1
|
Drexel VEM, Göbel TW, Früh SP. Characterization of a novel chicken γδ TCR-specific marker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105250. [PMID: 39159844 DOI: 10.1016/j.dci.2024.105250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Chickens are a species with a high number of γδ T cells in various tissues. Despite their abundance, γδ T cells are poorly characterized in chickens, partially due to a lack of specific reagents to characterize these cells. Up until now, the TCR1 clone has been the only γδ T cell-specific monoclonal antibody (mAb) in chickens and additional reagents for γδ T cell subsets are needed. In order to address this issue, new mAb were generated in our laboratory by immunizing mice with in vitro cultured γδ T cells. In an initial flow cytometric screen a new mAb, clone "8D2", displayed an interesting staining pattern that mirrored γδ TCR up- and downregulation in the γδ T cell line D4 over time, prompting us to characterize this antibody further. We compared the expression of the unknown 8D2 epitope in combination with TCR1 staining across various primary cells. In splenocytes, peripheral blood lymphocytes and intestinal epithelial cells, 8D2 consistently labeled a subset of TCR1+ cells. To determine, whether specific γδ T cell receptors were recognized by 8D2, we sorted γδ T cells according to their 8D2 and TCR1 expression and analyzed their TCR V(D)J gene usage by TCR profiling. Strikingly, sorted 8D2+ cells preferentially expressed Vγ3 genes, whereas the TCR Vγ genes used by TCR1+ 8D2- cells were more variable. γδ TCR in 8D2+ cells were most frequently comprised of gamma chain VJ genes TRGV3-8 and TRGJ3, and delta chain VDJ genes TRDV1-2, TRDD2, TRDJ1. To confirm binding of 8D2 to specific γδ TCR, the preferentially utilized combination of TRG and TRD was expressed in HEK293 cells in combination with CD3, demonstrating surface binding of the 8D2 mAb to this Vγ3 γδ TCR-expressing cell line. Conversely, HEK293 cells expressing either Vγ1 or Vγ2 TCR did not react with 8D2. In conclusion, 8D2 is a novel tool for identifying specific Vγ3 bearing γδ T cells.
Collapse
Affiliation(s)
- Veronika E M Drexel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany
| | - Thomas W Göbel
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany.
| | - Simon P Früh
- Department of Veterinary Immunology, LMU Munich, Lena-Christ-Straße 48, 82152 Planegg-Martinsried, Germany; Department of Veterinary Medicine, Institute of Virology, FU Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| |
Collapse
|
2
|
Ng JWK, Cheung AMS. γδ T-cells in human malignancies: insights from single-cell studies and analytical considerations. Front Immunol 2024; 15:1438962. [PMID: 39281674 PMCID: PMC11392790 DOI: 10.3389/fimmu.2024.1438962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
γδ T-cells are a rare population of T-cells with both adaptive and innate-like properties. Despite their low prevalence, they have been found to be implicated various human diseases. γδ T-cell infiltration has been associated with improved clinical outcomes in solid cancers, prompting renewed interest in understanding their biology. To date, their biology remains elusive due to their low prevalence. The introduction of high-resolution single-cell sequencing has allowed various groups to characterize key effector subsets in various contexts, as well as begin to elucidate key regulatory mechanisms directing the differentiation and activity of these cells. In this review, we will review some of insights obtained from single-cell studies of γδ T-cells across various malignancies and highlight some important questions that remain unaddressed.
Collapse
Affiliation(s)
- Jeremy Wee Kiat Ng
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Alice Man Sze Cheung
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
3
|
Aney KJ, Jeong WJ, Vallejo AF, Burdziak C, Chen E, Wang A, Koak P, Wise K, Jensen K, Pe'er D, Dougan SK, Martelotto L, Nissim S. Novel Approach for Pancreas Transcriptomics Reveals the Cellular Landscape in Homeostasis and Acute Pancreatitis. Gastroenterology 2024; 166:1100-1113. [PMID: 38325760 PMCID: PMC11102849 DOI: 10.1053/j.gastro.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS Acinar cells produce digestive enzymes that impede transcriptomic characterization of the exocrine pancreas. Thus, single-cell RNA-sequencing studies of the pancreas underrepresent acinar cells relative to histological expectations, and a robust approach to capture pancreatic cell responses in disease states is needed. We sought to innovate a method that overcomes these challenges to accelerate study of the pancreas in health and disease. METHODS We leverage FixNCut, a single-cell RNA-sequencing approach in which tissue is reversibly fixed with dithiobis(succinimidyl propionate) before dissociation and single-cell preparation. We apply FixNCut to an established mouse model of acute pancreatitis, validate findings using GeoMx whole transcriptome atlas profiling, and integrate our data with prior studies to compare our method in both mouse and human pancreas datasets. RESULTS FixNCut achieves unprecedented definition of challenging pancreatic cells, including acinar and immune populations in homeostasis and acute pancreatitis, and identifies changes in all major cell types during injury and recovery. We define the acinar transcriptome during homeostasis and acinar-to-ductal metaplasia and establish a unique gene set to measure deviation from normal acinar identity. We characterize pancreatic immune cells, and analysis of T-cell subsets reveals a polarization of the homeostatic pancreas toward type-2 immunity. We report immune responses during acute pancreatitis and recovery, including early neutrophil infiltration, expansion of dendritic cell subsets, and a substantial shift in the transcriptome of macrophages due to both resident macrophage activation and monocyte infiltration. CONCLUSIONS FixNCut preserves pancreatic transcriptomes to uncover novel cell states during homeostasis and following pancreatitis, establishing a broadly applicable approach and reference atlas for study of pancreas biology and disease.
Collapse
Affiliation(s)
- Katherine J Aney
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts; Health Sciences & Technology Program, Harvard-MIT, Boston, Massachusetts; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Woo-Jeong Jeong
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ethan Chen
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Austin Wang
- Harvard University, Cambridge, Massachusetts
| | - Pal Koak
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kellie Wise
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia
| | - Kirk Jensen
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia; Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Stephanie K Dougan
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia.
| | - Sahar Nissim
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts; Health Sciences & Technology Program, Harvard-MIT, Boston, Massachusetts; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
4
|
Sagar. Unraveling the secrets of γδ T cells with single-cell biology. J Leukoc Biol 2024; 115:47-56. [PMID: 38073484 DOI: 10.1093/jleuko/qiad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 01/07/2024] Open
Abstract
Recent technological advancements have enabled us to study the molecular features of cellular states at the single-cell level, providing unprecedented resolution for comprehending the identity and function of a cell. By applying these techniques across multiple time frames, tissues, and diseases, we can delve deeper into the mechanisms governing the development and functions of cell lineages. In this review, I focus on γδ T cells, which are a unique and functionally nonredundant T cell lineage categorized under the umbrella of unconventional T cells. I discuss how single-cell biology is providing unique insights into their development and functions. Furthermore, I explore how single-cell methods can be used to answer several key questions about their biology. These investigations will be essential to fully understand their translational potential, including their role in cytotoxicity and tissue repair in cancer and regeneration.
