1
|
Wolffsohn JS, Gifford KL. Optical Strategy Utilizing Contrast Modulation to Slow Myopia. OPHTHALMOLOGY SCIENCE 2025; 5:100672. [PMID: 40276122 PMCID: PMC12018563 DOI: 10.1016/j.xops.2024.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/26/2024] [Accepted: 12/03/2024] [Indexed: 04/26/2025]
Abstract
A new method to slow myopia progression utilizes Diffusion Optics Technology (DOT) spectacle lenses. The proposed mechanism of action for the DOT lenses is to modulate contrast across the photoreceptor cells, leading to an altered activity of the ON and OFF pathways and slowing the progression of axial elongation. This approach is different from the current optical approaches that utilize optical defocus to reduce hyperopic defocus at the peripheral retina although central vision is fully corrected to slow myopia. Initial clinical studies with the DOT lenses have demonstrated promising results with a reduction in progression of myopia. This overview summarizes the current knowledge on myopia risk factors, the evidence for involvement of contrast signaling pathways in refractive error development, and the theories and mechanisms behind DOT lens technology. It also considers the role of contrast and the paradoxical observations given the established paradigm of form deprivation in animal models. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- James S. Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Kate L. Gifford
- Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
- Myopia Profile Pty Ltd, Brisbane, Australia
| |
Collapse
|
2
|
Soto F, Lin CI, Jo A, Chou SY, Harding EG, Ruzycki PA, Seabold GK, Petralia RS, Kerschensteiner D. Molecular mechanism establishing the OFF pathway in vision. Nat Commun 2025; 16:3708. [PMID: 40251167 PMCID: PMC12008213 DOI: 10.1038/s41467-025-59046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Parallel ON and OFF (positive- and negative-contrast) pathways fundamental to vision arise at the complex synapse of cone photoreceptors. Cone pedicles form spatially segregated functionally opposite connections with ON and OFF bipolar cells. Here, we discover that mammalian cones express LRFN2, a cell-adhesion molecule, which localizes to the pedicle base. LRFN2 stabilizes basal contacts between cone pedicles and OFF bipolar cell dendrites to guide pathway-specific partner choices, encompassing multiple cell types. In addition, LRFN2 trans-synaptically organizes glutamate receptor clusters, determining the contrast preferences of the OFF pathway. ON and OFF pathways converge in the inner retina to regulate bipolar cell outputs. We analyze LRFN2's contributions to ON-OFF interactions, pathway asymmetries, and neural and behavioral responses to approaching predators. Our results reveal that LRFN2 controls the formation of the OFF pathway in vision, supports parallel processing in a single synapse, and shapes contrast coding and the detection of visual threats.
Collapse
Affiliation(s)
- Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chin-I Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Graduate Program in Neuroscience, Division of Biological & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Jo
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ssu-Yu Chou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gail K Seabold
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Bright Center for Human Vision, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Kim DE, Kim S, Kim M, Min BK, Im M. Retinal degeneration increases inter-trial variabilities of light-evoked spiking activities in ganglion cells. Exp Eye Res 2025; 253:110305. [PMID: 39983973 DOI: 10.1016/j.exer.2025.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Retinal ganglion cells (RGCs) transmit visual information to the brain in the form of spike trains, which form visual perception. The reliabilities of spike timing and count are thought to play a crucial role in generating stable percepts. However, the effect of retinal degeneration on spike reproducibility remains underexplored. In this study, we examined longitudinal changes of both spike timing and count across different RGC types in response to repeated presentations of an identical light stimulus in retinal degeneration 10 (rd10) mice (B6.CXBl-Pde6brd10/J), a well-established model of retinitis pigmentosa (RP). We recorded the spiking responses of RGC populations to repeated white flashes using 256-channel multi-electrode array (MEA) at four rd10 age groups representing various stages of retinal degeneration. Our experimental results revealed a significant reduction in both spike timing and count consistencies compared to those in wild-type RGC recordings. Furthermore, the inter-trial variability patterns of different RGC types were found to differ throughout the degeneration process. For instance, when the spike time tiling coefficient (STTC) was used to evaluate inter-trial spike timing consistency, contrast-sensitive RGCs (ON, OFF, and ON-OFF types) exhibited a systematic decrease in spike timing consistency as degeneration progressed, whereas the remaining units did not show similar trends. Thus, we concluded that light-evoked spike trains become less consistent as degeneration progresses, with variability in spike timing and spike count varying across cell types. Given the critical role of spiking reliability in visual perception, our findings highlight the importance of accounting for cell type-specific degeneration patterns and inter-trial spiking inconsistencies when developing visual rehabilitation therapies to achieve enhanced performance. The underlying mechanism(s) driving the inter-trial spiking inconsistencies warrant further investigation.
Collapse
Affiliation(s)
- Da Eun Kim
- Brain Science Institute, KIST (Korea Institute of Science and Technology), Seoul, Republic of Korea; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Sein Kim
- Brain Science Institute, KIST (Korea Institute of Science and Technology), Seoul, Republic of Korea
| | - Minju Kim
- Brain Science Institute, KIST (Korea Institute of Science and Technology), Seoul, Republic of Korea
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, KIST (Korea Institute of Science and Technology), Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science & Technology, Seoul, Republic of Korea; KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wu W, Hafed ZM. Stronger premicrosaccadic sensitivity enhancement for dark contrasts in the primate superior colliculus. Sci Rep 2025; 15:2761. [PMID: 39843661 PMCID: PMC11754629 DOI: 10.1038/s41598-025-87090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Microsaccades are associated with enhanced visual perception and neural sensitivity right before their onset, and this has implications for interpreting experiments involving the covert allocation of peripheral spatial attention. However, the detailed properties of premicrosaccadic enhancement are not fully known. Here we investigated how such enhancement in the superior colliculus depends on luminance polarity. Rhesus macaque monkeys fixated a small spot while we presented either dark or bright image patches of different contrasts within the recorded neurons' response fields. Besides replicating premicrosaccadic enhancement of visual sensitivity, we observed stronger enhancement for dark contrasts. This was especially true at moderate contrast levels (such as 20%), and it occurred independent of an individual neuron's preference for either darks or brights. On the other hand, postmicrosaccadic visual sensitivity suppression was similar for either luminance polarity. Our results reveal an intriguing asymmetry in the properties of perimicrosaccadic modulations of superior colliculus visual neural sensitivity.
Collapse
Affiliation(s)
- Wenbin Wu
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Wei J, Cheng Z, Kong D, Lin W, Hess RF, Zhou J, Reynaud A. Understanding contrast perception in amblyopia: a psychophysical analysis of the ON and OFF visual pathways. Front Psychol 2024; 15:1494964. [PMID: 39498331 PMCID: PMC11532024 DOI: 10.3389/fpsyg.2024.1494964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose The study aimed to explore potential discrepancies in contrast sensitivity in the ON and OFF visual pathways among individuals with amblyopia compared to controls. Methods Eleven adult amblyopes (26.2 ± 4.4 [SD] years old) and 10 controls (24.6 ± 0.8 years old) with normal or corrected to normal visual acuity (logMAR VA ≤ 0) participated in this study. Using the quick contrast sensitivity function (qCSF) algorithm, we measured balanced CSF which would stimulate the ON and OFF pathways unselectively, and CSFs for increments and decrements that would selectively stimulate the ON and OFF visual pathways. Contrast sensitivity and area under log contrast sensitivity function were extracted for statistical analysis. Results For the balanced CSF, we found significant interocular differences in sensitivity and area under log contrast sensitivity function in both amblyopes [F(1,10) = 74.992, p < 0.001] and controls [F(1,9) = 35.6, p < 0.001], while such differences were more pronounced in amblyopes than in controls. For increment and decrement CSFs, we found that the increment sensitivity (p = 0.038) and area under log contrast sensitivity function (p = 0.001) were significantly lower than the decrement in the amblyopic eye. Such differences between increment and decrement CSFs were not observed in the fellow eye of the amblyopes or in the controls. Conclusion There is a subtle difference in the contrast sensitivity of the amblyopic eye when exposed to stimulation in the ON and OFF pathways.
Collapse
Affiliation(s)
- Junhan Wei
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Shaanxi Eye Hospital, Xi'an People’s Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, China
| | - Ziyun Cheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Deying Kong
- Department of Medical Information Management, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenman Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Robert F. Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| | - Jiawei Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Alexandre Reynaud
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Oudeng G, Banerjee S, Wang Q, Jiang D, Fan Y, Wu H, Pan F, Yang M. Photoreceptor-Mimetic Microflowers for Restoring Light Responses in Degenerative Retina through a 2D Nanopetal/Cell Biointerface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400300. [PMID: 38923683 DOI: 10.1002/smll.202400300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Retinitis pigmentosa is the main cause of inherited human blindness and is associated with dysfunctional photoreceptors (PRs). Compared with traditional methods, optoelectronic stimulation can better preserve the structural integrity and genetic content of the retina. However, enhancing the spatiotemporal accuracy of stimulation is challenging. Quantum dot-doped ZnIn2S4 microflowers (MF) are utilized to construct a biomimetic photoelectric interface with a 0D/3D heterostructure, aiming to restore the light response in PR-degenerative mice. The MF bio interface has dimensions similar to those of natural PRs and can be distributed within the curved spatial region of the retina, mimicking cellular dispersion. The soft 2D nano petals of the MF provide a large specific surface area for photoelectric activation and simulate the flexibility interfacing between cells. This bio interface can selectively restore the light responses of seven types of retina ganglion cells that encode brightness. The distribution of responsive cells forms a pattern similar to that of normal mice, which may reflect the generation of the initial "neural code" in the degenerative retina. Patch-clamp recordings indicate that the bio interface can induce spiking and postsynaptic currents at the single-neuron level. The results will shed light on the development of a potential bionic subretinal prosthetic toolkit for visual function restoration.
