1
|
Bebawy G, Collier P, Williams PM, Burley JC, Needham D. LDLR-targeted orlistat therapeutic nanoparticles: Peptide selection, assembly, characterization, and cell-uptake in breast cancer cell lines. Int J Pharm 2025; 676:125574. [PMID: 40239877 DOI: 10.1016/j.ijpharm.2025.125574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
MOTIVATION Many cancers overexpress low-density lipoprotein receptors (LDLR), facilitating cholesterol metabolism for tumour growth. Targeting LDLR offers a promising strategy for selective drug delivery. Orlistat, a fatty acid synthase (FAS) inhibitor, has shown anti-cancer potential, particularly in tumours with high FAS expression. This study introduces an LDLR-Orlistat Targeted Nanoparticles (LDLR-OTNs) to enhance cancer cell uptake via LDLR-mediated endocytosis. The objectives include synthesizing lipid-based orlistat nanoparticles, functionalizing them with an 11-mer LDLR-binding peptide, assessing uptake and cytotoxicity in three LDLR- and FAS-expressing breast cancer cell lines (BT-474, MDA MB 453, MCF-7), and comparing uptake kinetics with non-targeted nanoparticles. METHODS Orlistat nanoparticles (ONs) were synthesised via rapid solvent exchange, producing uncoated ONs, POPC-coated ONs (POPC-ONs), and LDLR-targeted ONs (LDLR-OTNs). Targeting was achieved by conjugating an 11-mer binding peptide (RLTRKRGLKLA) to DSPE-PEG5000 maleimide via click chemistry, confirmed by Ellman's test. Nanoparticles were characterised using DLS and TEM. Cellular uptake over 24 hours was assessed using fluorescence-labelled POPC-ONs and LDLR-OTNs, and uptake kinetics were analysed. Suramin-blocking studies were used to confirm LDLR-mediated uptake. A 48-hour cytotoxicity assay quantified IC50 values in the aforementioned cell lines. RESULTS TEM data showed that LDLR-OTNs (33 nm) were smaller than untargeted POPC-ONs (58 nm) and uncoated ONs (67 nm). Ellman's test confirmed > 99.2% peptide conjugation. Cellular uptake of LDLR-OTNs was rapid, with significant fluorescence by 1 hour and a kinetic plateau at 24-48 hours, with data fitting to a modified exponential model, while that of untargeted POPC-ONs had lower initial uptake, following a logistic model. Suramin blocking reduced LDLR-OTN uptake, confirming receptor-mediated entry. Cytotoxicity assays yielded IC50 values of 23.8 µM (BT-474), 25.8 µM (MDA MB 453), and 8.2 µM (MCF-7), with maximal inhibition at 48 h. CONCLUSIONS LDLR-OTNs demonstrated receptor-mediated uptake and potent cytotoxicity in LDLR- and FAS- overexpressing breast cancer cells. These findings support LDLR-targeted nanoparticles as a promising approach for delivering FAS inhibitors to LDLR-rich tumours, meriting further investigation in targeted cancer therapy development.
Collapse
Affiliation(s)
- George Bebawy
- School of Pharmacy, University of Nottingham, Nottingham, UK; Pharmaceutics Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Pamela Collier
- School of Pharmacy, University of Nottingham, Nottingham, UK.
| | | | | | - David Needham
- School of Pharmacy, University of Nottingham, Nottingham, UK; Department of Mechanical Engineering and Material Science, Duke University, NC, USA.
| |
Collapse
|
2
|
Manojlovic MS, Amogne MT. Apolipoprotein B100 revisited. Nat Rev Cardiol 2025:10.1038/s41569-025-01155-w. [PMID: 40210754 DOI: 10.1038/s41569-025-01155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Mia S Manojlovic
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia.
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, University Clinical Center of Vojvodina, Novi Sad, Serbia.
| | - Melaku Taye Amogne
- Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Benitez-Amaro A, Garcia E, La Chica Lhoëst MT, Martínez A, Borràs C, Tondo M, Céspedes MV, Caruana P, Pepe A, Bochicchio B, Cenarro A, Civeira F, Prades R, Escola-Gil JC, Llorente-Cortés V. Targeting LDL aggregation decreases atherosclerotic lipid burden in a humanized mouse model of familial hypercholesterolemia: Crucial role of ApoB100 conformational stabilization. Atherosclerosis 2024:118630. [PMID: 39547850 DOI: 10.1016/j.atherosclerosis.2024.118630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND AIMS Low-density lipoprotein (LDL) aggregation is nowadays considered a therapeutic target in atherosclerosis. DP3, the retro-enantio version of the sequence Gly1127-Cys1140 of LRP1, efficiently inhibits LDL aggregation and foam cell in vitro formation. Here, we investigate whether DP3 modulates atherosclerosis in a humanized ApoB100, LDL receptor (LDLR) knockout mice (Ldlr-/-hApoB100 Tg) and determine the potential LDL-related underlying mechanisms. METHODS Tg mice were fed an HFD for 21 days to induce atherosclerosis and then randomized into three groups that received a daily subcutaneous administration (10 mg/kg) of i) vehicle, ii) DP3 peptide, or iii) a non-active peptide (IP321). The in vivo biodistribution of a fluorescent-labeled peptide version (TAMRA-DP3), and its colocalization with ApoB100 in the arterial intima, was analyzed by imaging system (IVIS) and confocal microscopy. Heart aortic roots were used for atherosclerosis detection and quantification. LDL functionality was analyzed by biochemical, biophysical, molecular, and cellular studies. RESULTS Intimal neutral lipid accumulation in the aortic root was reduced in the DP3-treated group as compared to control groups. ApoB100 in LDLs from the DP3 group exhibited an increased percentage of α-helix secondary structures and decreased immunoreactivity to anti-ApoB100 antibodies. LDL from DP3-treated mice were protected against passive and sphingomyelinase (SMase)-induced aggregation, although they still experienced SMase-induced sphingomyelin phospholysis. In patients with familial hypercholesterolemia (FH), DP3 efficiently inhibited both SMase-induced phospholysis and aggregation. CONCLUSIONS DP3 peptide administration inhibits atherosclerosis by preserving the α-helix secondary structures of ApoB100 in a humanized ApoB100 murine model that mimicks the hallmark of human hypercholesterolemia.
Collapse
Affiliation(s)
- A Benitez-Amaro
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - E Garcia
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - M T La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - A Martínez
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain
| | - C Borràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - M Tondo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain; Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041, Barcelona, Spain
| | - M V Céspedes
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - P Caruana
- Grup d'Oncologia Ginecològica i Peritoneal, Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain; Universitat de Barcelona (UB), 08007, Barcelona, Spain
| | - A Pepe
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - B Bochicchio
- Laboratory of Bioinspired Materials, Department of Science, University of Basilicata, Potenza, Italy
| | - A Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - F Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - R Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - J C Escola-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - V Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), 08036, Barcelona, Spain; Institut d'Investigacions Biomèdiques IIB Sant Pau, 08041, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
4
|
Jigoranu RA, Roca M, Costache AD, Mitu O, Oancea AF, Miftode RS, Haba MȘC, Botnariu EG, Maștaleru A, Gavril RS, Trandabat BA, Chirica SI, Haba RM, Leon MM, Costache II, Mitu F. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life (Basel) 2023; 13:1639. [PMID: 37629496 PMCID: PMC10455542 DOI: 10.3390/life13081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis is a significant health concern with a growing incidence worldwide. It is directly linked to an increased cardiovascular risk and to major adverse cardiovascular events, such as acute coronary syndromes. In this review, we try to assess the potential diagnostic role of biomarkers in the early identification of patients susceptible to the development of atherosclerosis and other adverse cardiovascular events. We have collected publications concerning already established parameters, such as low-density lipoprotein cholesterol (LDL-C), as well as newer markers, e.g., apolipoprotein B (apoB) and the ratio between apoB and apoA. Additionally, given the inflammatory nature of the development of atherosclerosis, high-sensitivity c-reactive protein (hs-CRP) or interleukin-6 (IL-6) are also discussed. Additionally, newer publications on other emerging components linked to atherosclerosis were considered in the context of patient evaluation. Apart from the already in-use markers (e.g., LDL-C), emerging research highlights the potential of newer molecules in optimizing the diagnosis of atherosclerotic disease in earlier stages. After further studies, they might be fully implemented in the screening protocols.
