1
|
Yewdell JW. MHC Class I Immunopeptidome: Past, Present, and Future. Mol Cell Proteomics 2022; 21:100230. [PMID: 35395404 PMCID: PMC9243166 DOI: 10.1016/j.mcpro.2022.100230] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
In the 35 years since the revelation that short peptides bound to major histocompatibility complex class I and II molecules are the secret of the major histocompatibility complex–restricted nature of T-cell recognition, there has been enormous progress in characterizing the immunopeptidome, the repertoire of peptide presented for immunosurveillance. Here, the major milestones in the journey are marked, the contribution of proteasome-mediated splicing to the immunopeptidome is discussed, and exciting recent findings relating the immunopeptidome to the translatome revealed by ribosome profiling (RiboSeq) is detailed. Finally, what is needed for continued progress is opined about, which includes the infusion of talented young scientists into the antigen-processing field, currently undergoing a renaissance; thanks in part to the astounding success of T-cell–based cancer immunotherapy. Concise history of the discoveries leading to the molecular explanation for the phenomenon of the MHC class I–restricted nature of T-cell recognition. Historical review of how MS became a critical technique for defining MHC class I–associated peptides and understanding how peptides are generated from proteins biosynthesized by the antigen-presenting cell. Critical review of recent findings linking the translatome to the MHC class I immunopeptidome and the controversy regarding contribution of proteasome-mediated peptide splicing to the immunopeptidome. Speculative discussion of the future contributions of MS to understanding the generation of the MHC class I immunopeptidome.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Convergent clonal selection of donor- and recipient-derived CMV-specific T cells in hematopoietic stem cell transplant patients. Proc Natl Acad Sci U S A 2022; 119:2117031119. [PMID: 35105810 PMCID: PMC8833188 DOI: 10.1073/pnas.2117031119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
An existing memory T cell population specific for a single epitope is sufficient to effectively curtail responses to any new antigens if the original epitope is present in a vaccination regimen or heterologous infections. We asked if T cell competition precludes recruitment of any new, naïve T cells to an existing memory T cell pool in context of cytomegalovirus-specific T cell responses in a cohort of transplant patients. Our data indicate that competition does not prevent recruitment of naïve T cells into the memory T cell pool but selects for T cells with nearly or fully congruent T cell receptor specificities. We discuss the implications of rejuvenating a memory T cell pool while preserving the T cell receptor repertoire. Competition between antigen-specific T cells for peptide:MHC complexes shapes the ensuing T cell response. Mouse model studies provided compelling evidence that competition is a highly effective mechanism controlling the activation of naïve T cells. However, assessing the effect of T cell competition in the context of a human infection requires defined pathogen kinetics and trackable naïve and memory T cell populations of defined specificity. A unique cohort of nonmyeloablative hematopoietic stem cell transplant patients allowed us to assess T cell competition in response to cytomegalovirus (CMV) reactivation, which was documented with detailed virology data. In our cohort, hematopoietic stem cell transplant donors and recipients were CMV seronegative and positive, respectively, thus providing genetically distinct memory and naïve T cell populations. We used single-cell transcriptomics to track donor versus recipient-derived T cell clones over the course of 90 d. We found that donor-derived T cell clones proliferated and expanded substantially following CMV reactivation. However, for immunodominant CMV epitopes, recipient-derived memory T cells remained the overall dominant population. This dominance was maintained despite more robust clonal expansion of donor-derived T cells in response to CMV reactivation. Interestingly, the donor-derived T cells that were recruited into these immunodominant memory populations shared strikingly similar TCR properties with the recipient-derived memory T cells. This selective recruitment of identical and nearly identical clones from the naïve into the immunodominant memory T cell pool suggests that competition is in place but does not interfere with rejuvenating a memory T cell population. Instead, it results in selection of convergent clones to the memory T cell pool.
Collapse
|
3
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Pontarotti P, Abi-Rached L, Yeh JH, Paganini J. Self-Peptidome Variation Shapes Individual Immune Responses. Trends Genet 2020; 37:414-420. [PMID: 33867017 PMCID: PMC7577255 DOI: 10.1016/j.tig.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The relationship between human genetic variation and disease has not been fully elucidated. According to the present view on infectious diseases pathogen resistance is linked to human leukocyte antigen (HLA) class I/II variants and their individual capacity to present pathogen-derived peptides. Yet, T cell education in the thymus occurs through negative and positive selection, and both processes are controlled by a combination of HLA class I/II variants and peptides from the self. Therefore, the capacity of given HLA class I/II variants to bind pathogen-derived peptides is only one part of the selective process to generate effective immune responses. We thus propose that peptidome variation contributes to shaping T cell receptor (TCR) repertoires and hence individual immune responses, and that this variation represents inherent modulator epitopes. TCR repertoires emerge in the thymus in each individual as T cells undergo positive and negative selection. T cell education is controlled by the combination of HLA class I/II molecules and their peptide pools (peptidome). HLA class I/II molecules are highly plastic in human populations but the peptidome is also a source of variation. Hence combined diversity of HLA class I/II molecules and of self-peptides shapes individual immune responses. Self-peptide variants that affect T cell repertoires represent inherent modulator epitopes.
Collapse
Affiliation(s)
- Pierre Pontarotti
- Aix Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; XEGEN, 15 rue Dominique Piazza, 13420 Gemenos, France.
| | - Laurent Abi-Rached
- Aix Marseille Université, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Jung-Hua Yeh
- Prokarium Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK
| | | |
Collapse
|
5
|
Hardy MP, Vincent K, Perreault C. The Genomic Landscape of Antigenic Targets for T Cell-Based Leukemia Immunotherapy. Front Immunol 2019; 10:2934. [PMID: 31921187 PMCID: PMC6933603 DOI: 10.3389/fimmu.2019.02934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
Abstract
Intensive fundamental and clinical research in cancer immunotherapy has led to the emergence and evolution of two parallel universes with surprisingly little interactions: the realm of hematologic malignancies and that of solid tumors. Treatment of hematologic cancers using allogeneic hematopoietic cell transplantation (AHCT) serendipitously led to the discovery that T cells specific for minor histocompatibility antigens (MiHAs) could cure hematopoietic cancers. Besides, studies based on treatment of solid tumor with ex vivo-expanded tumor infiltrating lymphocytes or immune checkpoint therapy demonstrated that anti-tumor responses could be achieved by targeting tumor-specific antigens (TSAs). It is our contention that much insight can be gained by sharing the tremendous amount of data generated in the two-abovementioned universes. Our perspective article has two specific goals. First, to discuss the value of methods currently used for MiHA and TSA discovery and to explain the key role of mass spectrometry analyses in this process. Second, to demonstrate the importance of broadening the scope of TSA discovery efforts beyond classic annotated protein-coding genomic sequences.
Collapse
Affiliation(s)
- Marie-Pierre Hardy
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Krystel Vincent
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Claude Perreault
- Department of Immunobiology, Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| |
Collapse
|
6
|
Pilunov AM, Kuchmiy AA, Sheetikov SA, Filkin SY, Romaniuk DS, Rosov FN, Efimov GA. Modification of Cytotoxic Lymphocytes with T Cell Receptor Specific for Minor Histocompatibility Antigen ACC-1Y. Mol Biol 2019. [DOI: 10.1134/s0026893319030142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Petersdorf EW. Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation. F1000Res 2017; 6:617. [PMID: 28529723 PMCID: PMC5419254 DOI: 10.12688/f1000research.10990.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a significant potentially life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). Since the discovery of the human leukocyte antigen (HLA) system over 50 years ago, significant advances have clarified the nature of HLA variation between transplant recipients and donors as a chief etiology of GVHD. New information on coding and non-coding gene variation and GVHD risk provides clinicians with options to consider selected mismatched donors when matched donors are not available. These advances have increased the availability of unrelated donors for patients in need of a transplant and have lowered the overall morbidity and mortality of HCT.
