectives. Semin Thromb Hemost 2025; 51:28-40. [PMID: 38588706 DOI: 10.1055/s-0044-1785483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Strides in advancements of care of persons with hemophilia include development of long-acting factor replacement therapies, novel substitution and hemostatic rebalancing agents, and most recently approved gene therapy. Several decades of preclinical and clinical trials have led to development of adeno-associated viral (AAV) vector-mediated gene transfer for endogenous production of factor VIII (FVIII) in hemophilia A (HA). Only one gene therapy product for HA (valoctocogene roxaparvovec) has been approved by regulatory authorities. Results of valoctocogene roxaparvovec trial show significant improvement in bleeding rates and use of factor replacement therapy; however, sustainability and duration of response show variability with overall decline in FVIII expression over time. Further challenges include untoward adverse effects involving liver toxicity requiring immunosuppression and development of neutralizing antibodies to AAV vector rendering future doses ineffective. Real-life applicability of gene therapy for HA will require appropriate patient screening, infrastructure setup, long-term monitoring including data collection of patient-reported outcomes and innovative payment schemes. This review article highlights the success and development of HA gene therapy trials, challenges including adverse outcomes and variability of response, and perspectives on approach to gene therapy including shared decision-making and need for future strategies to overcome the several unmet needs.
Collapse
Affiliation(s)
- Natasha S Bala
- Rady Children's Hospital San Diego, Hemophilia and Thrombosis Treatment Center, San Diego, California
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California
| | - Courtney D Thornburg
- Rady Children's Hospital San Diego, Hemophilia and Thrombosis Treatment Center, San Diego, California
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, California
| |
Collapse
|
2
|
Trirut C, Sosothikul D, Ittiwut R, Ittiwut C, Pongsewalak S, Songthawee N, Natesirinilkul R, Banjerdlak P, Na Songkhla P, Komvilaisak P, Moonla C, Suphapeetiporn K. F8 variants and their genotype-phenotype correlations in Thai patients with haemophilia A: a nationwide multicentre study. J Clin Pathol 2024:jcp-2024-209542. [PMID: 38981663 DOI: 10.1136/jcp-2024-209542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
AIMS Analysis of the F8 gene helps predict the risk of developing factor VIII (FVIII) inhibitors and the depth of phenotype in haemophilia A (HA) patients. Since data in Southeast Asian countries remain scarce, we aim to study F8 variation correlated with HA phenotypes in Thailand. METHODS Thai patients with HA were enrolled from seven haemophilia treatment centres during 2022-2023. Using peripheral blood DNA, inverse shifting-polymerase chain reaction (IS-PCR) for F8-intron 22 inversion (Inv22) and F8-intron 1 inversion (Inv1) was performed. Whole exome sequencing (WES) was explored in cases without Inv22/Inv1. RESULTS Of 124 patients with HA, 91.9% were detected with a causative F8 variant, including Inv22 (30.6%), Inv1 (1.6%), missense (23.4%), nonsense (16.9%) and small insertion/deletion (16.1%) mutations. Inv22, small insertion/deletion and nonsense were associated with severe HA, compared with missense variants, by the ORs of 13.9 (95% CI, 4.2 to 56.7), 14.7 (95% CI, 3.4 to 104.7) and 15.6 (95% CI, 3.6 to 110.2), respectively. While nonsense variants affecting the light chain increased the risk of developing FVIII inhibitors (OR, 6.8; 95% CI, 1.5 to 32.6) compared with the low-risk (small insertion/deletion, missense and splice-site) variants. Twelve patients (9.7%) harboured novel F8 variants, comprising five missense (p.Pro540Leu, p.Ser564Pro, p.Leu668Pro, p.Ala1721Glu, p.His2024Pro), five small insertion/deletion (p.Val502SerfsTer13, p.Ile522PhefsTer13, p.Phe992LysfsTer11, p.Leu1223PhefsTer18, c.6427_6429+3delATGGTA) and one nonsense mutations (p.Glu1292Ter). CONCLUSIONS IS-PCR followed by WES successfully assesses F8 alterations in most HA cases. With several unique variants, severe HA in Thailand is considerably caused by Inv22, small insertion/deletion and nonsense, whereas missense variants are more responsible for nonsevere HA phenotypes.
Collapse
Affiliation(s)
- Chayanit Trirut
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Darintr Sosothikul
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Integrative and Innovative Hematology/Oncology Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chupong Ittiwut
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sureeporn Pongsewalak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Chonburi Hospital, Chonburi, Thailand
| | - Natsaruth Songthawee
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Pallapa Banjerdlak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Hatyai Hospital, Songkhla, Thailand
| | - Pokpong Na Songkhla
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Prapokklao Hospital, Chanthaburi, Thailand
| | - Patcharee Komvilaisak
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Dhinoja S, De Maria A, Qaryoute AA, Jagadeeswaran P. Characterization of zebrafish coagulation cofactors Fviii and Fv mutants and modeling hemophilia A and factor V deficiency. Blood Coagul Fibrinolysis 2024; 35:238-247. [PMID: 38874909 PMCID: PMC11230853 DOI: 10.1097/mbc.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The aim of this study is to characterize zebrafish coagulation cofactors fviii and fv mutant fish and assess if they phenocopy classical hemophilia A and factor V deficiency in humans. The embryos from fviii and fv zebrafish heterozygote mutants generated by ENU mutagenesis were purchased from the ZIRC repository. They were reared to adulthood and genotyped. The heterozygote male and female were crossed to get homozygote, heterozygote, and wild-type fish. Functional kinetic coagulation assays and bleeding assays were performed on normal and mutant adult fish, and venous laser injury assays were performed on the larvae. The DNA from fviii and fv mutants were sequenced to confirm if they have a premature stop codon in exon 19, and in exon 2, respectively, and in both mutants, the amino acid glutamine is replaced with a stop codon. Homozygous and heterozygous 5 days post fertilization (dpf) larvae for fviii and fv deficient mutants exhibited prolonged time to occlusion after venous laser injury compared to wild-type controls. The homozygous and heterozygous fviii adult mutants showed modest bleeding and delayed fibrin formation in the kinetic partial thromboplastin time (kPTT) assay with their plasma. fv homozygous larvae had poor survival beyond 12 dpf. However, heterozygous fv mutants exhibited heavy bleeding and prolonged fibrin formation in the kPTT and kPT assay compared with wild-type siblings. Our characterization showed fviii and fv mutants from ZIRC phenocopied to a considerable extent classical hemophilia A and factor V deficiency in humans, respectively. These models should be useful in studying and developing novel drugs that reverse the phenotype and in generating suppressor mutations to identify novel factors that compensate for these deficiencies.
Collapse
Affiliation(s)
- Sanchi Dhinoja
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | | | | | | |
Collapse
|
4
|
Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-associated virus liver-directed gene therapy: focus on hemophilia. J Thromb Haemost 2024; 22:1263-1289. [PMID: 38103734 DOI: 10.1016/j.jtha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.
Collapse
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, Quebec, Canada.
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, Indiana, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
5
|
Zangi AR, Amiri A, Pazooki P, Soltanmohammadi F, Hamishehkar H, Javadzadeh Y. Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects. Ann Hematol 2024; 103:1493-1511. [PMID: 37951852 DOI: 10.1007/s00277-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Recent advancements have focused on enhancing factor VIII half-life and refining its delivery methods, despite the well-established knowledge that factor VIII deficiency is the main clotting protein lacking in hemophilia. Consequently, both viral and non-viral delivery systems play a crucial role in enhancing the quality of life for hemophilia patients. The utilization of viral vectors and the manipulation of non-viral vectors through targeted delivery are significant advancements in the field of cellular and molecular therapies for hemophilia. These developments contribute to the progression of treatment strategies and hold great promise for improving the overall well-being of individuals with hemophilia. This review study comprehensively explores the application of viral and non-viral vectors in cellular (specifically T cell) and molecular therapy approaches, such as RNA, monoclonal antibody (mAb), and CRISPR therapeutics, with the aim of addressing the challenges in hemophilia treatment. By examining these innovative strategies, the study aims to shed light on potential solutions to enhance the efficacy and outcomes of hemophilia therapy.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran.
| |
Collapse
|
6
|
Kaczmarek R, Miesbach W, Ozelo MC, Chowdary P. Current and emerging gene therapies for haemophilia A and B. Haemophilia 2024; 30 Suppl 3:12-20. [PMID: 38528615 DOI: 10.1111/hae.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION After decades of stumbling clinical development, the first gene therapies for haemophilia A and B have been commercialized and have normalized factor (F)VIII and factor (F)IX levels in some individuals in the long term. Several other clinical programs testing adeno-associated viral (AAV) vector gene therapy are at various stages of clinical testing. DISCUSSION Multiyear follow-up in phase 1/2 and 3 studies showed long-term and sometimes curative but widely variable and unpredictable efficacy. Liver toxicities, mostly low-grade, occur in the 1st year in at least some individuals in all haemophilia A and B trials and are poorly understood. Wide variability and unpredictability of outcome and slow decline of FVIII levels are a major disadvantage because immune responses to AAV vectors preclude repeat dosing, which otherwise could improve suboptimal or restore declining expression, while overexpression may predispose to thrombosis. Long-term safety outcomes will need lifelong monitoring because AAV vectors infused at high doses integrate into chromosomes at rates that raise questions about potential oncogenicity and necessitate vigilance. Alternative gene transfer systems employing gene editing and/or non-viral vectors are under development and promise to overcome some limitations of the current state of the art for both haemophilia A and B. CONCLUSIONS AAV gene therapies for haemophilia have now become new treatment options but not universal cures. AAV is a powerful but imperfect gene transfer platform. Biobetter FVIII transgenes may help solve some problems plaguing gene therapy for haemophilia A. Addressing variability and unpredictability of efficacy, and delivery of gene therapy to ineligible patient subgroups may require different gene transfer systems, most of which are not ready for clinical translation yet but bring innovations needed to overcome the current limitations of gene therapy.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Wells Centre for Paediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wolfgang Miesbach
- Department of Haemostasis/Haemophilia Centre, Laboratory for Coagulation Disorders, University Hospital Frankfurt, Frankfurt, Germany
| | - Margareth C Ozelo
- Hemocentro UNICAMP, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK
| |
Collapse
|
7
|
Chen D, Pruthi R. A Brief History of Hemostasis and Thrombosis at the Mayo Clinic. Semin Thromb Hemost 2024; 50:26-33. [PMID: 36940712 DOI: 10.1055/s-0043-1764470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Coagulation is a crucial biological mechanism in human bodies to prevent blood loss. Abnormal coagulation can cause bleeding diathesis or thrombosis, common pathologic conditions in our clinical practice. Many individuals and organizations have dedicated their efforts in the past decades to understanding the biological and pathological mechanisms of coagulation and developing laboratory testing tools and treatment options to help patients with bleeding or thrombotic conditions. Since 1926, the Mayo Clinic coagulation group has made significant contributions to the clinical and laboratory practice, basic and translational research on various hemostatic and thrombotic disorders, and the education and collaboration to share and advance our knowledge in coagulation through a highly integrated team and practice model. We would like to use this review to share our history and inspire medical professionals and trainees to join the efforts to advance our understanding of coagulation pathophysiology and improve our care for patients with coagulation disorders.