Collapse
Affiliation(s)
- Raul-Alexandru Jigoranu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Mihai Roca
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandru-Dan Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandru-Florinel Oancea
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Radu-Stefan Miftode
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Mihai Ștefan Cristian Haba
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Eosefina Gina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandra Maștaleru
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Radu-Sebastian Gavril
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Bogdan-Andrei Trandabat
- Department of Surgery II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Orthopedics and Trauma, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Sabina Ioana Chirica
- Faculty of General Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (S.I.C.); (R.M.H.)
| | - Raluca Maria Haba
- Faculty of General Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (S.I.C.); (R.M.H.)
| | - Maria Magdalena Leon
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina-Iuliana Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
5
|
Beck RM, Voss RS, Jansa SA. Craniodental Morphology and Phylogeny of Marsupials. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2022. [DOI: 10.1206/0003-0090.457.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Robin M.D. Beck
- School of Science, Engineering and Environment University of Salford, U.K. School of Biological, Earth & Environmental Sciences University of New South Wales, Australia Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History
| | - Sharon A. Jansa
- Bell Museum and Department of Ecology, Evolution, and Behavior University of Minnesota
| |
Collapse
|
6
|
Liu MM, Chen ZH, Zhao LY, Zhao JY, Rong DL, Ma XK, Ruan DY, Lin JX, Qi JJ, Hu PS, Wen JY, Chen J, Lin Q, Wu XY, Wei L, Dong M. Prognostic Value of Serum Apolipoprotein B to Apolipoprotein A-I Ratio in Hepatocellular Carcinoma Patients Treated with Transcatheter Arterial Chemoembolization: A Propensity Score-Matched Analysis. Oncol Res Treat 2021; 44:450-468. [PMID: 34380137 DOI: 10.1159/000517735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The prognosis of advanced hepatocellular carcinoma (HCC) varies in patients receiving transcatheter arterial chemoembolization (TACE). In this study, we aimed to assess the prognostic value of serum apolipoprotein B (ApoB)/apolipoprotein A-I (ApoA-I) in this group of patients. METHODS The serum lipid levels of HCC patients undergoing TACE were obtained from routine preoperative blood lipid examination. A propensity score-matched (PSM) analysis was used to eliminate the imbalance of baseline characteristics of the high and low ApoB/ApoA-I groups. Then, univariate and multivariate analysis were conducted to evaluate the prognostic value of ApoB/ApoA-I. RESULTS In 455 HCC patients treated with TACE, ApoB/ApoA-I was positively correlated with AFP, T stage, distant metastasis, and TNM stage (p < 0.05). Patients with high ApoB/ApoA-I had a significantly shorter overall survival (OS) than those with low ApoB/ApoA-I (median OS, 21.7 vs. 39.6 months, p < 0.001). Multivariate analysis indicated that ApoB/ApoA-I was an independent prognostic index for OS (hazard ratio [HR] = 1.42, p = 0.008). After baseline characteristics were balanced, 288 patients were included in the PSM cohort. In this cohort, high ApoB/ApoA-I still predicted inferior OS in both univariate analysis (median OS, 27.6 vs. 39.3 months, p = 0.002) and multivariate analysis (HR = 1.58, p = 0.006). CONCLUSION Serum ApoB/ApoA-I is a useful biomarker in predicting aggressive clinicopathological characteristics and poor prognosis in HCC patients treated with TACE.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhan-Hong Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Medical Oncology of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li-Yun Zhao
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing-Yuan Zhao
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dai-Lin Rong
- Department of Radiology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Kun Ma
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dan-Yun Ruan
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin-Xiang Lin
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing-Jing Qi
- Department of Medical Oncology of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Pei-Shan Hu
- Department of Medical Oncology of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing-Yun Wen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qu Lin
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Wei
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Dong
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Cao JF, Xu W, Zhang YY, Shu Y, Wang JH. A Salt Stimulus-Responsive Nanohydrogel for Controlled Fishing Low-Density Lipoprotein with Superior Adsorption Capacity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4583-4592. [PMID: 33448218 DOI: 10.1021/acsami.0c21150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A salt-responsive nanoplatform is constructed through a simple tactic by tethering zwitterionic nanohydrogels (NGs) on a carboxylated silica (SiO2-COOH) framework. Chondroitin sulfate (CS), with a specific recognition effect for low-density lipoprotein (LDL), is modified to NGs by amidation reaction. Water retention and swelling properties of NGs are greatly enhanced in a saline environment attributed to the anti-polyelectrolyte effect. It endows the SiO2-NGs-CS framework a sensitive salt-responsive property, and thus, more CS moieties are exposed. The controlled adsorption of LDL with an adsorption efficiency of 7.2 to 93% is achieved by adjusting the concentration of MgCl2 from 0 to 0.1 mol L-1. SiO2-NGs-CS exhibits excellent adsorption capacity for fishing LDL, acquiring the highest adsorption capacity of 898.1 mg g-1. Moreover, SiO2-NGs-CS shows superior selectivity to the other three proteins with similar isoelectric points (pIs) to LDL. The captured LDL is readily stripped by 0.2% (m/m) SDS with a recovery of 95.4%. The superior separation performance of SiO2-NGs-CS is demonstrated by the isolation and selective discrimination of LDL from the simulated serum of hypercholesterolemia patients, as illustrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis assays.