Collapse
Affiliation(s)
- Gerile Oudeng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518033, P. R. China
| | - Seema Banerjee
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Ophthalmology and Genetics Medicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, 22203, USA
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
| | - Qin Wang
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- University of Health and Rehabilitation Sciences, o. 369, Qingdao National High-Tech Industrial Development Zone, Shandong Province, China
| | - Ding Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213159, P. R. China
| | - Yadi Fan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Honglian Wu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Feng Pan
- School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
7
|
Yun Y, Jeong H, Laboute T, Martemyanov KA, Lee HH. Cryo-EM structure of human class C orphan GPCR GPR179 involved in visual processing. Nat Commun 2024; 15:8299. [PMID: 39333506 PMCID: PMC11437087 DOI: 10.1038/s41467-024-52584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
GPR179, an orphan class C GPCR, is expressed at the dendritic tips of ON-bipolar cells in the retina. It plays a pivotal role in the initial synaptic transmission of visual signals from photoreceptors, and its deficiency is known to be the cause of complete congenital stationary night blindness. Here, we present the cryo-electron microscopy structure of human GPR179. Notably, the transmembrane domain (TMD) of GPR179 forms a homodimer through the TM1/7 interface with a single inter-protomer disulfide bond, adopting a noncanonical dimerization mode. Furthermore, the TMD dimer exhibits architecture well-suited for the highly curved membrane of the dendritic tip and distinct from the flat membrane arrangement observed in other class C GPCR dimers. Our structure reveals unique structural features of GPR179 TMD, setting it apart from other class C GPCRs. These findings provide a foundation for understanding signal transduction through GPR179 in visual processing and offers insights into the underlying causes of ocular diseases.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Thibaut Laboute
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Dresp-Langley B, Reeves AJ. Environmental Lighting Conditions, Phenomenal Contrast, and the Conscious Perception of Near and Far. Brain Sci 2024; 14:966. [PMID: 39451980 PMCID: PMC11505859 DOI: 10.3390/brainsci14100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Recent evidence in systems neuroscience suggests that lighting conditions affect the whole chain of brain processing, from retina to high-level cortical networks, for perceptual and cognitive function. Here, visual adaptation levels to three different environmental lighting conditions, (1) darkness, (2) daylight, and (3) prolonged exposure to very bright light akin to sunlight, were simulated in lab to investigate the effects of light adaptation levels on classic cases of subjective contrast, assimilation, and contrast-induced relative depth in achromatic, i.e., ON-OFF pathway mediated visual configurations. METHODS After adaptation/exposure to a given lighting condition, configurations were shown in grouped and ungrouped conditions in random order to healthy young humans in computer-controlled two-alternative forced-choice procedures that consisted of deciding, as quickly as possible, which of two background patterns in a given configuration of achromatic contrast appeared lighter, or which of two foreground patterns appeared to stand out in front, as if it were nearer to the observer. RESULTS We found a statistically significant effect of the adaptation levels on the consciously perceived subjective contrast (F(2,23) = 20.73; p < 0.001) and the relative depth (F(2,23) = 12.67; p < 0.001), a statistically significant interaction between the adaptation levels and the grouping factor (F(2,23) = 4.73; p < 0.05) on subjective contrast, and a statistically significant effect of the grouping factor on the relative depth (F(2,23) = 13.71; p < 0.01). CONCLUSIONS Visual adaption to different lighting conditions significantly alters the conscious perception of contrast and assimilation, classically linked to non-linear functional synergies between ON and OFF processing channels in the visual brain, and modulates the repeatedly demonstrated effectiveness of luminance contrast as a depth cue; the physically brighter pattern regions in the configurations are no longer consistently perceived as nearer to a conscious observer under daylight and extreme bright light adapted (rod-saturated) conditions.
Collapse
Affiliation(s)
- Birgitta Dresp-Langley
- Centre National de la Recherche Scientifique, UMR 7357, Strasbourg University, 67000 Strasbourg, France
| | - Adam J. Reeves
- Psychology Department, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
9
|
Kilpeläinen M, Westö J, Tiihonen J, Laihi A, Takeshita D, Rieke F, Ala-Laurila P. Primate retina trades single-photon detection for high-fidelity contrast encoding. Nat Commun 2024; 15:4501. [PMID: 38802354 PMCID: PMC11130139 DOI: 10.1038/s41467-024-48750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
How the spike output of the retina enables human visual perception is not fully understood. Here, we address this at the sensitivity limit of vision by correlating human visual perception with the spike outputs of primate ON and OFF parasol (magnocellular) retinal ganglion cells in tightly matching stimulus conditions. We show that human vision at its ultimate sensitivity limit depends on the spike output of the ON but not the OFF retinal pathway. Consequently, nonlinear signal processing in the retinal ON pathway precludes perceptual detection of single photons in darkness but enables quantal-resolution discrimination of differences in light intensity.
Collapse
Affiliation(s)
- Markku Kilpeläinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Johan Westö
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jussi Tiihonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Anton Laihi
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Daisuke Takeshita
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, US
| | - Petri Ala-Laurila
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
10
|
Dai Z, Fu Q, Peng J, Li H. SLoN: a spiking looming perception network exploiting neural encoding and processing in ON/OFF channels. Front Neurosci 2024; 18:1291053. [PMID: 38510466 PMCID: PMC10950957 DOI: 10.3389/fnins.2024.1291053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Looming perception, the ability to sense approaching objects, is crucial for the survival of humans and animals. After hundreds of millions of years of evolutionary development, biological entities have evolved efficient and robust looming perception visual systems. However, current artificial vision systems fall short of such capabilities. In this study, we propose a novel spiking neural network for looming perception that mimics biological vision to communicate motion information through action potentials or spikes, providing a more realistic approach than previous artificial neural networks based on sum-then-activate operations. The proposed spiking looming perception network (SLoN) comprises three core components. Neural encoding, known as phase coding, transforms video signals into spike trains, introducing the concept of phase delay to depict the spatial-temporal competition between phasic excitatory and inhibitory signals shaping looming selectivity. To align with biological substrates where visual signals are bifurcated into parallel ON/OFF channels encoding brightness increments and decrements separately to achieve specific selectivity to ON/OFF-contrast stimuli, we implement eccentric down-sampling at the entrance of ON/OFF channels, mimicking the foveal region of the mammalian receptive field with higher acuity to motion, computationally modeled with a leaky integrate-and-fire (LIF) neuronal network. The SLoN model is deliberately tested under various visual collision scenarios, ranging from synthetic to real-world stimuli. A notable achievement is that the SLoN selectively spikes for looming features concealed in visual streams against other categories of movements, including translating, receding, grating, and near misses, demonstrating robust selectivity in line with biological principles. Additionally, the efficacy of the ON/OFF channels, the phase coding with delay, and the eccentric visual processing are further investigated to demonstrate their effectiveness in looming perception. The cornerstone of this study rests upon showcasing a new paradigm for looming perception that is more biologically plausible in light of biological motion perception.
Collapse
|
11
|
Khabou H, Orendorff E, Trapani F, Rucli M, Desrosiers M, Yger P, Dalkara D, Marre O. Optogenetic targeting of AII amacrine cells restores retinal computations performed by the inner retina. Mol Ther Methods Clin Dev 2023; 31:101107. [PMID: 37868206 PMCID: PMC10589896 DOI: 10.1016/j.omtm.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of inner retinal neurons is a promising avenue to restore vision in retinas having lost their photoreceptors. Expression of optogenetic proteins in surviving ganglion cells, the retinal output, allows them to take on the lost photoreceptive function. Nonetheless, this creates an exclusively ON retina by expression of depolarizing optogenetic proteins in all classes of ganglion cells, whereas a normal retina extracts several features from the visual scene, with different ganglion cells detecting light increase (ON) and light decrease (OFF). Refinement of this therapeutic strategy should thus aim at restoring these computations. Here we used a vector that targets gene expression to a specific interneuron of the retina called the AII amacrine cell. AII amacrine cells simultaneously activate the ON pathway and inhibit the OFF pathway. We show that the optogenetic stimulation of AII amacrine cells allows restoration of both ON and OFF responses in the retina, but also mediates other types of retinal processing such as sustained and transient responses. Targeting amacrine cells with optogenetics is thus a promising avenue to restore better retinal function and visual perception in patients suffering from retinal degeneration.
Collapse
Affiliation(s)
- Hanen Khabou
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Elaine Orendorff
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Marco Rucli
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Melissa Desrosiers
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Pierre Yger
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
12
|
Jouandet GC, Alpert MH, Simões JM, Suhendra R, Frank DD, Levy JI, Para A, Kath WL, Gallio M. Rapid threat assessment in the Drosophila thermosensory system. Nat Commun 2023; 14:7067. [PMID: 37923719 PMCID: PMC10624821 DOI: 10.1038/s41467-023-42864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Neurons that participate in sensory processing often display "ON" responses, i.e., fire transiently at the onset of a stimulus. ON transients are widespread, perhaps universal to sensory coding, yet their function is not always well-understood. Here, we show that ON responses in the Drosophila thermosensory system extrapolate the trajectory of temperature change, priming escape behavior if unsafe thermal conditions are imminent. First, we show that second-order thermosensory projection neurons (TPN-IIIs) and their Lateral Horn targets (TLHONs), display ON responses to thermal stimuli, independent of direction of change (heating or cooling) and of absolute temperature. Instead, they track the rate of temperature change, with TLHONs firing exclusively to rapid changes (>0.2 °C/s). Next, we use connectomics to track TLHONs' output to descending neurons that control walking and escape, and modeling and genetic silencing to demonstrate how ON transients can flexibly amplify aversive responses to small thermal change. Our results suggest that, across sensory systems, ON transients may represent a general mechanism to systematically anticipate and respond to salient or dangerous conditions.