Collapse
|
8
|
Goyal RK, Lee SJ, Wang T, Trucco M, Haagenson M, Spellman SR, Verneris M, Ferrell RE. Novel HLA-DP region susceptibility loci associated with severe acute GvHD. Bone Marrow Transplant 2016; 52:95-100. [PMID: 27595289 DOI: 10.1038/bmt.2016.210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/02/2016] [Accepted: 06/17/2016] [Indexed: 12/17/2022]
Abstract
Despite HLA allele matching, significant acute GvHD remains a major barrier to successful unrelated donor BMT. We conducted a genome-wide association study (GWAS) to identify recipient and donor genes associated with the risk of acute GvHD. A case-control design (grade III-IV versus no acute GvHD) and pooled GWA approach was used to study European-American recipients with hematological malignancies who received myeloablative conditioning non-T-cell-depleted first transplantation from HLA-A, -B, -C, -DRB1, -DQB1 allele level (10/10) matched unrelated donors. DNA samples were divided into three pools and tested in triplicate using the Affymetrix Genome-wide SNP Array 6.0. We identified three novel susceptibility loci in the HLA-DP region of recipient genomes that were associated with III-IV acute GvHD (rs9277378, P=1.58E-09; rs9277542, P=1.548E-06 and rs9277341, P=7.718E-05). Of these three single nucleotide polymorphisms (SNPs), rs9277378 and rs9277542 are located in non-coding regions of the HLA-DPB1 gene and the two are in strong linkage disequilibrium with two other published SNPs associated with acute GvHD, rs2281389 and rs9277535. Eighteen other recipient SNPs and 3 donor SNPs with a high level of significance (8E-07 or lower) were found. Our report contributes to emerging data showing clinical significance of the HLA-DP region genetic markers beyond structural matching of DPB1 alleles.
Collapse
Affiliation(s)
- R K Goyal
- Department of Pediatric of Blood and Marrow Transplantation and Cellular Therapies, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Division of Hematology, Oncology and Blood and Marrow Transplantation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - S J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Biostatistics, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - T Wang
- Department of Biostatistics, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Trucco
- Division of Immunogenetics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Haagenson
- Department of Immunobiology and Observational Research, Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - S R Spellman
- Department of Immunobiology and Observational Research, Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - M Verneris
- Department of Pediatric BMT, University of Minnesota, Minneapolis, MN, USA
| | - R E Ferrell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Hickman ES, Lomax ME, Jakobsen BK. Antigen Selection for Enhanced Affinity T-Cell Receptor-Based Cancer Therapies. ACTA ACUST UNITED AC 2016; 21:769-85. [PMID: 26993321 DOI: 10.1177/1087057116637837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/15/2016] [Indexed: 12/11/2022]
Abstract
Evidence of adaptive immune responses in the prevention of cancer has been accumulating for decades. Spontaneous T-cell responses occur in multiple indications, bringing the study of de novo expressed cancer antigens to the fore and highlighting their potential as targets for cancer immunotherapy. Circumventing the immune-suppressive mechanisms that maintain tumor tolerance and driving an antitumor cytotoxic T-cell response in cancer patients may eradicate the tumor or block disease progression. Multiple strategies are being pursued to harness the cytotoxic potential of T cells clinically. Highly promising results are now emerging. The focus of this review is the target discovery process for cancer immune therapeutics based on affinity-matured T-cell receptors (TCRs). Target cancer antigens in the context of adoptive cell transfer technologies and soluble biologic agents are discussed. To appreciate the impact of TCR-based technology and understand the TCR discovery process, it is necessary to understand key differences between TCR-based therapy and other immunotherapy approaches. The review first summarizes key advances in the cancer immunotherapy field and then discusses the opportunities that TCR technology provides. The nature and breadth of molecular targets that are tractable to this approach are discussed, together with the challenges associated with finding them.
Collapse
|
10
|
Gilchuk P, Hill TM, Wilson JT, Joyce S. Discovering protective CD8 T cell epitopes--no single immunologic property predicts it! Curr Opin Immunol 2015; 34:43-51. [PMID: 25660347 PMCID: PMC5023008 DOI: 10.1016/j.coi.2015.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/25/2023]
Abstract
Once a burgeoning field of study, over the past decade or so, T cell epitope discovery has lost some luster. The contributory factors perchance are the general notion that any newly discovered epitope will reveal very little about an immune response and that knowledge of epitopes are less critical for vaccine design. Despite these notions, the breadth and depth of T cell epitopes derived from clinically important microbial agents of human diseases largely remain ill defined. We review here a flurry of recent reports that have rebirthed the field. These reports reveal that epitope discovery is an essential step toward rational vaccine design and critical for monitoring vaccination efficacy. The new findings also indicate that neither immunogenicity nor immunodominance predict protective immunity. Hence, an immunogenic epitope is but a peptide unless proven protective against disease.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37332, USA; Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN 37332, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN 37332, USA
| | - John T Wilson
- Department of Chemical & Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37332, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37332, USA; Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN 37332, USA.
| |
Collapse
|
11
|
Subdominant H60 antigen-specific CD8 T-cell response precedes dominant H4 antigen-specific response during the initial phase of allogenic skin graft rejection. Exp Mol Med 2015; 47:e140. [PMID: 25676063 PMCID: PMC4346485 DOI: 10.1038/emm.2014.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 11/12/2022] Open
Abstract
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.
Collapse
|
12
|
Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat Commun 2014; 5:3600. [PMID: 24714562 PMCID: PMC3996541 DOI: 10.1038/ncomms4600] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 03/10/2014] [Indexed: 12/23/2022] Open
Abstract
For decades, the global impact of genomic polymorphisms on the repertoire of peptides presented by major histocompatibility complex (MHC) has remained a matter of speculation. Here we present a novel approach that enables high-throughput discovery of polymorphic MHC class I-associated peptides (MIPs), which play a major role in allorecognition. On the basis of comprehensive analyses of the genomic landscape of MIPs eluted from B lymphoblasts of two MHC-identical siblings, we show that 0.5% of non-synonymous single nucleotide variations are represented in the MIP repertoire. The 34 polymorphic MIPs found in our subjects are encoded by bi-allelic loci with dominant and recessive alleles. Our analyses show that, at the population level, 12% of the MIP-coding exome is polymorphic. Our method provides fundamental insights into the relationship between the genomic self and the immune self and accelerates the discovery of polymorphic MIPs (also known as minor histocompatibility antigens). Mass spectrometry (MS) has furthered our understanding of MHC class I-associated peptides (MIPs), but the technique is inadequate for studying MIP-associated polymorphisms. Here, the authors combine high-throughput MS with exome and transcriptome sequencing to identify polymorphic MIPs from two female siblings.
Collapse
|
13
|
Abstract
Tumor cells frequently exhibit widespread epigenetic aberrations that significantly alter the repertoire of expressed proteins. In particular, it has been known for nearly 25 years that tumors frequently reactivate genes whose expression is typically restricted to germ cells. These gene products are classified as cancer/testis antigens (CTAs) owing to their biased expression pattern and their immunogenicity in cancer patients. While these genes have been pursued as targets for anticancer vaccines, whether these reactivated testis proteins have roles in supporting tumorigenic features is less studied. Recent evidence now indicates that these proteins can be directly employed by the tumor cell regulatory environment to support cell-autonomous behaviors. Here, we review the history of the CTA field and present recent findings indicating that CTAs can play functional roles in supporting tumorigenesis.
Collapse
|
14
|
Abstract
Controlled clinical trials of cell transplantation for Parkinson's disease yielded disappointing results. Significant long-term functional improvement was not observed and cell survival was low. Although the brain was traditionally considered as "immunologically privileged" recent findings demonstrated late increase in the number of microglia around the grafts, therefore implying an involvement of immune mechanisms. The immunology of organ and cell transplantation to other body locations is scrupulously investigated and significant stepping-stones have been achieved. Ample evidence regarding the role of antigen-presenting cells in graft rejection has been documented. However, this knowledge did not benefit the discipline of cell transplantation to the central nervous system, and the minimal consideration of potential immune responses remain empirical in nature. In this review we summarize current knowledge of the major histo-compatibility complex and its role in transplant immunology. Resident cells of the brain that take part in immune responses are also discussed. Based on this information we hypothesize that the immune mechanisms involved with the long-term graft failure of cell transplantation to the central nervous system are likely to be chronic, and not acute, rejection. This, in turn, should have significant importance in the choice of anti-rejection drugs to be used.