Collapse
Affiliation(s)
- Dong Chen
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Pruthi
- Division of Hematopathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Westwood LJ, Le Couteur DG, Hunt NJ, Cogger VC. Strategies to target and genetically modify the liver sinusoid. SINUSOIDAL CELLS IN LIVER DISEASES 2024:161-189. [DOI: 10.1016/b978-0-323-95262-0.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Nomura S. Current Status and Challenges in Delivering Comprehensive Care for Patients with Hemophilia. J Blood Med 2023; 14:629-637. [PMID: 38125786 PMCID: PMC10730945 DOI: 10.2147/jbm.s446204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The importance of comprehensive care as a treatment strategy for patients with hemophilia is recognized worldwide. Comprehensive care entails addressing full spectrum of medical and psychological aspects impacting both patients and their families. The primary objective of comprehensive care for individuals with hemophilia is to enable them to lead their daily lives just as anyone else would. To achieve this goal, it is necessary to have a positive and collaborative approach across various healthcare disciplines. This extends beyond clinical specialists, encompassing pediatricians, hematologists, orthopedic surgeons, dental and oral surgeons, gynecologists, nurses, physical therapists, clinical psychologists, and other professionals from diverse fields. This review article discusses the current status and challenges associated with comprehensive care for patients with hemophilia. We categorize these challenges as follows: hemophilic arthritis, rehabilitation, oral care, transitioning from pediatric to adult care, addressing carrier issues, and providing psychological care. There is still substantial work to be undertaken in addressing these hurdles and advancing the quality of comprehensive care for hemophilia patients.
Collapse
Affiliation(s)
- Shosaku Nomura
- Center of Thrombosis and Hemostasis, Kansai Medical University Medical Center, Moriguchi, Osaka, Japan
| |
Collapse
|
10
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Konkle BA. Efanesoctocog alfa for the prevention and treatment of bleeding in patients with hemophilia A. Expert Rev Hematol 2023; 16:567-573. [PMID: 37289594 DOI: 10.1080/17474086.2023.2223925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Hemophilia A is an inherited bleeding disorder due to a deficiency of coagulation factor VIII (FVIII). Prevention and treatment of bleeding is traditionally through intravenous infusion of a FVIII concentrate. Modifications of recombinant FVIII (rFVIII) with an aim to prolong the half-life have been modest, thought because FVIII is dependent on plasma von Willebrand factor (VWF) for its half-life. Efanesoctocog alfa (ALTUVIIIO), approved by the Federal Drug Administration (FDA) in February 2023, was made independent of endogenous VWF by linking of the FVIII-binding D'D3 domain of VWF to B-domain deleted single chain FVIII. AREAS COVERED This review will outline the development of efanesoctocog alfa and the pharmacokinetic and safety data from clinical trials, as well as efficacy data from the phase 3 trials. These data formed the basis for the FDA approval. EXPERT OPINION Efanesoctocog alfa is a new type of FVIII replacement with an extended half-life allowing once weekly dosing to achieve hemostasis and FVIII trough levels of 13-15 IU/dL. This provides a highly effective option for treatment and prevention of bleeding in hemophilia A, where FVIII levels are easily measured. It also provides an option for treatment of bleeding and coverage for surgery with few infusions.
Collapse
Affiliation(s)
- Barbara A Konkle
- Washington Center for Bleeding Disorders, Division of Hematology, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Zhang H, Li Y, Lv X, Mao Y, Sun Y, Xu T. A novel F8 variant in a Chinese hemophilia A family and involvement of X-chromosome inactivation: A case report. Medicine (Baltimore) 2023; 102:e33665. [PMID: 37145012 PMCID: PMC10158889 DOI: 10.1097/md.0000000000033665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
RATIONALE Hemophilia A (HA) is an X-linked recessive bleeding disorder, which shows factor VIII (FVIII) deficiency caused by genetic variant in F8 gene. PATIENT CONCERNS Males with F8 variants are affected, whereas female carriers with a wide range of FVIII levels are usually asymptomatic, it is possible that different X-chromosome inactivation (XCI) may effect the FVIII activity. DIAGNOSES We identified a novel variant F8: c.6193T > G in a Chinese HA proband, it was inherited from the mother and grandmother with different FVIII levels. INTERVENTIONS We performed Androgen receptor gene (AR) assays and RT-PCR. OUTCOMES AR assays revealed that the X chromosome with the F8 variant was severely skewed inactivated in the grandmother with higher FVIII levels, but not in the mother with lower FVIII levels. Further, RT-PCR of mRNA confirmed that only the wild allele of F8 was expressed in the grandmother, with lower expression in the wild allele of the mother. LESSONS Our findings suggest that F8: c.6193T > G could be the cause of HA and that XCI affected the FVIII plasma levels in female carriers.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Pediatrics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Yinjie Li
- Department of Pediatrics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Xiaojuan Lv
- Department of Pediatrics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| | - Yuchan Mao
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
| | - Yixi Sun
- Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, Zhejiang, China
- Department of Reproductive Genetics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ting Xu
- Department of Pediatrics, Hangzhou Children’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Prodromou R, Moore B, Chu W, Deal H, Miguel AS, Brown AC, Daniele MA, Pozdin V, Menegatti S. Molecular engineering of cyclic azobenzene-peptide hybrid ligands for the purification of human blood Factor VIII via photo-affinity chromatography. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2213881. [PMID: 37576949 PMCID: PMC10421628 DOI: 10.1002/adfm.202213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 08/15/2023]
Abstract
The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene-peptide (CAP) hybrid ligands for the rapid and discrete photo-responsive capture and release of blood coagulation Factor VIII (FVIII). A predictive method - based on amino acid sequence and molecular architecture of CAPs - was developed to correlate the conformation of cis/trans CAP photo-isomers to FVIII binding and release. The combined in silico and in vitro analysis of FVIII:peptide interactions guided the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G-cycloAZOB[Lys-YYKHLYN-Lys]-G on translucent chromatographic beads, featured high binding capacity (> 6 mg of FVIII per mL of resin) and rapid photo-isomerization kinetics (τ < 30s) when exposed to 420-450 nm light at the intensity of 0.1 W·cm-2. The adsorbent purified FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life-saving biotherapeutics.
Collapse
Affiliation(s)
- Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Halston Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Adriana San Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, NC 27695, USA
| | - Vladimir Pozdin
- Department of Electrical and Computer Engineering, Florida International University, 10555 West Flagler St., Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler St., Miami, FL 33174, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
- Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, NC 27606, USA
| |
Collapse
|
14
|
Sarmiento Doncel S, Díaz Mosquera GA, Cortes JM, Agudelo Rico C, Meza Cadavid FJ, Peláez RG. Haemophilia A: A Review of Clinical Manifestations, Treatment, Mutations, and the Development of Inhibitors. Hematol Rep 2023; 15:130-150. [PMID: 36810557 PMCID: PMC9944491 DOI: 10.3390/hematolrep15010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The purpose of this narrative review was to provide an overview that allows readers to improve their understanding of hemophilia A, which is considered a genetic disease with a high impact on the quality of life of people who suffer from it is considered one of the diseases with the highest cost for health systems (In Colombia it is part of the five diseases with the greatest economic impact). After this exhaustive review, we can see that the treatment of hemophilia is on the way to precision medicine, which involves genetic variables specific to each race and ethnicity, pharmacokinetics (PK), as well as environmental factors and lifestyle. Knowing the impact of each of these variables and their relationship with the efficacy of treatment (prophylaxis: regular infusion of the missing clotting factor VIII in order to prevent spontaneous bleeding) will allow for individualizing the medical behavior in a cost-effective way. For this is required to build more strong scientific evidence with statistical power that allows us to infer.