Collapse
Affiliation(s)
- Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| |
Collapse
|
5
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
6
|
Wang Q, Lu Q, Jia S, Zhao M. Gut immune microenvironment and autoimmunity. Int Immunopharmacol 2023; 124:110842. [PMID: 37643491 DOI: 10.1016/j.intimp.2023.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
A variety of immune cells or tissues are present in the gut to form the gut immune microenvironment by interacting with gut microbiota, and to maintain the gut immune homeostasis. Accumulating evidence indicated that gut microbiota dysbiosis might break the homeostasis of the gut immune microenvironment, which was associated with many health problems including autoimmune diseases. Moreover, disturbance of the gut immune microenvironment can also induce extra-intestinal autoimmune disorders through the migration of intestinal pro-inflammatory effector cells from the intestine to peripheral inflamed sites. This review discussed the composition of the gut immune microenvironment and its association with autoimmunity. These findings are expected to provide new insights into the pathogenesis of various autoimmune disorders, as well as novel strategies for the prevention and treatment against related diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
7
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Martínez-Vargas IU, Sánchez-Bello ME, Miguel-Rodríguez CE, Hernández-Cázares F, Santos-Argumedo L, Talamás-Rohana P. Myo1f has an essential role in γδT intraepithelial lymphocyte adhesion and migration. Front Immunol 2023; 14:1041079. [PMID: 37207213 PMCID: PMC10189005 DOI: 10.3389/fimmu.2023.1041079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
γδT intraepithelial lymphocyte represents up to 60% of the small intestine intraepithelial compartment. They are highly migrating cells and constantly interact with the epithelial cell layer and lamina propria cells. This migratory phenotype is related to the homeostasis of the small intestine, the control of bacterial and parasitic infections, and the epithelial shedding induced by LPS. Here, we demonstrate that Myo1f participates in the adhesion and migration of intraepithelial lymphocytes. Using long-tailed class I myosins KO mice, we identified the requirement of Myo1f for their migration to the small intestine intraepithelial compartment. The absence of Myo1f affects intraepithelial lymphocytes' homing due to reduced CCR9 and α4β7 surface expression. In vitro, we confirm that adhesion to integrin ligands and CCL25-dependent and independent migration of intraepithelial lymphocytes are Myo1f-dependent. Mechanistically, Myo1f deficiency prevents correct chemokine receptor and integrin polarization, leading to reduced tyrosine phosphorylation which could impact in signal transduction. Overall, we demonstrate that Myo1f has an essential role in the adhesion and migration in γδT intraepithelial lymphocytes.
Collapse
Affiliation(s)
- Irving Ulises Martínez-Vargas
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria Elena Sánchez-Bello
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos Emilio Miguel-Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Felipe Hernández-Cázares
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Leopoldo Santos-Argumedo, ; Patricia Talamás-Rohana,
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Leopoldo Santos-Argumedo, ; Patricia Talamás-Rohana,
| |
Collapse
|
9
|
Adoptive Cell Therapy for T-Cell Malignancies. Cancers (Basel) 2022; 15:cancers15010094. [PMID: 36612092 PMCID: PMC9817702 DOI: 10.3390/cancers15010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
T-cell malignancies are often aggressive and associated with poor prognoses. Adoptive cell therapy has recently shown promise as a new line of therapy for patients with hematological malignancies. However, there are currently challenges in applying adoptive cell therapy to T-cell malignancies. Various approaches have been examined in preclinical and clinical studies to overcome these obstacles. This review aims to provide an overview of the recent progress on adoptive cell therapy for T-cell malignancies. The benefits and drawbacks of different types of adoptive cell therapy are discussed. The potential advantages and current applications of innate immune cell-based adoptive cell therapy for T cell malignancies are emphasized.
Collapse
|
10
|
Gui Y, Cheng H, Zhou J, Xu H, Han J, Zhang D. Development and function of natural TCR + CD8αα + intraepithelial lymphocytes. Front Immunol 2022; 13:1059042. [PMID: 36569835 PMCID: PMC9768216 DOI: 10.3389/fimmu.2022.1059042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity of intestinal homeostasis results from the ability of the intestinal epithelium to absorb nutrients, harbor multiple external and internal antigens, and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes (IELs) are a unique cell population embedded within the intestinal epithelial layer, contributing to the formation of the mucosal epithelial barrier and serving as a first-line defense against microbial invasion. TCRαβ+ CD4- CD8αα+ CD8αβ- and TCRγδ+ CD4- CD8αα+ CD8αβ- IELs are the two predominant subsets of natural IELs. These cells play an essential role in various intestinal diseases, such as infections and inflammatory diseases, and act as immune regulators in the gut. However, their developmental and functional patterns are extremely distinct, and the mechanisms underlying their development and migration to the intestine are not fully understood. One example is that Bcl-2 promotes the survival of thymic precursors of IELs. Mature TCRαβ+ CD4- CD8αα+ CD8αβ- IELs seem to be involved in immune regulation, while TCRγδ+ CD4- CD8αα+ CD8αβ- IELs might be involved in immune surveillance by promoting homeostasis of host microbiota, protecting and restoring the integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting excessive inflammation. In this review, we elucidated and organized effectively the functions and development of these cells to guide future studies in this field. We also discussed key scientific questions that need to be addressed in this area.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Han
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| |
Collapse
|
11
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Nie J, Carpenter AC, Chopp LB, Chen T, Balmaceno-Criss M, Ciucci T, Xiao Q, Kelly MC, McGavern DB, Belkaid Y, Bosselut R. The transcription factor LRF promotes integrin β7 expression by and gut homing of CD8αα + intraepithelial lymphocyte precursors. Nat Immunol 2022; 23:594-604. [PMID: 35354951 PMCID: PMC9290758 DOI: 10.1038/s41590-022-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/10/2022] [Indexed: 11/08/2022]
Abstract
While T cell receptor (TCR) αβ+CD8α+CD8β- intraepithelial lymphocytes (CD8αα+ IELs) differentiate from thymic IEL precursors (IELps) and contribute to gut homeostasis, the transcriptional control of their development remains poorly understood. In the present study we showed that mouse thymocytes deficient for the transcription factor leukemia/lymphoma-related factor (LRF) failed to generate TCRαβ+CD8αα+ IELs and their CD8β-expressing counterparts, despite giving rise to thymus and spleen CD8αβ+ T cells. LRF-deficient IELps failed to migrate to the intestine and to protect against T cell-induced colitis, and had impaired expression of the gut-homing integrin α4β7. Single-cell RNA-sequencing found that LRF was necessary for the expression of genes characteristic of the most mature IELps, including Itgb7, encoding the β7 subunit of α4β7. Chromatin immunoprecipitation and gene-regulatory network analyses both defined Itgb7 as an LRF target. Our study identifies LRF as an essential transcriptional regulator of IELp maturation in the thymus and subsequent migration to the intestinal epithelium.