Collapse
Affiliation(s)
| | - Michael H Alpert
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | | | - Richard Suhendra
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Dominic D Frank
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Joshua I Levy
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alessia Para
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - William L Kath
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- National Institute for Theory and Mathematics in Biology, Northwestern University, Chicago, IL, USA
| | - Marco Gallio
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
13
|
Fu Q. Motion perception based on ON/OFF channels: A survey. Neural Netw 2023; 165:1-18. [PMID: 37263088 DOI: 10.1016/j.neunet.2023.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Motion perception is an essential ability for animals and artificially intelligent systems interacting effectively, safely with surrounding objects and environments. Biological visual systems, that have naturally evolved over hundreds-million years, are quite efficient and robust for motion perception, whereas artificial vision systems are far from such capability. This paper argues that the gap can be significantly reduced by formulation of ON/OFF channels in motion perception models encoding luminance increment (ON) and decrement (OFF) responses within receptive field, separately. Such signal-bifurcating structure has been found in neural systems of many animal species articulating early motion is split and processed in segregated pathways. However, the corresponding biological substrates, and the necessity for artificial vision systems have never been elucidated together, leaving concerns on uniqueness and advantages of ON/OFF channels upon building dynamic vision systems to address real world challenges. This paper highlights the importance of ON/OFF channels in motion perception through surveying current progress covering both neuroscience and computationally modelling works with applications. Compared to related literature, this paper for the first time provides insights into implementation of different selectivity to directional motion of looming, translating, and small-sized target movement based on ON/OFF channels in keeping with soundness and robustness of biological principles. Existing challenges and future trends of such bio-plausible computational structure for visual perception in connection with hotspots of machine learning, advanced vision sensors like event-driven camera finally are discussed.
Collapse
Affiliation(s)
- Qinbing Fu
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Abstract
How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps-yet the whole process is of moderate complexity. The genetic methods available in the fruit fly Drosophila and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons' membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.
Collapse
Affiliation(s)
- Alexander Borst
- Max Planck Institute for Biological Intelligence, Martinsried, Germany; ,
| | - Lukas N Groschner
- Max Planck Institute for Biological Intelligence, Martinsried, Germany; ,
| |
Collapse
|
15
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2023; 43:1905-1930. [PMID: 36427109 PMCID: PMC11412200 DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Myopia is a refractive disorder arising from a mismatch between refractive power and relatively long axial length of the eye. With its dramatically increasing prevalence, myopia has become a pervasive social problem. It is commonly accepted that abnormal visual input acts as an initiating factor of myopia. As the first station to perceive visual signals, the retina plays an important role in myopia etiology. The retina is a fine-layered structure with multitudinous cells, processing intricate visual signals via numerous molecular pathways. Accordingly, dopaminergic mechanisms, contributions of rod and cone photoreceptors, myopic structural changes of retinal pigment epithelium (RPE) and neuro-retinal layers have all suggested a vital role of retinal dysfunction in myopia development. Herein, we separately discuss myopia-related retinal dysfunction and current dilemmas by different levels, from molecules to cells, with the hope that the comprehensive delineation could contribute to a better understanding of myopia etiology, indicate novel therapeutic targets, and inspire future studies.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China.
| |
Collapse
|
16
|
Tang VTS, Symons RCA, Fourlanos S, Guest D, McKendrick AM. Contrast Increment and Decrement Processing in Individuals With and Without Diabetes. Invest Ophthalmol Vis Sci 2023; 64:26. [PMID: 37083950 PMCID: PMC10132322 DOI: 10.1167/iovs.64.4.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Purpose Animal models suggest that ON retinal ganglion cells (RGCs) may be more vulnerable to diabetic insult than OFF cells. Using three psychophysical tasks to infer the function of ON and OFF RGCs, we hypothesized that functional responses to contrast increments will be preferentially affected in early diabetes mellitus (DM) compared to contrast decrement responses. Methods Fifty-two people with DM (type 1 or type 2) (mean age = 34.8 years, range = 18-60 years) and 48 age-matched controls (mean age = 35.4 years, range = 18-60 years) participated. Experiment 1 measured contrast sensitivity to increments and decrements at four visual field locations. Experiments 2 and 3 measured visual temporal processing using (i) a response time (RT) task, and (ii) a temporal order judgment task. Mean RT and accuracy were collected for experiment 2, whereas experiment 3 measured temporal thresholds. Results For experiment 1, the DM group showed reduced increment and decrement contrast sensitivity (F (1, 97) = 4.04, P = 0.047) especially for the central location. For experiment 2, those with DM demonstrated slower RT and lower response accuracies to increments and decrements (increments: U = 780, P = 0.01, decrements: U = 749, P = 0.005). For experiment 3, performance was similar between groups (F (1, 91) = 2.52, P = 0.137). Conclusions When assessed cross-sectionally, nonselective functional consequences of retinal neuron damage are present in early DM, particularly for foveal testing. Whether increment-decrement functional indices relate to diabetic retinopathy (DR) progression or poorer visual prognosis in DM requires further study.
Collapse
Affiliation(s)
- Vanessa Thien Sze Tang
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Robert Charles Andrew Symons
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
- Centre for Eye Research Australia, East Melbourne, Australia
- Department of Surgery, Alfred Hospital, Monash University, Australia
| | - Spiros Fourlanos
- Department Diabetes and Endocrinology, Royal Melbourne Hospital, Parkville, Australia
- Department Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Australian Centre for Accelerating Diabetes Innovations, The University of Melbourne, Parkville, Australia
| | - Daryl Guest
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Allison Maree McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
- Division of Optometry, University of Western Australia, Perth, Australia
- Lions Eye Institute, Nedlands, Australia
| |
Collapse
|
17
|
Luminance Contrast Shifts Dominance Balance between ON and OFF Pathways in Human Vision. J Neurosci 2023; 43:993-1007. [PMID: 36535768 PMCID: PMC9908321 DOI: 10.1523/jneurosci.1672-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/14/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Human vision processes light and dark stimuli in visual scenes with separate ON and OFF neuronal pathways. In nature, stimuli lighter or darker than their local surround have different spatial properties and contrast distributions (Ratliff et al., 2010; Cooper and Norcia, 2015; Rahimi-Nasrabadi et al., 2021). Similarly, in human vision, we show that luminance contrast affects the perception of lights and darks differently. At high contrast, human subjects of both sexes locate dark stimuli faster and more accurately than light stimuli, which is consistent with a visual system dominated by the OFF pathway. However, at low contrast, they locate light stimuli faster and more accurately than dark stimuli, which is consistent with a visual system dominated by the ON pathway. Luminance contrast was strongly correlated with multiple ON/OFF dominance ratios estimated from light/dark ratios of performance errors, missed targets, or reaction times (RTs). All correlations could be demonstrated at multiple eccentricities of the central visual field with an ON-OFF perimetry test implemented in a head-mounted visual display. We conclude that high-contrast stimuli are processed faster and more accurately by OFF pathways than ON pathways. However, the OFF dominance shifts toward ON dominance when stimulus contrast decreases, as expected from the higher-contrast sensitivity of ON cortical pathways (Kremkow et al., 2014; Rahimi-Nasrabadi et al., 2021). The results highlight the importance of contrast polarity in visual field measurements and predict a loss of low-contrast vision in humans with ON pathway deficits, as demonstrated in animal models (Sarnaik et al., 2014).SIGNIFICANCE STATEMENT ON and OFF retino-thalamo-cortical pathways respond differently to luminance contrast. In both animal models and humans, low contrasts drive stronger responses from ON pathways, whereas high contrasts drive stronger responses from OFF pathways. We demonstrate that these ON-OFF pathway differences have a correlate in human vision. At low contrast, humans locate light targets faster and more accurately than dark targets but, as contrast increases, dark targets become more visible than light targets. We also demonstrate that contrast is strongly correlated with multiple light/dark ratios of visual performance in central vision. These results provide a link between neuronal physiology and human vision while emphasizing the importance of stimulus polarity in measurements of visual fields and contrast sensitivity.
Collapse
|
18
|
Abstract
The primary visual cortex signals the onset of light and dark stimuli with ON and OFF cortical pathways. Here, we demonstrate that both pathways generate similar response increments to large homogeneous surfaces and their response average increases with surface brightness. We show that, in cat visual cortex, response dominance from ON or OFF pathways is bimodally distributed when stimuli are smaller than one receptive field center but unimodally distributed when they are larger. Moreover, whereas small bright stimuli drive opposite responses from ON and OFF pathways (increased versus suppressed activity), large bright surfaces drive similar response increments. We show that this size-brightness relation emerges because strong illumination increases the size of light surfaces in nature and both ON and OFF cortical neurons receive input from ON thalamic pathways. We conclude that visual scenes are perceived as brighter when the average response increments from ON and OFF cortical pathways become stronger. Mazade et al. find that the visual cortex encodes brightness differently for small than large stimuli. Bright small stimuli drive cortical pathways signaling lights and suppress cortical pathways signaling darks. Conversely, large surfaces drive response increments from both pathways and appear brightest when the response average is strongest.
Collapse
|
19
|
Snell NJ, Fisher JD, Hartmann GG, Zolyomi B, Talay M, Barnea G. Complex representation of taste quality by second-order gustatory neurons in Drosophila. Curr Biol 2022; 32:3758-3772.e4. [PMID: 35973432 PMCID: PMC9474709 DOI: 10.1016/j.cub.2022.07.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
Sweet and bitter compounds excite different sensory cells and drive opposing behaviors. However, it remains unclear how sweet and bitter tastes are represented by the neural circuits linking sensation to behavior. To investigate this question in Drosophila, we devised trans-Tango(activity), a strategy for calcium imaging of second-order gustatory projection neurons based on trans-Tango, a genetic transsynaptic tracing technique. We found spatial overlap between the projection neuron populations activated by sweet and bitter tastants. The spatial representation of bitter tastants in the projection neurons was consistent, while that of sweet tastants was heterogeneous. Furthermore, we discovered that bitter tastants evoke responses in the gustatory receptor neurons and projection neurons upon both stimulus onset and offset and that bitter offset and sweet onset excite overlapping second-order projections. These findings demonstrate an unexpected complexity in the representation of sweet and bitter tastants by second-order neurons of the gustatory circuit.