Collapse
Affiliation(s)
- Jian-Fang Cao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yao-Yao Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
8
|
Fracassi A, Cao J, Yoshizawa-Sugata N, Tóth É, Archer C, Gröninger O, Ricciotti E, Tang SY, Handschin S, Bourgeois JP, Ray A, Liosi K, Oriana S, Stark W, Masai H, Zhou R, Yamakoshi Y. LDL-mimetic lipid nanoparticles prepared by surface KAT ligation for in vivo MRI of atherosclerosis. Chem Sci 2020; 11:11998-12008. [PMID: 34094421 PMCID: PMC8162946 DOI: 10.1039/d0sc04106h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low-density lipoprotein (LDL)-mimetic lipid nanoparticles (LNPs), decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachment of apolipoprotein-mimetic peptide (P), Gd(iii)-chelate (Gd), and sulforhodamine B (R) moieties on the LNP surface. The functionalized LNPs were prepared using the amide-forming potassium acyltrifluoroborate (KAT) ligation reaction. The KAT groups on the surface of LNPs were allowed to react with the corresponding hydroxylamine (HA) derivatives of P and Gd to provide bi-functionalized LNPs (PGd-LNP). The reaction proceeded with excellent yields, as observed by ICP-MS (for B and Gd amounts) and MALDI-TOF-MS data, and did not alter the morphology of the LNPs (mean diameter: ca. 50 nm), as shown by DLS and cryoTEM analyses. With the help of the efficient KAT ligation, a high payload of Gd(iii)-chelate on the PGd-LNP surface (ca. 2800 Gd atoms per LNP) was successfully achieved and provided a high r1 relaxivity (r1 = 22.0 s−1 mM−1 at 1.4 T/60 MHz and 25 °C; r1 = 8.2 s−1 mM−1 at 9.4 T/400 MHz and 37 °C). This bi-functionalized PGd-LNP was administered to three atherosclerotic apoE−/− mice to reveal the clear enhancement of atherosclerotic plaques in the brachiocephalic artery (BA) by MRI, in good agreement with the high accumulation of Gd in the aortic arch as shown by ICP-MS. The parallel in vivo MRI and ex vivo studies of whole mouse cryo-imaging were performed using triply functionalized LNPs with P, Gd, and R (PGdR-LNP). The clear presence of atherosclerotic plaques in BA was observed by ex vivo bright field cryo-imaging, and they were also observed by high emission fluorescent imaging. These directly corresponded to the enhanced tissue in the in vivo MRI of the identical mouse. LDL-mimetic lipid nanoparticles, decorated with MRI contrast agents and fluorescent dyes, were prepared by the covalent attachments of an apoB100-mimetic peptide, Gd(iii)-chelate, and rhodamine to enhance atherosclerosis in the in vivo imaging.![]()
Collapse
Affiliation(s)
- Alessandro Fracassi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Jianbo Cao
- Department of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania John Morgan 198, 3620 Hamilton Walk Philadelphia PA19104 USA
| | - Naoko Yoshizawa-Sugata
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa, Setagaya Tokyo 156-8506 Japan
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université dOrléans Rue Charles Sadron, 45071 Orléans Cedex 2 France
| | - Corey Archer
- Institut für Geochemie und Petrologie, ETH Zürich Clausiusstrasse 25 CH-8092 Zürich Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 CH-8093 Zurich Switzerland
| | - Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania 3400 Civic Center Boulevard Philadelphia PA19104 USA
| | - Soon Yew Tang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania 3400 Civic Center Boulevard Philadelphia PA19104 USA
| | - Stephan Handschin
- Scientific Center for Optical and Electron Microscopy, ETH Zürich Auguste-Piccard-Hof 1 Zürich CH-8093 Switzerland
| | - Jean-Pascal Bourgeois
- University of Applied Science and Arts Western Switzerland Bd de Pérolles 80 CH-1700 Fribourg Switzerland
| | - Ankita Ray
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Korinne Liosi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Sean Oriana
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Wendelin Stark
- Institute for Chemical and Bioengineering, ETH Zurich Vladimir-Prelog-Weg 1 CH-8093 Zurich Switzerland
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science 2-1-6 Kamikitazawa, Setagaya Tokyo 156-8506 Japan
| | - Rong Zhou
- Department of Radiology, Institute for Translational Medicine and Therapeutics, University of Pennsylvania John Morgan 198, 3620 Hamilton Walk Philadelphia PA19104 USA
| | - Yoko Yamakoshi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
9
|
Fukuda R, Murakami T. Potential of Lipoprotein-Based Nanoparticulate Formulations for the Treatment of Eye Diseases. Biol Pharm Bull 2020; 43:596-607. [PMID: 32238702 DOI: 10.1248/bpb.b19-00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins are naturally occurring nanoparticles and their main physiological function is the promotion of lipid metabolism. They can be prepared in vitro for use as drug carriers, and these reconstituted lipoproteins show similar biological activity to their natural counterparts. Some lipoproteins can cross the blood-retinal barrier and are involved in intraocular lipid metabolism. Drug-loaded lipoproteins can be delivered to the retina for the treatment of posterior eye diseases. In this review, we have discussed the therapeutic applications of lipoproteins for eye diseases and introduced the emerging animal models used for the evaluation of their therapeutic effects.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University.,Research Fellow of Japan Society for the Promotion of Science (JSPS)
| | - Tatsuya Murakami
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS)
| |
Collapse
|
10
|
Cao JF, Xu W, Zhang YY, Shu Y, Wang JH. Chondroitin sulfate-functionalized 3D hierarchical flower-type mesoporous silica with a superior capacity for selective isolation of low density lipoprotein. Anal Chim Acta 2020; 1104:78-86. [DOI: 10.1016/j.aca.2019.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023]
|
11
|
Qian J, Xu N, Zhou X, Shi K, Du Q, Yin X, Zhao Z. Low density lipoprotein mimic nanoparticles composed of amphipathic hybrid peptides and lipids for tumor-targeted delivery of paclitaxel. Int J Nanomedicine 2019; 14:7431-7446. [PMID: 31686815 PMCID: PMC6751769 DOI: 10.2147/ijn.s215080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Low density lipoprotein (LDL) has been regarded as a promising antitumor drug vehicle. However some problems, such as rare source, difficulty of large-scale production, and potential safety concerns, hinder its clinical application. PURPOSE The objective of this study is to develop a biomimetic LDL nanocarrier by replacing the native apolipoprotein B-100 (apoB-100) with an artificial amphipathic peptide and demonstrate its antitumor efficacy. METHODS The amphipathic hybrid peptide (termed as FPL) consisting of a lipid binding motif of apoB-100 (LBMapoB)-polyethylene glycol (PEG)-folic acid (FA) was synthesized and characterized by 1H NMR and circular dichroism. FPL decorated lipoprotein-mimic nanoparticles (termed as FPLM NPs) were prepared by a modified solvent emulsification method. Paclitaxel (PTX) was incorporated into NPs and its content was quantified by HPLC analysis. The morphology of NPs was observed by transmission electron microscopy (TEM), and the particle size and zeta potential of NPs were determined by dynamic light scattering (DLS). The colloidal stability of FPLM NPs was evaluated in PBS containing bovine serum albumin (BSA). In vitro release of PTX loaded FPLM NPs was evaluated using the dialysis method. Cellular uptake and cytotoxity assayswere evaluated on human cervical cancer cells (HeLa) and lung cancer cells (A549). Tumor inhibition in vivo was investigated in M109 tumor-bearing mice via tail vein injection of Taxol formulation and PTX loaded NPs. RESULTS The composition of FPLM NPs, including cholesteryl oleate, glyceryl trioleate, cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and FPL peptides, was optimized to be 5:1:1:3:10 (w/w). FPLM NPs had a spherical shape with a mean diameter of 83 nm and a negative charge (-12 mV). FPLM NPs with optimum formulation had good colloidal stability in BSA solution.The release of PTX from FPLM NPs was slow and sustained. The uptake of FPLM NPs was higher in folate receptor (FR) overexpressing tumor cells (HeLa cells) than in FR deficient tumor cells (A549 cells). The intracellular distribution indicated that FPLM NPs had the lysosome escape capacity. The internalization mechanism of FPLM NPs was involved with clathrin- and caveolae-mediated endocytosis and FR played a positive role in the internalization of FPLM NPs. The CCK-8 assay demonstrated that FPLM NPs exhibited notably better anti-tumor effect than Taxol formulation in vitro. Moreover, PTX loaded FPLM NPs produced very marked anti-tumor efficiency in M109 tumor-bearing mice in vivo. CONCLUSION FPLM NPs is a promising nanocarrier which can improve the therapeutic effect and reduce the side effects of antitumor drugs.
Collapse
Affiliation(s)
- Junyi Qian
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| | - Ningze Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| | - Xu Zhou
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| | - Kaihong Shi
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| | - Qian Du
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| | - Xiaoxing Yin
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou221004, People’s Republic of China
| |
Collapse
|
12
|
Spencer B, Trinh I, Rockenstein E, Mante M, Florio J, Adame A, El-Agnaf OMA, Kim C, Masliah E, Rissman RA. Systemic peptide mediated delivery of an siRNA targeting α-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease. Neurobiol Dis 2019; 127:163-177. [PMID: 30849508 PMCID: PMC6588505 DOI: 10.1016/j.nbd.2019.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Ivy Trinh
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Omar M A El-Agnaf
- Neurological Disorders Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Changyoun Kim
- Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Laboratory of Neurogenetics National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System San Diego, CA, USA.
| |
Collapse
|
13
|
Benitez-Amaro A, Pallara C, Nasarre L, Rivas-Urbina A, Benitez S, Vea A, Bornachea O, de Gonzalo-Calvo D, Serra-Mir G, Villegas S, Prades R, Sanchez-Quesada JL, Chiva C, Sabido E, Tarragó T, Llorente-Cortés V. Molecular basis for the protective effects of low-density lipoprotein receptor-related protein 1 (LRP1)-derived peptides against LDL aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1302-1316. [PMID: 31077676 DOI: 10.1016/j.bbamem.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
Abstract
Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Chiara Pallara
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Laura Nasarre
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Angela Vea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Bornachea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - David de Gonzalo-Calvo
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - José Luís Sanchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBER DIABETES y Enfermedades Metabólicas Asociadas (CIBERdem), Spain
| | - Cristina Chiva
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabido
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain.