Collapse
Affiliation(s)
- Anat R Tambur
- Department of Neurosurgery, University of Illinois at Chicago, Chicago 60612, USA.
| |
Collapse
|
15
|
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112:549-61. [PMID: 23371903 DOI: 10.1161/circresaha.111.249243] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
16
|
Kwun J, Malarkannan S, Burlingham WJ, Knechtle SJ. Primary vascularization of the graft determines the immunodominance of murine minor H antigens during organ transplantation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3997-4006. [PMID: 21900176 DOI: 10.4049/jimmunol.1003918] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.
Collapse
Affiliation(s)
- Jean Kwun
- Division of Transplantation, Department of Surgery, Clinical Science Center, University of Wisconsin, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
17
|
Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation. Blood 2011; 118:5319-29. [PMID: 21868578 DOI: 10.1182/blood-2011-05-356238] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The curative potential of MHC-matched allogeneic bone marrow transplantation (BMT) is in part because of immunologic graft-versus-tumor (GvT) reactions mediated by donor T cells that recognize host minor histocompatibility antigens. Immunization with leukemia-associated antigens, such as Wilms Tumor 1 (WT1) peptides, induces a T-cell population that is tumor antigen specific. We determined whether allogeneic BMT combined with immunotherapy using WT1 peptide vaccination of donors induced more potent antitumor activity than either therapy alone. WT1 peptide vaccinations of healthy donor mice induced CD8(+) T cells that were specifically reactive to WT1-expressing FBL3 leukemia cells. We found that peptide immunization was effective as a prophylactic vaccination before tumor challenge, yet was ineffective as a therapeutic vaccination in tumor-bearing mice. BMT from vaccinated healthy MHC-matched donors, but not syngeneic donors, into recipient tumor-bearing mice was effective as a therapeutic maneuver and resulted in eradication of FBL3 leukemia. The transfer of total CD8(+) T cells from immunized donors was more effective than the transfer of WT1-tetramer(+)CD8(+) T cells and both required CD4(+) T-cell help for maximal antitumor activity. These findings show that WT1 peptide vaccination of donor mice can dramatically enhance GvT activity after MHC-matched allogeneic BMT.
Collapse
|
18
|
Lio HY, Tang JL, Wu J, Wu SJ, Lin CY, Yang YC. Minor histocompatibility antigen HA-1 and HA-2 polymorphisms in Taiwan: frequency and application in hematopoietic stem cell transplantation. Clin Chem Lab Med 2010; 48:1287-93. [PMID: 20509834 DOI: 10.1515/cclm.2010.246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Minor histocompatibility antigens influence the occurrence of graft-vs.-host disease and graft-vs.-leukemia effects after hematopoietic stem cell transplantation (HSCT). We determined the population frequencies of HA-1 and HA-2 alleles in Taiwan and exploited their potential applications in allogeneic HSCT. METHODS HA-1 and HA-2 were genotyped using polymerase chain reaction and restriction fragment length polymorphism in healthy controls (221 for HA-1 and 306 for HA-2) and HLA-matched donor-recipient sibling pairs with HSCT (92 for HA-1 and 38 for HA-2). The association of genetic polymorphisms with HSCT outcome was evaluated by univariate and multivariate analyses. RESULTS The allele frequencies in controls were 35.3% and 64.7% for HA-1(H) and HA-1(R), and 89.0% and 11.0% for HA-2(V) and HA-2(M), respectively. HA-1 disparity was denoted in 16.3% of HLA-matched donor-recipient sibling pairs, while it was not associated with HSCT outcome. HA-2 disparity was not observed in the donor-recipient pairs studied. The possibilities of using HA-1 and HA-2 variabilities as molecular markers for hematopoietic chimerism after HSCT were 39.2% and 18.4%, respectively. CONCLUSIONS Our data provide the information on allele and genotype frequencies of HA-1 and HA-2 in a Taiwanese population, and suggest that prospective genomic typing for HA-1 and HA-2 alleles of the donor and recipient could be a useful approach for molecular identification of hematopoietic chimerism after HSCT, rather than prognosis of clinical outcome.
Collapse
Affiliation(s)
- Hoi-Yan Lio
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Lekka E, Gritzapis AD, Perez SA, Tsavaris N, Missitzis I, Mamalaki A, Papamichail M, Baxevanis CN. Identification and characterization of a HER-2/neu epitope as a potential target for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:715-27. [PMID: 19904532 PMCID: PMC11030771 DOI: 10.1007/s00262-009-0791-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 10/22/2009] [Indexed: 12/11/2022]
Abstract
Our aim is to develop peptide vaccines that stimulate tumor antigen-specific T-lymphocyte responses against frequently detected cancers. We describe herein a novel HLA-A*0201-restricted epitope, encompassing amino acids 828-836 (residues QIAKGMSYL), which is naturally presented by various HER-2/neu (+) tumor cell lines. HER-2/neu(828-836), [HER-2(9(828))], possesses two anchor residues and stabilized HLA-A*0201 on T2 cells in a concentration-dependent Class I binding assay. This peptide was stable for 3.5 h in an off-kinetic assay. HER-2(9(828)) was found to be immunogenic in HLA-A*0201 transgenic (HHD) mice inducing peptide-specific and functionally potent CTL and long-lasting anti-tumor immunity. Most important, using HLA-A*0201 pentamer analysis we could detect increased ex vivo frequencies of CD8(+) T-lymphocytes specifically recognizing HER-2(9(828)) in 8 out of 20 HLA-A*0201(+) HER-2/neu (+) breast cancer patients. Moreover, HER-2(9(828))-specific human CTL recognized the tumor cell line SKOV3.A2 as well as the primary RS.A2.1.DR1 tumor cell line both expressing HER-2/neu and HLA-A*0201. Finally, therapeutic vaccination with HER-2(9(828)) in HHD mice was proven effective against established transplantable ALC.A2.1.HER tumors, inducing complete tumor regression in 50% of mice. Our data encourage further exploitation of HER-2(9(828)) as a promising candidate for peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Eftychia Lekka
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ofran Y, Kim HT, Brusic V, Blake L, Mandrell M, Wu CJ, Sarantopoulos S, Bellucci R, Keskin DB, Soiffer RJ, Antin JH, Ritz J. Diverse patterns of T-cell response against multiple newly identified human Y chromosome-encoded minor histocompatibility epitopes. Clin Cancer Res 2010; 16:1642-51. [PMID: 20160060 DOI: 10.1158/1078-0432.ccr-09-2701] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Donor T cells respond to minor histocompatibility antigens (mHA), resulting in both graft-versus-host disease and graft versus leukemia after allogeneic hematopoietic stem cell transplantation. Because relatively few mHAs are known, we developed a new approach to predict and subsequently validate candidate mHA. EXPERIMENTAL DESIGN We developed an algorithm based on genetic disparities between Y chromosome-encoded and X chromosome-encoded proteins and known requirements for binding to HLA class I molecules to predict Y chromosome-derived, HLA A*0201-restricted peptides (HY) and ranked peptides based on potential immunogenicity. We evaluated T-cell responses to 41 candidate peptides in 28 male recipients with female donors (FM), 22 male recipients with male donors (MM), and 26 normal individuals. All patients and donors were HLA A*0201 positive. RESULTS Thirteen peptides derived from five proteins elicited significantly greater T-cell responses in FM patients compared with MM patients and in normal females compared with normal males. Six peptides were more immunogenic than the only previously known HLA A*0201-restricted Y-encoded mHA. Twenty-seven of 28 FM patients responded to at least one HY peptide, but despite a common Y chromosome mismatch and expression of HLA A*0201, each patient responded to a unique set of peptides. CONCLUSIONS Novel HLA A*0201-restricted HY epitopes can be predicted and validated in patients after allogeneic hematopoietic stem cell transplantation. Highly diverse patterns of T-cell response against these epitopes have been identified. Prospective monitoring of responses to large panels of immunogenic peptides can facilitate the identification of clinically relevant targets of graft-versus-host disease and graft versus leukemia.