Collapse
Affiliation(s)
- Samuel Sarmiento Doncel
- Integral Solutions SD SAS, Integral Solutions Research, Bogota 110121, Colombia
- Life Sciences and Health Research Group, Graduates School, CES University, Medellin 050021, Colombia
| | | | | | - Carol Agudelo Rico
- Integral Solutions SD SAS, Integral Solutions Research, Bogota 110121, Colombia
| | - Francisco Javier Meza Cadavid
- Integral Solutions SD SAS, Integral Solutions Research, Bogota 110121, Colombia
- Hospital Universitario San Jorge, Pereira 660002, Colombia
| | - Ronald Guillermo Peláez
- Life Sciences and Health Research Group, Graduates School, CES University, Medellin 050021, Colombia
| |
Collapse
|
15
|
Vogel von Falckenstein J, Freuer D, Peters A, Heier M, Linseisen J, Meisinger C. Sex-specific associations between systolic, diastolic and pulse pressure and hemostatic parameters in the population-based KORA-Fit study: a cross-sectional study. Thromb J 2023; 21:7. [PMID: 36658589 PMCID: PMC9850515 DOI: 10.1186/s12959-023-00451-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several prior studies postulated an effect of hypertension on coagulation factors. However, population-based studies investigating the sex-specific associations between hypertension and hemostatic parameters are scarce. Therefore, we investigated the relationship between blood pressure and parameters of coagulation, namely activated partial thromboplastin time (aPTT), international normalized ratio (INR), fibrinogen, factor VIII, antithrombin III, protein C, protein S, and D-dimer in men and women from the general population. METHODS Based on 803 participants (376 men, 427 women) from the KORA-Fit Study the sex-specific relationship between systolic, diastolic, and pulse pressure and commonly measured coagulation factors were investigated using multivariable-adjusted linear regression models. RESULTS Hypertensive males had significantly higher median fibrinogen levels and factor VIII activity in comparison to normotensive males. There was a statistically significant difference between females with and without hypertension regarding the parameter fibrinogen, D-dimers, Protein S activity, and factor VIII activity. In multivariable linear regression analyses no significant association between systolic blood pressure, diastolic blood pressure, as well as pulse pressure and the investigated hemostatic parameters was found in men. In women, a significant positive association could be observed between systolic blood pressure and D-dimer level [β-estimate per mmHg increase 3.37 (95% CI 0.935-5.804; p = 0.007)] and between pulse pressure and D-dimer level [β-estimate per mmHg increase 5.351 (95% CI 1.772-8.930; p = 0.003)]. CONCLUSIONS It appears that sex differences exist in the association between blood pressure parameters and commonly measured coagulation markers in the general population. Further studies are needed to identify the underlying causes.
Collapse
Affiliation(s)
- J. Vogel von Falckenstein
- grid.7307.30000 0001 2108 9006Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - D. Freuer
- grid.7307.30000 0001 2108 9006Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - A. Peters
- Helmholtz Zentrum München, Institute for Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany ,grid.5252.00000 0004 1936 973XInstitute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452396.f0000 0004 5937 5237German Center for Cardiovascular Disease (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - M. Heier
- Helmholtz Zentrum München, Institute for Epidemiology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany ,grid.419801.50000 0000 9312 0220KORA Study Centre, University Hospital Augsburg, Augsburg, Germany
| | - J. Linseisen
- grid.7307.30000 0001 2108 9006Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital of Augsburg, 86156 Augsburg, Germany
| | - C. Meisinger
- grid.7307.30000 0001 2108 9006Epidemiology, Faculty of Medicine, University of Augsburg, University Hospital of Augsburg, 86156 Augsburg, Germany
| |
Collapse
|
16
|
Pipe SW, Arruda VR, Lange C, Kitchen S, Eichler H, Wadsworth S. Characteristics of BAY 2599023 in the Current Treatment Landscape of Hemophilia A Gene Therapy. Curr Gene Ther 2023; 23:81-95. [PMID: 36111754 DOI: 10.2174/1566523222666220914105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022]
Abstract
Hemophilia A, a single gene disorder leading to deficient Factor VIII (FVIII), is a suitable candidate for gene therapy. The aspiration is for single administration of a genetic therapy that would allow the production of endogenous FVIII sufficient to restore hemostasis and other biological processes. This would potentially result in reliable protection from bleeding and its associated physical and emotional impacts. Gene therapy offers the possibility of a clinically relevant improvement in disease phenotype and transformational improvement in quality of life, including an opportunity to engage in physical activities more confidently. Gene therapy products for hemophilia A in advanced clinical development use adeno-associated viral (AAV) vectors and a codon-optimized B-domain deleted FVIII transgene. However, the different AAV-based gene therapies have distinct design features, such as choice of vector capsid, enhancer and promoter regions, FVIII transgene sequence and manufacturing processes. These, in turn, impact patient eligibility, safety and efficacy. Ideally, gene therapy technology for hemophilia A should offer bleed protection, durable FVIII expression, broad eligibility and limited response variability between patients, and long-term safety. However, several limitations and challenges must be overcome. Here, we introduce the characteristics of the BAY 2599023 (AAVhu37.hFVIIIco, DTX 201) gene therapy product, including the low prevalence in the general population of anti-AAV-hu37 antibodies, as well as other gene therapy AAV products and approaches. We will examine how these can potentially meet the challenges of gene therapy, with the ultimate aim of improving the lives of patients with hemophilia A.
Collapse
Affiliation(s)
- Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Valder R Arruda
- Division of Hematology, Department of Pediatrics, Center for Cell and Molecular Therapeutics at Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Stephen Kitchen
- Sheffield Haemophilia and Thrombosis Centre, Sheffield Teaching Hospitals, Sheffield, UK
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and University Hospital, Homburg/Saar, Germany
| | | |
Collapse
|
17
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Farrugia A, Smit C, Buzzi A. The legacy of haemophilia: Memories and reflections from three survivors. Haemophilia 2022; 28:872-884. [PMID: 35588502 PMCID: PMC9542818 DOI: 10.1111/hae.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Following the publication of a book of personal memories by one of us (CS1,2), we have attempted to synthesis our joint memories of three ageing men, born in the era preceding universal access to treatment, in an attempt to describe our experience, our challenges and our reflections on the development of therapies, which have ensured that our experience of growing up with haemophilia in the 1950s and 1960s has not been mirrored by the current generation of patients. We describe our upbringing in different parts of Europe in health care systems which, while of varying standards, were all unable to offer the kind of care which developed after the development of specific therapies. We assess the effect of the contamination of these therapies by blood‐borne pathogens on our own development, and the development of our communities around us. In addition, we reflect on the lessons learnt, sometimes painfully, by our generation of people with haemophilia and how some of these enabled us to overcome substantial hurdles, survive and build productive lives. Finally, we survey the development of therapies in the past 20 years, and offer some reflections on how our experience can be integrated in a realistic expectation of what the future holds for our community, in our own affluent societies and in countries less advantaged economically. We hope that our thoughts may contribute to continued progress in the field of haemophilia care.
Collapse
Affiliation(s)
- Albert Farrugia
- Faculty of Medicine and Medical Sciences, University of Western Australia, Perth, Australia
| | - Cees Smit
- Department of Epidemiology, Leiden University Medical Center (LUMC), Hoofddorp, The Netherlands
| | | |
Collapse
|
19
|
Kaczmarek R. Gene therapy - are we ready now? Haemophilia 2022; 28 Suppl 4:35-43. [PMID: 35521736 PMCID: PMC9325484 DOI: 10.1111/hae.14530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/19/2023]
Abstract
Introduction Haemophilia therapy has evolved from rudimentary transfusion‐based approaches to an unprecedented level of innovation with glimmers of functional cure brought by gene therapy. After decades of misfires, gene therapy has normalized factor (F)VIII and factor (F)IX levels in some individuals in the long term. Several clinical programmes testing adeno‐associated viral (AAV) vector gene therapy are approaching completion with imminent regulatory approvals. Discussion Phase 3 studies along with multiyear follow‐up in earlier phase investigations raised questions about efficacy as well as short‐ and long‐term safety, prompting a reappraisal of AAV vector gene therapy. Liver toxicities, albeit mostly low‐grade, occur in the first year in at least some individuals in all haemophilia A and B trials and are poorly understood. Extreme variability and unpredictability of outcome, as well as a slow decline in factor expression (seemingly unique to FVIII gene therapy), are vexing because immune responses to AAV vectors preclude repeat dosing, which could increase suboptimal or restore declining expression, while overexpression may result in phenotoxicity. The long‐term safety will need lifelong monitoring because AAV vectors, contrary to conventional wisdom, integrate into chromosomes at the rate that calls for vigilance. Conclusions AAV transduction and transgene expression engage the host immune system, cellular DNA processing, transcription and translation machineries in ways that have been only cursorily studied in the clinic. Delineating those mechanisms will be key to finding mitigants and solutions to the remaining problems, and including individuals who cannot avail of gene therapy at this time.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Coagulation Products Safety Supply and Access Committee, World Federation of Hemophilia, Montreal, Quebec, Canada.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
20
|
Green MR, Sambrook J. Preparation of Labeled DNA, RNA, and Oligonucleotide Probes. Cold Spring Harb Protoc 2022; 2022:2022/1/pdb.top100578. [PMID: 34983861 DOI: 10.1101/pdb.top100578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Labeled nucleic acids and oligonucleotides are typically generated by enzymatic methods such as end-labeling, random priming, nick translation, in vitro transcription, and variations of the polymerase chain reaction (PCR). Some of these methods place the label in specific locations within the nucleic acid (e.g., at the 5' or 3' terminus); others generate molecules that are labeled internally at multiple sites. Some methods yield labeled single-stranded products, whereas others generate double-stranded nucleic acids. Finally, some generate probes of defined length, whereas others yield a heterogeneous population of labeled molecules. Options available for generating and detecting labeled nucleic acids, as well as advice on designing oligonucleotides for use as probes, is included here.
Collapse
|
21
|
The role of genetics in the diagnosis and treatment of haemorrhagic diathesis: a historical perspective. Blood Coagul Fibrinolysis 2021; 33:S17-S18. [PMID: 34654014 DOI: 10.1097/mbc.0000000000001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The rapid development of genetic studies, not only in haemophilia but also in other congenital coagulopathies and platelet-related alterations, has been made possible by massive sequencing (e.g. next-generation sequencing or NGS), which allows a rapid and automatic analysis of the whole gene, simultaneous study of several genes and multiple individuals, detection of genetic variants and the possibility to create personalized panels [16]. The new technologies have also changed the way results are evaluated. Currently, our interest goes beyond the study of carriers, extending to the relationship between the mutation and the risk of developing an inhibitor and the latter's role in the classification of diseases [17]. There is also great interest in understanding the genotype/phenotype relationship, analytical discrepancies and variations in the response to treatment [18].
Collapse
|
22
|
Abstract
I have been fortunate and privileged to have participated in amazing breakthroughs in human genetics since the 1960s. I was lucky to have trained in medical school at Dartmouth and Johns Hopkins, in pediatrics at the University of Minnesota and Johns Hopkins, and in genetics and molecular biology with Dr. Barton Childs at Johns Hopkins and Dr. Harvey Itano at the National Institutes of Health. Later, the collaborative spirit at Johns Hopkins and the University of Pennsylvania were important to my career. Here, I describe the thrill of scientific discovery in two diverse areas of human genetics: DNA haplotypes and their role in solving the molecular basis of beta thalassemia and the role of retrotransposons (jumping genes) in human biology. I hope that this article may inspire others who love human genetics as much as I do.