Collapse
Affiliation(s)
- Nathaniel J Snell
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - John D Fisher
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Griffin G Hartmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Bence Zolyomi
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA; The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
20
|
Anandakumar DB, Liu RC. More than the end: OFF response plasticity as a mnemonic signature of a sound's behavioral salience. Front Comput Neurosci 2022; 16:974264. [PMID: 36148326 PMCID: PMC9485674 DOI: 10.3389/fncom.2022.974264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
In studying how neural populations in sensory cortex code dynamically varying stimuli to guide behavior, the role of spiking after stimuli have ended has been underappreciated. This is despite growing evidence that such activity can be tuned, experience-and context-dependent and necessary for sensory decisions that play out on a slower timescale. Here we review recent studies, focusing on the auditory modality, demonstrating that this so-called OFF activity can have a more complex temporal structure than the purely phasic firing that has often been interpreted as just marking the end of stimuli. While diverse and still incompletely understood mechanisms are likely involved in generating phasic and tonic OFF firing, more studies point to the continuing post-stimulus activity serving a short-term, stimulus-specific mnemonic function that is enhanced when the stimuli are particularly salient. We summarize these results with a conceptual model highlighting how more neurons within the auditory cortical population fire for longer duration after a sound's termination during an active behavior and can continue to do so even while passively listening to behaviorally salient stimuli. Overall, these studies increasingly suggest that tonic auditory cortical OFF activity holds an echoic memory of specific, salient sounds to guide behavioral decisions.
Collapse
Affiliation(s)
- Dakshitha B. Anandakumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, United States
| |
Collapse
|
21
|
Kim S, Roh H, Im M. Artificial Visual Information Produced by Retinal Prostheses. Front Cell Neurosci 2022; 16:911754. [PMID: 35734216 PMCID: PMC9208577 DOI: 10.3389/fncel.2022.911754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Numerous retinal prosthetic systems have demonstrated somewhat useful vision can be restored to individuals who had lost their sight due to outer retinal degenerative diseases. Earlier prosthetic studies have mostly focused on the confinement of electrical stimulation for improved spatial resolution and/or the biased stimulation of specific retinal ganglion cell (RGC) types for selective activation of retinal ON/OFF pathway for enhanced visual percepts. To better replicate normal vision, it would be also crucial to consider information transmission by spiking activities arising in the RGC population since an incredible amount of visual information is transferred from the eye to the brain. In previous studies, however, it has not been well explored how much artificial visual information is created in response to electrical stimuli delivered by microelectrodes. In the present work, we discuss the importance of the neural information for high-quality artificial vision. First, we summarize the previous literatures which have computed information transmission rates from spiking activities of RGCs in response to visual stimuli. Second, we exemplify a couple of studies which computed the neural information from electrically evoked responses. Third, we briefly introduce how information rates can be computed in the representative two ways - direct method and reconstruction method. Fourth, we introduce in silico approaches modeling artificial retinal neural networks to explore the relationship between amount of information and the spiking patterns. Lastly, we conclude our review with clinical implications to emphasize the necessity of considering visual information transmission for further improvement of retinal prosthetics.
Collapse
Affiliation(s)
- Sein Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, South Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, South Korea
| |
Collapse
|
22
|
Westö J, Martyniuk N, Koskela S, Turunen T, Pentikäinen S, Ala-Laurila P. Retinal OFF ganglion cells allow detection of quantal shadows at starlight. Curr Biol 2022; 32:2848-2857.e6. [PMID: 35609606 DOI: 10.1016/j.cub.2022.04.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Perception of light in darkness requires no more than a handful of photons, and this remarkable behavioral performance can be directly linked to a particular retinal circuit-the retinal ON pathway. However, the neural limits of shadow detection in very dim light have remained unresolved. Here, we unravel the neural mechanisms that determine the sensitivity of mice (CBA/CaJ) to light decrements at the lowest light levels by measuring signals from the most sensitive ON and OFF retinal ganglion cell types and by correlating their signals with visually guided behavior. We show that mice can detect shadows when only a few photon absorptions are missing among thousands of rods. Behavioral detection of such "quantal" shadows relies on the retinal OFF pathway and is limited by noise and loss of single-photon signals in retinal processing. Thus, in the dim-light regime, light increments and decrements are encoded separately via the ON and OFF retinal pathways, respectively.
Collapse
Affiliation(s)
- Johan Westö
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Nataliia Martyniuk
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Sanna Koskela
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Tuomas Turunen
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
| | - Santtu Pentikäinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Ala-Laurila
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland; Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
23
|
Fernandes P, Ferreira C, Domingues J, Amorim-de-Sousa A, Faria-Ribeiro M, Queirós A, González-Meijome JM. Short-term delay in neural response with multifocal contact lens might start at the retinal level. Doc Ophthalmol 2022; 145:37-51. [PMID: 35364776 DOI: 10.1007/s10633-022-09870-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/08/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Multifocal simultaneous imaging challenges the visual system to process the multiple overlaps of focused and defocused images. Retinal image processing may be an important step in neuroadaptation to multifocal optical images. Our aims are, firstly to evaluate the short-term effect of different multifocal contact lenses (MF) on retinal activity in young healthy subjects (Experiment#1) and secondly, to evaluate any changes in retinal activity in presbyopic patients fitted with MF over a 15-day period (Experiment#2). METHODS In Experiment-#1, 10 emmetropic healthy young subjects were included to evaluate the short-term effect of different MFs designs. In Experiment #2, 4 presbyopic subjects were included to wear MF for 15 days. Following the ISCEV Standards, multifocal electroretinograms (mfERGs) were recorded to evaluate different retinal regions under different conditions: with single vision contact lens (SVCL) and with center-distance and center-near MF. RESULTS In Exp#1 the peak time of N1, P1 and N2 were found to be delayed with the MF (p ≤ 0.040). There was a significant reduction for N1 amplitude in all retinal regions (p < 0.001), while for P1 and N2 amplitudes this reduction was more significant in the peripheral regions (p < 0.005, ring 5 to 6). With center-near MF the mean response density (nV/deg2) showed a significant decrease in all wave components of the mfERGs response, particularly from Ring 3 to Ring 6 (p < 0.001, all Rings). In Exp#2, the mean mfERG response is similar between SVCL and center-distance MF, while center-near MF showed an increase in implicit time N1 and P1 on day 1 that tends to recover to baseline values after 15 days of MF wear. CONCLUSIONS significant changes in the mfERGs responses were found with the MF lens, being most noticeable with the center-near MF lens design. The present results suggest that the observed delay in cortical response described during the adaptation to multifocality may partially begin at the retina level.
Collapse
Affiliation(s)
- Paulo Fernandes
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal.
| | - Cesarina Ferreira
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - Joana Domingues
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - Ana Amorim-de-Sousa
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - Miguel Faria-Ribeiro
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - António Queirós
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| | - José M González-Meijome
- Clinical & Experimental Optometry Research Lab (CEORLab), Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Gualtar, Braga, Portugal
| |
Collapse
|
24
|
Otgondemberel Y, Roh H, Fried SI, Im M. Spiking Characteristics of Network-Mediated Responses Arising in Direction-Selective Ganglion Cells of Rabbit and Mouse Retinas to Electric Stimulation for Retinal Prostheses. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2445-2455. [PMID: 34784280 PMCID: PMC8654582 DOI: 10.1109/tnsre.2021.3128878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To restore the sight of individuals blinded by outer retinal degeneration, numerous retinal prostheses have been developed. However, the performance of those implants is still hampered by some factors including the lack of comprehensive understanding of the electrically-evoked responses arising in various retinal ganglion cell (RGC) types. In this study, we characterized the electrically-evoked network-mediated responses (hereafter referred to as electric responses) of ON-OFF direction-selective (DS) RGCs in rabbit and mouse retinas for the first time. Interestingly, both species in common demonstrated strong negative correlations between spike counts of electric responses and direction selective indices (DSIs), suggesting electric stimulation activates inhibitory presynaptic neurons that suppress null direction responses for high direction tuning in their light responses. The DS cells of the two species showed several differences including different numbers of bursts. Also, spiking patterns were more heterogeneous across DS RGCs of rabbits than those of mice. The electric response magnitudes of rabbit DS cells showed positive and negative correlations with ON and OFF light response magnitudes to preferred direction motion, respectively. But the mouse DS cells showed positive correlations in both comparisons. Our Fano Factor (FF) and spike time tiling coefficient (STTC) analyses revealed that spiking consistencies across repeats were reduced in late electric responses in both species. Moreover, the response consistencies of DS RGCs were lower than those of non-DS RGCs. Our results indicate the species-dependent retinal circuits may result in different electric response features and therefore suggest a proper animal model may be crucial in prosthetic researches.
Collapse
|
25
|
Hardian RF, Ogiwara T, Sato A, Fujii Y, Suzuki Y, Hanaoka Y, Miyata M, Kamiya K, Sasaki T, Goto T, Hongo K, Horiuchi T. Comparison Between Conventional Flash and Off-Response Intraoperative Visual Evoked Potential Monitoring for Endoscopic Endonasal Surgery. Oper Neurosurg (Hagerstown) 2021; 21:516-522. [PMID: 34528094 DOI: 10.1093/ons/opab329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/18/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Intraoperative flash stimulation visual evoked potential (VEP) monitoring has been used for endoscopic endonasal approach (EEA). Recently, off-response VEP, which is recorded when the light stimulus is turned off, was introduced to monitor visual function intraoperatively. OBJECTIVE To evaluate off-response VEP monitoring in comparison with the conventional flash stimulation VEP monitoring for EEA. METHODS From March 2015 to March 2020, 70 EEA surgeries with intraoperative VEP monitoring (140 eyes) were performed. Light stimuli were delivered by a pair of goggle electrodes. Recording electrodes were placed on the scalp over the occipital region. The warning signal was prompted by a reduction of the peak-to-peak amplitude of the VEP by more than 50% compared to the initial amplitude. Visual function was assessed pre- and postoperatively. Results of flash and off-response VEP monitoring were compared. RESULTS VEP was recorded in 134 eyes. Warning signal occurred in 23 eyes (transient in 17 eyes and permanent in 6 eyes). Two eyes showed permanent VEP attenuation for flash VEP monitoring, in which one patient had postoperative visual function deterioration. Four eyes showed permanent VEP attenuation for off-response VEP monitoring, where 2 patients had postoperative visual function deterioration. Sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 98.9%, 50%, and 100%, respectively, for flash stimulation VEP, and 100%, 97.8%, 50%, and 100%, respectively, for off-response VEP. CONCLUSION VEP monitoring was useful to monitor visual function in EEA surgery. Off-response VEP monitoring was not inferior to conventional flash stimulation VEP monitoring.