| |
Collapse
|
14
|
Guevara J, Romo J, Hernandez E, Guevara NV. Identification of Receptor Ligands in Apo B100 Reveals Potential Functional Domains. Protein J 2019; 37:548-571. [PMID: 30259240 DOI: 10.1007/s10930-018-9792-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
LDL, VLDL and other members of the low-density lipoparticles (LLPs) enter cells through a large family of receptors. The actual receptor ligand(s) in apolipoprotein B100, one of the main proteins of LLP, remain(s) unknown. The objective of this study was to identify true receptor ligand(s) in apo B100, a molecule of 4563 residues. Apo B100 contains 33 analogues of Cardin-Weintraub arginine/lysine-based receptor ligand motifs and shares key lysine motifs and sequence similarity with the LDL receptor-associated protein, MESD, and heat shock proteins. Eleven FITC-labeled synthetic peptides of 21-42 residues, with at least one ligand, were tested for binding and internalization using HeLa cells. All peptides bind but display different binding capacities and patterns. Peptides B0013, B0582, B2366, and B2932 mediate endocytosis and appear in distinct sites in the cytoplasm. B0708 and B3181 bind and remain on the cell surface as aggregates/clusters. Peptides B3119 (Site A) and B3347 (Site B), the putative ligands, showed low binding and no cell entry capacity. Apo B100 regions in this study share similarities with related proteins of known function including chaperone proteins and Apo BEC stimulating protein, and not directly related proteins, e.g., the DNA-binding domain of interferon regulatory factors, MSX2-interacting protein, and snake venom Zinc metalloproteinase-disintegrin-like proteins.
Collapse
Affiliation(s)
- Juan Guevara
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Jamie Romo
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Ernesto Hernandez
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Natalia Valentinova Guevara
- Biophysics Research Laboratory, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA.
| |
Collapse
|
15
|
Tamburus NY, Verlengia R, Kunz VC, César MC, Silva E. Apolipoprotein B and angiotensin-converting enzyme polymorphisms and aerobic interval training: randomized controlled trial in coronary artery disease patients. ACTA ACUST UNITED AC 2018; 51:e6944. [PMID: 29846435 PMCID: PMC5999065 DOI: 10.1590/1414-431x20186944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/09/2018] [Indexed: 01/12/2023]
Abstract
Physical training has been strongly recommended as a non-pharmacological treatment for coronary artery disease (CAD). Genetic polymorphisms have been studied to understand the biological variability in response to exercise among individuals. This study aimed to verify the possible influence of apolipoprotein B (ApoB: rs1042031 and rs693) and angiotensin-converting enzyme (ACE-ID: rs1799752) genotypes on the lipid profile and functional aerobic capacity, respectively, after an aerobic interval training (AIT) program in patients with CAD and/or cardiovascular risk factors. Sixty-six men were randomized and assigned to trained group (n=32) or control group (n=34). Cardiopulmonary exercise test was performed to determine the ventilatory anaerobic threshold (VAT) from cardiorespiratory variables. The AIT program, at an intensity equivalent to %VAT (70-110%), was conducted three times a week for 16 weeks. ApoB gene polymorphisms (-12669C>T (rs1042031) and -7673G>A (rs693)) were identified by real-time polymerase chain reaction (PCR). I/D polymorphism in the ACE gene (rs1799752) was identified through PCR and fragment size analysis. After 16 weeks, low-density lipoprotein (LDL) levels increased in the trained and control groups with the GA+AA genotype (-7673G>A) of the ApoB gene. Trained groups with ACE-II and ACE-ID genotypes presented an increase in oxygen consumption (VO2VAT) and power output after the AIT program. The presence of the ACE I-allele was associated with increased aerobic functional capacity after the AIT program. Increased LDL levels were observed over time in patients with the -7673G>A polymorphism of the ApoB gene. Trial Registration Information: ClinicalTrials.gov: NCT02313831.
Collapse
Affiliation(s)
- N Y Tamburus
- Núcleo de Pesquisa em Exercício Físico, Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - R Verlengia
- Laboratório de Performance Humana, Faculdade de Ciências da Saúde, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| | - V C Kunz
- Núcleo de Pesquisa em Exercício Físico, Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| | - M C César
- Laboratório de Performance Humana, Faculdade de Ciências da Saúde, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| | - E Silva
- Núcleo de Pesquisa em Exercício Físico, Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP, Brasil
| |
Collapse
|
16
|
Su HT, Li X, Liang DS, Qi XR. Synthetic low-density lipoprotein (sLDL) selectively delivers paclitaxel to tumor with low systemic toxicity. Oncotarget 2018; 7:51535-51552. [PMID: 27409176 PMCID: PMC5239495 DOI: 10.18632/oncotarget.10493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/30/2016] [Indexed: 12/17/2022] Open
Abstract
Low density lipoprotein (LDL), which is a principal carrier for the delivery of cholesterol, has been used as a great candidate for the delivery of drugs to tumor based on the great requirements for cholesterol of many cancer cells. Mimicking the structure and composition of LDL, we designed a synthetic low-density lipoprotein (sLDL) to encapsulate paclitaxel-alpha linolenic acid (PALA) for tumor therapy. The PALA loaded sLDL (PALA-sLDL) and PALA-loaded microemulsion (PALA-ME, without the binding domain for LDLR) displayed uniform sizes with high drug loading efficiency (> 90%). In vitro studies demonstrated PALA-sLDL exhibited enhanced cellular uptake capacity and better cytotoxicity to LDLR over-expressed U87 MG cells as compared to PALA-ME. The uptake mechanisms of PALA-sLDL were involved in a receptor mediated endocytosis and macropinocytosis. Furthermore, the in vivo biodistribution and tumor growth inhibition studies of PALA-sLDL were investigated in xenograft U87 MG tumor-bearing mice. The results showed that PALA-sLDL exhibited higher tumor accumulation than PALA-ME and superior tumor inhibition efficiency (72.1%) compared to Taxol® (51.2%) and PALA-ME (58.8%) but with lower toxicity. These studies suggested that sLDL is potential to be used as a valuable carrier for the selective delivery of anticancer drugs to tumor with low systemic toxicity.
Collapse
Affiliation(s)
- Hai-Tao Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xin Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - De-Sheng Liang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, PR China
| |
Collapse
|
17
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
18
|
Elucidating the structural organization of a novel low-density lipoprotein nanoparticle reconstituted with docosahexaenoic acid. Chem Phys Lipids 2017; 204:65-75. [PMID: 28342772 DOI: 10.1016/j.chemphyslip.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/20/2022]
Abstract
Low-density lipoprotein nanoparticles reconstituted with unesterified docosahexaenoic acid (LDL-DHA) is promising nanomedicine with enhanced physicochemical stability and selective anticancer cytotoxic activity. The unique functionality of LDL-DHA ultimately relates to the structure of this nanoparticle. To date, however, little is known about the structural organization of this nanoparticle. In this study chemical, spectroscopic and electron microscopy analyses were undertaken to elucidate the structural and molecular organization of LDL-DHA nanoparticles. Unesterified DHA preferentially incorporates into the outer surface layer of LDL, where in this orientation the anionic carboxyl end of DHA is exposed to the LDL surface and imparts an electronegative charge to the nanoparticles surface. This negative surface charge promotes the monodisperse and homogeneous distribution of LDL-DHA nanoparticles in solution. Further structural analyses with cryo-electron microscopy revealed that the LDL-DHA nanostructure consist of a phospholipid bilayer surrounding an aqueous core, which is distinctly different from the phospholipid monolayer/apolar core organization of plasma LDL. Lastly, apolipoprotein B-100 remains strongly associated with this complex and maintains a discrete size and shape of the LDL-DHA nanoparticles similar to plasma LDL. This preliminary structural assessment of LDL-DHA now affords the opportunity to understand the important structure-function relationships of this novel nanoparticle.