Collapse
Affiliation(s)
- Jia Nie
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Andrea C Carpenter
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Laura B Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania Medical School, Philadelphia, PA, USA
| | - Ting Chen
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mariah Balmaceno-Criss
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Thomas Ciucci
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Qi Xiao
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael C Kelly
- CCR Single Analysis Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunology Section, Laboratory of Immune System Biology, Bethesda, MD, USA
- Microbiome core, National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
13
|
Zeiser R, Warnatz K, Rosshart S, Sagar, Tanriver Y. GVHD, IBD and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. Eur J Immunol 2022; 52:1406-1418. [PMID: 35339113 DOI: 10.1002/eji.202149530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The intestinal tract is the largest immunological organ in the body and has a central function of regulating local immune responses, as the intestinal epithelial barrier is a location where the immune system interacts with the gut microbiome including bacteria, fungi and viruses. Impaired immunity in the intestinal tract can lead to immunopathology, which manifests in different diseases such as inflammatory bowel disease (IBD) or intestinal graft-versus-host disease (GVHD). A disturbed communication between epithelial cells, immune cells and microbiome will shape pathogenic immune responses to antigens, which need to be counterbalanced by tolerogenic mechanisms and repair mechanisms. Here, we review how impaired intestinal immune function leads to immunopathology with a specific focus on innate immune cells, the role of the microbiome and the resulting clinical manifestations including intestinal GVHD, IBD and enteropathy in primary immunodeficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Microbiology and Hygiene, Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Phan TS, Schink L, Mann J, Merk VM, Zwicky P, Mundt S, Simon D, Kulms D, Abraham S, Legler DF, Noti M, Brunner T. Keratinocytes control skin immune homeostasis through de novo-synthesized glucocorticoids. SCIENCE ADVANCES 2021; 7:7/5/eabe0337. [PMID: 33514551 PMCID: PMC7846173 DOI: 10.1126/sciadv.abe0337] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/10/2020] [Indexed: 05/06/2023]
Abstract
Glucocorticoids (GC), synthesized by the 11β-hydroxylase (Cyp11b1), control excessive inflammation through immunosuppressive actions. The skin was proposed to regulate homeostasis by autonomous GC production in keratinocytes. However, their immunosuppressive capacity and clinical relevance remain unexplored. Here, we demonstrate the potential of skin-derived GC and their role in the regulation of physiological and prevalent inflammatory skin conditions. In line with 11β-hydroxylase deficiency in human inflammatory skin disorders, genetic in vivo Cyp11b1 ablation and long-term GC deficiency in keratinocytes primed the murine skin immune system resulting in spontaneous skin inflammation. Deficient skin GC in experimental models for inflammatory skin disorders led to exacerbated contact hypersensitivity and psoriasiform skin inflammation accompanied by decreased regulatory T cells and the involvement of unconventional T cells. Our findings provide insights on how skin homeostasis and pathology are critically regulated by keratinocyte-derived GC, emphasizing the immunoregulatory potential of endogenous GC in the regulation of epithelial immune microenvironment.
Collapse
Affiliation(s)
- Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Leonhard Schink
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jasmin Mann
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Verena M Merk
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital University Hospital, Bern, Switzerland
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
| | - Susanne Abraham
- Experimental Dermatology, Department of Dermatology, TU-Dresden, Dresden, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mario Noti
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
16
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
17
|
Ruf B, Heinrich B, Greten TF. Immunobiology and immunotherapy of HCC: spotlight on innate and innate-like immune cells. Cell Mol Immunol 2021; 18:112-127. [PMID: 33235387 PMCID: PMC7852696 DOI: 10.1038/s41423-020-00572-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Immune-based therapies such as immune checkpoint inhibitors have revolutionized the systemic treatment of various cancer types. The therapeutic application of monoclonal antibodies targeting inhibitory pathways such as programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) and CTLA-4 to cells of the adaptive immune system has recently been shown to generate meaningful improvement in the clinical outcome of hepatocellular carcinoma (HCC). Nevertheless, current immunotherapeutic approaches induce durable responses in only a subset of HCC patients. Since immunologic mechanisms such as chronic inflammation due to chronic viral hepatitis or alcoholic and nonalcoholic fatty liver disease play a crucial role in the initiation, development, and progression of HCC, it is important to understand the underlying mechanisms shaping the unique tumor microenvironment of liver cancer. The liver is an immunologic organ with large populations of innate and innate-like immune cells and is exposed to bacterial, viral, and fungal antigens through the gut-liver axis. Here, we summarize and highlight the role of these cells in liver cancer and propose strategies to therapeutically target them. We also discuss current immunotherapeutic strategies in HCC and outline recent advances in our understanding of how the therapeutic potential of these agents might be enhanced.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
19
|
Deseke M, Prinz I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol Immunol 2020; 17:914-924. [PMID: 32709926 PMCID: PMC7608190 DOI: 10.1038/s41423-020-0503-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
T lymphocytes comprise cells expressing either an αβ or a γδ TCR. The riddle how αβ TCRs are triggered by specific peptides presented in the context of MHC was elucidated some time ago. In contrast, the mechanisms that underlie antigen recognition by γδ TCRs are still baffling the scientific community. It is clear that activation of γδ TCRs does not necessarily depend on MHC antigen presentation. To date, diverse and largely host-cell-derived molecules have been identified as cognate antigens for the γδ TCR. However, for most γδ TCRs, the activating ligand is still unknown and many open questions with regard to physiological relevance and generalizable concepts remain. Especially the question of how γδ T cells can distinguish homeostatic from stress conditions via their TCR remains largely unresolved. Recent discoveries in the field might have paved the way towards a better understanding of antigen recognition by the γδ TCR and have made it conceivable to revise the current knowledge and contextualize the new findings.
Collapse
Affiliation(s)
- Malte Deseke
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
20
|
Jandke A, Melandri D, Monin L, Ushakov DS, Laing AG, Vantourout P, East P, Nitta T, Narita T, Takayanagi H, Feederle R, Hayday A. Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial γδ T cell compartments. Nat Commun 2020; 11:3769. [PMID: 32724083 PMCID: PMC7387338 DOI: 10.1038/s41467-020-17557-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Butyrophilin-like (Btnl) genes are emerging as major epithelial determinants of tissue-associated γδ T cell compartments. Thus, the development of signature, murine TCRγδ+ intraepithelial lymphocytes (IEL) in gut and skin depends on Btnl family members, Btnl1 and Skint1, respectively. In seeking mechanisms underlying these profound effects, we now show that normal gut and skin γδ IEL development additionally requires Btnl6 and Skint2, respectively, and furthermore that different Btnl heteromers can seemingly shape different intestinal γδ+ IEL repertoires. This formal genetic evidence for the importance of Btnl heteromers also applied to the steady-state, since sustained Btnl expression is required to maintain the signature TCR.Vγ7+ IEL phenotype, including specific responsiveness to Btnl proteins. In sum, Btnl proteins are required to select and to maintain the phenotypes of tissue-protective γδ IEL compartments, with combinatorially diverse heteromers having differential impacts on different IEL subsets.
Collapse
Affiliation(s)
- Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Daisy Melandri
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Adam G Laing
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Pierre Vantourout
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK
| | - Philip East
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoya Narita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo, 202-8585, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum, München, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Adrian Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW11AT, UK. .,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Great Maze Pond, London Bridge, London, SE19RT, UK.
| |
Collapse
|
21
|
Abstract
In mammals, adaptive immunity is mediated by a broadly diverse repertoire of naive B and T lymphocytes that recirculate between secondary lymphoid organs. Initial antigen exposure promotes lymphocyte clonal expansion and differentiation, including the formation of memory cells. Antigen-specific memory cells are maintained at higher frequencies than their naive counterparts and have different functional and homing abilities. Importantly, a subset of memory cells, known as tissue-resident memory cells, is maintained without recirculating in nonlymphoid tissues, often at barrier surfaces, where they can be reactivated by antigen and rapidly perform effector functions that help protect the tissue in which they reside. Although antigen-experienced B cells are abundant at many barrier surfaces, their characterization as tissue-resident memory B (BRM) cells is not well developed. In this study, we describe the characteristics of memory B cells in various locations and discuss their possible contributions to immunity and homeostasis as bona fide BRM cells.
Collapse
Affiliation(s)
- S. Rameeza Allie
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D. Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
22
|
Johnson MD, Witherden DA, Havran WL. The Role of Tissue-resident T Cells in Stress Surveillance and Tissue Maintenance. Cells 2020; 9:E686. [PMID: 32168884 PMCID: PMC7140644 DOI: 10.3390/cells9030686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
While forming a minor population in the blood and lymphoid compartments, T cells are significantly enriched within barrier tissues. In addition to providing protection against infection, these tissue-resident T cells play critical roles in tissue homeostasis and repair. T cells in the epidermis and intestinal epithelium produce growth factors and cytokines that are important for the normal turnover and maintenance of surrounding epithelial cells and are additionally required for the efficient recognition of, and response to, tissue damage. A role for tissue-resident T cells is emerging outside of the traditional barrier tissues as well, with recent research indicating that adipose tissue-resident T cells are required for the normal maintenance and function of the adipose tissue compartment. Here we review the functions of tissue-resident T cells in the epidermis, intestinal epithelium, and adipose tissue, and compare the mechanisms of their activation between these sites.