Collapse
Affiliation(s)
| | - Toshihiro Ogiwara
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Sato
- Department of Neurosurgery, Ina Central Hospital, Ina, Japan
| | - Yu Fujii
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yota Suzuki
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiki Hanaoka
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maki Miyata
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Neurosurgery, Ina Central Hospital, Ina, Japan
| | - Keisuke Kamiya
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Neurosurgery, Ina Central Hospital, Ina, Japan
| | - Tetsuo Sasaki
- Department of Neurosurgery, Ina Central Hospital, Ina, Japan
| | - Tetsuya Goto
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Neurosurgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazuhiro Hongo
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Neurosurgery, Ina Central Hospital, Ina, Japan
| | - Tetsuyoshi Horiuchi
- Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
26
|
The temporal integration windows for visual mirror symmetry. Vision Res 2021; 188:184-192. [PMID: 34352477 DOI: 10.1016/j.visres.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Symmetry perception in dot patterns is tolerant to temporal delays of up to 60 ms within and between element pairs. However, it is not known how factors effecting symmetry discrimination in static patterns might affect temporal integration in dynamic patterns. One such feature is luminance polarity. Using dynamic stimuli with increasing temporal delay (SOA) between the onset of the first and second element in a symmetric pair, we investigated how four different luminance-polarity conditions affected the temporal integration of symmetric patterns. All four luminance polarity conditions showed similar upper temporal limits of approximately 60 ms. However psychophysical performance over all delay durations showed significantly higher symmetry thresholds for unmatched-polarity patterns at short delays, but also significantly less sensitivity to increasing temporal delay relative to matched-polarity patterns. These varying temporal windows are consistent with the involvement of a fast, sensitive first-order mechanism for matched-polarity patterns, and a slower, more robust second-order mechanism for unmatched-polarity patterns. Temporal integration windows for unmatched-polarity patterns were not consistent with performance expected from attentional mechanisms alone, and instead supports the involvement of second-order mechanisms that combines information from ON and OFF channels.
Collapse
|
27
|
Archer DR, Alitto HJ, Usrey WM. Stimulus Contrast Affects Spatial Integration in the Lateral Geniculate Nucleus of Macaque Monkeys. J Neurosci 2021; 41:6246-6256. [PMID: 34103362 PMCID: PMC8287990 DOI: 10.1523/jneurosci.2946-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Gain-control mechanisms adjust neuronal responses to accommodate the wide range of stimulus conditions in the natural environment. Contrast gain control and extraclassical surround suppression are two manifestations of gain control that govern the responses of neurons in the early visual system. Understanding how these two forms of gain control interact has important implications for the detection and discrimination of stimuli across a range of contrast conditions. Here, we report that stimulus contrast affects spatial integration in the lateral geniculate nucleus of alert macaque monkeys (male and female), whereby neurons exhibit a reduction in the strength of extraclassical surround suppression and an expansion in the preferred stimulus size with low-contrast stimuli compared with high-contrast stimuli. Effects were greater for magnocellular neurons than for parvocellular neurons, indicating stream-specific interactions between stimulus contrast and stimulus size. Within the magnocellular pathway, contrast-dependent effects were comparable for ON-center and OFF-center neurons, despite ON neurons having larger receptive fields, less pronounced surround suppression, and more pronounced contrast gain control than OFF neurons. Together, these findings suggest that the parallel streams delivering visual information from retina to primary visual cortex, serve not only to broaden the range of signals delivered to cortex, but also to provide a substrate for differential interactions between stimulus contrast and stimulus size that may serve to improve stimulus detection and stimulus discrimination under pathway-specific lower and higher contrast conditions, respectively.SIGNIFICANCE STATEMENT Stimulus contrast is a salient feature of visual scenes. Here we examine the influence of stimulus contrast on spatial integration in the lateral geniculate nucleus (LGN). Our results demonstrate that increases in contrast generally increase extraclassical suppression and decrease the size of optimal stimuli, indicating a reduction in the extent of visual space from which LGN neurons integrate signals. Differences between magnocellular and parvocellular neurons are noteworthy and further demonstrate that the feedforward parallel pathways to cortex increase the range of information conveyed for downstream cortical processing, a range broadened by diversity in the ON and OFF pathways. These results have important implications for more complex visual processing that underly the detection and discrimination of stimuli under varying natural conditions.
Collapse
Affiliation(s)
- Darlene R Archer
- Center for Neuroscience, University of California, Davis, Davis, California 95616
- SUNY College of Optometry, New York, New York 10036
- Center for Neural Science, New York University, New York, New York 10003
| | - Henry J Alitto
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, Davis, California 95616
| |
Collapse
|
28
|
De Faveri F, Marcotti W, Ceriani F. Sensory adaptation at ribbon synapses in the zebrafish lateral line. J Physiol 2021; 599:3677-3696. [PMID: 34047358 PMCID: PMC7612133 DOI: 10.1113/jp281646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 11/22/2022] Open
Abstract
Adaptation is used by sensory systems to adjust continuously their sensitivity to match changes in environmental stimuli. In the auditory and vestibular systems, the release properties of glutamate-containing vesicles at the hair-cell ribbon synapses play a crucial role in sensory adaptation, thus shaping the neural response to sustained stimulation. How ribbon synapses regulate the release of glutamate and how they modulate afferent responses in vivo is still largely unknown. Here, we have used two-photon imaging and electrophysiology to investigate the synaptic transfer characteristics of the hair cells in the context of sensory adaptation in live zebrafish. Prolonged and repeated water-jet stimulation of the hair-cell stereociliary bundles caused adaptation of the action potential firing rate elicited in the afferent neurons. By monitoring glutamate at ribbon synapses using time-lapse imaging, we identified two kinetically distinct release components: a rapid response that was exhausted within 50-100 ms and a slower and sustained response lasting the entire stimulation. After repeated stimulations, the recovery of the fast component followed a biphasic time course. Depression of glutamate release was largely responsible for the rapid firing rate adaptation recorded in the afferent neurons. However, postsynaptic Ca2+ responses had a slower recovery time course than that of glutamate release, indicating that they are also likely to contribute to the afferent firing adaptation. Hair cells also exhibited a form of adaptation during inhibitory bundle stimulations. We conclude that hair cells have optimised their synaptic machinery to encode prolonged stimuli and to maintain their sensitivity to new incoming stimuli.
Collapse
Affiliation(s)
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK.,Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Nogueira J, Castelló ME, Lescano C, Caputi ÁA. Distinct neuron phenotypes may serve object feature sensing in the electrosensory lobe of Gymnotus omarorum. J Exp Biol 2021; 224:237807. [PMID: 33707195 DOI: 10.1242/jeb.242242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Early sensory relay circuits in the vertebrate medulla often adopt a cerebellum-like organization specialized for comparing primary afferent inputs with central expectations. These circuits usually have a dual output, carried by center ON and center OFF neurons responding in opposite ways to the same stimulus at the center of their receptive fields. Here, we show in the electrosensory lateral line lobe of Gymnotiform weakly electric fish that basilar pyramidal neurons, representing 'ON' cells, and non-basilar pyramidal neurons, representing 'OFF' cells, have different intrinsic electrophysiological properties. We used classical anatomical techniques and electrophysiological in vitro recordings to compare these neurons. Basilar neurons are silent at rest, have a high threshold to intracellular stimulation, delayed responses to steady-state depolarization and low pass responsiveness to membrane voltage variations. They respond to low-intensity depolarizing stimuli with large, isolated spikes. As stimulus intensity increases, the spikes are followed by a depolarizing after-potential from which phase-locked spikes often arise. Non-basilar neurons show a pacemaker-like spiking activity, smoothly modulated in frequency by slow variations of stimulus intensity. Spike-frequency adaptation provides a memory of their recent firing, facilitating non-basilar response to stimulus transients. Considering anatomical and functional dimensions, we conclude that basilar and non-basilar pyramidal neurons are clear-cut, different anatomo-functional phenotypes. We propose that, in addition to their role in contrast processing, basilar pyramidal neurons encode sustained global stimuli such as those elicited by large or distant objects while non-basilar pyramidal neurons respond to transient stimuli due to movement of objects with a textured surface.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2515, Montevideo, Uruguay
| | - María E Castelló
- Laboratorio Desarrollo y Evolución Neural, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Carolina Lescano
- Laboratorio Desarrollo y Evolución Neural, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Ángel A Caputi
- Departamento Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| |
Collapse
|
30
|
Westbrook AM. A review of the neurophysiology of the turtle retina III. Amacrine and ganglion cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb06538.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Westbrook AM. A review of the neurophysiology of the turtle retina: Horizontal and bipolar cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb03001.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Image luminance changes contrast sensitivity in visual cortex. Cell Rep 2021; 34:108692. [PMID: 33535047 PMCID: PMC7886026 DOI: 10.1016/j.celrep.2021.108692] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Accurate measures of contrast sensitivity are important for evaluating visual disease progression and for navigation safety. Previous measures suggested that cortical contrast sensitivity was constant across widely different luminance ranges experienced indoors and outdoors. Against this notion, here, we show that luminance range changes contrast sensitivity in both cat and human cortex, and the changes are different for dark and light stimuli. As luminance range increases, contrast sensitivity increases more within cortical pathways signaling lights than those signaling darks. Conversely, when the luminance range is constant, light-dark differences in contrast sensitivity remain relatively constant even if background luminance changes. We show that a Naka-Rushton function modified to include luminance range and light-dark polarity accurately replicates both the statistics of light-dark features in natural scenes and the cortical responses to multiple combinations of contrast and luminance. We conclude that differences in light-dark contrast increase with luminance range and are largest in bright environments.