Collapse
Affiliation(s)
- Yishai Ofran
- Division of Hematologic Malignancies, Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cao TM, Lazzeroni LC, Tsai S, Pang WW, Kao A, Camp NJ, Thomas A, Shizuru JA. Identification of a major susceptibility locus for lethal graft-versus-host disease in MHC-matched mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:462-9. [PMID: 19525392 DOI: 10.4049/jimmunol.0900454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Graft-vs-host disease (GVHD) is the major cause of morbidity and mortality after allogeneic hemopoietic cell transplantation. From a genetic perspective, GVHD is a complex phenotypic trait. Although it is understood that susceptibility results from interacting polymorphisms of genes encoding histocompatibility Ags and immune regulatory molecules, a detailed and integrative understanding of the genetic background underlying GVHD remains lacking. To gain insight regarding these issues, we performed a forward genetic study. A MHC-matched mouse model was used in which irradiated recipient BALB.K and B10.BR mice demonstrate differential susceptibility to lethal GHVD when transplanted using AKR/J donors. Assessment of GVHD in (B10.BR x BALB.K)F(1) mice revealed that susceptibility is a dominant trait and conferred by deleterious alleles from the BALB.K strain. To identify the alleles responsible for GVHD susceptibility, a genome-scanning approach was taken using (B10.BR x BALB.K)F(1) x B10.BR backcross mice as recipients. A major susceptibility locus, termed the Gvh1 locus, was identified on chromosome 16 using linkage analysis (logarithm of the odds, 9.1). A second locus was found on chromosome 13, named Gvh2, which had additive but protective effects. Further identification of Gvh genes by positional cloning may yield new insight into genetic control mechanisms regulating GVHD and potentially reveal novel approaches for effective GVHD therapy.
Collapse
Affiliation(s)
- Thai M Cao
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, 84132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu Z, Li L, Li H, Zhang S, Ji G, Sun Y. EST analysis of the immune-relevant genes in Chinese amphioxus challenged with lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2009; 26:843-849. [PMID: 19351559 DOI: 10.1016/j.fsi.2009.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 03/18/2009] [Accepted: 03/18/2009] [Indexed: 05/27/2023]
Abstract
It is generally accepted that the adaptive immune system is only present in vertebrates but not in invertebrates. Amphioxus is the most basal chordate and hence is an important reference to the evolution of the adaptive immune system. Here, a cDNA library of lipopolysaccharide-challenged amphioxus was constructed in order to identify immune genes. A total of 3024 expressed sequence tags (ESTs) were examined and 63 out of 398 annotated genes (16.3%) appeared related to immunity. Most of them encode cell adhesion molecules or signal proteins that are involved in immune responses. Although the key molecules such as TCR, MHC, Ig or VLR involved in the adaptive immune system were not identified in our database, we demonstrated the presence of histocompatibility-relevant genes and lymphocyte immune signaling-relevant genes. These findings support the statement that amphioxus presents some components that may be recruited by adaptive immune processes.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Marine Biology, Ocean University of China, Qingdao 266003, PR China.
| | | | | | | | | | | |
Collapse
|
23
|
Wang N, Xu D, Yuan A, Deng Z, Xue L, Cui S. Construction and characterization of phage display library: Recognition of mouse serologically detected male (SDM) antigen. Anim Reprod Sci 2008; 104:93-110. [PMID: 17280806 DOI: 10.1016/j.anireprosci.2007.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/19/2006] [Accepted: 01/02/2007] [Indexed: 11/28/2022]
Abstract
Improvement of animal embryo sexing depends upon high-titer serologically detected male (SDM) antibody fragments. SDM sera collected from isogenic C57BL/7 female mice after inoculation with male spleen cells were characterized and used for construction of a recombinant Fab antibody library against SDM antigen, and used for analysis of the binding capacity and specificity to SDM antigen. The heavy-chain Fd and full-length light-chain kappa were amplified by RT-PCR from a mouse (#6) that'ed high-titer antiserum. The amplified product was inserted into the pComb3 vector followed by co-infections with the help phage VCSM 13 for construction of the phage library, which gave 1.5x10(7) colonies with the titer of 3.2x10(11) pfu/ml by a recombination rate of 80%. Sequence analysis of the PCR products of plasmid DNA of E5 clones showed that V(H) and V(kappa) had common characteristics shared by other known variable region of antibodies. The Fab antibody libraries against SDM antigen were enriched by three cycles of affinity enrichment with male spleen cells, and two cycles of non-specific absorption with female spleen cells. The ELISA results showed that 9 of 15 clones had binding capacity to the SDM antigen. This is the first report on a phage display library of SDM antigen. The mouse Fab antibody library could be used for identifying SDM antigen, and for the development of sex determination of early embryos in mammals.
Collapse
Affiliation(s)
- Naidong Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Heinold A, Opelz G, Scherer S, Ruhenstroth A, Laux G, Doehler B, Tran TH. Role of minor histocompatibility antigens in renal transplantation. Am J Transplant 2008; 8:95-102. [PMID: 18093280 DOI: 10.1111/j.1600-6143.2007.02042.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In hematopoietic stem cell transplantation (HSCT), disparities between recipients and donors for minor histocompatibility antigens (mHags) have been shown to be related to graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects. We investigated the effect of mHag mismatches on kidney allograft survival. Out of 33 785 kidney transplants on which DNA and clinical data were available to the Collaborative Transplant Study (CTS), 702 recipient/donor pairs could be identified as HLA-A, -B and -DRB1 matched first transplants of Caucasian origin. These pairs were typed for genetic polymorphisms of the mHags HA-1, HA-2, HA-3, HA-8, HB-1, ACC-1 and UGT2B17. Because mHags are presented in an HLA-restricted manner, only HLA-A*02 positive pairs were included in the analysis of HA-1, HA-2 and HA-8. Similarly, only HLA-A*01, HLA-B*44 and HLA-A*24 positive pairs were considered for the evaluation of HA-3, HB-1 and ACC-1, respectively, whereas UGT2B17 compatible transplants were assessed in HLA-A*29 and HLA-B*44 positive pairs. None of the mHag disparities showed a statistically significant effect on death-censored 5-year graft survival. This report represents the first large-scale study on the relevance of mHags in kidney transplantation.
Collapse
Affiliation(s)
- A Heinold
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Satoh E, Li XK, Hara Y, Ogata K, Guo L, Kitazawa Y, Funeshima-Fuji N, Satoh T, Miyagi T, Sugiura W, Yamamoto N, Teramoto K, Arii S, Kimura H. Sensitization to enhanced green fluorescence protein minor histocompatibility antigen by gene transduction into dendritic cells and peritoneal exudate macrophages. Transpl Immunol 2007; 18:73-84. [PMID: 18005848 DOI: 10.1016/j.trim.2007.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 04/28/2007] [Accepted: 04/30/2007] [Indexed: 11/18/2022]
Abstract
Enhanced green fluorescence protein (EGFP) has been widely applied to gene transduction in cellular and molecular biology as a reporter element. When applied to cell transplantation, it raises fundamental issues concerning cell-associated antigens, in particular, a model of minor histocompatibility antigen(s). Although it is well known that immunological behavior of minor histocompatibility antigens mimic tumor associated antigens (TAA), identified genes coding minor histocompatibility antigens are few and far between. Inasmuch as immunity and tolerance to TAA are provided by immunological behavior of minor histocompatibility antigen such as histocompatibility antigen of the Y chromosome, H-Y, it occurs to us that transgenic as well as transduced EGFP provides a useful model system to be applied to tumor immunology. In this respect, genetic modification of specialized antigen-presenting cells (APC), i.e., dendritic cells (DC), such as gene transduction of EGFP into DC, would provide one of the most important strategies in transplantation as well as tumor immunology inasmuch as DC play a key role in initiating primary immune responses, As far as gene transduction into DC is concerned, others have reported that successful gene transduction occurs in DC by adenoviral vector systems. However, our previous studies concerning EGFP transduction into DC suggested that this view should be carefully examined and interpreted. Employing adenoviral and lentiviral vector systems as well as specialized APC of rat DC and peritoneal exudate macrophages (PEM), EGFP-transduced APC were examined to determine whether and to what extent the EGFP-transduced APC were able to sensitize non-transgenic littermates against transgenic EGFP as antigen(s). Thus EGFP-transgenic cardiac isografts were transplanted to non-transgenic littermates and examined to determine if sensitization of non-transgenic littermate recipients with the EGFP-transduced APC was able to reject the test grafts in an accelerated manner. In this study, we examined this and provide further evidence that widely used viral vector systems are unable to transfer the reporter gene EGFP into mature rat DC generated from bone marrow cells (BMC), driven by Flt3/Flk2 ligand and IL-6. Nevertheless, successful gene transduction was obtained by either applying a lentiviral vector system to the developing DC progenitor cells during a long-term culture of rat BMC or by applying an adenoviral vector system to PEM. Thus, successful gene transduction into specialized APC was verified by in vivo priming of non-transgenic littermates with the EGFP-transduced APC, followed by accelerated rejection of EGFP-transgenic cardiac isografts.