Collapse
Affiliation(s)
| | - Deborah A. Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA; (M.D.J.); (W.L.H.)
| | | |
Collapse
|
23
|
Walrath T, Malizia RA, Zhu X, Sharp SP, D'Souza SS, Lopez-Soler R, Parr B, Kartchner B, Lee EC, Stain SC, Iwakura Y, O'Connor W. IFN-γ and IL-17A regulate intestinal crypt production of CXCL10 in the healthy and inflamed colon. Am J Physiol Gastrointest Liver Physiol 2020; 318:G479-G489. [PMID: 31790273 PMCID: PMC7099492 DOI: 10.1152/ajpgi.00208.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During intestinal inflammation, immature cells within the intestinal crypt are called upon to replenish lost epithelial cell populations, promote tissue regeneration, and restore barrier integrity. Inflammatory mediators including TH1/TH17-associated cytokines influence tissue health and regenerative processes, yet how these cytokines directly influence the colon crypt epithelium and whether the crypt remains responsive to these cytokines during active damage and repair, remain unclear. Here, using laser-capture microdissection and primary colon organoid culture, we show that the cytokine milieu regulates the ability of the colonic crypt epithelium to participate in proinflammatory signaling. IFN-γ induces the TH1-recruiting, proinflammatory chemokine CXCL10/IP10 in primary murine intestinal crypt epithelium. CXCL10 was also induced in colonic organoids derived from mice with active, experimentally induced colitis, suggesting that the crypt can actively secrete CXCL10 in select cytokine environments during colitis. Colon expression of cxcl10 further increased during infectious and noninfectious colitis in Il17a-/- mice, demonstrating that IL-17A exerts a negative effect on CXCL10 in vivo. Furthermore, IL-17A directly antagonized CXCL10 production in ex vivo organoid cultures derived from healthy murine colons. Interestingly, direct antagonism of CXCL10 was not observed in organoids derived from colitic mouse colons bearing active lesions. These data, highlighting the complex interplay between the cytokine milieu and crypt epithelia, demonstrate proinflammatory chemokines can be induced within the colonic crypt and suggest the crypt remains responsive to cytokine modulation during inflammation.NEW & NOTEWORTHY Upon damage, the intestinal epithelium regenerates to restore barrier function. Here we observe that the local colonic cytokine milieu controls the production of procolitic chemokines within the crypt base and colon crypts remain responsive to cytokines during inflammation. IFN-γ promotes, while IL-17 antagonizes, CXCL10 production in healthy colonic crypts, while responses to cytokines differ in inflamed colon epithelium. These data reveal novel insight into colon crypt responses and inflammation-relevant alterations in signaling.
Collapse
Affiliation(s)
- Travis Walrath
- 1Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | | | - Xinjun Zhu
- 3Division of Gastroenterology, Department of Internal Medicine, Albany Medical College, Albany, New York
| | - Stephen P. Sharp
- 2Department of Surgery, Albany Medical College, Albany, New York
| | - Shanti S. D'Souza
- 1Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | | | - Brian Parr
- 4Cancer Research Center, University at Albany, Rensselaer, New York
| | - Brittany Kartchner
- 1Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Edward C. Lee
- 2Department of Surgery, Albany Medical College, Albany, New York
| | - Steven C. Stain
- 2Department of Surgery, Albany Medical College, Albany, New York
| | - Yoichiro Iwakura
- 5Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - William O'Connor
- 1Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| |
Collapse
|
24
|
Wu Y, Kyle-Cezar F, Woolf RT, Naceur-Lombardelli C, Owen J, Biswas D, Lorenc A, Vantourout P, Gazinska P, Grigoriadis A, Tutt A, Hayday A. An innate-like Vδ1 + γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci Transl Med 2019; 11:eaax9364. [PMID: 31597756 PMCID: PMC6877350 DOI: 10.1126/scitranslmed.aax9364] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Innate-like tissue-resident γδ T cell compartments capable of protecting against carcinogenesis are well established in mice. Conversely, the degree to which they exist in humans, their potential properties, and their contributions to host benefit are mostly unresolved. Here, we demonstrate that healthy human breast harbors a distinct γδ T cell compartment, primarily expressing T cell receptor (TCR) Vδ1 chains, by comparison to Vδ2 chains that predominate in peripheral blood. Breast-resident Vδ1+ cells were functionally skewed toward cytolysis and IFN-γ production, but not IL-17, which has been linked with inflammatory pathologies. Breast-resident Vδ1+ cells could be activated innately via the NKG2D receptor, whereas neighboring CD8+ αβ T cells required TCR signaling. A comparable population of Vδ1+ cells was found in human breast tumors, and when paired tumor and nonmalignant samples from 11 patients with triple-negative breast cancer were analyzed, progression-free and overall survival correlated with Vδ1+ cell representation, but not with either total γδ T cells or Vδ2+ T cells. As expected, progression-free survival also correlated with αβ TCRs. However, whereas in most cases TCRαβ repertoires focused, typical of antigen-specific responses, this was not observed for Vδ1+ cells, consistent with their innate-like responsiveness. Thus, maximal patient benefit may accrue from the collaboration of innate-like responses mounted by tissue-resident Vδ1+ compartments and adaptive responses mounted by αβ T cells.
Collapse
Affiliation(s)
- Yin Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
- Immunosurveillance Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London WC1E 6DD, UK
| | - Fernanda Kyle-Cezar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
- Immunosurveillance Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard T Woolf
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Cristina Naceur-Lombardelli
- KHP Cancer Biobank, Innovation Hub, Cancer Centre at Guy's Hospital, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Julie Owen
- KHP Cancer Biobank, Innovation Hub, Cancer Centre at Guy's Hospital, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London WC1E 6DD, UK
- Bill Lyons Informatics Centre, University College London Cancer Institute, University College London, London WC1E 6DD, UK
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Pierre Vantourout
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
- Immunosurveillance Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Patrycja Gazinska
- Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
| | - Andrew Tutt
- Breast Cancer Now Research Unit, Innovation Hub, Cancer Centre at Guy's Hospital, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, UK
- Breast Cancer Now Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK.
- Immunosurveillance Laboratory, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
25
|
Belkina AC, Starchenko A, Drake KA, Proctor EA, Pihl RMF, Olson A, Lauffenburger DA, Lin N, Snyder-Cappione JE. Multivariate Computational Analysis of Gamma Delta T Cell Inhibitory Receptor Signatures Reveals the Divergence of Healthy and ART-Suppressed HIV+ Aging. Front Immunol 2018; 9:2783. [PMID: 30568654 PMCID: PMC6290897 DOI: 10.3389/fimmu.2018.02783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Even with effective viral control, HIV-infected individuals are at a higher risk for morbidities associated with older age than the general population, and these serious non-AIDS events (SNAEs) track with plasma inflammatory and coagulation markers. The cell subsets driving inflammation in aviremic HIV infection are not yet elucidated. Also, whether ART-suppressed HIV infection causes premature induction of the inflammatory events found in uninfected elderly or if a novel inflammatory network ensues when HIV and older age co-exist is unclear. In this study we measured combinational expression of five inhibitory receptors (IRs) on seven immune cell subsets and 16 plasma markers from peripheral blood mononuclear cells (PBMC) and plasma samples, respectively, from a HIV and Aging cohort comprised of ART-suppressed HIV-infected and uninfected controls stratified by age (≤35 or ≥50 years old). For data analysis, multiple multivariate computational algorithms [cluster identification, characterization, and regression (CITRUS), partial least squares regression (PLSR), and partial least squares-discriminant analysis (PLS-DA)] were used to determine if immune parameter disparities can distinguish the subject groups and to investigate if there is a cross-impact of aviremic HIV and age on immune signatures. IR expression on gamma delta (γδ) T cells exclusively separated HIV+ subjects from controls in CITRUS analyses and secretion of inflammatory cytokines and cytotoxic mediators from γδ T cells tracked with TIGIT expression among HIV+ subjects. Also, plasma markers predicted the percentages of TIGIT+ γδ T cells in subjects with and without HIV in PSLR models, and a PLS-DA model of γδ T cell IR signatures and plasma markers significantly stratified all four of the subject groups (uninfected younger, uninfected older, HIV+ younger, and HIV+ older). These data implicate γδ T cells as an inflammatory driver in ART-suppressed HIV infection and provide evidence of distinct “inflamm-aging” processes with and without ART-suppressed HIV infection.