Collapse
|
33
|
van den Berg CP, Hollenkamp M, Mitchell LJ, Watson EJ, Green NF, Marshall NJ, Cheney KL. More than noise: context-dependent luminance contrast discrimination in a coral reef fish ( Rhinecanthus aculeatus). J Exp Biol 2020; 223:jeb232090. [PMID: 32967998 DOI: 10.1242/jeb.232090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023]
Abstract
Achromatic (luminance) vision is used by animals to perceive motion, pattern, space and texture. Luminance contrast sensitivity thresholds are often poorly characterised for individual species and are applied across a diverse range of perceptual contexts using over-simplified assumptions of an animal's visual system. Such thresholds are often estimated using the receptor noise limited model (RNL). However, the suitability of the RNL model to describe luminance contrast perception remains poorly tested. Here, we investigated context-dependent luminance discrimination using triggerfish (Rhinecanthus aculeatus) presented with large achromatic stimuli (spots) against uniform achromatic backgrounds of varying absolute and relative contrasts. 'Dark' and 'bright' spots were presented against relatively dark and bright backgrounds. We found significant differences in luminance discrimination thresholds across treatments. When measured using Michelson contrast, thresholds for bright spots on a bright background were significantly higher than for other scenarios, and the lowest threshold was found when dark spots were presented on dark backgrounds. Thresholds expressed in Weber contrast revealed lower thresholds for spots darker than their backgrounds, which is consistent with the literature. The RNL model was unable to estimate threshold scaling across scenarios as predicted by the Weber-Fechner law, highlighting limitations in the current use of the RNL model to quantify luminance contrast perception. Our study confirms that luminance contrast discrimination thresholds are context dependent and should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Cedric P van den Berg
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michelle Hollenkamp
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laurie J Mitchell
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Erin J Watson
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Naomi F Green
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - N Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
34
|
Batabyal S, Gajjeraman S, Pradhan S, Bhattacharya S, Wright W, Mohanty S. Sensitization of ON-bipolar cells with ambient light activatable multi-characteristic opsin rescues vision in mice. Gene Ther 2020; 28:162-176. [PMID: 33087861 DOI: 10.1038/s41434-020-00200-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Gene therapy-based treatment such as optogenetics offers a potentially powerful way to bypass damaged photoreceptors in retinal degenerative diseases and use the remaining retinal cells for functionalization to achieve photosensitivity. However, current approaches of optogenetic treatment rely on opsins that require high intensity light for activation thus adding to the challenge for use as part of a wearable device. Here, we report AAV2 assisted delivery of highly photosensitive multi-characteristic opsin (MCO1) into ON-bipolar cells of mice with retinal degeneration to allow activation by ambient light. Rigorous characterization of delivery efficacy by different doses of AAV2 carrying MCO1 (vMCO1) into targeted cells showed durable expression over 6 months after delivery as measured by reporter expression. The enduring MCO1 expression was correlated with the significantly improved behavioral outcome, that was longitudinally measured by visual water-maze and optomotor assays. The pro/anti-inflammatory cytokine levels in plasma and vitreous humor of the vMCO1-injected group did not change significantly from baseline or control group. Furthermore, biodistribution studies at various time points after injection in animal groups injected with different doses of vMCO1 showed non-detectable vector copies in non-targeted tissues. Immunohistochemistry of vMCO1 transfected retinal tissues showed bipolar specific expression of MCO1 and the absence of immune/inflammatory response. Furthermore, ocular imaging using SD-OCT showed no change in the structural architecture of vMCO1-injected eyes. Induction of ambient light responsiveness to remaining healthy bipolar cells in subjects with retinal degeneration will allow the retinal circuitry to gain visual acuity without requiring an active stimulation device.
Collapse
|
35
|
Cone JJ, Bade ML, Masse NY, Page EA, Freedman DJ, Maunsell JHR. Mice Preferentially Use Increases in Cerebral Cortex Spiking to Detect Changes in Visual Stimuli. J Neurosci 2020; 40:7902-7920. [PMID: 32917791 PMCID: PMC7548699 DOI: 10.1523/jneurosci.1124-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2020] [Accepted: 08/26/2020] [Indexed: 01/20/2023] Open
Abstract
Whenever the retinal image changes, some neurons in visual cortex increase their rate of firing whereas others decrease their rate of firing. Linking specific sets of neuronal responses with perception and behavior is essential for understanding mechanisms of neural circuit computation. We trained mice of both sexes to perform visual detection tasks and used optogenetic perturbations to increase or decrease neuronal spiking primary visual cortex (V1). Perceptual reports were always enhanced by increments in V1 spike counts and impaired by decrements, even when increments and decrements in spiking were generated in the same neuronal populations. Moreover, detecting changes in cortical activity depended on spike count integration rather than instantaneous changes in spiking. Recurrent neural networks trained in the task similarly relied on increments in neuronal activity when activity has costs. This work clarifies neuronal decoding strategies used by cerebral cortex to translate cortical spiking into percepts that can be used to guide behavior.SIGNIFICANCE STATEMENT Visual responses in the primary visual cortex (V1) are diverse, in that neurons can be either excited or inhibited by the onset of a visual stimulus. We selectively potentiated or suppressed V1 spiking in mice while they performed contrast change detection tasks. In other experiments, excitation or inhibition was delivered to V1 independent of visual stimuli. Mice readily detected increases in V1 spiking while equivalent reductions in V1 spiking suppressed the probability of detection, even when increases and decreases in V1 spiking were generated in the same neuronal populations. Our data raise the striking possibility that only increments in spiking are used to render information to structures downstream of V1.
Collapse
Affiliation(s)
- Jackson J Cone
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Morgan L Bade
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Nicolas Y Masse
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - Elizabeth A Page
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - David J Freedman
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| | - John H R Maunsell
- Department of Neurobiology and Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
36
|
Yoon YJ, Lee JI, Jang YJ, An S, Kim JH, Fried SI, Im M. Retinal Degeneration Reduces Consistency of Network-Mediated Responses Arising in Ganglion Cells to Electric Stimulation. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1921-1930. [PMID: 32746297 PMCID: PMC7518787 DOI: 10.1109/tnsre.2020.3003345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retinal prostheses use periodic repetition of electrical stimuli to form artificial vision. To enhance the reliability of evoked visual percepts, repeating stimuli need to evoke consistent spiking activity in individual retinal ganglion cells (RGCs). However, it is not well known whether outer retinal degeneration alters the consistency of RGC responses. Hence, here we systematically investigated the trial-to-trial variability in network-mediated responses as a function of the degeneration level. We patch-clamp recorded spikes in ON and OFF types of alpha RGCs from r d10 mice at four different postnatal days (P15, P19, P31, and P60), representing distinct stages of degeneration. To assess the consistency of responses, we analyzed variances in spike count and timing across repeats of the same stimulus delivered multiple times. We found the trial-to-trial variability of network-mediated responses increased considerably as the disease progressed. Compared to responses taken before degeneration onset, those of degenerate retinas showed up to ~70% higher variability (Fano Factor) in spike counts (p < 0.001) and ~95% lower correlation level in spike timing (p < 0.001). These results indicate consistency weakens significantly in electrically-evoked network-mediated responses and therefore raise concerns about the ability of microelectronic retinal implants to elicit consistent visual percepts at advanced stages of retinal degeneration.
Collapse
|
37
|
An Annotated Journey through Modern Visual Neuroscience. J Neurosci 2020; 40:44-53. [PMID: 31896562 DOI: 10.1523/jneurosci.1061-19.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/03/2019] [Indexed: 11/21/2022] Open
Abstract
Recent advances in microscopy, genetics, physiology, and data processing have expanded the scope and accelerated the pace of discovery in visual neuroscience. However, the pace of discovery and the ever increasing number of published articles can present a serious issue for both trainees and senior scientists alike: with each passing year the fog of progress thickens, making it easy to lose sight of important earlier advances. As part of this special issue of the Journal of Neuroscience commemorating the 50th anniversary of SfN, here, we provide a variation on Stephen Kuffler's Oldies but Goodies classic reading list, with the hope that by looking back at highlights in the field of visual neuroscience we can better define remaining gaps in our knowledge and thus guide future work. We also hope that this article can serve as a resource that will aid those new to the field to find their bearings.
Collapse
|
38
|
Ferrari U, Deny S, Sengupta A, Caplette R, Trapani F, Sahel JA, Dalkara D, Picaud S, Duebel J, Marre O. Towards optogenetic vision restoration with high resolution. PLoS Comput Biol 2020; 16:e1007857. [PMID: 32667921 PMCID: PMC7416966 DOI: 10.1371/journal.pcbi.1007857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/10/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
In many cases of inherited retinal degenerations, ganglion cells are spared despite photoreceptor cell death, making it possible to stimulate them to restore visual function. Several studies have shown that it is possible to express an optogenetic protein in ganglion cells and make them light sensitive, a promising strategy to restore vision. However the spatial resolution of optogenetically-reactivated retinas has rarely been measured, especially in the primate. Since the optogenetic protein is also expressed in axons, it is unclear if these neurons will only be sensitive to the stimulation of a small region covering their somas and dendrites, or if they will also respond to any stimulation overlapping with their axon, dramatically impairing spatial resolution. Here we recorded responses of mouse and macaque retinas to random checkerboard patterns following an in vivo optogenetic therapy. We show that optogenetically activated ganglion cells are each sensitive to a small region of visual space. A simple model based on this small receptive field predicted accurately their responses to complex stimuli. From this model, we simulated how the entire population of light sensitive ganglion cells would respond to letters of different sizes. We then estimated the maximal acuity expected by a patient, assuming it could make an optimal use of the information delivered by this reactivated retina. The obtained acuity is above the limit of legal blindness. Our model also makes interesting predictions on how acuity might vary upon changing the therapeutic strategy, assuming an optimal use of the information present in the retinal activity. Optogenetic therapy could thus potentially lead to high resolution vision, under conditions that our model helps to determinine. In many cases of blindness, ganglion cells, the retinal output, remain functional. A promising strategy to restore vision is to express optogenetic proteins in ganglion cells. However, it is not clear what is the resolution of this new light sensor. A major concern is that axons might become light sensitive, and a focal stimulation would activate a very broad area of the retina, dramatically impairing spatial resolution. Here we show that this is not the case. Ganglion cells are activated only by stimulations close to their soma. Using a combination of data analysis and modeling based on mouse and non-human primate retina recordings, we show that the acuity expected with this therapy could be above the level of legal blindness.