Collapse
|
19
|
Kim G, Lee H, Oh H, Won H. Solution State Structure of P1, the Mimetic Peptide Derived from IgM Antigen Apo B-100 by NMR. JOURNAL OF THE KOREAN MAGNETIC RESONANCE SOCIETY 2016. [DOI: 10.6564/jkmrs.2016.20.3.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Ke LY, Chan HC, Chen CC, Lu J, Marathe GK, Chu CS, Chan HC, Wang CY, Tung YC, McIntyre TM, Yen JH, Chen CH. Enhanced Sphingomyelinase Activity Contributes to the Apoptotic Capacity of Electronegative Low-Density Lipoprotein. J Med Chem 2016; 59:1032-40. [DOI: 10.1021/acs.jmedchem.5b01534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Liang-Yin Ke
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Hua-Chen Chan
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Chih-Chieh Chen
- Institute
of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
| | - Jonathan Lu
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Gopal K. Marathe
- Departments of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, United States
- Department
of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India
| | | | | | | | | | - Thomas M. McIntyre
- Departments of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, United States
| | | | - Chu-Huang Chen
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
- New York Heart Research
Foundation, Mineola, New York 11501, United States
| |
Collapse
|
21
|
Okazaki M, Yamashita S. Recent Advances in Analytical Methods on Lipoprotein Subclasses: Calculation of Particle Numbers from Lipid Levels by Gel Permeation HPLC Using “Spherical Particle Model”. J Oleo Sci 2016; 65:265-82. [DOI: 10.5650/jos.ess16020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Shizuya Yamashita
- Rinku General Medical Center
- Department of Community Medicine & Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| |
Collapse
|
22
|
Structural analysis of APOB variants, p.(Arg3527Gln), p.(Arg1164Thr) and p.(Gln4494del), causing Familial Hypercholesterolaemia provides novel insights into variant pathogenicity. Sci Rep 2015; 5:18184. [PMID: 26643808 PMCID: PMC4672294 DOI: 10.1038/srep18184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is an inherited autosomal dominant disorder resulting from defects in the low-density lipoprotein receptor (LDLR), in the apolipoprotein B (APOB) or in the proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In the majority of the cases FH is caused by mutations occurring within LDLR, while only few mutations in APOB and PCSK9 have been proved to cause disease. p.(Arg3527Gln) was the first mutation in APOB being identified and characterized. Recently two novel pathogenic APOB variants have been described: p.(Arg1164Thr) and p.(Gln4494del) showing impaired LDLR binding capacity, and diminished LDL uptake. The objective of this work was to analyse the structure of p.(Arg1164Thr) and p.(Gln4494del) variants to gain insight into their pathogenicity. Secondary structure of the human ApoB100 has been investigated by infrared spectroscopy (IR) and LDL particle size both by dynamic light scattering (DLS) and electron microscopy. The results show differences in secondary structure and/or in particle size of p.(Arg1164Thr) and p.(Gln4494del) variants compared with wild type. We conclude that these changes underlie the defective binding and uptake of p.(Arg1164Thr) and p.(Gln4494del) variants. Our study reveals that structural studies on pathogenic variants of APOB may provide very useful information to understand their role in FH disease.
Collapse
|
23
|
Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry. ACTA ACUST UNITED AC 2015; 2015. [PMID: 27123468 DOI: 10.1155/2015/646303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1-4 (DENV1-4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a qualitative assessment of cell binding and entry capacity using HeLa cells. DENV2 envelope peptide, Dsp2EP, 0564Gly-Gly0595, was shown to bind and remain at the cell surface. In contrast, DENV3 capsid protein peptide, Dsp3CP, 0002Asn-Gln0028, readily enters HeLa cells and accumulates at discrete loci in the nucleus. FITC-labeled dengue synthetic peptides colocalize with Low Density Lipoprotein-CM-DiI and Apo E-CM-DiI to a degree that suggests that Dengue viruses may utilize cell entry pathways used by LLPs.
Collapse
|
24
|
Wang W, Lan P. Surface glycosylation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) membrane for selective adsorption of low-density lipoprotein. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:2094-112. [DOI: 10.1080/09205063.2014.970605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
|
26
|
Sravan Kumar P, Ananthanarayanan PH, Rajendiran S. Cardiovascular risk markers and thyroid status in young Indian women with polycystic ovarian syndrome: A case-control study. J Obstet Gynaecol Res 2014; 40:1361-7. [DOI: 10.1111/jog.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 11/01/2013] [Indexed: 11/28/2022]
|
27
|
Martínez-Oliván J, Arias-Moreno X, Velazquez-Campoy A, Millet O, Sancho J. LDL receptor/lipoprotein recognition: endosomal weakening of ApoB and ApoE binding to the convex face of the LR5 repeat. FEBS J 2014; 281:1534-46. [DOI: 10.1111/febs.12721] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Juan Martínez-Oliván
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
| | - Xabier Arias-Moreno
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
| | - Adrián Velazquez-Campoy
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
- Fundación Agencia Aragonesa para la Investigación y Desarrollo; Diputación General de Aragón; Spain
| | - Oscar Millet
- Structural Biology Unit; CIC bioGUNE; Derio Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI). BIFI-Instituto de Química Física Rocasolano (Consejo Superior de Investigaciones Científicas) Joint Unit; Universidad de Zaragoza; Spain
- Departamento de Bioquímica y Biología Molecular y Celular; Universidad de Zaragoza; Spain
| |
Collapse
|
28
|
Wang W, Huang XJ, Cao JD, Lan P, Wu W. Immobilization of sodium alginate sulfates on polysulfone ultrafiltration membranes for selective adsorption of low-density lipoprotein. Acta Biomater 2014; 10:234-43. [PMID: 24008179 DOI: 10.1016/j.actbio.2013.08.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 12/17/2022]
Abstract
A novel method for the immobilization of sodium alginate sulfates (SAS) on polysulfone (PSu) ultrafiltration membranes to achieve selective adsorption of low-density lipoprotein (LDL) was developed, which involved the photoinduced graft polymerization of acrylamide on the membrane and the Hofmann rearrangement reaction of grafted acrylamide followed by chemical binding of SAS with glutaraldehyde. The surface modification processes were confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy characterization. Zeta potential and water contact angle measurements were performed to investigate the surface charge and wettability of the membranes. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu membranes. It was found that the PSu membrane immobilized with sodium alginate sulfates (PSu-SAS) greatly enhanced the selective adsorption of LDL from protein solutions and the absorbed LDL could be easily eluted with sodium chloride solution, indicating a specific and reversible binding of LDL to SAS, mainly driven by electrostatic forces. Furthermore, the PSu-SAS membrane showed good blood compatibility as examined by platelet adhesion. The results suggest that the PSu-SAS membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy.
Collapse
Affiliation(s)
- Wei Wang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | | | | | | | | |
Collapse
|
29
|
Low-density lipoprotein modified by myeloperoxidase in inflammatory pathways and clinical studies. Mediators Inflamm 2013; 2013:971579. [PMID: 23983406 PMCID: PMC3742028 DOI: 10.1155/2013/971579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 02/07/2023] Open
Abstract
Oxidation of low-density lipoprotein (LDL) has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO) is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis.