Collapse
Affiliation(s)
- Haig H Kazazian
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
23
|
Hemophilia Gene Therapy: Approaching the First Licensed Product. Hemasphere 2021; 5:e540. [PMID: 33604517 PMCID: PMC7886458 DOI: 10.1097/hs9.0000000000000540] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical potential of hemophilia gene therapy has now been pursued for the past 30 years, and there is a realistic expectation that this goal will be achieved within the next couple of years with the licensing of a gene therapy product. While recent late phase clinical trials of hemophilia gene therapy have shown promising results, there remain a number of issues that require further attention with regard to both efficacy and safety of this therapeutic approach. In this review, we present information relating to the current status of the field and focus attention on the unanswered questions for hemophilia gene therapy and the future challenges that need to be overcome to enable the widespread application of this treatment paradigm.
Collapse
|
24
|
Chatterjee M, Meeks S, Novakovic VA, Gilbert GE. Discordance between platelet-supported and vesicle-supported factor VIII activity in the presence of anti-C2 domain inhibitory antibodies. J Thromb Haemost 2020; 18:3184-3193. [PMID: 32558078 DOI: 10.1111/jth.14961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND We recently reported that factor VIII (FVIII) binds to a macromolecular complex including fibrin on thrombin-stimulated platelets and that two antibodies against FVIII diminish platelet-supported FVIII activity more than vesicle-supported activity. The C2 domain of FVIII is known to bind to phospholipid membrane and also binds fibrin. OBJECTIVES We asked whether the degree of inhibition by anti-C2 antibodies would show differences between platelet-supported and the standard activated partial thromboplastin time (aPTT) assay. METHODS We evaluated the inhibition by a well-defined panel of monoclonal anti-C2 domain antibodies encompassing the major epitopes of the C2 domain. Activity was measured in an activated platelet time (aPT) assay containing fresh, density gradient-purified human platelets. RESULTS The aPT exhibited a log-linear relationship between FVIII and time to fibrin formation over a 4-log range, encompassing 0.01% to 100% plasma FVIII. Nine of 10 mAbs inhibited 89% to 96% of FVIII activity, whereas mAb F85 did not. There was no correlation between the degree of inhibition in the aPTT-based assay and the platelet assay. In particular, four mAbs did not inhibit the aPTT assay, yet inhibited 90% of platelet-based activity. Residual FVIII activity in purified-protein assays, relying on platelets, correlated with the aPT assay. CONCLUSIONS The degree of FVIII impairment by some inhibitor antibodies is substantially different on platelet membranes vs synthetic vesicles. Thus, current inhibitor assays may underestimate the frequency of significant inhibitors, and a platelet-based assay may more accurately assess bleeding risk.
Collapse
Affiliation(s)
- Madhumouli Chatterjee
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Shannon Meeks
- Department of Pediatrics, Children's Healthcare Atlanta/Aflac Cancer and Blood Disorder Center, Emory University, Atlanta, Georgia, USA
| | - Valerie A Novakovic
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Gary E Gilbert
- Departments of Medicine & Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Jiang N, Xiao Y, Liu Y, Liu W, Liu S. Blood coagulation factor VIII D1241E polymorphism leads to a weak malectin interaction and reduction of factor VIII posttranslational modification and secretion. Exp Cell Res 2020; 397:112334. [PMID: 33144078 DOI: 10.1016/j.yexcr.2020.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
Blood coagulation factor VIII (FVIII) is a key cofactor in regulation of blood coagulation. This study investigated the mechanism by which FVIII is translated and transported into the endoplasmic reticulum (ER) and processed in the Golgi apparatus before secretion using an in vitro cell model. HEK-293T cells were transfected with vectors carrying wild-type (WT) FVIII or polymorphic FVIII D1241E for coexpression with ER lectins and treatment with tunicamycin (an N-linked glycosylation inhibitor), 1-deoxynojirimycin (an alpha-glucosidase inhibitor), endoglycosidase H, or MG132 (Cbz-Leu-Leu-leucinal; a proteasome inhibitor). The data showed that the minor allele of FVIII D1241E was able to reduce FVIII secretion into the conditioned medium but maintain a normal level of procoagulation ability, although both FVIII WT and the minor allele of FVIII D1241E showed similar levels of transcription and translation capacities. Functionally, the D1241E polymorphism led to a reduced level of FVIII in the Golgi apparatus because of its reduced association with malectin, which interacts with newly synthesized glycoproteins in the ER for FVIII folding and trafficking, leading to degradation of the minor allele of FVIII D1241E in the cytosol. This study demonstrated that malectin is important for regulation of the FVIII posttranslational process and that the minor allele of FVIII D1241E had a reduced association with malectin but an increased capacity for proteasomal FVIII degradation. These data imply the role of the ER quality control in future recombinant FVIII development.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China.
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weihua Liu
- Department of Pediatrics, Xi'an first people's Hospital, China
| | - Shanxi Liu
- Shaanxi Yida Haemophilia Institute, China
| |
Collapse
|
26
|
Konkle BA, Coffin D, Pierce GF, Clark C, George L, Iorio A, Mahlangu J, Naccache M, O’Mahony B, Peyvandi F, Pipe S, Quartel A, Sawyer EK, Skinner MW, Tortella B, Watson C, Winburn I. World Federation of Hemophilia Gene Therapy Registry. Haemophilia 2020; 26:563-564. [PMID: 32462720 PMCID: PMC8944922 DOI: 10.1111/hae.14015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Barbara A. Konkle
- Bloodworks NW, Washington Center for Bleeding Disorders, Seattle, WA, USA
| | - Donna Coffin
- World Federation of Hemophilia, Montreal, QC, Canada
| | | | - Cary Clark
- International Society on Thrombosis and Hemostasis, Carrboro, NC, USA
| | - Lindsey George
- The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Univerisity of Pennsylvania, Philadelphia, PA, USA
| | | | - Johnny Mahlangu
- International Society on Thrombosis and Hemostasis, Carrboro, NC, USA
- Haemophilia Comprehensive Care Centre, University of the Witwatersrand, NHLS and Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | | | - Brian O’Mahony
- Irish Haemophilia Society, Dublin, Ireland
- European Hemophilia Consortium, Brussels, Belgium
| | - Flora Peyvandi
- International Society on Thrombosis and Hemostasis, Carrboro, NC, USA
- IRCCS Maggiore Hospital Milan and University of Milan, Milan, Italy
| | - Steve Pipe
- University of Michigan, Pediatrics, Ann Arbor, MI, USA
- National Hemophilia Foundation, New York, NY, USA
| | | | | | | | | | - Crystal Watson
- American Thrombosis and Hemostssasis Network, Chicago, IL, USA
| | | |
Collapse
|
27
|
Pierce GF. Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia 2020; 27 Suppl 3:103-113. [PMID: 32484283 DOI: 10.1111/hae.14023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Haemophilia is at the dawn of a new era in therapeutic management, one that can generate greater protection from bleeding and a functional cure in some individuals. Prior advances in protein engineering and monoclonal antibody technology have facilitated therapeutic options to maintain decreased risk of bleeding and less burdensome treatment. The use of gene transfer, first proposed in 1971 for monogenic diseases, is emerging as an effective long-term treatment for a variety of diseases. Transfer of functional factor VIII (FVIII) and factor IX (FIX) genes has witnessed a series of advances and setbacks since the first non-clinical experiments in animals were initiated nearly 30 years ago. More recently, multiyear therapeutic levels of FVIII and FIX activity have been achieved in human clinical trials, translated into meaningful clinical benefit and a functional cure. While clinical progress has been definitive, many questions remain unanswered as prelicensure phase 3 clinical trials are underway. These unanswered questions translate into a state of uncertainty about the known unknowns and unknown unknowns intrinsic to any new therapeutic platform. Accepting this modality as a means to functionally cure haemophilia also means accepting the uncertainty regarding the biology of viral vector-mediated gene transfer, which remains inadequately understood. Gene therapy is a far more complex biological 'drug' than small molecule and protein drugs, where manufacturing processes and the drugs themselves are now well characterized. Extent of community acceptance of uncertainty and acknowledgement of the need for an uncompromising drive for answers to the unknowns will characterize the introduction of this first generation of gene therapy for haemophilia to the wider patient population in both resource-rich and resource-poor countries.
Collapse
|
28
|
Poothong J, Pottekat A, Siirin M, Campos AR, Paton AW, Paton JC, Lagunas-Acosta J, Chen Z, Swift M, Volkmann N, Hanein D, Yong J, Kaufman RJ. Factor VIII exhibits chaperone-dependent and glucose-regulated reversible amyloid formation in the endoplasmic reticulum. Blood 2020; 135:1899-1911. [PMID: 32128578 PMCID: PMC7243144 DOI: 10.1182/blood.2019002867] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
Hemophilia A, an X-linked bleeding disorder caused by deficiency of factor VIII (FVIII), is treated by protein replacement. Unfortunately, this regimen is costly due to the expense of producing recombinant FVIII as a consequence of its low-level secretion from mammalian host cells. FVIII expression activates the endoplasmic reticulum (ER) stress response, causes oxidative stress, and induces apoptosis. Importantly, little is known about the factors that cause protein misfolding and aggregation in metazoans. Here, we identified intrinsic and extrinsic factors that cause FVIII to form aggregates. We show that FVIII forms amyloid-like fibrils within the ER lumen upon increased FVIII synthesis or inhibition of glucose metabolism. Significantly, FVIII amyloids can be dissolved upon restoration of glucose metabolism to produce functional secreted FVIII. Two ER chaperone families and their cochaperones, immunoglobulin binding protein (BiP) and calnexin/calreticulin, promote FVIII solubility in the ER, where the former is also required for disaggregation. A short aggregation motif in the FVIII A1 domain (termed Aggron) is necessary and sufficient to seed β-sheet polymerization, and BiP binding to this Aggron prevents amyloidogenesis. Our findings provide novel insight into mechanisms that limit FVIII secretion and ER protein aggregation in general and have implication for ongoing hemophilia A gene-therapy clinical trials.