Collapse
Affiliation(s)
- Eigo Satoh
- Department of Research Surgery, National Research Center for Child Health and Development, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Imai A, Sahara H, Tamura Y, Jimbow K, Saito T, Ezoe K, Yotsuyanagi T, Sato N. Inhibition of endogenous MHC class II-restricted antigen presentation by tacrolimus (FK506) via FKBP51. Eur J Immunol 2007; 37:1730-8. [PMID: 17523132 DOI: 10.1002/eji.200636392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effect of tacrolimus (FK506) on down-regulation of IL-2 production by T cells is considered to be mainly responsible for its strong suppression of immunological events. In this study, we show that FK506 also has an affect on antigen presentation by antigen-presenting cells in vitro. FK506 was able to inhibit the presentation of endogenous MHC class II-restricted minor histocompatibility antigens in primary dendritic cells (DC) in vitro, but cyclosporine A (CsA) and rapamycin (RAP) were not. RNA interference (RNAi)-mediated reduction of endogenous FK506-binding protein (FKBP)51 expression resulted in a marked decrease in antigen presentation, suggesting that FKBP51 plays a role in endogenous MHC class II-restricted antigen presentation. Since our model used naturally expressed cytosolic antigens in primary DC, these effects might have been due to novel properties of the immunosuppressive drugs and may allow us to elucidate a new paradigm for the immunosuppressive mechanism of FK506.
Collapse
Affiliation(s)
- Akihito Imai
- Department of Plastic Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Meiring HD, Soethout EC, de Jong APJM, van Els CACM. Targeted identification of infection-related HLA class I-presented epitopes by stable isotope tagging of epitopes (SITE). CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 16:16.3.1-16.3.20. [PMID: 18432987 DOI: 10.1002/0471142735.im1603s77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Identification of peptides presented in human leukocyte antigen (HLA) class I molecules after viral infection is of strategic importance for immunology and vaccine development. A powerful strategy aimed at the rapid, unambiguous identification of naturally processed HLA class I-associated peptides, which are induced by viral infection, is presented here. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues for the human leukocyte antigen allele of interest. Subsequently, these cells are mixed with an equal number of noninfected cells, which are cultured in normal medium. Finally, peptides are acid-eluted from immunoprecipitated HLA molecules and subjected to two-dimensional nanoscale liquid chromatography-mass spectrometry analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules.
Collapse
Affiliation(s)
- H D Meiring
- Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | - E C Soethout
- Netherlands Vaccine Institute, Bilthoven, The Netherlands
| | | | | |
Collapse
|
28
|
Laurin D, Spierings E, van der Veken LT, Hamrouni A, Falkenburg JHF, Souillet G, Vermeulen C, Farre A, Galambrun C, Rigal D, Bertrand Y, Goulmy E, Eljaafari A. Minor histocompatibility antigen DDX3Y induces HLA-DQ5-restricted T cell responses with limited TCR-Vbeta usage both in vivo and in vitro. Biol Blood Marrow Transplant 2007; 12:1114-24. [PMID: 17085304 DOI: 10.1016/j.bbmt.2006.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Accepted: 07/20/2006] [Indexed: 11/24/2022]
Abstract
In vitro stimulation of human female T cells with male HLA-identical dendritic cells resulted in the generation of HLA-DQB1*0501/0502-restricted minor histocompatibility H-Y antigen-specific CD4(+) T cell clones. Two clones generated from different HLA-identical pairs were analyzed. Use of HLA-DQ5-expressing female Epstein-Barr virus transformed B lymphoblastoid cell lines transfected with various H-Y genes and loaded with overlapping peptides demonstrated that both T cell clones are specific for a peptide encoded by DDX3Y. Previously, an HLA-DQ5-restricted T cell clone specific for the same peptide was isolated from a patient with graft-versus-host disease. Thus, we compared the T cell receptor (TCR) rearrangements of the 2 in vitro generated T cell clones and the ex vivo isolated T cell clone. All 3 clones shared the same TCRBV5-4* gene segment and 2 of 3 clones also used similar TCR-Valpha segments. Our results suggest that T cells recognizing the HLA-DQ5/DDX3Y T cell epitope might be characterized by a relatively limited TCR-beta repertoire. The differences in the junctional TCR-beta region had no effect on the antigen specificity, but altered the capacity of the TCR to distinguish the HLA-DQ5/DDX3Y complex from its allelic counterpart. The results also demonstrate that in vitro stimulation of T cells with allogeneic HLA-identical dendritic cells may facilitate the characterization of in vivo, potentially relevant HLA class II-restricted minor H epitopes.
Collapse
Affiliation(s)
- David Laurin
- Cell Therapy Department, Etablissement Français du Sang Région Rhône-Alpes, Rhône, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Engelhard VH. The contributions of mass spectrometry to understanding of immune recognition by T lymphocytes. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 259:32-39. [PMID: 18167512 PMCID: PMC1920184 DOI: 10.1016/j.ijms.2006.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Over the last 15 years, the ability of mass spectrometry to analyze complex peptide mixtures and identify individual species has provided unprecedented insights into the repertoire of peptide antigens displayed by MHC molecules and recognized by T lymphocytes. These include: understanding the peptide binding specificity of MHC molecules; understanding of roles of different intracellular components of the antigen processing pathways in determining the peptide display; and identification of a large number of individual peptide antigens associated with infectious diseases, cancer, and transplant rejection that have provided the basis for new immunologically based therapies. This review will summarize the impact that the application of mass spectrometry has had on these advances, with particular attention to the contributions of Professor Donald Hunt and members of his laboratory, and point out the opportunities for future work.
Collapse
Affiliation(s)
- Victor H Engelhard
- Carter Immunology Center and Department of Microbiology, University of Virginia School of Medicine, PO Box 801386, Charlottesville, VA USA 22908
| |
Collapse
|
30
|
Eiz-Vesper B, Horn PA, Daubert C, Khattab B, Blasczyk R. Tetanus toxoid provides efficient T-cell help for the induction of HA-1(H) cytotoxic T cells. Transfusion 2006; 46:1210-20. [PMID: 16836569 DOI: 10.1111/j.1537-2995.2006.00872.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND In vitro generation and expansion of leukemia-reactive T cells may improve the efficacy and specificity of cellular immunotherapy against hematologic malignancies in the context of allogeneic stem cell transplantation. Since the expression of minor histocompatibility antigen HA-1(H) is limited to hematopoietic cells, ex vivo generated HA-1(H)-specific CD8+ cytotoxic T lymphocytes (CTLs) can be used for adoptive immunotherapy. STUDY DESIGN AND METHODS Numerous studies have shown that primary CTL induction from naïve precursors requires professional antigen-presenting cells. Here, the feasibility of ex vivo induction of HA-1(H)-specific CD8+ CTLs is demonstrated from unfractionated peripheral blood mononuclear cells (PBMNCs) from healthy blood donors when CD4+ T-cell help is provided during primary stimulation. As a stimulus for the induction of T-cell help, tetanus toxoid (TT) was used. RESULTS After the second restimulation cycle, approximately 1 percent of CD8+ T cells stained positively with the HLA-A*0201/HA-1(H) pentamer. Positive T cells were further expanded more than 1000-fold by antigen-independent stimulation with anti-CD3/CD28 monoclonal antibodies. HA-1(H)-induced T cells showed the classical phenotype for CD8+ memory effector cells: the phenotype changed from a mixed CD45RA/RO phenotype to an activated phenotype characterized by high expression of CD45RO and no expression of CCR7. The generated T cells revealed a very potent CTL response, even at low E:T ratios. CONCLUSION This study demonstrates that TT provides a very potent and cost-effective tool for the in vitro induction of antigen-specific CTLs from precursor PBMNCs that can easily be adapted to GMP conditions for translational purposes.