Collapse
|
30
|
Roth Z, Weil S, Aflalo ED, Manor R, Sagi A, Khalaila I. Identification of receptor-interacting regions of vitellogenin within evolutionarily conserved β-sheet structures by using a peptide array. Chembiochem 2013; 14:1116-22. [PMID: 23733483 DOI: 10.1002/cbic.201300152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/11/2022]
Abstract
Vitellogenesis, a key process in oviparous animals, is characterized by enhanced synthesis of the lipoprotein vitellogenin, which serves as the major yolk-protein precursor. In most oviparous animals, and specifically in crustaceans, vitellogenin is mainly synthesized in the hepatopancreas, secreted to the hemolymph, and taken up into the ovary by receptor-mediated endocytosis. In the present study, localization of the vitellogenin receptor and its interaction with vitellogenin were investigated in the freshwater prawn Macrobrachium rosenbergii. The receptor was immuno-histochemically localized to the cell periphery and around yolk vesicles. A receptor blot assay revealed that the vitellogenin receptor interacts with most known vitellogenin subunits, the most prominent being the 79 kDa subunit. The receptor was, moreover, able to interact with trypsin-digested vitellogenin peptides. By combining a novel peptide-array approach with tandem mass spectrometry, eleven vitellogenin-derived peptides that interacted with the receptor were identified. A 3D model of vitellogenin indicated that four of the identified peptides are N-terminally localized. One of the peptides is homologous to the receptor-recognized site of vertebrate vitellogenin, and assumes a conserved β-sheet structure. These findings suggest that this specific β-sheet region in the vitellogenin N-terminal lipoprotein domain is the receptor-interacting site, with the rest of the protein serving to enhance affinity for the receptor. The conservation of the receptor recognition site in invertebrate and vertebrate vitellogenin might have vast implications for oviparous species reproduction, development, immunity, and pest management.
Collapse
Affiliation(s)
- Ziv Roth
- Avram and Stella Goldstein-Goren Department of Biotechnology, Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
31
|
Christoffersen C, Benn M, Christensen PM, Gordts PLSM, Roebroek AJM, Frikke-Schmidt R, Tybjaerg-Hansen A, Dahlbäck B, Nielsen LB. The plasma concentration of HDL-associated apoM is influenced by LDL receptor-mediated clearance of apoB-containing particles. J Lipid Res 2012; 53:2198-2204. [PMID: 22826357 DOI: 10.1194/jlr.p023697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 ± 0.13 µM, P = 0.003, and 1.23 ± 0.10 µM, P = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 µM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.
Collapse
Affiliation(s)
| | - Marianne Benn
- Department of Clinical Biochemistry, Herlev University Hospital, Herlev, Denmark
| | | | - Philip L S M Gordts
- Center of Human Genetics, Experimental Mouse Genetics, Katholieke Universiteit, Leuven, Belgium
| | - Anton J M Roebroek
- Center of Human Genetics, Experimental Mouse Genetics, Katholieke Universiteit, Leuven, Belgium
| | | | - Anne Tybjaerg-Hansen
- Department of Laboratory Medicine, Wallenberg Laboratory, Skåne University Hospital, Lund University, Malmö, Sweden; and
| | - Björn Dahlbäck
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
| | - Lars B Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Olofsson SO, Borén J. Apolipoprotein B Secretory Regulation by Degradation. Arterioscler Thromb Vasc Biol 2012; 32:1334-8. [DOI: 10.1161/atvbaha.112.251116] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this short review, we discuss apolipoprotein B100 and the assembly of very low-density lipoproteins. In particular, we address the nature and importance of co- and posttranslational degradation of apolipoprotein B100 during the assembly process. We also provide a short historical background to the development of the current model for the degradation of apolipoprotein B100.
Collapse
Affiliation(s)
- Sven-Olof Olofsson
- From the Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- From the Sahlgrenska Center for Cardiovascular and Metabolic Research/Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Fernández-Higuero JA, Salvador AM, Arrondo JLR, Milicua JCG. Low-density lipoprotein density determination by electric conductivity. Anal Biochem 2011; 417:283-5. [PMID: 21723847 DOI: 10.1016/j.ab.2011.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/20/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
The predominance of small dense low-density lipoprotein (LDL) particles is associated with an increased risk of coronary heart disease. A simple but precise method has been developed, based on electrical conductivity of an isopycnic gradient of KBr, to obtain density values of human LDL fraction. The results obtained can distinguish LDL density populations and their subfractions from different patients. These data were corroborated by Fourier transform infrared spectroscopy (FTIR) (structure) and light-scattering analyses (size).
Collapse
Affiliation(s)
- José A Fernández-Higuero
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | | | | | | |
Collapse
|
34
|
Aslan M, Dogan S. Proteomic detection of nitroproteins as potential biomarkers for cardiovascular disease. J Proteomics 2011; 74:2274-88. [PMID: 21640858 DOI: 10.1016/j.jprot.2011.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 12/21/2022]
Abstract
Increased levels of reactive oxygen and nitrogen species are linked to many human diseases and can be formed as an indirect result of the disease process. The accumulation of specific nitroproteins which correlate with pathological processes suggests that nitration of protein tyrosine represents a dynamic and selective process, rather than a random event. Indeed, in numerous clinical disorders associated with an upregulation in oxidative stress, tyrosine nitration has been limited to certain cell types and to selective sites of injury. Additionally, proteomic studies show that only certain proteins are nitrated in selective tissue extracts. A growing list of nitrated proteins link the negative effects of protein nitration with their accumulation in a wide variety of diseases related to oxidation. Nitration of tyrosine has been demonstrated in diverse proteins such as cytochrome c, actin, histone, superoxide dismutase, α-synuclein, albumin, and angiotensin II. In vitro and in vivo aspects of redox-proteomics of specific nitroproteins that could be relevant to biomarker analysis and understanding of cardiovascular disease mechanism will be discussed within this review.
Collapse
Affiliation(s)
- Mutay Aslan
- Akdeniz University Faculty of Medicine, Department of Medical Biochemistry, Campus, 07070 Antalya, Turkey.
| | | |
Collapse
|
35
|
Ke LY, Engler DA, Lu J, Matsunami RK, Chan HC, Wang GJ, Yang CY, Chang JG, Chen CH. Chemical composition-oriented receptor selectivity of L5, a naturally occurring atherogenic low-density lipoprotein. PURE APPL CHEM 2011; 83:10.1351/PAC-CON-10-12-07. [PMID: 24198440 PMCID: PMC3816395 DOI: 10.1351/pac-con-10-12-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anion-exchange chromatography resolves human plasma low-density lipoprotein (LDL) into 5 subfractions, with increasing negative surface charge in the direction of L1 to L5. Unlike the harmless L1 to L4, the exclusively atherogenic L5 is rejected by the normal LDL receptor (LDLR) but endocytosed into vascular endothelial cells through the lectin-like oxidized LDL receptor-1 (LOX-1). Analysis with SDS-PAGE and 2-dimensional electrophoresis showed that the protein framework of L1 was composed mainly of apolipoprotein (apo) B100, with an isoelectric point (pI) of 6.620. There was a progressively increased association of additional proteins, including apoE (pI 5.5), apoAI (pI 5.4), apoCIII (pI 5.1), and apo(a) (pI 5.5), from L1 to L5. LC/MSE was used to quantify protein distribution in all subfractions. On the basis of weight percentages, L1 contained 99% apoB-100 and trace amounts of other proteins. In contrast, L5 contained 60% apoB100 and substantially increased amounts of apo(a), apoE, apoAI, and apoCIII. The compositional characteristics contribute to L5's electronegativity, rendering it unrecognizable by LDLR. LOX-1, which has a high affinity for negatively charged ligands, is known to mediate the signaling of proinflammatory cytokines. Thus, the chemical composition-oriented receptor selectivity hinders normal metabolism of L5, enhancing its atherogenicity through abnormal receptors, such as LOX-1.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, and Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - David A. Engler
- The Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Jonathan Lu
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
| | | | - Hua-Chen Chan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- L5 Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Guei-Jane Wang
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- L5 Research Center, China Medical University Hospital, Taichung, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Chao-Yuh Yang