Collapse
Affiliation(s)
| | | | | | - Alexandre Rosa Campos
- Proteomics Core Facility, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia; and
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia; and
| | | | | | - Mark Swift
- Immunity and Pathogenesis Program, SBP Medical Discovery Institute, La Jolla, CA
| | - Niels Volkmann
- Immunity and Pathogenesis Program, SBP Medical Discovery Institute, La Jolla, CA
| | - Dorit Hanein
- Immunity and Pathogenesis Program, SBP Medical Discovery Institute, La Jolla, CA
| | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Haemophilia is a genetic disorder characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy for haemophilia is a curative treatment modality currently under investigation. This is an update of a published Cochrane Review. OBJECTIVES To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. SEARCH METHODS We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews. Date of last search: 17 April 2020. SELECTION CRITERIA Eligible trials include randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation for individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. DATA COLLECTION AND ANALYSIS No trials of gene therapy for haemophilia matching the inclusion criteria were identified. MAIN RESULTS No trials of gene therapy for haemophilia matching the inclusion criteria were identified. AUTHORS' CONCLUSIONS No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the safety and efficacy of gene therapy for haemophilia. Gene therapy for haemophilia is still in clinical investigation and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.
Collapse
Affiliation(s)
- Akshay Sharma
- Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Manu Easow Mathew
- South Asian Cochrane Network & Center, Prof. BV Moses Center for Evidence-Informed Health Care and Health Policy, Christian Medical College, Vellore, India
| | | | - Ulrike M Reiss
- Hematology Department, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
30
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
31
|
Atik T, Işık E, Onay H, Akgün B, Shamsali M, Kavaklı K, Evim M, Tüysüz G, Özbek NY, Şahin F, Salcıoğlu Z, Albayrak C, Oymak Y, Ünal E, Belen FB, Yılmaz Keskin E, Balkan C, Baytan B, Küpesiz A, Culha V, Tahtakesen Güçer TN, Güneş AM, Özkınay F. Factor 8 Gene Mutation Spectrum of 270 Patients with Hemophilia A: Identification of 36 Novel Mutations. Turk J Haematol 2020; 37:145-153. [PMID: 32026663 PMCID: PMC7463214 DOI: 10.4274/tjh.galenos.2020.2019.0262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective Hemophilia A (HA) is the most severe X-linked inherited bleeding disorder caused by hemizygous mutations in the factor 8 (F8) gene. The aim of this study is to determine the mutation spectrum of the F8 gene in a large HA cohort from Turkey, and then to establish a phenotype-genotype correlation. Materials and Methods All HA cases (270 patients) analyzed molecularly in the Ege University Pediatric Genetics Molecular Laboratory between March 2017 and March 2018 were included in this study. To identify intron 22 inversion (Inv22), intron 1 inversion (Inv1), small deletion/insertions, and point mutations, molecular analyses of F8 were performed using a sequential application of molecular techniques. Results The mutation detection success rate was 95.2%. Positive Inv22 was found in 106 patients (39.3%), Inv1 was found in 4 patients (1.5%), and 106 different disease-causing sequence variants were identified in 137 patients (50.6%). In 10 patients (3.7%), amplification failures involving one or more exonic regions, considered to be large intragenic deletions, were identified. Of 106 different F8 mutations, 36 were novel. The relationship between F8 genotype and inhibitor development was considered significant. Conclusion A high mutation detection rate was achieved via the broad molecular techniques applied in this study, including 36 novel mutations. With regard to mutation types, mutation distribution and their impact on clinical severity and inhibitor development were found to be similar to those previously reported in other hemophilia population studies.
Collapse
Affiliation(s)
- Tahir Atik
- Ege University, School of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey,Equal contributors
| | - Esra Işık
- Ege University, School of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey,Equal contributors
| | - Hüseyin Onay
- Ege University, School of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Bilçağ Akgün
- Ege University, School of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| | - Moharram Shamsali
- Ege University, Institute of Health Sciences, Division of Health Bioinformatics, Izmir, Turkey
| | - Kaan Kavaklı
- Ege University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Izmir, Turkey
| | - Melike Evim
- Uludag University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Bursa, Turkey
| | - Gülen Tüysüz
- Akdeniz University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Antalya, Turkey
| | - Namık Yaşar Özbek
- Health Sciences University Ankara Pediatric Hematology Oncology Training and Research Hospital, Department of Pediatric Hematology, Ankara, Turkey
| | - Fahri Şahin
- Ege University, School of Medicine, Department of Internal Medicine, Division of Hematology, Izmir, Turkey
| | - Zafer Salcıoğlu
- Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Department of Pediatric Hematology and Oncology, Istanbul, Turkey
| | - Canan Albayrak
- Ondokuz Mayis University, Faculty of Medicine, Department of Pediatric Hematology and Oncology, Samsun, Turkey
| | - Yeşim Oymak
- Dr. Behcet Uz Children’s Hospital, Division of Pediatric Hematology, Izmir, Turkey
| | - Ekrem Ünal
- Erciyes University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Kayseri, Turkey
| | - Fatma Burcu Belen
- Katip Celebi University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Izmir, Turkey
| | - Ebru Yılmaz Keskin
- Suleyman Demirel University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Isparta, Turkey
| | - Can Balkan
- Ege University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Izmir, Turkey
| | - Birol Baytan
- Uludag University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Bursa, Turkey
| | - Alphan Küpesiz
- Akdeniz University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Antalya, Turkey
| | - Vildan Culha
- Health Sciences University Ankara Pediatric Hematology Oncology Training and Research Hospital, Department of Pediatric Hematology, Ankara, Turkey
| | - Tuba Nur Tahtakesen Güçer
- Istanbul Kanuni Sultan Suleyman Education and Research Hospital, Department of Pediatric Hematology and Oncology, Istanbul, Turkey
| | - Adalet Meral Güneş
- Uludag University, School of Medicine, Department of Pediatrics, Division of Pediatric Hematology, Bursa, Turkey
| | - Ferda Özkınay
- Ege University, School of Medicine, Department of Pediatrics, Division of Pediatric Genetics, Izmir, Turkey
| |
Collapse
|
32
|
Ling G, Tuddenham EGD. Factor VIII: the protein, cloning its gene, synthetic factor and now - 35 years later - gene therapy; what happened in between? Br J Haematol 2020; 189:400-407. [PMID: 31900934 DOI: 10.1111/bjh.16311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The foundation of haemophilia A therapy in the last 35 years has been critically dependent on isolation of the Factor VIII (FVIII) protein and discovery of the cDNA sequence of the FVIII gene, published in 1984. Identification of the FVIII sequence resulted in a new era of recombinant concentrates and led to significant improvements in safety, set against the tragedy of widespread HIV and hepatitis infections in haemophilia patients from contaminated plasma-based products. We chronicle the scientific methods and race leading up to the publication of the FVIII DNA sequence and the legacy that follows through to revolutionary gene therapy treatment in clinical trials today.
Collapse
Affiliation(s)
- Gavin Ling
- Haemostasis and Thrombosis Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Edward G D Tuddenham
- Katherine Dormandy Haemophilia and Thrombosis Centre, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Diego VP, Luu BW, Hofmann M, Dinh LV, Almeida M, Powell JS, Rajalingam R, Peralta JM, Kumar S, Curran JE, Sauna ZE, Kellerman R, Park Y, Key NS, Escobar MA, Huynh H, Verhagen AM, Williams-Blangero S, Lehmann PV, Maraskovsky E, Blangero J, Howard TE. Quantitative HLA-class-II/factor VIII (FVIII) peptidomic variation in dendritic cells correlates with the immunogenic potential of therapeutic FVIII proteins in hemophilia A. J Thromb Haemost 2020; 18:201-216. [PMID: 31556206 DOI: 10.1111/jth.14647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Plasma-derived (pd) or recombinant (r) therapeutic factor VIII proteins (FVIIIs) are infused to arrest/prevent bleeding in patients with hemophilia A (PWHA). However, FVIIIs are neutralized if anti-FVIII-antibodies (inhibitors) develop. Accumulating evidence suggests that pdFVIIIs with von Willebrand factor (VWF) are less immunogenic than rFVIIIs and that distinct rFVIIIs are differentially immunogenic. Since inhibitor development is T-helper-cell-dependent, human leukocyte antigen (HLA)-class-II (HLAcII) molecules constitute an important early determinant. OBJECTIVES Use dendritic cell (DC)-protein processing/presentation assays with mass-spectrometric and peptide-proteomic analyses to quantify the DP-bound, DQ-bound, and DR-bound FVIII-derived peptides in individual HLAcII repertoires and compare the immunogenic potential of six distinct FVIIIs based on their measured peptide counts. PATIENTS/METHODS Monocyte-derived DCs from normal donors and/or PWHA were cultured with either: Mix-rFVIII, a VWF-free equimolar mixture of a full-length (FL)-rFVIII [Advate® (Takeda)] and four distinct B-domain-deleted (BDD)-rFVIIIs [Xyntha® (Pfizer), NovoEight® (Novo-Nordisk), Nuwiq® (Octapharma), and Afstyla® (CSL Behring GmBH)]; a pdFVIII + pdVWF [Beriate® (CSL Behring GmBH)]; Advate ± pdVWF; Afstyla ± pdVWF; and Xyntha + pdVWF. RESULTS We showed that (i) Beriate had a significantly lower immunogenic potential than Advate ± pdVWF, Afstyla - pdVWF, and Mix-rFVIII; (ii) distinct FVIIIs differed significantly in their immunogenic potential in that, in addition to (i), Afstyla + pdVWF had a significantly lower immunogenic potential than Beriate, while the immunogenic potential of Beriate was not significantly different from that of Xyntha + pdVWF; and (iii) rFVIIIs with pdVWF had significantly lower immunogenic potentials than the same rFVIIIs without pdVWF. CONCLUSIONS Our results provide HLAcII peptidomic level explanations for several important clinical observations/issues including the differential immunogenicity of distinct FVIIIs and the role of HLAcII genetics in inhibitor development.