Collapse
Affiliation(s)
- Ulisse Ferrari
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Stéphane Deny
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Abhishek Sengupta
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Romain Caplette
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Francesco Trapani
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Jens Duebel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
- * E-mail:
| |
Collapse
|
39
|
Hofmann V, Chacron MJ. Neuronal On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Sci Rep 2020; 10:10194. [PMID: 32576916 PMCID: PMC7311526 DOI: 10.1038/s41598-020-67258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/04/2020] [Indexed: 11/14/2022] Open
Abstract
Understanding the mechanisms by which neuronal population activity gives rise to perception and behavior remains a central question in systems neuroscience. Such understanding is complicated by the fact that natural stimuli often have complex structure. Here we investigated how heterogeneities within a sensory neuron population influence the coding of a noisy stimulus waveform (i.e., the noise) and its behaviorally relevant envelope signal (i.e., the signal). We found that On- and Off-type neurons displayed more heterogeneities in their responses to the noise than in their responses to the signal. These differences in heterogeneities had important consequences when quantifying response similarity between pairs of neurons. Indeed, the larger response heterogeneity displayed by On- and Off-type neurons made their pairwise responses to the noise on average more independent than when instead considering pairs of On-type or Off-type neurons. Such relative independence allowed for better averaging out of the noise response when pooling neural activities in a mixed-type (i.e., On- and Off-type) than for same-type (i.e., only On-type or only Off-type), thereby leading to greater information transmission about the signal. Our results thus reveal a function for the combined activities of On- and Off-type neurons towards improving information transmission of envelope stimuli at the population level. Our results will likely generalize because natural stimuli across modalities are characterized by a stimulus waveform whose envelope varies independently as well as because On- and Off-type neurons are observed across systems and species.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
40
|
Soto F, Hsiang JC, Rajagopal R, Piggott K, Harocopos GJ, Couch SM, Custer P, Morgan JL, Kerschensteiner D. Efficient Coding by Midget and Parasol Ganglion Cells in the Human Retina. Neuron 2020; 107:656-666.e5. [PMID: 32533915 DOI: 10.1016/j.neuron.2020.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
Abstract
In humans, midget and parasol ganglion cells account for most of the input from the eyes to the brain. Yet, how they encode visual information is unknown. Here, we perform large-scale multi-electrode array recordings from retinas of treatment-naive patients who underwent enucleation surgery for choroidal malignant melanomas. We identify robust differences in the function of midget and parasol ganglion cells, consistent asymmetries between their ON and OFF types (that signal light increments and decrements, respectively) and divergence in the function of human versus non-human primate retinas. Our computational analyses reveal that the receptive fields of human midget and parasol ganglion cells divide naturalistic movies into adjacent spatiotemporal frequency domains with equal stimulus power, while the asymmetric response functions of their ON and OFF types simultaneously maximize stimulus coverage and information transmission and minimize metabolic cost. Thus, midget and parasol ganglion cells in the human retina efficiently encode our visual environment.
Collapse
Affiliation(s)
- Florentina Soto
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jen-Chun Hsiang
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rithwick Rajagopal
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kisha Piggott
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - George J Harocopos
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven M Couch
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Philip Custer
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Josh L Morgan
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel Kerschensteiner
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
41
|
Empowering Retinal Gene Therapy with a Specific Promoter for Human Rod and Cone ON-Bipolar Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:505-519. [PMID: 32258214 PMCID: PMC7114634 DOI: 10.1016/j.omtm.2020.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Optogenetic gene therapy holds promise to restore high-quality vision in blind patients and recently reached clinical trials. Although the ON-bipolar cells, the first retinal interneurons, make the most attractive targets for optogenetic vision restoration, they have remained inaccessible to human gene therapy due to the lack of a robust cell-specific promoter. We describe the design and functional evaluation of 770En_454P(hGRM6), a human GRM6 gene-derived, short promoter that drives strong and highly specific expression in both the rod- and cone-type ON-bipolar cells of the human retina. Expression also in cone-type ON-bipolar cells is of importance, since the cone-dominated macula mediates high-acuity vision and is the primary target of gene therapies. 770En_454P(hGRM6)-driven middle-wave opsin expression in ON-bipolar cells achieved lasting restoration of high visual acuity in the rd1 mouse model of late retinal degeneration. The new promoter enables precise manipulation of the inner retinal network and paves the way for clinical application of gene therapies for high-resolution optogenetic vision restoration, raising hopes of significantly improving the life quality of people suffering from blindness.
Collapse
|
42
|
Sugita Y, Miura K, Furukawa T. Retinal ON and OFF pathways contribute to initial optokinetic responses with different temporal characteristics. Eur J Neurosci 2020; 52:3160-3165. [PMID: 32027443 DOI: 10.1111/ejn.14697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/05/2020] [Accepted: 01/29/2020] [Indexed: 11/30/2022]
Abstract
Visual information in the retina is processed via two pathways: ON and OFF pathways that originate from ON and OFF bipolar cells. The differences in the receptors that mediate signal transmission from photoreceptors imply that the response speed to light signals differs between ON and OFF pathways. We studied the initial optokinetic responses (OKRs) of mice using two-frame motion stimuli presented with interstimulus intervals (ISIs) to understand functional difference of these pathways. When two successive image frames were presented with an ISI, observers often perceived motion in the opposite direction of the actual shift. This directional reversal results from the biphasic nature of the temporal filters in visual systems whose characteristics can be estimated from the dependence on ISIs. We examined the dependence on ISIs in the OKRs of TRPM1-/- mice, whose ON bipolar cells are dysfunctional, as well as in those of wild-type control mice. Wild type and TRPM1-/- mice showed comparable OKRs in the veridical direction when no ISI was present. Both types of mice showed OKRs that decreased and eventually reversed as the ISI increased, but with a directional reversal at a shorter ISI in TRPM1-/- than wild-type mice. In addition, the temporal filters of TRPM1-/- mice estimated from dependence on ISIs were tuned for higher frequencies, suggesting that compared with wild-type mice, the visual system of TRPM1-/- mice responds to light signals with faster dynamics. We conclude that the ON and OFF pathways contribute to initial OKRs by providing visual signals processed with different temporal resolutions.
Collapse
Affiliation(s)
- Yuko Sugita
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pathology of Mental Diseases, National Center of Neurology and Psychiatry, National Institute of Mental Health, Tokyo, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
43
|
Differential sensitivity of the On and Off visual responses to retinal ischemia. Exp Eye Res 2020; 191:107906. [PMID: 31899251 DOI: 10.1016/j.exer.2019.107906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/22/2022]
Abstract
Retinal ischemia is a common condition that may lead into vision impairment and blindness. In this study, we evaluated changes separately in On and Off visual responses induced by retinal ischemia. To do this, reversible retinal ischemia was induced in anaesthetized rats by increasing the intraocular pressure until the eye fundus became whitish for either 30 or 60 min. Both electroretinogram (ERG) and multiunit neuronal activity in the superior colliculus (SC) were recorded simultaneously for at least 20 min before, during, and after ischemia. In addition, in normal eyes, intravitreal glycine (Gly) injections were performed to further investigate the mechanisms involved in this process. We found that collicular Off responses were more sensitive to ischemia than On responses. The Off response was the first one to decay at the time ischemia was induced and the last to recover after blood reperfusion. The duration of ischemia also differentially affected both responses. After 30 min of ischemia, 14% of SC recordings failed to recover Off responses. After 1 h of ischemia, the percentage of recordings that failed to recover Off responses increased to 50%. Post-ischemic ERGs remained unaltered in all cases. Intravitreal Gly injections caused suppression of Off responses in the SC. Higher doses caused suppression of both On and Off responses in the SC but with no effect on the ERG at the doses tested. In summary, Off responses were more sensitive than On responses to ischemia suggesting that different mechanisms drive the two types of responses. The recovery of transitory ischemia was not complete in the SC responses whereas the ERG remained unaltered, suggesting that retinal damage produced by ischemia is more prominent in ganglion cells. Our results provide critical information for understanding ischemia repercussions and visual processing in the early visual system.
Collapse
|
44
|
Abstract
Pieron’s and Chocholle’s seminal psychophysical work predicts that human response time to information relative to visual contrast and/or sound frequency decreases when contrast intensity or sound frequency increases. The goal of this study is to bring to the forefront the ability of individuals to use visual contrast intensity and sound frequency in combination for faster perceptual decisions of relative depth (“nearer”) in planar (2D) object configurations based on physical variations in luminance contrast. Computer controlled images with two abstract patterns of varying contrast intensity, one on the left and one on the right, preceded or not by a pure tone of varying frequency, were shown to healthy young humans in controlled experimental sequences. Their task (two-alternative, forced-choice) was to decide as quickly as possible which of two patterns, the left or the right one, in a given image appeared to “stand out as if it were nearer” in terms of apparent (subjective) visual depth. The results showed that the combinations of varying relative visual contrast with sounds of varying frequency exploited here produced an additive effect on choice response times in terms of facilitation, where a stronger visual contrast combined with a higher sound frequency produced shorter forced-choice response times. This new effect is predicted by audio-visual probability summation.