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- L5 Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Jan-Gowth Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, and Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- L5 Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
van Jaarsveld PJ, Smuts CM, Tichelaar HY, Kruger M, Benadé AJS. Effect of palm oil on plasma lipoprotein concentrations and plasma low-density lipoprotein composition in non-human primates. Int J Food Sci Nutr 2010. [DOI: 10.1080/096374800111120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
37
|
Chakraborty S, Cai Y, Tarr MA. Mapping oxidations of apolipoprotein B-100 in human low-density lipoprotein by liquid chromatography-tandem mass spectrometry. Anal Biochem 2010; 404:109-17. [PMID: 20470747 DOI: 10.1016/j.ab.2010.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 04/13/2010] [Accepted: 05/10/2010] [Indexed: 02/02/2023]
Abstract
Human low-density lipoprotein (LDL) is a major cholesterol carrier in blood. Elevated concentration of low-density lipoprotein, especially when oxidized, is a risk factor for atherosclerosis and other cardiac inflammatory diseases. Past research has connected free radical initiated oxidations of LDL with the formation of atherosclerotic lesions and plaque in the arterial wall. The role of LDL protein in the associated diseases is still poorly understood, partially due to a lack of structural information. In this study, LDL was oxidized by hydroxyl radical. The oxidized protein was then delipidated and subjected to trypsin digestion. Peptides derived from trypsin digestion were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Identification of modified peptide sequences was achieved by a database search against apo B-100 protein sequences using the SEQUEST algorithm. At different hydroxyl radical concentrations, oxidation products of tyrosine, tryptophan, phenylalanine, proline, and lysine were identified. Oxidized amino acid residues are likely located on the exterior of the LDL particle in contact with the aqueous environment or directly bound to the free radical permeable lipid layer. These modifications provided insight for understanding the native conformation of apo B-100 in LDL particles. The presence of some natural variants at the protein level was also confirmed in our study.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | | | | |
Collapse
|
38
|
Gordon MH, Wishart K. Effects of chlorogenic acid and bovine serum albumin on the oxidative stability of low density lipoproteins in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5828-5833. [PMID: 20387813 DOI: 10.1021/jf100106e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ability of chlorogenic acid to inhibit oxidation of human low-density lipoprotein (LDL) was studied by in vitro copper-induced LDL oxidation. The effect of chlorogenic acid on the lag time before LDL oxidation increased in a dose dependent manner by up to 176% of the control value when added at concentrations of 0.25-1.0 microM. Dose dependent increases in lag time of LDL oxidation were also observed, but at much higher concentrations, when chlorogenic acid was incubated with LDL (up to 29.7% increase in lag phase for 10 microM chlorogenic acid) or plasma (up to 16.6% increase in lag phase for 200 microM chlorogenic acid) prior to isolation of LDL, and this indicated that chlorogenic acid was able to bind, at least weakly, to LDL. Bovine serum albumin (BSA) increased the oxidative stability of LDL in the presence of chlorogenic acid. Fluorescence spectroscopy showed that chlorogenic acid binds to BSA with a binding constant of 3.88 x 10(4) M(-1). BSA increased the antioxidant effect of chlorogenic acid, and this was attributed to copper ions binding to BSA, thereby reducing the amount of copper available for inducing lipid peroxidation.
Collapse
Affiliation(s)
- Michael H Gordon
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| | | |
Collapse
|
39
|
Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond) 2010; 7:35. [PMID: 20423497 PMCID: PMC2873297 DOI: 10.1186/1743-7075-7-35] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 02/06/2023] Open
Abstract
Excess lipid induced metabolic disorders are one of the major existing challenges for the society. Among many different causes of lipid disorders, overproduction and compromised catabolism of triacylglycerol-rich very low density lipoproteins (VLDL) have become increasingly prevalent leading to hyperlipidemia worldwide. This review provides the latest understanding in different aspects of VLDL assembly process, including structure-function relationships within apoB, mutations in APOB causing hypobetalipoproteinemia, significance of modulating microsomal triglyceride-transfer protein activity in VLDL assembly, alterations of VLDL assembly by different fatty acid species, and hepatic proteins involved in vesicular trafficking, and cytosolic lipid droplet metabolism that contribute to VLDL assembly. The role of lipoprotein receptors and exchangeable apolipoproteins that promote or diminish VLDL assembly and secretion is discussed. New understanding on dysregulated insulin signaling as a consequence of excessive triacylglycerol-rich VLDL in the plasma is also presented. It is hoped that a comprehensive view of protein and lipid factors that contribute to molecular and cellular events associated with VLDL assembly and secretion will assist in the identification of pharmaceutical targets to reduce disease complications related to hyperlipidemia.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
40
|
Huang XJ, Guduru D, Xu ZK, Vienken J, Groth T. Immobilization of heparin on polysulfone surface for selective adsorption of low-density lipoprotein (LDL). Acta Biomater 2010; 6:1099-106. [PMID: 19733266 DOI: 10.1016/j.actbio.2009.08.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/11/2009] [Accepted: 08/31/2009] [Indexed: 11/19/2022]
Abstract
A versatile method was developed to immobilize heparin covalently on polysulfone sheets (PSu) to achieve selective adsorption of low-density lipoprotein (LDL). This was achieved by activation of PSu with successive treatments of chlorodimethyl ether and ethylenediamine, and subsequent chemical binding of heparin with bifunctional linker molecules. A heparin density up to 0.86 microg cm(-2) on a dense PSu film was achieved. The modified PSu films were characterized by attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The hydrophilicity of the PSu film was improved greatly by covalent immobilization of heparin. The water contact angle of PSu film was decreased from 86.6 + or - 3.7 degrees to 50.5 + or - 3.2 degrees after binding of 0.36 microg cm(-2) heparin. An enzyme-linked immunosorbent assay was used to measure the binding of LDL on plain and modified PSu films. It was found that the heparin-modified PSu film could selectively recognize LDL from binary protein solutions. Furthermore, it was possible to desorb LDL from heparinized PSu, but not from plain PSu, with heparin, sodium chloride or urea solution, which indicates a selective but reversible binding of LDL to heparin. The results suggest that heparin-modified PSu membranes are promising for application in simultaneous hemodialysis and LDL apheresis therapy.
Collapse
Affiliation(s)
- Xiao-Jun Huang
- Biomedical Materials Group, Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | | | | | | | | |
Collapse
|
41
|
Liu Y, Manchekar M, Sun Z, Richardson PE, Dashti N. Apolipoprotein B-containing lipoprotein assembly in microsomal triglyceride transfer protein-deficient McA-RH7777 cells. J Lipid Res 2010; 51:2253-64. [PMID: 20181985 DOI: 10.1194/jlr.m005371] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is required for the assembly and secretion of apolipoprotein (apo) B-containing lipoproteins. Previously, we demonstrated that the N-terminal 1,000 residues of apoB (apoB:1000) are necessary for the initiation of apoB-containing lipoprotein assembly in rat hepatoma McA-RH7777 cells and that these particles are phospholipid (PL) rich. To determine if the PL transfer activity of MTP is sufficient for the assembly and secretion of primordial apoB:1000-containing lipoproteins, we employed microRNA-based short hairpin RNAs (miR-shRNAs) to silence Mttp gene expression in parental and apoB:1000-expressing McA-RH7777 cells. This approach led to 98% reduction in MTP protein levels in both cell types. Metabolic labeling studies demonstrated a drastic 90-95% decrease in the secretion of rat endogenous apoB100-containing lipoproteins in MTP-deficient McA-RH7777 cells compared with cells transfected with negative control miR-shRNA. A similar reduction was observed in the secretion of rat endogenous apoB48 under the experimental conditions employed. In contrast, MTP absence had no significant effect on the synthesis, lipidation, and secretion of human apoB:1000-containing particles. These results provide strong evidence in support of the concept that in McA-RH7777 cells, acquisition of PL by apoB:1000 and initiation of apoB-containing lipoprotein assembly, a process distinct from the conventional first-step assembly of HDL-sized apoB-containing particles, do not require MTP. This study indicates that, in hepatocytes, a factor(s) other than MTP mediates the formation of the PL-rich primordial apoB:1000-containing initiation complex.