Collapse
Affiliation(s)
- Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Alina Starchenko
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Elizabeth A Proctor
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Riley M F Pihl
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States
| | - Alex Olson
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nina Lin
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jennifer E Snyder-Cappione
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
26
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
27
|
Montalban-Arques A, Chaparro M, Gisbert JP, Bernardo D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm Bowel Dis 2018; 24:1649-1659. [PMID: 29788271 DOI: 10.1093/ibd/izy177] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The gastrointestinal tract harbors the largest microbiota load in the human body, hence maintaining a delicate balance between immunity against invading pathogens and tolerance toward commensal. Such immune equilibrium, or intestinal homeostasis, is conducted by a tight regulation and cooperation of the different branches of the immune system, including the innate and the adaptive immune system. However, several factors affect this delicate equilibrium, ultimately leading to gastrointestinal disorders including inflammatory bowel disease. Therefore, here we decided to review the currently available information about innate immunity lymphocyte subsets playing a role in intestinal inflammation. RESULTS Intestinal innate lymphocytes are composed of intraepithelial lymphocytes (IELs) and lamina propria innate lymphoid cells (ILCs). While IELs can be divided into natural or induced, ILCs can be classified into type 1, 2, or 3, resembling, respectively, the properties of TH1, TH2, or TH17 adaptive lymphocytes. Noteworthy, the phenotype and function of both IELs and ILCs are disrupted under inflammatory conditions, where they help to exacerbate intestinal immune responses. CONCLUSIONS The modulation of both IELs and ILCs to control intestinal inflammatory responses represents a major challenge, as they provide tight regulation among the epithelium, the microbiota, and the adaptive immune system. An improved understanding of the innate immunity mechanisms involved in gastrointestinal inflammation would therefore aid in the diagnosis and further treatment of gastrointestinal inflammatory disorders.
Collapse
Affiliation(s)
- A Montalban-Arques
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - M Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - D Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
28
|
Interactions Between Epidermal Keratinocytes, Dendritic Epidermal T-Cells, and Hair Follicle Stem Cells. Methods Mol Biol 2018. [PMID: 29896657 DOI: 10.1007/7651_2018_155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The interplay of immune cells and stem cells in maintaining skin homeostasis and repair is an exciting new frontier in cutaneous biology. With the growing appreciation of the importance of this new crosstalk comes the requirement of methods to interrogate the molecular underpinnings of these leukocyte-stem cell interactions. Here we describe how a combination of FACS, cellular coculture assays, and conditioned media treatments can be utilized to advance our understanding of this emerging area of intercellular communication between immune cells and stem cells.
Collapse
|
29
|
Nakamura M. Histological and immunological characteristics of the junctional epithelium. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:59-65. [PMID: 29755616 PMCID: PMC5944073 DOI: 10.1016/j.jdsr.2017.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/23/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
The continuity of epithelial tissue is collapsed by tooth eruption. The junctional epithelium (JE) is attached to the tooth surface by hemidesmosomes, which constitutes the front-line defense against periodontal bacterial infection. JE constitutively expresses intercellular adhesion molecule-1 (ICAM-1), and neutrophils and lymphocytes penetrate into JE via interaction between ICAM-1 and LFA-1 expressed on the surface of these migrating cells. JE also expresses cytokines and chemokines. These functions of JE are maintained even in germ-free condition. Therefore, the constitutive expression of adhesion molecules, cytokines, and chemokines might be used not only for anti-pathogenic defense but also for maintaining the physiological homeostasis of JE. In this review, we have mainly focused on the structural and functional features of JE, and discussed the function of intraepithelial lymphocytes in JE as a front-line anti-microbial defense barrier and regulator of JE hemostasis.
Collapse
Affiliation(s)
- Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
30
|
Qiu Z, Sheridan BS. Isolating Lymphocytes from the Mouse Small Intestinal Immune System. J Vis Exp 2018. [PMID: 29553537 DOI: 10.3791/57281] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The intestinal immune system plays an essential role in maintaining the barrier function of the gastrointestinal tract by generating tolerant responses to dietary antigens and commensal bacteria while mounting effective immune responses to enteropathogenic microbes. In addition, it has become clear that local intestinal immunity has a profound impact on distant and systemic immunity. Therefore, it is important to study how an intestinal immune response is induced and what the immunologic outcome of the response is. Here, a detailed protocol is described for the isolation of lymphocytes from small intestine inductive sites like the gut-associated lymphoid tissue Peyer's patches and the draining mesenteric lymph nodes and effector sites like the lamina propria and the intestinal epithelium. This technique ensures isolation of a large numbers of lymphocytes from small intestinal tissues with optimal purity and viability and minimal cross compartmental contamination within acceptable time constraints. The technical capability to isolate lymphocytes and other immune cells from intestinal tissues enables the understanding of immune responses to gastrointestinal infections, cancers, and inflammatory diseases.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University
| | - Brian S Sheridan
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University;
| |
Collapse
|
31
|
Zhang Y, Wang Y, Li MQ, Duan J, Fan DX, Jin LP. IL-25 promotes Th2 bias by upregulating IL-4 and IL-10 expression of decidual γδT cells in early pregnancy. Exp Ther Med 2017; 15:1855-1862. [PMID: 29434775 PMCID: PMC5776656 DOI: 10.3892/etm.2017.5638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/25/2017] [Indexed: 11/27/2022] Open
Abstract
Decidual immune cells (DICs), consisting of both innate and adaptive immune cells, have a pivotal role in maintaining immune tolerance for normal pregnancy. Our previous study demonstrated that interleukin (IL)-25 stimulates the proliferation of decidual stromal cells (DSCs) in an autocrine manner. However, the role of IL-25 in functional regulation of DICs is largely unknown. Flow cytometry was used to analyze the expression of IL-25 and its receptor (IL-17RB) in DICs, and the effect of IL-25 on the expression of Ki-67, IL-4, IL-10, interferon (IFN)-γ and transforming growth factor (TGF)-β in decidual γδT cells. In addition, ELISA assays were performed to detect the secretion of IL-10 and TGF-β in decidual γδT cells. The present findings indicated that decidual CD56 bright CD16-natural killer (NK) cells, natural killer T (NKT) cells, regulatory T (Treg) cells, CD3+ T cells, macrophages and γδT cells co-expressed IL-25 and IL-17RB, particularly γδT cells. Recombinant human (rh) IL-25 protein upregulated the expression of Ki-67, IL-4, and IL-10, but downregulated the expression of IFN-γ in γδT cells; however, anti-human IL-25 or IL-17RB neutralizing antibody reversed these effects. These data suggest that IL-25 may promote IL-10 production by γδT cells as well as the proliferation of γδT cells, and possibly forms a positive feedback loop to maintain a T helper 2 cell bias at the maternal-fetal interface and further contributes to the maintenance of successful pregnancy.