Collapse
Affiliation(s)
- Vincent P Diego
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Bernadette W Luu
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
- Haplogenics Corporation, Brownsville, Texas
| | | | | | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | | | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, School of Medicine, University of California at San Francisco, California
| | - Juan M Peralta
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Zuben E Sauna
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapeutics, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Roberta Kellerman
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
| | - Yara Park
- Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, North Carolina
| | - Nigel S Key
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, North Carolina
- Department of Laboratory Medicine and Pathology, University of North Carolina at Chapel Hill, North Carolina
| | - Miguel A Escobar
- Division of Hematology, Department of Medicine, McGovern School of Medicine, University of Texas Health Sciences Center at Houston, Texas
| | - Huy Huynh
- CSL Limited Research, Bio21 Institute, Melbourne, Australia
| | | | - Sarah Williams-Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Paul V Lehmann
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Cellular Technology Ltd, Shaker Heights, Ohio
| | | | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
| | - Tom E Howard
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, Texas
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas
- Haplogenics Corporation, Brownsville, Texas
- Department of Pathology and Lab Medicine, VA Valley Coastal Bend Healthcare Center, Harlingen, Texas
| |
Collapse
|
34
|
Anzengruber J, Feichtinger M, Bärnthaler P, Haider N, Ilas J, Pruckner N, Benamara K, Scheiflinger F, Reipert BM, Malisauskas M. How Full-Length FVIII Benefits from Its Heterogeneity - Insights into the Role of the B-Domain. Pharm Res 2019; 36:77. [PMID: 30937539 PMCID: PMC6443606 DOI: 10.1007/s11095-019-2599-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
Abstract
Purpose To explore how the natural heterogeneity of human coagulation factor VIII (FVIII) and the processing of its B-domain specifically modulate protein aggregation. Methods Recombinant FVIII (rFVIII) molecular species containing 70% or 20% B-domain, and B-domain-deleted rFVIII (BDD-rFVIII), were separated from full-length recombinant FVIII (FL-rFVIII). Purified human plasma-derived FVIII (pdFVIII) was used as a comparator. Heterogeneity and aggregation of the various rFVIII molecular species, FL-rFVIII and pdFVIII were analysed by SDS-PAGE, dynamic light scattering, high-performance size-exclusion chromatography and flow cytometry-based particle analysis. Results FL-rFVIII and pdFVIII were heterogeneous in nature and demonstrated similar resistance to aggregation under physical stress. Differences were observed between these and among rFVIII molecular species. FVIII molecular species exhibited diverging aggregation pathways dependent on B-domain content. The propensity to form aggregates increased with decreasing proportions of B-domain, whereas the opposite was observed for oligomer formation. Development of cross-β sheet-containing aggregates in BDD-rFVIII induced effective homologous seeding and faster aggregation. Naturally heterogeneous FL-rFVIII and pdFVIII displayed the lowest propensity to aggregate in all experiments. Conclusions These results demonstrate that pdFVIII and FL-rFVIII have similar levels of molecular heterogeneity, and suggest that heterogeneity and the B-domain are involved in stabilising FVIII by modulating its aggregation pathway. Electronic supplementary material The online version of this article (10.1007/s11095-019-2599-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Anzengruber
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria.
| | - Martin Feichtinger
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Philipp Bärnthaler
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Norbert Haider
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Josenato Ilas
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Nina Pruckner
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Karima Benamara
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | | | - Birgit M Reipert
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Mantas Malisauskas
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| |
Collapse
|
35
|
Knight T, Callaghan MU. The role of emicizumab, a bispecific factor IXa- and factor X-directed antibody, for the prevention of bleeding episodes in patients with hemophilia A. Ther Adv Hematol 2018; 9:319-334. [PMID: 30344994 PMCID: PMC6187429 DOI: 10.1177/2040620718799997] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Hemophilia A, characterized by impaired or absent expression of factor VIII, has long been managed via direct factor replacement. Functionally, factor VIII acts as a cofactor for factor IXa and allows activation of factor X, which, in combination with factor V, generates thrombin. Bispecific antibodies such as emicizumab are recombinant, monoclonal antibodies capable of recognizing and binding to two distinct antigenic targets simultaneously; emicizumab binds factors IXa and X, resulting in spatial approximation and activation of factor X, thereby mimicking the actions of factor VIII. Critically, the presence of antifactor VIII antibodies, for example, inhibitors, impacts neither the mechanism nor the efficacy by which emicizumab functions. The results and interim analyses of the emicizumab clinical trials, HAVEN 1, 2, 3, and 4, are additionally reviewed and discussed.
Collapse
Affiliation(s)
- Tristan Knight
- Division of Pediatric Hematology/Oncology, Carmen and Ann Adams Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Michael U. Callaghan
- Division of Pediatric Hematology/Oncology, Carmen and Ann Adams Department of Pediatrics, Children’s Hospital of Michigan, 3901 Beuabien St, Detroit, MI 48201, USA
| |
Collapse
|
36
|
Venous thromboembolism, factor VIII and chronic kidney disease. Thromb Res 2018; 170:10-19. [PMID: 30081388 DOI: 10.1016/j.thromres.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) affects 30 million Americans and is associated with approximately a two-fold increased risk of venous thromboembolism (VTE). There is a graded increased risk of VTE across declining kidney function, as measured by estimated glomerular filtration rate (eGFR) and albuminuria. When patients with end-stage kidney disease (ESKD) experience VTE they are more likely than the general population to be hospitalized and they have a higher mortality. The incidence and consequences of VTE may also differ depending on the cause of kidney disease. In addition, kidney transplant patients with VTE are at a greater risk for death and graft loss than transplant patients without VTE. The reasons that patients with CKD are at increased risk of VTE are not well understood, but recent data suggest that factor VIII is a mediator. Factor VIII is an essential cofactor in the coagulation cascade and a strong risk factor for VTE in general. It is inversely correlated with eGFR and prospective studies demonstrate that factor VIII activity predicts incident CKD and rapid eGFR decline. The etiology of CKD may also influence factor VIII levels. This review summarizes the epidemiology VTE in CKD and reviews the biochemistry of factor VIII and determinants of its levels, including von Willebrand factor and ABO blood group. We explore mechanisms by which the complications of CKD might give rise to higher factor VIII and suggests future research directions to understand how factor VIII and CKD are linked.
Collapse
|
37
|
Canis K, Anzengruber J, Garenaux E, Feichtinger M, Benamara K, Scheiflinger F, Savoy LA, Reipert BM, Malisauskas M. In-depth comparison of N-glycosylation of human plasma-derived factor VIII and different recombinant products: from structure to clinical implications. J Thromb Haemost 2018; 16:S1538-7836(22)02223-1. [PMID: 29888865 DOI: 10.1111/jth.14204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Indexed: 12/21/2022]
Abstract
Essentials Glycosylation heterogeneity of recombinant proteins affects pharmacokinetics and immunogenicity. N-glycomics/glycoproteomics of plasma-derived Factor VIII and 6 recombinant FVIIIs were compared. Depending on cell line, significant differences to plasma-derived FVIII were observed. Recombinant FVIIIs expressed distinct and immunologically relevant epitopes. SUMMARY Background/Objective Human factor VIII (FVIII) is a plasma glycoprotein, defects of which result in hemophilia A. Current substitution therapy uses FVIII products purified from human plasma or from various cell lines (recombinant FVIII) with different levels of B-domain deletion. Glycosylation is a post-translational protein modification in FVIII that has a substantial influence on its physical, functional and antigenic properties. Variation in glycosylation is likely to be the reason that FVIII products differ in their pharmacokinetics, pharmacodynamics and immunogenicity. However, the literature on FVIII glycosylation is inconsistent, preventing assembly into a coherent model. Seeking to better understand the glycosylation mechanisms underlying FVIII biology, we studied the N-glycosylation of human plasma-derived (pd)FVIII and six rFVIII products expressed in CHO, BHK or HEK cell lines. Methods FVIII samples were subjected to head-to-head detailed glycomic and glycoproteomic characterization using a combination of MALDI-MS and MS/MS, GC-MS and UPLC-UV-MSE technologies. Results/Conclusion The results of our study detail the N-glycan repertoire of pdFVIII to an unprecedented level, and for the first time, provide evidence of N-glycolylneuraminic acid (NeuGc) found on pdFVIII. Although site-specific glycosylation of rFVIII proved consistent with pdFVIII regardless of the expression system, the entire N-glycan content of each sample appeared significantly different. Although the proportion of biologically important epitopes common to all samples (i.e. sialylation and high-mannose) varied between samples, some recombinant products expressed distinct and immunologically relevant epitopes, such as LacdiNAc (LDN), fucosylated LacdiNAc (FucLDN), NeuGc, LewisX/Y and Galα1,3 Gal epitopes. rFVIII expressed in HEK cells showed the greatest glycomic differences to human pdFVIII.
Collapse
Affiliation(s)
- K Canis
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | | | - E Garenaux
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | | | - K Benamara
- Research & Development, Shire, Vienna, Austria
| | | | - L-A Savoy
- SGS M-Scan SA, Plan-le-Ouates, Switzerland
| | - B M Reipert
- Research & Development, Shire, Vienna, Austria
| | | |
Collapse
|
38
|
Abstract
Haemophilia is a rare disease for which the approved therapeutic options have remained virtually unchanged for 50 years. In the past decade, however, there has been an explosion of innovation in the treatment options that are either in development or have been approved for haemophilia, including engineered clotting factors and an extensive pipeline of new approaches and modalities. Several of these new modalities, especially gene therapy, demonstrate proof of principle in haemophilia but could have broader applications. These advances, in combination with better diagnostics, are now enabling clinicians to improve the standard of care for people with haemophilia. The different mechanisms of action and modifications used in these therapies have implications for their safe and efficacious use, which must be balanced with their therapeutic utility. This Review focuses on the biological aspects of the most advanced and innovative approaches for haemophilia treatment and considers their future use.