Collapse
Affiliation(s)
- Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
31
|
Mullally A, Ritz J. Beyond HLA: the significance of genomic variation for allogeneic hematopoietic stem cell transplantation. Blood 2006; 109:1355-62. [PMID: 17008540 DOI: 10.1182/blood-2006-06-030858] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
The last 2 years have seen much excitement in the field of genetics with the identification of a formerly unappreciated level of “structural variation” within the normal human genome. Genetic structural variants include deletions, duplications, and inversions in addition to the recently discovered, copy number variants. Single nucleotide polymorphisms are the most extensively evaluated variant within the genome to date. Combining our knowledge from these studies with our rapidly accumulating understanding of structural variants, it is apparent that the extent of genetic dissimilarity between any 2 individuals is considerable and much greater than that which was previously recognized. Clearly, this more diverse view of the genome has significant implications for allogeneic hematopoietic stem cell transplantation, not least in the generation of transplant antigens but also in terms of individual susceptibility to transplant-related toxicities. With advances in DNA sequencing technology we now have the capacity to perform genome-wide analysis in a high throughput fashion, permitting a detailed genetic analysis of patient and donor prior to transplantation. Understanding the significance of this additional genetic information and applying it in a clinically meaningful way will be one of the challenges faced by transplant clinicians in the future.
Collapse
Affiliation(s)
- Ann Mullally
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Halling-Brown M, Quartey-Papafio R, Travers PJ, Moss DS. SiPep: a system for the prediction of tissue-specific minor histocompatibility antigens. Int J Immunogenet 2006; 33:289-95. [PMID: 16893394 DOI: 10.1111/j.1744-313x.2006.00615.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately 50 years ago it was found that inbred strains of mice were able to reject tumours and skin grafts from major histocompatibility complex (MHC) identical donors. They proposed that additional transplantation antigens must exist outside the MHC. These were described as minor histocompatibility antigens (mHAgs). Since then, related studies in humans have identified 16 human mHAgs. The aim of this work is to increase the number of known mHAgs by prediction of candidate minor histocompatibility loci by identifying coding single nucleotide polymorphisms (SNPs) where the amino acid variation lies within an MHC-binding peptide and alters the ability of that peptide to bind. We have developed an algorithm called SiPep which uses peptide sequences derived from the flanking regions of known non-synonymous SNPs, various MHC-binding and proteolytic cleavage evaluation methods and protein expression data to predict mHAgs. We have processed 45094 SNPs using the SiPep algorithm and have stored the results in a database called SNPBinder. The facilities to process submitted proteins through the SiPep algorithm as well as the SNPBinder database are available to the public. A set of peptides that are predicted as possible mHAgs by the SiPep algorithm have been tested using refolding assays and gel filtration and the results are presented in this paper. The SiPep tools and SNPBinder database are available free of charge via the internet. An HTML interface providing search facilities can be found at the following address: http://www.sipep.org/.
Collapse
Affiliation(s)
- M Halling-Brown
- Institute of Structural Molecular Biology, School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | | | | | | |
Collapse
|
33
|
Fowler DH. Shared biology of GVHD and GVT effects: Potential methods of separation. Crit Rev Oncol Hematol 2006; 57:225-44. [PMID: 16207532 DOI: 10.1016/j.critrevonc.2005.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 06/30/2005] [Accepted: 07/15/2005] [Indexed: 01/14/2023] Open
Abstract
The difficult separation of clinical graft-versus-tumor (GVT) effects from graft-versus-host disease (GVHD) reflects their shared biology. Experimental approaches to mediate GVT effects while limiting GVHD include: (1) allograft T cell depletion followed by immune enhancement; (2) modulation of T cell dose or T cell subset composition; (3) donor lymphocyte infusion; (4) reduced-intensity host preparation; (5) modulation of Th1/Th2 and Tc1/Tc2 cell balance; (6) cytokine therapy or neutralization; (7) T regulatory cell therapy; (8) co-stimulatory pathway modulation; (9) chemokine pathway modulation; (10) induction of antigen-specific T cells; (11) alloreactive NK cell therapy; and (12) targeted pharmaceutical inhibition of proteosome, mammalian target of rapamycin, and histone deacetylase pathways. Clearly, a multitude of approaches exist that hold promise for separating GVT effects from GVHD. Future success in this endeavor will require a strong commitment towards translational research and continued advances in cell, vaccine, cytokine, monoclonal antibody, and targeted molecular therapy.
Collapse
Affiliation(s)
- Daniel H Fowler
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, CRC, 3-East Laboratories, 3-3330, Bethesda, MD 20892-MSC 1203, USA.
| |
Collapse
|
34
|
de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R, Kester M, Leppert M, Schattenberg AV, de Witte T, van de Wiel-van Kemenade E, Dolstra H. A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 2006; 115:3506-16. [PMID: 16322791 PMCID: PMC1297240 DOI: 10.1172/jci24832] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 09/13/2005] [Indexed: 11/17/2022] Open
Abstract
Minor histocompatibility antigens (mHAgs) constitute the targets of the graft-versus-leukemia response after HLA-identical allogeneic stem cell transplantation. Here, we have used genetic linkage analysis to identify a novel mHAg, designated lymphoid-restricted histocompatibility antigen-1 (LRH-1), which is encoded by the P2X5 gene and elicited an allogeneic CTL response in a patient with chronic myeloid leukemia after donor lymphocyte infusion. We demonstrate that immunogenicity for LRH-1 is due to differential protein expression in recipient and donor cells as a consequence of a homozygous frameshift polymorphism in the donor. Tetramer analysis showed that emergence of LRH-1-specific CD8+ cytotoxic T cells in peripheral blood and bone marrow correlated with complete remission of chronic myeloid leukemia. Furthermore, the restricted expression of LRH-1 in hematopoietic cells including leukemic CD34+ progenitor cells provides evidence of a role for LRH-1-specific CD8+ cytotoxic T cells in selective graft-versus-leukemia reactivity in the absence of severe graft-versus-host disease. These findings illustrate that the P2X5-encoded mHAg LRH-1 could be an attractive target for specific immunotherapy to treat hematological malignancies recurring after allogeneic stem cell transplantation.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antigens, CD34/biosynthesis
- Base Sequence
- Bone Marrow Cells/cytology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line
- Cells, Cultured
- Chromium/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 17
- DNA-Binding Proteins/genetics
- Epitopes/chemistry
- Female
- Frameshift Mutation
- Fusion Proteins, bcr-abl/chemistry
- Genetic Linkage
- Genetic Markers
- Genotype
- Graft vs Leukemia Effect
- HLA-B Antigens/chemistry
- HLA-B7 Antigen
- Haplotypes
- Homozygote
- Humans
- Interferon-gamma/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukocyte Common Antigens/chemistry
- Lod Score
- Male
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Pedigree
- Peptides/chemistry
- Plasmids/metabolism
- Polymorphism, Genetic
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2X5
- Recurrence
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Stem Cell Transplantation
- Stem Cells
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/cytology
- Time Factors
- Transcription Factors/genetics
- Transplantation, Homologous
Collapse
Affiliation(s)
- Björn de Rijke
- Central Hematology Laboratory, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Schuler MM, Dönnes P, Nastke MD, Kohlbacher O, Rammensee HG, Stevanovic S. SNEP: SNP-derived Epitope Prediction program for minor H antigens. Immunogenetics 2005; 57:816-20. [PMID: 16341860 DOI: 10.1007/s00251-005-0054-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/20/2005] [Indexed: 10/25/2022]
Abstract
The single nucleotide polymorphism (SNP)-derived Epitope Prediction program (SNEP) is now available to the public. It predicts minor histocompatibility antigens (miHAgs), which are T-cell epitopes containing polymorphic spots, from proteins listed in the SWISS-PROT database. SNEP recognizes polymorphisms (termed VARIANT or CONFLICT in SWISS-PROT) and predicts potential T-cell epitopes within a chosen distance around the polymorphic residue. The prediction algorithm is based on the SYFPEITHI T-cell epitope prediction program. SNEP is able to search for proteins according to their accession numbers, sequence stretches or gene names, for example. The predictions are available for several human leucocyte antigen class I and class II allelic products, which allow for a rapid and precise evaluation of potential miHAgs within polymorphic antigens.