Collapse
Affiliation(s)
- Yuan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Jie Duan
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Deng-Xuan Fan
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| |
Collapse
|
32
|
Konjar Š, Ferreira C, Blankenhaus B, Veldhoen M. Intestinal Barrier Interactions with Specialized CD8 T Cells. Front Immunol 2017; 8:1281. [PMID: 29075263 PMCID: PMC5641586 DOI: 10.3389/fimmu.2017.01281] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
The trillions of microorganisms that reside in the gastrointestinal tract, essential for nutrient absorption, are kept under control by a single cell barrier and large amounts of immune cells. Intestinal epithelial cells (IECs) are critical in establishing an environment supporting microbial colonization and immunological tolerance. A large population of CD8+ T cells is in direct and constant contact with the IECs and the intraepithelial lymphocytes (IELs). Due to their location, at the interphase of the intestinal lumen and external environment and the host tissues, they seem ideally positioned to balance immune tolerance and protection to preserve the fragile intestinal barrier from invasion as well as immunopathology. IELs are a heterogeneous population, with a large innate-like contribution of unknown specificity, intercalated with antigen-specific tissue-resident memory T cells. In this review, we provide a comprehensive overview of IEL physiology and how they interact with the IECs and contribute to immune surveillance to preserve intestinal homeostasis and host-microbial relationships.
Collapse
Affiliation(s)
- Špela Konjar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Benet-Campos C, Cuéllar C, García-Ballesteros C, Zamora V, Gil-Borrás R, Catalán-Serra I, López-Chuliá F, Andreu-Ballester JC. Determination of Anti-Anisakis Simplex Antibodies and Relationship with αβ and γδ Lymphocyte Subpopulations in Patients with Crohn's Disease. Dig Dis Sci 2017; 62:934-943. [PMID: 28168577 DOI: 10.1007/s10620-017-4473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/24/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND The etiology of Crohn's disease (CD) is still unknown although new theories are based on defects in innate immunity. We have previously shown a decrease in γδ T cells in CD patients. Previous studies have shown a high prevalence of anti-A. simplex immunoglobulins in CD patients. The diminution of γδ T cells in the peripheral blood and intestinal mucosa of CD patients may create a state of immunosuppression that would facilitate A. simplex infection. AIMS To study the antibody responses to Anisakis antigens in Crohn's disease patients and its relationship with αβ and γδ T cell subsets. METHODS We recruited 81 CD patients and 81 healthy controls. αβ and γδ T cell subsets and anti-A. simplex antibodies were measured. RESULTS Levels of anti-A. simplex IgG and IgM were significantly increased in CD patients. Almost 20% of CD patients were positive for IgG and IgM anti-A. simplex versus only 3.7 and 2.5%, respectively, in normal subjects. However, lower specific IgA levels were observed in the group of CD patients versus healthy subjects. We found an association between CD3 + CD8 + γδ subset and IgM anti-A. simplex levels. In ileal cases and stricturing behavior of CD, we observed the highest levels of specific antibodies with the exception of anti-A. simplex IgA. CONCLUSIONS The relationship of specific antibodies with a γδ T cell deficiency makes these cell candidates to play a role in the immune response against Anisakis. In addition, anti-Anisakis antibodies could be considered as markers of risk of progression in CD.
Collapse
Affiliation(s)
- C Benet-Campos
- Hematology Department, Arnau de Vilanova Hospital, Valencia, Spain
| | - C Cuéllar
- Department of Parasitology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | | | - V Zamora
- Department of Parasitology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - R Gil-Borrás
- Digestive Department, IBD Unit, Arnau de Vilanova Hospital, Valencia, Spain
| | - I Catalán-Serra
- Digestive Department, IBD Unit, Arnau de Vilanova Hospital, Valencia, Spain
- Internal Medicine, Gastroenterology Department, Levanger Hospital, Helse Nord-Trondelag, Levanger, Norway
- Centre of Molecular Inflammation Research (CEMIR), Norwegian Science and Technology University (NTNU), Trondheim, Norway
| | - F López-Chuliá
- Hematology Department, Arnau de Vilanova Hospital, Valencia, Spain
| | - J C Andreu-Ballester
- Research Department, Arnau de Vilanova Hospital, c/San Clemente 12, 46015, Valencia, Spain.
| |
Collapse
|
34
|
Zamora V, García-Ballesteros C, Benet-Campos C, Ballester F, Cuéllar C, Andreu-Ballester JC. Anti-Anisakis sp. antibodies in serum of healthy subjects. Relationship with αβ and γδ T cells. Acta Parasitol 2017; 62:97-103. [PMID: 28030343 DOI: 10.1515/ap-2017-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 10/10/2016] [Indexed: 02/02/2023]
Abstract
Anisakiosis is nowadays one of the nematodoses more prevalent in Spain, with rates that oscillate between 0.43% in Galicia (N.W. Spain), and 15.7% and 22.1% in inland and southern regions, respectively. Likewise, it has been proved that Anisakis larvae have developed mechanisms to modulate the dichotomy of the host immune response for their own benefit. The experimental hypothesis of the present study was that Anisakis sp. larval products can be mediators of immune suppression and induce changes on the populations of αβ+ and γδ+ T cells. In the present study we determined the levels of anti-Anisakis antibodies in the serum of healthy people, and their relationship with the B and T cell subsets. Levels of anti-Anisakis antibodies (Ig's, IgG, IgM, IgA and IgE) were measured by ELISA, while B and T cell subsets were studied by flow cytometry. Cells were labelled with monoclonal antibodies against CD45, CD4, CD8, CD56, CD3, CD19, TCRαβ and TCRγδ. All the specific isotypes studied were negatively correlated with NKT cell rates with the exception of IgG. A previous contact with Anisakis was related to a decrease in CD56+αβ+ and all γδ+ T cell subsets. The CD3+γδ+ population was lower in the group of subjects that showed IgA anti-Anisakis. We observed an inverse correlation among αβ-γδ NKT cells and anti-Anisakis sp. antibodies. CD3+CD56+ cells showed a significant decrease in the group of anti-Anisakis positive subjects. This fact was especially significant with CD3+CD56+γδ+ cells in the case of the anti-Anisakis IgA positive group.
Collapse
|
35
|
Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer 2016; 139:976-85. [PMID: 27012367 DOI: 10.1002/ijc.30109] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Sourav Paul
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| | - Girdhari Lal
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| |
Collapse
|
36
|
Gamma/delta intraepithelial lymphocytes in the mouse small intestine. Anat Sci Int 2016; 91:301-12. [PMID: 27056578 DOI: 10.1007/s12565-016-0341-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/18/2016] [Indexed: 12/30/2022]
Abstract
Although many studies of intraepithelial lymphocytes (IELs) have been reported, most of them have focused on αβ-IELs; little attention has been paid to γδ-IELs. The function of γδ-IELs remains largely unclear. In this article, we briefly review a number of reports on γδ-IELs, especially those in the small intestine, along with our recent studies. We found that γδ-IELs are the most abundant (comprising >70 % of the) IELs in the duodenum and the jejunum, implying that it is absolutely necessary to investigate the function(s) of γδ-IELs when attempting to delineate the in vivo defense system of the small intestine. Intraperitoneal injection of anti-CD3 mAb stimulated the γδ-IELs and caused rapid degranulation of them. Granzyme B released from their granules induced DNA fragmentation of duodenal and jejunal epithelial cells (paracrine) and of the IELs themselves (autocrine). However, perforin (Pfn) was not detected, and DNA fragmentation was induced even in Pfn-knockout mice; our system was therefore found to present a novel type of in vivo Pfn-independent DNA fragmentation. We can therefore consider γδ-IELs to be a novel type of large granular lymphocyte without Pfn. Fragmented DNA was repaired in the cells, indicating that DNA fragmentation alone cannot be regarded as an unambiguous marker of cell death or apoptosis. Finally, since the response was so rapid and achieved without the need for accessory cells, it seems that γδ-IELs respond readily to various stimuli, are activated only once, and die 2-3 days after activation in situ without leaving their site. Taken together, these results suggest that γδ-IELs are not involved in the recognition of specific antigen(s) and are not involved in the resulting specific killing or exclusion of the relevant antigen(s).