Collapse
|
39
|
Mannucci PM. Miracle of haemophilia drugs: Personal views about a few main players. Haemophilia 2018; 24:557-562. [PMID: 29808952 DOI: 10.1111/hae.13519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
INTRODUCTION In the second decade of the third millennium there have been dramatic developments pertaining to the availability of highly innovative drugs for hemophilia care, notwithstanding a satisfactory previous scenario. AIM I am going to emphasize the role of 2 main categories of players: scientist physicians who produced important translational research and the pharmaceutical industry, who developed, produced and made commercially available so many improved treatment weapons stemming from the translational research of the forementioned scientist physicians. RESULTS Pertaining to the role of scientist physicians, I chose to mention first those who were successful in the 1980 in the production of recombinant coagulation factors. In addition, those who more recently helped to produce new non substitutive therapies given by the subcutaneous route, and recombination coagulation factors with an extended half-life. CONCLUSIONS Current miraculous progress in hemophilia therapy is stemming from the research work of outstanding scientist physicians who acted in close collaboration with small biotechnology companies, leading to the early development of innovative therapeutic products, subsequently taken to the market place by the so called Big Pharma. I shall briefly provide my views to explain the fact that large pharmaceutical companies show more and more interest in such a rare disease as the hemophilias.
Collapse
Affiliation(s)
- P M Mannucci
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, IRCCS Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy
| |
Collapse
|
40
|
Konkle BA, Johnsen JM, Wheeler M, Watson C, Skinner M, Pierce GF. Genotypes, phenotypes and whole genome sequence: Approaches from the My Life Our Future haemophilia project. Haemophilia 2018; 24 Suppl 6:87-94. [PMID: 29878652 PMCID: PMC6258054 DOI: 10.1111/hae.13506] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Information from the genes encoding factor VIII (F8) and IX (F9) is used in reproductive planning and to inform inhibitor formation, bleeding severity and response to therapies. Advances in technology and our understanding of the human genome now allows more comprehensive methods to study genomic variation and its impact on haemophilia. AIMS The My Life Our Future (MLOF) programme was begun in 2012 to provide genetic analysis and to expand research in haemophilia through a research repository. METHODS MLOF enrolled haemophilia A and B patients followed at haemophilia treatment centers in the U.S., including, since 2015, known and potential genetic carriers. Initial F8 and F9 DNA analysis was performed utilizing a next generation sequencing approach which allowed simultaneous detection of F8 inversions and other variants. Candidate variants were confirmed using a second method and multiplex ligation-dependent probe amplification was used to detect structural variants. RESULTS The initial phase of MLOF completed enrollment in December 2017 with 11,356 patients, genetic carriers, and potential carriers enrolled. In the 9453 subjects in whom analysis is complete, 687 unique previously unreported variants were found. Simultaneous sequencing of the F8 and F9 genes resulted in identification of non-deleterious variants previously reported as causative in haemophilia. DNA from 5141 MLOF subjects has undergone whole genome sequencing through the NHLBI TOPMed programme of the U.S. NIH. CONCLUSION MLOF has provided genetic information for patients and their families to help inform clinical care and has established a repository of data and biospecimens to further advance haemophilia research.
Collapse
Affiliation(s)
- B A Konkle
- Bloodworks Northwest, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - J M Johnsen
- Bloodworks Northwest, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - M Wheeler
- University of Washington, Seattle, WA, USA
| | - C Watson
- American Thrombosis and Hemostasis Network, Chicago, IL, USA
| | - M Skinner
- National Hemophilia Foundation, New York, NY, USA
| | - G F Pierce
- National Hemophilia Foundation, New York, NY, USA
| |
Collapse
|
41
|
Pierce GF, Iorio A. Past, present and future of haemophilia gene therapy: From vectors and transgenes to known and unknown outcomes. Haemophilia 2018; 24 Suppl 6:60-67. [DOI: 10.1111/hae.13489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2018] [Indexed: 01/19/2023]
Affiliation(s)
- G. F. Pierce
- World Federation of Hemophilia; Montreal QC Canada
- World Federation of Hemophilia; Third Rock Ventures; San Francisco CA USA
| | - A. Iorio
- McMaster University; Hamilton ON Canada
| |
Collapse
|
42
|
Molecular mechanisms of missense mutations that generate ectopic N-glycosylation sites in coagulation factor VIII. Biochem J 2018; 475:873-886. [PMID: 29444815 DOI: 10.1042/bcj20170884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022]
Abstract
N-glycosylation is a common posttranslational modification of secreted and membrane proteins, catalyzed by the two enzymatic isoforms of the oligosaccharyltransferase, STT3A and STT3B. Missense mutations are the most common mutations in inherited diseases; however, missense mutations that generate extra, non-native N-glycosylation sites have not been well characterized. Coagulation factor VIII (FVIII) contains five consensus N-glycosylation sites outside its functionally dispensable B domain. We developed a computer program that identified hemophilia A mutations in FVIII that can potentially create ectopic glycosylation sites. We determined that 18 of these ectopic sites indeed become N-glycosylated. These sites span the domains of FVIII and are primarily associated with a severe disease phenotype. Using STT3A and STT3B knockout cells, we determined that ectopic glycosylation exhibited different degrees of dependence on STT3A and STT3B. By separating the effects of ectopic N-glycosylation from those due to underlying amino acid changes, we showed that ectopic glycans promote the secretion of some mutants, but impair the secretion of others. However, ectopic glycans that enhanced secretion could not functionally replace a native N-glycan in the same domain. Secretion-deficient mutants, but not mutants with elevated secretion levels, show increased association with the endoplasmic reticulum chaperones BiP (immunoglobulin heavy chain-binding protein) and calreticulin. Though secreted to different extents, all studied mutants exhibited lower relative activity than wild-type FVIII. Our results reveal differential impacts of ectopic N-glycosylation on FVIII folding, trafficking and activity, which highlight complex disease-causing mechanisms of FVIII missense mutations. Our findings are relevant to other secreted and membrane proteins with mutations that generate ectopic N-glycans.
Collapse
|
43
|
Balkaransingh P, Young G. Novel therapies and current clinical progress in hemophilia A. Ther Adv Hematol 2018; 9:49-61. [PMID: 29387330 PMCID: PMC5768270 DOI: 10.1177/2040620717746312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
The evolution of hemophilia treatment and care is a fascinating one but has been fraught with many challenges at every turn. Over the last 50 years or so patients with hemophilia and providers have witnessed great advances in the treatment of this disease. With these advances, there has been a dramatic decrease in the mortality and morbidity associated with hemophilia. Even with the remarkable advancements in treatment, however, new and old challenges continue to plague the hemophilia community. The cost of factor replacement and the frequency of infusions, especially in patients with severe hemophilia on prophylaxis, remains a significant challenge for this population. Other challenges include obtaining reliable venous access, especially in younger patients, and the development of neutralizing alloantibodies (inhibitors). The development of extended half-life products, a bispecific antibody which mimics the coagulation function of factor VIII (FVIII) and inhibition of anticoagulation proteins such as antithrombin with antibodies, aptamers or RNA interference technology have offered novel therapeutic approaches to overcome some of these existing challenges. Additionally, ongoing gene therapy research offers a way to possibly cure hemophilia. These novel treatment tools in conjunction with the establishment of an increasing number of comprehensive hemophilia centers and worldwide advocacy efforts have continued to push the progress of hemophilia care to new frontiers. This review highlights and summarizes these novel therapeutic approaches and the current clinical progress of hemophilia A.
Collapse
Affiliation(s)
| | - Guy Young
- Children’s Hospital Los Angeles, 455 Sunset Boulevard, Mail Stop 54, Los Angeles, CA 90027, USA
| |
Collapse
|
44
|
Hickman DA, Pawlowski CL, Sekhon UDS, Marks J, Gupta AS. Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:10.1002/adma.201700859. [PMID: 29164804 PMCID: PMC5831165 DOI: 10.1002/adma.201700859] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/18/2017] [Indexed: 05/03/2023]
Abstract
Bleeding complications arising from trauma, surgery, and as congenital, disease-associated, or drug-induced blood disorders can cause significant morbidities and mortalities in civilian and military populations. Therefore, stoppage of bleeding (hemostasis) is of paramount clinical significance in prophylactic, surgical, and emergency scenarios. For externally accessible injuries, a variety of natural and synthetic biomaterials have undergone robust research, leading to hemostatic technologies including glues, bandages, tamponades, tourniquets, dressings, and procoagulant powders. In contrast, treatment of internal noncompressible hemorrhage still heavily depends on transfusion of whole blood or blood's hemostatic components (platelets, fibrinogen, and coagulation factors). Transfusion of platelets poses significant challenges of limited availability, high cost, contamination risks, short shelf-life, low portability, performance variability, and immunological side effects, while use of fibrinogen or coagulation factors provides only partial mechanisms for hemostasis. With such considerations, significant interdisciplinary research endeavors have been focused on developing materials and technologies that can be manufactured conveniently, sterilized to minimize contamination and enhance shelf-life, and administered intravenously to mimic, leverage, and amplify physiological hemostatic mechanisms. Here, a comprehensive review regarding the various topical, intracavitary, and intravenous hemostatic technologies in terms of materials, mechanisms, and state-of-art is provided, and challenges and opportunities to help advancement of the field are discussed.