Collapse
Affiliation(s)
- Mathias M Schuler
- Abteilung Immunologie, Interfakultäres Institut für Zellbiologie, Universität Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Schilbach K, Kerst G, Walter S, Eyrich M, Wernet D, Handgretinger R, Xie W, Rammensee HG, Müller I, Bühring HJ, Niethammer D. Cytotoxic minor histocompatibility antigen HA-1–specific CD8+ effector memory T cells: artificial APCs pave the way for clinical application by potent primary in vitro induction. Blood 2005; 106:144-9. [PMID: 15731181 DOI: 10.1182/blood-2004-07-2940] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of cytotoxic T lymphocytes (CTLs) for treatment of relapsed leukemia after allogeneic stem-cell transplantation is hindered by the laborious and time-consuming procedure of generating dendritic cells for antigen presentation. Artificial antigen-presenting cells (aAPCs) offer the advantage of being readily available in sufficient numbers, thus allowing for a highly standardized in vitro induction of CTLs. We generated aAPCs coated with anti-CD28 antibody (Ab) and either high-density (HD) or low-density (LD) major histocompatibility complex (MHC) class I molecules loaded with HA-1H, a nonapeptide derived from the hematopoiesis-restricted minor histocompatibility antigen HA-1. HD- and LD-aAPCs potently induced HA-1H–specific CD8+ CTLs from untouched CD8+ T cells of healthy donors. CTLs were subsequently purified by magnetic-activated cell sorting. HD- as well as LD-aAPC–induced CTLs exerted high HA-1H–specific cytotoxicity, resembled Tc1 effector memory cells, survived a long time in vitro, and were expanded by a factor varying between 8.2 × 104 and 51 × 104. The T-cell receptor (TCR) repertoire of HA-1H tetramer–positive CTLs was oligoclonal with a prominent usage of Vβ6. The TCR repertoire of tetramer-positive CTLs was distinct from and more restricted than that of tetramer-negative cells. These findings indicate that aAPCs are attractive tools for the ex vivo generation of HA-1H–specific CTLs suitable for immunotherapy of relapsed leukemia.
Collapse
Affiliation(s)
- Karin Schilbach
- University Children's Hospital Tübingen, Hoppe-Seyler-Str 1, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Eiz-Vesper B, Seltsam A, Blasczyk R. ABO glycosyltransferases as potential source of minor histocompatibility antigens in allogeneic peripheral blood progenitor cell transplantation. Transfusion 2005; 45:960-8. [PMID: 15934995 DOI: 10.1111/j.1537-2995.2005.04370.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Most studies indicate that the incidence of graft-versus-host disease (GVHD) is not increased in ABO-mismatched allogeneic peripheral blood progenitor cell transplantation. These studies exclusively looked at ABO phenotypes without considering the fact that different genotypes hide behind identical phenotypes that encode for different sets of glycosyltransferases, thus providing a source for minor histocompatibility antigens (mHags). STUDY DESIGN AND METHODS Therefore, whether peptides derived from ABO glycosyltransferases are capable of stimulating peptide-specific T cells was investigated. T-cell responses were identified by measuring intracellular interleukin-2 expression. RESULTS Individuals with ABO genotypes encoding glycosyltransferases lacking the peptide sequences used for stimulation showed T-cell responses, whereas those expressing glycosyltransferases containing the respective peptide sequences proved to be tolerant, indicating that ABO peptides are allogeneic and may act as mHags. Interestingly, even ABO*O individuals were tolerant to O glycosyltransferase-derived peptides, which strongly suggests that truncated O transferases are expressed. CONCLUSION Considering allelic ABO sequences, at least 15 percent of all phenotypically ABO-matched transplant pairs can be expected to have genotype constellations relevant to GVHD. Therefore, the genotype behind the ABO blood group phenotype should be considered to answer the question of whether ABO mismatch is a risk factor of GVHD.
Collapse
Affiliation(s)
- Britta Eiz-Vesper
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
39
|
Torikai H, Akatsuka Y, Miyazaki M, Warren EH, Oba T, Tsujimura K, Motoyoshi K, Morishima Y, Kodera Y, Kuzushima K, Takahashi T. A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene. THE JOURNAL OF IMMUNOLOGY 2005; 173:7046-54. [PMID: 15557202 DOI: 10.4049/jimmunol.173.11.7046] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Female-to-male hemopoietic stem cell transplantation (HSCT) elicits T cell responses against male-specific minor histocompatibility (H-Y) Ags encoded by the Y chromosome. All previously identified H-Y Ags are encoded by conventional open reading frames, but we report in this study the identification of a novel H-Y Ag encoded in the 5'-untranslated region of the TMSB4Y gene. An HLA-A*3303-restricted CD8(+) CTL clone was isolated from a male patient after an HSCT from his HLA-identical sister. Using a panel of cell lines carrying Y chromosome terminal deletions, a narrow region controlling the susceptibility of these target cells to CTL recognition was localized. Minigene transfection and epitope reconstitution assays identified an 11-mer peptide, EVLLRPGLHFR, designated TMSB4Y/A33, whose first amino acid was located 405 bp upstream of the TMSB4Y initiation codon. Analysis of the precursor frequency of CTL specific for recipient minor histocompatibility Ags in post-HSCT peripheral blood T cells revealed that a significant fraction of the total donor CTL response in this patient was directed against the TMSB4Y epitope. Tetramer analysis continued to detect TMSB4Y/A33-specific CD8(+) T cells at least up to 700 days post-HSCT. This finding underscores the in vivo immunological relevance of minor histocompatibility Ags derived from unconventional open reading frame products.
Collapse
Affiliation(s)
- Hiroki Torikai
- Division of Immunology, Aichi Cancer Center Research Institute, Aichi Cancer Center Hospital, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schilbach K, Schick J, Fluhr H, Marquordt K, Wehrmann M, Schütt BS, Schlegel PG, Niethammer D, Eyrich M. Organ-Specific T Cell Receptor Repertoire in Target Organs of Murine Graft-Versus-Host After Transplantation Across Minor Histocompatibility Antigen Barriers. Transplantation 2004; 78:31-40. [PMID: 15257036 DOI: 10.1097/01.tp.0000133510.47573.97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Minor histocompatibility antigens (miHags) are recognized by alloreactive cytotoxic donor T lymphocytes and trigger potent immune reactions such as graft-versus-host disease (GvHD) after major histocompatibility complex-matched transplantation. Our study focuses on tissue-specific T-cell responses to miHag-encoded peptides in GvHD target organs during the first 30 days in a murine transplant model. METHODS Complementarity determining region (CDR)3-size spectratyping was used to study T cell receptor (TCR) repertoires in recipient skin, liver, ileum, colon, spleen, and heart. RESULTS GvHD occurred as early as day 14 and was proven by histology in skin, liver, ileum, and colon. The heart was histologically not affected by GvHD but showed endomyocardial "quilty lesions." Two distinct patterns of TCR diversities could be identified. In skin, a restricted V beta usage in combination with all J beta segments contrasted with a complete V beta repertoire in intestinal organs combined with a restricted J beta usage. Interestingly, TCR repertoire in the heart was almost identical with intestinal CDR3-size patterns. Persisting clones were found in skin from day 9 to 30. In intestine and heart, identical sequences were obtained from several organs on day 14 and 21, but no persistence of CDR3 sequences could be observed. CONCLUSIONS These results suggest that in the skin a limited number of persisting T cell clones maintains GvHD, whereas in the intestine, temporary expansions of different clones may fuel the process of GvHD. Strategies that eliminate tissue-specific T cells on the basis of their activational status rather than their V beta expression but at the same time preserve a broad, overall TCR repertoire will help to increase the efficacy and safety of allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Karin Schilbach
- Children's Hospital, Pediatric Stem Cell Transplant Program, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yoshimura Y, Yadav R, Christianson GJ, Ajayi WU, Roopenian DC, Joyce S. Duration of Alloantigen Presentation and Avidity of T Cell Antigen Recognition Correlate with Immunodominance of CTL Response to Minor Histocompatibility Antigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:6666-74. [PMID: 15153482 DOI: 10.4049/jimmunol.172.11.6666] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD8 T lymphocytes (CTL) responsive to immunodominant minor histocompatibility (minor H) Ags are thought to play a disproportionate role in allograft rejection in MHC-identical solid and bone marrow transplant settings. Although many studies have addressed the mechanisms underlying immunodominance in models of infectious diseases, cancer immunotherapy, and allograft immunity, key issues regarding the molecular basis of immunodominance remain poorly understood. In this study, we exploit the minor H Ag system to understand the relationship of the various biochemical parameters of Ag presentation and recognition to immunodominance. We show that the duration of individual minor H Ag presentation and the avidity of T cell Ag recognition influence the magnitude and, hence, the immunodominance of the CTL response to minor H Ags. These properties of CTL Ag presentation and recognition that contribute to immunodominance have implications not only for tissue transplantation, but also for autoimmunity and tumor vaccine design.