Collapse
|
37
|
Abstract
In vivo depletion of T lymphocytes is a means of studying the role of specific T cell populations during defined phases of in vivo immune responses. In this unit, a protocol is provided for injecting monoclonal antibodies (mAbs) into wild-type adult mice. Depletion of the appropriate subset of cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on a variety of in vivo immune responses. The depleted condition may be maintained by repeated injections of the monoclonal antibody, or reversed by normal thymopoiesis following discontinuation of antibody administration.
Collapse
Affiliation(s)
- Karen Laky
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|
38
|
The Role of γδ T Cells in Systemic Lupus Erythematosus. J Immunol Res 2016; 2016:2932531. [PMID: 26981547 PMCID: PMC4766344 DOI: 10.1155/2016/2932531] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the overproduction of autoantibodies against an array of nuclear and cytoplasmic antigens and affects multiple organs, such as the skin, joints, kidneys, and neuronal tissues. T cells have been recognized as important players in the development of SLE due to their functions in cytokine secretion, antigen presentation, and supporting B cells for antibody production. γδ T cells are a minor population of T cells that play important roles in infection and tumor-associated disease. In recent years, the role of γδ T cells in autoimmune diseases has been investigated. In this review, we discussed the role of γδ T cells in the pathogenesis of SLE.
Collapse
|
39
|
Co-culture with intestinal epithelial organoids allows efficient expansion and motility analysis of intraepithelial lymphocytes. J Gastroenterol 2016; 51:206-13. [PMID: 26800996 PMCID: PMC4771822 DOI: 10.1007/s00535-016-1170-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/13/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestine play important roles in the regulation of local immune responses. Although their functions have been studied in a variety of animal experiments, in vitro studies on spatiotemporal behaviors of IELs and their interaction with intestinal epithelial cells (IECs) have been hampered due to the lack of a suitable culture system. In this study, we aimed at developing a novel co-culture system of IELs with IECs to investigate dynamic interaction between these two populations of cells in vitro. METHODS We optimized experimental conditions under which murine IELs can be efficiently maintained with IECs cultured as three-dimensional organoids. We then tested the effect of IL-2, IL-7, and IL-15 on the maintenance of IELs in this co-culture system. By time-lapse imaging, we also examined the dynamic behaviors of IELs. RESULTS IELs can be expanded with epithelial organoids in the presence of IL-2, IL-7, and IL-15. IELs were efficiently maintained within and outside of organoids showing a ~four-fold increase in both αβT and γδT IELs for a period of 2 weeks. Four-dimensional fluorescent imaging revealed an active, multi-directional movement of IELs along the basolateral surface of IECs, and also their inward or outward migration relative to organoid structures. Cell tracking analysis showed that αβT and γδT IELs shared indistinguishable features with regard to their dynamics. CONCLUSIONS This novel co-culture method could serve as a unique tool to investigate the motility dynamics of IELs and their temporal and spatial interaction with IECs in vitro.
Collapse
|
40
|
The Mucosal Immune System of Teleost Fish. BIOLOGY 2015; 4:525-39. [PMID: 26274978 PMCID: PMC4588148 DOI: 10.3390/biology4030525] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023]
Abstract
Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT(+) B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture.
Collapse
|
41
|
Becker AM, Callahan DJ, Richner JM, Choi J, DiPersio JF, Diamond MS, Bhattacharya D. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS One 2015. [PMID: 26197390 PMCID: PMC4510063 DOI: 10.1371/journal.pone.0133854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- Bone Marrow Cells/cytology
- Bone Marrow Transplantation
- Citrobacter
- Female
- Graft vs Host Disease
- Hematopoietic Stem Cells/cytology
- Intestinal Mucosa/metabolism
- Intestine, Small/metabolism
- Lymphocytes/cytology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelopoiesis
- Oligonucleotide Array Sequence Analysis
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Thymus Gland/metabolism
- Transplantation, Homologous
- West Nile virus
Collapse
Affiliation(s)
- Amy M. Becker
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Derrick J. Callahan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Justin M. Richner
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jaebok Choi
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - John F. DiPersio
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
42
|
Qiu Y, Wang W, Xiao W, Yang H. Role of the intestinal cytokine microenvironment in shaping the intraepithelial lymphocyte repertoire. J Leukoc Biol 2015; 97:849-857. [PMID: 25765675 DOI: 10.1189/jlb.3ru1014-465r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/17/2015] [Accepted: 02/16/2015] [Indexed: 12/11/2022] Open
Abstract
Local resident IELs are composed of distinct subsets of T cells with potent cytolytic and immunoregulatory capacities. As IELs are located within this unique interface between the core of the body and the outside environment, the specific development and function of intestinal IELs must be tightly regulated. To accomplish this, the cytokine microenvironment of the intestine has evolved sophisticated mechanisms that modulate the phenotype, ontogeny, and function of these cells. In this review, we summarize the evidence demonstrating the origin of certain intestinal cytokines, including IL-7, IL-15, IL-2, TGF-β, and SCF and discuss what influence such cytokines may have on IELs. Moreover, we review data suggesting that the abnormal expression of cytokines that leads to the heightened activation of IELs may also contribute to immunopathological responses or exacerbate inflammatory diseases, such as IBD and celiac disease, or promote cancer development and progression.
Collapse
Affiliation(s)
- Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Abstract
γδ T cells represent a small population of overall T lymphocytes (0.5-5%) and have variable tissue distribution in the body. γδ T cells can perform complex functions, such as immune surveillance, immunoregulation, and effector function, without undergoing clonal expansion. Heterogeneous distribution and anatomic localization of γδ T cells in the normal and inflamed tissues play an important role in alloimmunity, autoimmunity, or immunity. The cross-talk between γδ T cells and other immune cells and phenotypic and functional plasticity of γδ T cells have been given recent attention in the field of immunology. In this review, we discussed the cellular and molecular interaction of γδ T cells with other immune cells and its mechanism in the pathogenesis of various autoimmune diseases.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune University Campus, Pune, India
| | - Shilpi
- National Centre for Cell Science, Pune University Campus, Pune, India
| | - Girdhari Lal
- National Centre for Cell Science, Pune University Campus, Pune, India
| |
Collapse
|
44
|
Klose CSN, Blatz K, d'Hargues Y, Hernandez PP, Kofoed-Nielsen M, Ripka JF, Ebert K, Arnold SJ, Diefenbach A, Palmer E, Tanriver Y. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8αα(+) intraepithelial lymphocyte development. Immunity 2014; 41:230-43. [PMID: 25148024 DOI: 10.1016/j.immuni.2014.06.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/07/2014] [Indexed: 01/07/2023]
Abstract
CD8αα(+) intraepithelial lymphocytes (IELs) are instrumental in maintaining the epithelial barrier in the intestine. Similar to natural killer cells and other innate lymphoid cells, CD8αα(+) IELs constitutively express the T-box transcription factor T-bet. However, the precise role of T-bet for the differentiation or function of IELs is unknown. Here we show that mice genetically deficient for T-bet lacked both TCRαβ(+) and TCRγδ(+) CD8αα(+) IELs and thus are more susceptible to chemically induced colitis. Although T-bet was induced in thymic IEL precursors (IELPs) as a result of agonist selection and interleukin-15 (IL-15) receptor signaling, it was dispensable for the generation of IELPs. Subsequently, T-bet was required for the IL-15-dependent activation, differentiation, and expansion of IELPs in the periphery. Our study reveals a function of T-bet as a central transcriptional regulator linking agonist selection and IL-15 signaling with the emergence of CD8αα(+) IELs.