Collapse
Affiliation(s)
- Yanwen Liu
- Department of Medicine, Basic Sciences Section, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
42
|
Guevara J, Prashad N, Ermolinsky B, Gaubatz JW, Kang D, Schwarzbach AE, Loose DS, Guevara NV. Apo B100 similarities to viral proteins suggest basis for LDL-DNA binding and transfection capacity. J Lipid Res 2010; 51:1704-18. [PMID: 20173184 DOI: 10.1194/jlr.m003277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
LDL mediates transfection with plasmid DNA in a variety of cell types in vitro and in several tissues in vivo in the rat. The transfection capacity of LDL is based on apo B100, as arginine/lysine clusters, suggestive of nucleic acid-binding domains and nuclear localization signal sequences, are present throughout the molecule. Apo E may also contribute to this capacity because of its similarity to the Dengue virus capsid proteins and its ability to bind DNA. Synthetic peptides representing two apo B100 regions with prominent Arg/Lys clusters were shown to bind DNA. Region 1 (0014Lys-Ser0160) shares sequence motifs present in DNA binding domains of Interferon Regulatory Factors and Flaviviridae capsid/core proteins. It also contains a close analog of the B/E receptor ligand of apo E. Region 1 peptides, B1-1 (0014Lys-Glu0054) and B1-2 (0055Leu-Ala0096), mediate transfection of HeLa cells but are cytotoxic. Region 2 (3313Asp-Thr3431), containing the known B/E receptor ligand, shares analog motifs with the human herpesvirus 5 immediate-early transcriptional regulator (UL122) and Flaviviridae NS3 helicases. Region 2 peptides, B2-1 (3313Asp-Glu3355), and B2-2 (3356Gly-Thr3431) are ineffective in cell transfection and are noncytotoxic. These results confirm the role of LDL as a natural transfection vector in vivo, a capacity imparted by the apo B100, and suggest a basis for Flaviviridae cell entry.
Collapse
Affiliation(s)
- Juan Guevara
- Department of Physics and Astronomy, University of Texas Brownsville/Texas Southmost College, Brownsville, TX 78520, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hayavi S, Baillie G, Owens MD, Halbert GW. Receptor dependent cellular uptake of synthetic low density lipoprotein by mammalian cells in serum-free tissue culture. J Pharm Pharmacol 2010; 58:1337-42. [PMID: 17034656 DOI: 10.1211/jpp.58.10.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Low density lipoprotein (LDL) is a normal plasma component, which is of interest in a number of research areas such as hypercholesterolaemia, drug targeting in cancer chemotherapy and as a lipid supplement in tissue culture systems. Currently, however, it can only be obtained by extraction from fresh plasma samples, which yields only small quantities. Synthetic LDL (sLDL) has been prepared using readily available lipid components coupled with a synthetic amphiphatic peptide molecule containing the apoprotein B receptor sequence. sLDL was capable of supporting the growth of Chinese Hamster Ovary (CHO) and fibroblast cells in serum-free culture media in a cholesterol-dependent manner that was related to the presence of the receptor peptide molecule. sLDL could be fluorescently labelled with 3,3′-dioctadecyloxalocarbocyanine perchlorate (DiO), and once labelled was assimilated by CHO and fibroblast cells in a time- and temperature-dependent manner that was dependent upon the presence of the receptor peptide. In addition, assimilation was reduced by an excess of unlabelled native LDL. The results indicated that the interaction of sLDL with CHO and fibroblast cells occurred via a receptor dependent system, most likely the LDL cellular receptor. sLDL is therefore a useful, easily obtained substitute for native LDL with potential applications in the areas of drug targeting to cells and serum-free tissue culture systems.
Collapse
Affiliation(s)
- Sima Hayavi
- Department of Pharmaceutical Sciences, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, UK
| | | | | | | |
Collapse
|
44
|
Carvalho MDT, Vendrame CMV, Ketelhuth DFJ, Yamashiro-Kanashiro EH, Goto H, Gidlund M. High-Density Lipoprotein Inhibits the Uptake of Modified Low- Density Lipoprotein and the Expression of CD36 and FcγRI. J Atheroscler Thromb 2010; 17:844-57. [DOI: 10.5551/jat.3905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Quartz crystal microbalance, a valuable tool for elucidation of interactions between apoB-100 peptides and extracellular matrix components. Anal Bioanal Chem 2009; 396:1373-80. [DOI: 10.1007/s00216-009-3371-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 12/18/2022]
|
46
|
Wang AJ, Vainikka K, Witos J, D'Ulivo L, Cilpa G, Kovanen PT, Oörni K, Jauhiainen M, Riekkola ML. Partial filling affinity capillary electrophoresis with cationic poly(vinylpyrrolidone)-based copolymer coatings for studies on human lipoprotein-steroid interactions. Anal Biochem 2009; 399:93-101. [PMID: 19932676 DOI: 10.1016/j.ab.2009.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 11/27/2022]
Abstract
Human plasma lipoproteins have strong hydrophobic interactions with steroids and their fatty acyl derivatives such as estradiol fatty acyl esters. In this work, affinity capillary electrophoresis with the partial filling technique was applied to study the hydrophobic interactions between lipoproteins, which are nanometer-sized particles, and nonconjugated steroids. The capillaries were first rinsed with one of two novel poly(vinylpyrrolidone) (PVP)-based cationic copolymers that were strongly adsorbed onto the fused-silica surface via electrostatic interactions. This surface treatment greatly suppressed the adsorption of lipoproteins. Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles were then employed in the coated capillaries as pseudostationary phase in the partial filling mode. The changes in corrected migration times of steroids increased linearly with the filling time of the lipoproteins. The affinity constants between the steroids and lipoproteins were calculated, and the most hydrophobic steroid studied, progesterone, had stronger affinity than testosterone or androstenedione toward both LDL and HDL. Affinity between steroids and LDL was stronger than that between steroids and HDL. Interactions between the steroids and lipoproteins were mainly nonspecific with particle lipid components, whereas some were site specific with the apolipoproteins. The developed technique has great potential for determination of the affinity of various compounds toward lipoproteins.
Collapse
Affiliation(s)
- Ai-Jun Wang
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Daniels TF, Killinger KM, Michal JJ, Wright RW, Jiang Z. Lipoproteins, cholesterol homeostasis and cardiac health. Int J Biol Sci 2009; 5:474-88. [PMID: 19584955 PMCID: PMC2706428 DOI: 10.7150/ijbs.5.474] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/19/2009] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.
Collapse
Affiliation(s)
- Tyler F Daniels
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | | | | | | | | |
Collapse
|
48
|
Gianturco SH, Bradley WA. Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: cellular aspects. Clin Cardiol 2009; 22:II7-14. [PMID: 10376191 PMCID: PMC6655668 DOI: 10.1002/clc.4960221403] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated plasma levels of triglyceride-rich lipoproteins (TGRLP), including very low-density lipoproteins (VLDL), chylomicrons, and their remnants, are now acknowledged as risk factors for cardiovascular disease. Interactions of TGRLP with lipoprotein receptors on monocytes, macrophages, and endothelial cells may be mechanistically linked to this risk. Triglyceride-rich lipoproteins from hypertriglyceridemic (HTG) subjects have the abnormal ability to bind to low-denisty lipoprotein receptors via apoE, and plasma chylomicrons from all subjects bind to a new, distinct receptor for apoB48 that is expressed specifically by monocytes, macrophages, and endothelial cells. Receptor binding and uptake of TGRLP by these cells are likely mechanisms involved in the formation of lipid-filled, macrophage-derived "foam cells" of atherosclerotic lesions and for defective fibrinolysis due to endothelial dysfunction. Recognition of the atherothrombogenic potential of TGRLP may lead to improved interventions to lessen or prevent the often fatal sequelae of coronary atherosclerosis and thrombosis associated with elevated plasma triglyceride levels.
Collapse
Affiliation(s)
- S H Gianturco
- Department of Medicine/Gerontology and Geriatrics, University of Alabama at Birmingham 35294-0012, USA
| | | |
Collapse
|
49
|
D’Ulivo L, Chen J, Meinander K, Öörni K, Kovanen PT, Riekkola ML. In situ delipidation of low-density lipoproteins in capillary electrochromatography yields apolipoprotein B-100-coated surfaces for interaction studies. Anal Biochem 2008; 383:38-43. [DOI: 10.1016/j.ab.2008.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 11/24/2022]
|
50
|
Molecular structure of low density lipoprotein: current status and future challenges. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:145-58. [DOI: 10.1007/s00249-008-0368-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/28/2008] [Indexed: 01/01/2023]
|