Collapse
Affiliation(s)
- DaShawn A Hickman
- Case Western Reserve University School of Medicine, Department of Pathology, Cleveland, Ohio 44106, USA
| | - Christa L Pawlowski
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| | - Ujjal D S Sekhon
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| | - Joyann Marks
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| | - Anirban Sen Gupta
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio 44106, USA
| |
Collapse
|
45
|
Kazazian HH. Fifty years in human genetics--a career retrospective. FASEB J 2017; 31:3712-3718. [PMID: 28860307 DOI: 10.1096/fj.201700502rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Haig H Kazazian
- Institute for Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Shestopal SA, Hao JJ, Karnaukhova E, Liang Y, Ovanesov MV, Lin M, Kurasawa JH, Lee TK, Mcvey JH, Sarafanov AG. Expression and characterization of a codon-optimized blood coagulation factor VIII. J Thromb Haemost 2017; 15:709-720. [PMID: 28109042 DOI: 10.1111/jth.13632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 08/31/2023]
Abstract
Essentials Recombinant factor VIII (FVIII) is known to be expressed at a low level in cell culture. To increase expression, we used codon-optimization of a B-domain deleted FVIII (BDD-FVIII). This resulted in 7-fold increase of the expression level in cell culture. The biochemical properties of codon-optimized BDD-FVIII were similar to the wild-type protein. SUMMARY Background Production of recombinant factor VIII (FVIII) is challenging because of its low expression. It was previously shown that codon-optimization of a B-domain-deleted FVIII (BDD-FVIII) cDNA resulted in increased protein expression. However, it is well recognized that synonymous mutations may affect the protein structure and function. Objectives To compare biochemical properties of a BDD-FVIII variants expressed from codon-optimized and wild-type cDNAs (CO and WT, respectively). Methods Each variant of the BDD-FVIII was expressed in several independent Chinese hamster ovary (CHO) cell lines, generated using a lentiviral platform. The proteins were purified by two-step affinity chromatography and analyzed in parallel by PAGE-western blot, mass spectrometry, circular dichroism, surface plasmon resonance, and chromogenic, clotting and thrombin generation assays. Results and conclusion The average yield of the CO was 7-fold higher than WT, whereas both proteins were identical in the amino acid sequences (99% coverage) and very similar in patterns of the molecular fragments (before and after thrombin cleavage), glycosylation and tyrosine sulfation, secondary structures and binding to von Willebrand factor and to a fragment of the low-density lipoprotein receptor-related protein 1. The CO preparations had on average 1.5-fold higher FVIII specific activity (activity normalized to protein mass) than WT preparations, which was attributed to better preservation of the CO structure as a result of considerably higher protein concentrations during the production. We concluded that the codon-optimization of the BDD-FVIII resulted in significant increase of its expression and did not affect the structure-function properties.
Collapse
Affiliation(s)
- S A Shestopal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J-J Hao
- Poochon Scientific, Frederick, MD, USA
| | - E Karnaukhova
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Y Liang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M V Ovanesov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - M Lin
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Kurasawa
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - T K Lee
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - J H Mcvey
- School of Biosciences and Medicine, University of Surrey, Surrey, UK
| | - A G Sarafanov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
47
|
Missense mutations near the N-glycosylation site of the A2 domain lead to various intracellular trafficking defects in coagulation factor VIII. Sci Rep 2017; 7:45033. [PMID: 28327546 PMCID: PMC5361195 DOI: 10.1038/srep45033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/20/2017] [Indexed: 11/14/2022] Open
Abstract
Missense mutation is the most common mutation type in hemophilia. However, the majority of missense mutations remain uncharacterized. Here we characterize how hemophilia mutations near the unused N-glycosylation site of the A2 domain (N582) of FVIII affect protein conformation and intracellular trafficking. N582 is located in the middle of a short 310-helical turn (D580-S584), in which most amino acids have multiple hemophilia mutations. All 14 missense mutations found in this 310-helix reduced secretion levels of the A2 domain and full-length FVIII. Secreted mutants have decreased activities relative to WT FVIII. Selected mutations also lead to partial glycosylation of N582, suggesting that rapid folding of local conformation prevents glycosylation of this site in wild-type FVIII. Protease sensitivity, stability and degradation of the A2 domain vary among mutants, and between non-glycosylated and glycosylated species of the same mutant. Most of the mutants interact with the ER chaperone BiP, while only mutants with aberrant glycosylation interact with calreticulin. Our results show that the short 310-helix from D580 to S584 is critical for proper biogenesis of the A2 domain and FVIII, and reveal a range of molecular mechanisms by which FVIII missense mutations lead to moderate to severe hemophilia A.
Collapse
|
48
|
Sharma A, Easow Mathew M, Sriganesh V, Reiss UM, Cochrane Cystic Fibrosis and Genetic Disorders Group. Gene therapy for haemophilia. Cochrane Database Syst Rev 2016; 12:CD010822. [PMID: 27996087 PMCID: PMC6463803 DOI: 10.1002/14651858.cd010822.pub3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Haemophilia is a genetic disorder characterized by spontaneous or provoked, often uncontrolled, bleeding into joints, muscles and other soft tissues. Current methods of treatment are expensive, challenging and involve regular administration of clotting factors. Gene therapy has recently been prompted as a curative treatment modality. This is an update of a published Cochrane Review. OBJECTIVES To evaluate the safety and efficacy of gene therapy for treating people with haemophilia A or B. SEARCH METHODS We searched the Cochrane Cystic Fibrosis & Genetic Disorders Group's Coagulopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 18 August 2016. SELECTION CRITERIA Eligible trials include randomised or quasi-randomised clinical trials, including controlled clinical trials comparing gene therapy (with or without standard treatment) with standard treatment (factor replacement) or other 'curative' treatment such as stem cell transplantation for individuals with haemophilia A or B of all ages who do not have inhibitors to factor VIII or IX. DATA COLLECTION AND ANALYSIS No trials of gene therapy for haemophilia were found. MAIN RESULTS No trials of gene therapy for haemophilia were identified. AUTHORS' CONCLUSIONS No randomised or quasi-randomised clinical trials of gene therapy for haemophilia were identified. Thus, we are unable to determine the safety and efficacy of gene therapy for haemophilia. Gene therapy for haemophilia is still in its nascent stages and there is a need for well-designed clinical trials to assess the long-term feasibility, success and risks of gene therapy for people with haemophilia.
Collapse
Affiliation(s)
- Akshay Sharma
- St Jude Children's Research Hospital262 Danny Thomas PlaceMS 260MemphisTennesseeUSA38105
| | - Manu Easow Mathew
- Christian Medical CollegeSouth Asian Cochrane Network & Center, Prof. BV Moses Center for Evidence‐Informed Health Care and Health PolicyCarman Block II FloorCMC Campus, BagayamVelloreTamil NaduIndia632002
| | - Vasumathi Sriganesh
- QMed Knowledge FoundationA‐3, Shubham Centre, Cardinal Gracious Road,Chakala, Andheri EastMumbaiMaharashtraIndia400099
| | - Ulrike M Reiss
- St Jude Children's Research HospitalHematology DepartmentHematology MS 800, Room R5006262 Danny Thomas PlaceMemphisTennesseeUSATN 38105‐3678
| | | |
Collapse
|
49
|
Accurate, simple, and inexpensive assays to diagnose F8 gene inversion mutations in hemophilia A patients and carriers. Blood Adv 2016; 1:231-239. [PMID: 29296938 DOI: 10.1182/bloodadvances.2016001651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/03/2016] [Indexed: 01/16/2023] Open
Abstract
The most frequent mutations resulting in hemophilia A are an intron 22 or intron 1 gene inversion, which together cause ∼50% of severe hemophilia A cases. We report a simple and accurate RNA-based assay to detect these mutations in patients and heterozygous carriers. The assays do not require specialized equipment or expensive reagents; therefore, they may provide useful and economic protocols that could be standardized for central laboratory testing. RNA is purified from a blood sample, and reverse transcription nested polymerase chain reaction (RT-NPCR) reactions amplify DNA fragments with the F8 sequence spanning the exon 22 to 23 splice site (intron 22 inversion test) or the exon 1 to 2 splice site (intron 1 inversion test). These sequences will be amplified only from F8 RNA without an intron 22 or intron 1 inversion mutation, respectively. Additional RT-NPCR reactions are then carried out to amplify the inverted sequences extending from F8 exon 19 to the first in-frame stop codon within intron 22 or a chimeric transcript containing F8 exon 1 and the VBP1 gene. These latter 2 products are produced only by individuals with an intron 22 or intron 1 inversion mutation, respectively. The intron 22 inversion mutations may be further classified (eg, as type 1 or type 2, reflecting the specific homologous recombination sites) by the standard DNA-based "inverse-shifting" PCR assay if desired. Efficient Bcl I and T4 DNA ligase enzymes that cleave and ligate DNA in minutes were used, which is a substantial improvement over previous protocols that required overnight incubations. These protocols can accurately detect F8 inversion mutations via same-day testing of patient samples.
Collapse
|
50
|
Kahle J, Orlowski A, Stichel D, Healey JF, Parker ET, Donfield SM, Astermark J, Berntorp E, Lollar P, Schwabe D, Königs C. Anti-factor VIII antibodies in brothers with haemophilia A share similar characteristics. Haemophilia 2016; 23:292-299. [DOI: 10.1111/hae.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- J. Kahle
- Department of Paediatrics; Clinical and Molecular Haemostasis and Immunodeficiency; University Hospital Frankfurt; Frankfurt am Main Germany
| | - A. Orlowski
- Department of Paediatrics; Clinical and Molecular Haemostasis and Immunodeficiency; University Hospital Frankfurt; Frankfurt am Main Germany
| | - D. Stichel
- Department of Paediatrics; Clinical and Molecular Haemostasis and Immunodeficiency; University Hospital Frankfurt; Frankfurt am Main Germany
| | - J. F. Healey
- Department of Pediatrics; Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta and Emory University; Atlanta GA USA
| | - E. T. Parker
- Department of Pediatrics; Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta and Emory University; Atlanta GA USA
| | - S. M. Donfield
- Department of Biostatistics; Rho Inc.; Chapel Hill NC USA
| | - J. Astermark
- Centre for Thrombosis and Haemostasis; Lund University; Skåne University Hospital; Malmö Sweden
| | - E. Berntorp
- Centre for Thrombosis and Haemostasis; Lund University; Skåne University Hospital; Malmö Sweden
| | - P. Lollar
- Department of Pediatrics; Aflac Cancer and Blood Disorders Center; Children's Healthcare of Atlanta and Emory University; Atlanta GA USA
| | - D. Schwabe
- Department of Paediatrics; Clinical and Molecular Haemostasis and Immunodeficiency; University Hospital Frankfurt; Frankfurt am Main Germany
| | - C. Königs
- Department of Paediatrics; Clinical and Molecular Haemostasis and Immunodeficiency; University Hospital Frankfurt; Frankfurt am Main Germany
| |
Collapse
|