Collapse
Affiliation(s)
- Christoph S N Klose
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Katharina Blatz
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Yannick d'Hargues
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Pedro P Hernandez
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Michael Kofoed-Nielsen
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Juliane F Ripka
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Karolina Ebert
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany; Faculty of Biology, 79104 Freiburg, Germany
| | - Sebastian J Arnold
- Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany; BIOSS Center of Biological Signalling Studies, 79104 Freiburg, Germany
| | - Andreas Diefenbach
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Ed Palmer
- Laboratory of Transplantation Immunology, Departments of Biomedicine and Nephrology, University Hospital Basel, 4031 Basel, Switzerland
| | - Yakup Tanriver
- Institute of Medical Microbiology and Hygiene, University of Freiburg Medical Center, 79104 Freiburg, Germany; Department of Internal Medicine IV, University of Freiburg Medical Center, 79106 Freiburg, Germany.
| |
Collapse
|
45
|
Pai MH, Liu JJ, Hou YC, Yeh CL. Soybean and Fish Oil Mixture With Different ω-6/ω-3 Polyunsaturated Fatty Acid Ratios Modulates Dextran Sulfate Sodium–Induced Changes in Small Intestinal Intraepithelial γδT-Lymphocyte Expression in Mice. JPEN J Parenter Enteral Nutr 2014; 40:383-91. [DOI: 10.1177/0148607114559429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/15/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Man-Hui Pai
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Hou
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Li Yeh
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
46
|
Bowcutt R, Forman R, Glymenaki M, Carding SR, Else KJ, Cruickshank SM. Heterogeneity across the murine small and large intestine. World J Gastroenterol 2014; 20:15216-15232. [PMID: 25386070 PMCID: PMC4223255 DOI: 10.3748/wjg.v20.i41.15216] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/18/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
The small and large intestine of the gastrointestinal tract (GIT) have evolved to have discrete functions with distinct anatomies and immune cell composition. The importance of these differences is underlined when considering that different pathogens have uniquely adapted to live in each region of the gut. Furthermore, different regions of the GIT are also associated with differences in susceptibility to diseases such as cancer and chronic inflammation. The large and small intestine, given their anatomical and functional differences, should be seen as two separate immunological sites. However, this distinction is often ignored with findings from one area of the GIT being inappropriately extrapolated to the other. Focussing largely on the murine small and large intestine, this review addresses the literature relating to the immunology and biology of the two sites, drawing comparisons between them and clarifying similarities and differences. We also highlight the gaps in our understanding and where further research is needed.
Collapse
|
47
|
Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns. PLoS Genet 2014; 10:e1004417. [PMID: 24901252 PMCID: PMC4046983 DOI: 10.1371/journal.pgen.1004417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/14/2014] [Indexed: 11/19/2022] Open
Abstract
Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5′ untranslated regions (5′UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood. Many immune genes are multigene families, presumably in response to pathogen variation. Some multigene families undergo expansion and contraction, leading to copy number variation (CNV), presumably due to more intense selection. Recently, the butyrophilin family in humans and other mammals has come under scrutiny, due to genetic associations with autoimmune diseases as well as roles in immune co-regulation and antigen presentation. Butyrophilin genes exhibit allelic polymorphism, but gene number appears stable within a species. We found that the BG homologues in chickens are very different, with great changes between haplotypes. We characterised one haplotype in detail, showing that there are two single BG genes, one on chromosome 2 and the other in the major histocompatibility complex (BF-BL region) on chromosome 16, and a family of BG genes in a tandem array in the BG region nearby. These genes have specific expression in cells and tissues, but overall are expressed in either haemopoietic cells or tissues. The two singletons have relatively stable evolutionary histories, but the BG region undergoes dynamic expansion and contraction, with the production of hybrid genes. Thus, chicken BG genes appear to evolve much more quickly than their closest homologs in mammals, presumably due to increased pressure from pathogens.
Collapse
|
48
|
Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 2014; 5:143-63. [PMID: 16451116 DOI: 10.1586/14760584.5.1.143] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coccidiosis is recognized as the major parasitic disease of poultry and is caused by the apicomplexan protozoan Eimeria. Coccidiosis seriously impairs the growth and feed utilization of infected animals resulting in loss of productivity. Conventional disease control strategies rely heavily on chemoprophylaxis and, to a certain extent, live vaccines. Combined, these factors inflict tremendous economic losses to the world poultry industry in excess of USD 3 billion annually. Increasing regulations and bans on the use of anticoccidial drugs coupled with the associated costs in developing new drugs and live vaccines increases the need for the development of novel approaches and alternative control strategies for coccidiosis. This paper aims to review the current progress in understanding the host immune response to Eimeria and discuss current and potential strategies being developed for coccidiosis control in poultry.
Collapse
Affiliation(s)
- Rami A Dalloul
- Animal & Natural Resources Institute, BARC-East, Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
49
|
Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol 2013; 33:537-58. [PMID: 24354324 DOI: 10.3109/08830185.2013.863306] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gamma-delta T cells (γδ T cells) are an unique group of lymphocytes and play an important role in bridging the gap between innate and adaptive immune systems under homeostatic condition as well as during infection and inflammation. They are predominantly localized into the mucosal and epithelial sites, but also exist in other peripheral tissues and secondary lymphoid organs. γδ T cells can produce cytokines and chemokines to regulate the migration of other immune cells, can bring about lysis of infected or stressed cells by secreting granzymes, provide help to B cells and induce IgE production, can present antigen to conventional T cells, activate antigen presenting cells (APC) maturation, and are also known to produce growth factors that regulate the stromal cell function. γδ T cells spontaneously produce IFN-γ and IL-17 cytokines compared to delayed differentiation of Th1 and Th17 cells. In this review, we discussed the current knowledge about the mechanism of γδ T cell function including its mode of antigen recognition, and differentiation into various subsets of γδ T cells. We also explored how γδ T cells interact with different types of innate and adaptive immune cells, and how these interactions shape the immune response highlighting the plasticity and role of these cells-protective or pathogenic under inflammatory and tolerogenic conditions.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
50
|
Walker CR, Hautefort I, Dalton JE, Overweg K, Egan CE, Bongaerts RJ, Newton DJ, Cruickshank SM, Andrew EM, Carding SR. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS One 2013; 8:e84553. [PMID: 24358364 PMCID: PMC3866140 DOI: 10.1371/journal.pone.0084553] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023] Open
Abstract
Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion.
Collapse
Affiliation(s)
- Catherine R. Walker
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Isabelle Hautefort
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Jane E. Dalton
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Centre for Immunology and Infection, University of York, York, United Kingdom
| | - Karin Overweg
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Charlotte E. Egan
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Pediatric Surgery, Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Roy J. Bongaerts
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
| | - Darren J. Newton
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
| | - Sheena M. Cruickshank
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth M. Andrew
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety, Institute of Food Research, Norwich, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|