Collapse
|
45
|
How fly neurons compute the direction of visual motion. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:109-124. [PMID: 31691093 PMCID: PMC7069908 DOI: 10.1007/s00359-019-01375-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 10/25/2022]
Abstract
Detecting the direction of image motion is a fundamental component of visual computation, essential for survival of the animal. However, at the level of individual photoreceptors, the direction in which the image is shifting is not explicitly represented. Rather, directional motion information needs to be extracted from the photoreceptor array by comparing the signals of neighboring units over time. The exact nature of this process as implemented in the visual system of the fruit fly Drosophila melanogaster has been studied in great detail, and much progress has recently been made in determining the neural circuits giving rise to directional motion information. The results reveal the following: (1) motion information is computed in parallel ON and OFF pathways. (2) Within each pathway, T4 (ON) and T5 (OFF) cells are the first neurons to represent the direction of motion. Four subtypes of T4 and T5 cells exist, each sensitive to one of the four cardinal directions. (3) The core process of direction selectivity as implemented on the dendrites of T4 and T5 cells comprises both an enhancement of signals for motion along their preferred direction as well as a suppression of signals for motion along the opposite direction. This combined strategy ensures a high degree of direction selectivity right at the first stage where the direction of motion is computed. (4) At the subsequent processing stage, tangential cells spatially integrate direct excitation from ON and OFF-selective T4 and T5 cells and indirect inhibition from bi-stratified LPi cells activated by neighboring T4/T5 terminals, thus generating flow-field-selective responses.
Collapse
|
46
|
Patrick JA, Roach NW, McGraw PV. Temporal modulation improves dynamic peripheral acuity. J Vis 2019; 19:12. [PMID: 31747690 PMCID: PMC6871547 DOI: 10.1167/19.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macular degeneration and related visual disorders greatly limit foveal function, resulting in reliance on the peripheral retina for tasks requiring fine spatial vision. Here we investigate stimulus manipulations intended to maximize peripheral acuity for dynamic targets. Acuity was measured using a single interval orientation discrimination task at 10° eccentricity. Two types of image motion were investigated along with two different forms of temporal manipulation. Smooth object motion was generated by translating targets along an isoeccentric path at a constant speed (0-20°/s). Ocular motion was simulated by jittering target location using previously recorded fixational eye movement data, amplified by a variable gain factor (0-8). In one stimulus manipulation, the sequence was temporally subsampled by displaying the target on an evenly spaced subset of video frames. In the other, the contrast polarity of the stimulus was reversed at a variable rate. We found that threshold under object motion was improved at all speeds by reversing contrast polarity, while temporal subsampling improved resolution at high speeds but impaired performance at low speeds. With simulated ocular motion, thresholds were consistently improved by contrast polarity reversal, but impaired by temporal subsampling. We find that contrast polarity reversal and temporal subsampling produce differential effects on peripheral acuity. Applying contrast polarity reversal may offer a relatively simple image manipulation that could enhance visual performance in individuals with central vision loss.
Collapse
Affiliation(s)
- Jonathan A Patrick
- Nottingham Visual Neuroscience, The University of Nottingham, Nottingham, UK
| | - Neil W Roach
- Nottingham Visual Neuroscience, The University of Nottingham, Nottingham, UK
| | - Paul V McGraw
- Nottingham Visual Neuroscience, The University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
Paradoxical Rules of Spike Train Decoding Revealed at the Sensitivity Limit of Vision. Neuron 2019; 104:576-587.e11. [PMID: 31519460 DOI: 10.1016/j.neuron.2019.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/28/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
All sensory information is encoded in neural spike trains. It is unknown how the brain utilizes this neural code to drive behavior. Here, we unravel the decoding rules of the brain at the most elementary level by linking behavioral decisions to retinal output signals in a single-photon detection task. A transgenic mouse line allowed us to separate the two primary retinal outputs, ON and OFF pathways, carrying information about photon absorptions as increases and decreases in spiking, respectively. We measured the sensitivity limit of rods and the most sensitive ON and OFF ganglion cells and correlated these results with visually guided behavior using markerless head and eye tracking. We show that behavior relies only on the ON pathway even when the OFF pathway would allow higher sensitivity. Paradoxically, behavior does not rely on the spike code with maximal information but instead relies on a decoding strategy based on increases in spiking.
Collapse
|
48
|
Qin B, Humberg TH, Kim A, Kim HS, Short J, Diao F, White BH, Sprecher SG, Yuan Q. Muscarinic acetylcholine receptor signaling generates OFF selectivity in a simple visual circuit. Nat Commun 2019; 10:4093. [PMID: 31501438 PMCID: PMC6733798 DOI: 10.1038/s41467-019-12104-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/21/2019] [Indexed: 11/30/2022] Open
Abstract
ON and OFF selectivity in visual processing is encoded by parallel pathways that respond to either light increments or decrements. Despite lacking the anatomical features to support split channels, Drosophila larvae effectively perform visually-guided behaviors. To understand principles guiding visual computation in this simple circuit, we focus on investigating the physiological properties and behavioral relevance of larval visual interneurons. We find that the ON vs. OFF discrimination in the larval visual circuit emerges through light-elicited cholinergic signaling that depolarizes a cholinergic interneuron (cha-lOLP) and hyperpolarizes a glutamatergic interneuron (glu-lOLP). Genetic studies further indicate that muscarinic acetylcholine receptor (mAchR)/Gαo signaling produces the sign-inversion required for OFF detection in glu-lOLP, the disruption of which strongly impacts both physiological responses of downstream projection neurons and dark-induced pausing behavior. Together, our studies identify the molecular and circuit mechanisms underlying ON vs. OFF discrimination in the Drosophila larval visual system. Drosophila larvae are able to perform visually-guided behaviours yet the molecular and circuit mechanisms for discriminating changes in light intensity are not known. Here, the authors report that ON versus OFF discrimination results from opposing cholinergic and glutamatergic mechanisms.
Collapse
Affiliation(s)
- Bo Qin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Anna Kim
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hyong S Kim
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jacob Short
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fengqiu Diao
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Benjamin H White
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Simon G Sprecher
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Quan Yuan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Amblyopia Affects the ON Visual Pathway More than the OFF. J Neurosci 2019; 39:6276-6290. [PMID: 31189574 PMCID: PMC6687897 DOI: 10.1523/jneurosci.3215-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/03/2023] Open
Abstract
Visual information reaches the cerebral cortex through parallel ON and OFF pathways that signal the presence of light and dark stimuli in visual scenes. We have previously demonstrated that optical blur reduces visual salience more for light than dark stimuli because it removes the high spatial frequencies from the stimulus, and low spatial frequencies drive weaker ON than OFF cortical responses. Therefore, we hypothesized that sustained optical blur during brain development should weaken ON cortical pathways more than OFF, increasing the dominance of darks in visual perception. Here we provide support for this hypothesis in humans with anisometropic amblyopia who suffered sustained optical blur early after birth in one of the eyes. In addition, we show that the dark dominance in visual perception also increases in strabismic amblyopes that have their vision to high spatial frequencies reduced by mechanisms not associated with optical blur. Together, we show that amblyopia increases visual dark dominance by 3-10 times and that the increase in dark dominance is strongly correlated with amblyopia severity. These results can be replicated with a computational model that uses greater luminance/response saturation in ON than OFF pathways and, as a consequence, reduces more ON than OFF cortical responses to stimuli with low spatial frequencies. We conclude that amblyopia affects the ON cortical pathway more than the OFF, a finding that could have implications for future amblyopia treatments.SIGNIFICANCE STATEMENT Amblyopia is a loss of vision that affects 2-5% of children across the world and originates from a deficit in visual cortical circuitry. Current models assume that amblyopia affects similarly ON and OFF visual pathways, which signal light and dark features in visual scenes. Against this current belief, here we demonstrate that amblyopia affects the ON visual pathway more than the OFF, a finding that could have implications for new amblyopia treatments targeted at strengthening a weak ON visual pathway.
Collapse
|
50
|
Fan X, Wu LL, Di X, Ding T, Ding AH. Applications of Isolated-Check Visual Evoked Potential in Early Stage of Open-Angle Glaucoma Patients. Chin Med J (Engl) 2019; 131:2439-2446. [PMID: 30334529 PMCID: PMC6202595 DOI: 10.4103/0366-6999.243564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Standard automated perimetry does not sufficiently detect early open-angle glaucoma (OAG) in the clinic. New visual function tests for early glaucoma damage are therefore needed. The present study evaluated whether an isolated-check visual evoked potential (icVEP) could be used to detect visual function abnormalities in early-stage OAG and to explore potential related factors. Methods: This was a cross-sectional study. Thirty-seven OAG patients with early-stage visual field loss (mean deviation ≥ −6.00 dB) detected by the Humphrey Field Analyzer (30-2 SITA program) and 26 controls were included in this study. Optical coherence tomography (OCT) was used to detect retinal nerve fiber layer (RNFL) defects. The icVEP preferentially evaluates the magnocellular-ON pathway. VEPs were recorded and signal-to-noise ratios (SNRs) were derived based on multivariate analysis. Eyes that yielded an SNR ≤1 were considered abnormal. Receiver operating characteristic (ROC) curve analysis was used to estimate the accuracy of group classification. Correlations between SNRs and related factors were analyzed. Results: Based on an SNR criterion of 1, the icVEP had a sensitivity of 62.2% and a specificity of 92.3% for diagnosing early-stage OAG with 74.6% classification accuracy. The ROC curve analysis, however, suggested that an SNR criterion of 0.93 would produce the highest classification accuracy (77.3%). Both RNFL thinning in the temporal superior quadrant on OCT and number of abnormal test points in the central 11° visual field (pattern deviation, P < 0.5%) significantly correlated with the SNR (P < 0.05). Conclusions: The icVEP detected visual function abnormalities in approximately 3/5 of eyes with early-stage OAG with greater than 90% specificity. SNR correlated with both a decrease in RNFL thickness and severity of central visual field loss.
Collapse
Affiliation(s)
- Xiang Fan
- Department of Ophthalmology; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Ling-Ling Wu
- Department of Ophthalmology, Qingdao Sanatorium of Shandong Province, Qingdao, Shandong 266071, China
| | - Xia Di
- Department of Ophthalmology; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Tong Ding
- Department of Ophthalmology; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Ai-Hua Ding
- Department of Ophthalmology; Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|