Collapse
Affiliation(s)
- Yoshitaka Yoshimura
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Technical advances combined with the deciphering of the human genome have facilitated the identification of the molecular nature of human minor histocompatibility (H) antigens. To date, it is believed that minor H antigens result from just any polymorphic protein, regardless of their functional properties. A closer look at the first series of autosomally encoded human minor H proteins reveals a striking functional relationship. Here, we propose that T cells generated after HLA-identical stem cell transplantation (SCT) for malignancies are likely to be directed towards peptides derived from minor H proteins involved in tumourigenesis. This novel insight has important consequences in the search for, and the use of, minor H antigens as immunotherapeutics in stem-cell-based immunotherapy of haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Eric Spierings
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
43
|
Das HLA-System. TRANSFUSIONSMEDIZIN 2004. [DOI: 10.1007/978-3-662-10597-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Miklos DB, Kim HT, Zorn E, Hochberg EP, Guo L, Mattes-Ritz A, Viatte S, Soiffer RJ, Antin JH, Ritz J. Antibody response to DBY minor histocompatibility antigen is induced after allogeneic stem cell transplantation and in healthy female donors. Blood 2003; 103:353-9. [PMID: 14512314 PMCID: PMC1350983 DOI: 10.1182/blood-2003-03-0984] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minor histocompatibility antigens (mHAs) recognized by donor T cells play a central role as immunologic targets of graft-versus-host disease (GVHD) and graft versus leukemia after allogeneic hematopoietic stem cell transplantation (HSCT). Men who have undergone sex-mismatched allogeneic HSCT are at high risk for GVHD because of immune responses directed against mHAs encoded by genes on the Y chromosome (termed H-Y antigens). We hypothesized that the immunogenicity of mHAs results in a coordinated response involving B cells as well as T cells. To test this, we measured antibody responses to a well-characterized H-Y antigen, dead box RNA helicase Y (DBY), and its homolog, DBX, in 150 HSCT patients. Using Western blot and enzyme-linked immunosorbent assay (ELISA), we found that 50% of male patients who received stem cell grafts from female donors developed antibody responses to recombinant DBY protein. Antibodies to DBY were also detected in 17% of healthy women, but not in healthy men. Antibody responses were directed primarily against areas of amino acid disparity between DBY and DBX. These studies demonstrate that the immune response to mHA includes the generation of specific antibodies and suggests that the serologic response to these antigens may also be useful in the identification of new mHAs.
Collapse
Affiliation(s)
- David B Miklos
- Department of Medical Oncology and Biostatistical Science, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cao TM, Lo B, Ranheim EA, Grumet FC, Shizuru JA. Variable hematopoietic graft rejection and graft-versus-host disease in MHC-matched strains of mice. Proc Natl Acad Sci U S A 2003; 100:11571-6. [PMID: 14504392 PMCID: PMC208799 DOI: 10.1073/pnas.2035077100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MHC typing for human hematopoietic cell transplantation (HCT) from unrelated donors is currently performed by using a combination of serologic and molecular techniques. It has been determined that allelic differences in human MHC molecules, revealed by nucleotide sequencing but not by serologic typing, substantially influence graft rejection and graft-versus-host disease, two serious complications of clinical HCT. We studied transplantation of purified hematopoietic stem cells in a series of mouse strains that were matched at the MHC but had different background genes, and we observed striking differences in engraftment resistance and graft-versus-host disease severity, both factors depending on the donor-recipient strain combination. The individual mouse lines studied here were established nearly a century ago, and their MHC types were determined exclusively by serologic techniques. We considered the possibility that serologically silent MHC polymorphisms could account for our observations and, therefore, we performed DNA sequencing of the class I and II MHC alleles of our mouse strains. At each locus, exact homology was found between serologically MHC-matched strains. Our results likely extend to all serologically MHC-matched mouse strains used in modern research and highlight the profound and variable influence that non-MHC genetic determinants can have in dictating outcome after HCT.
Collapse
Affiliation(s)
- Thai M Cao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
46
|
Ohashi J, Maruya E, Tokunaga K, Saji H. Power of association test for detecting minor histocompatibility gene causing graft-versus-host disease following bone marrow transplantation [correction]. J Hum Genet 2003; 48:502-507. [PMID: 13680298 DOI: 10.1007/s10038-003-0065-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 07/22/2003] [Indexed: 11/26/2022]
Abstract
Incompatibility of minor histocompatibility antigen (mHa) is a major cause of acute graft-versus-host disease (GVHD) following bone marrow transplantation in human leukocyte antigen (HLA)-matched donor-recipient pairs. To avoid acute GVHD, as many mHa genes as possible need to be identified. In this study, we introduce a comparison of two proportions as an association test for detecting mHa genes in HLA-matched pairs with and without GVHD. Assuming multiple mHa loci, each with two alleles, we evaluated the effects of (1). minor allele frequency of the mHa locus of interest (denoted by p), and (2). probability of GVHD developing in a donor-recipient pair being incompatible at an mHa locus (denoted by r) on the powers of association tests for unrelated pairs and for sib pairs. Our results showed that based on a candidate gene approach, an mHa gene with high p and r values can be detected by the association test with a small sample size. Application of the present method to the Japanese population revealed that the association test for unrelated pairs is more suitable for detecting an mHa gene with a high r value than that for sib pairs. The present method will be helpful to researchers who evaluate the power of association study in advance.
Collapse
Affiliation(s)
- Jun Ohashi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Molecular Biology and Genetics, Cornell University, 227 Biotechnology Building, Ithaca, NY , 14853, USA.
| | | | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
47
|
Akatsuka Y, Nishida T, Kondo E, Miyazaki M, Taji H, Iida H, Tsujimura K, Yazaki M, Naoe T, Morishima Y, Kodera Y, Kuzushima K, Takahashi T. Identification of a polymorphic gene, BCL2A1, encoding two novel hematopoietic lineage-specific minor histocompatibility antigens. J Exp Med 2003; 197:1489-500. [PMID: 12771180 PMCID: PMC2193899 DOI: 10.1084/jem.20021925] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3-25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402- and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1.
Collapse
Affiliation(s)
- Yoshiki Akatsuka
- Division of Immunology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ebeling SB, Ivanov R, Hol S, Aarts TI, Hagenbeek A, Verdonck LF, Petersen EJ. HLA-DRB1*16-restricted recognition of myeloid cells, including CD34+ CML progenitor cells. Br J Haematol 2003; 121:721-9. [PMID: 12780786 DOI: 10.1046/j.1365-2141.2003.04341.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The therapeutic effect of a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT) for the treatment of haematological malignancies is mediated partly by the allogeneic T cells that are administered together with the stem cell graft. Chronic myeloid leukaemia (CML) is particularly sensitive to this graft-versus-leukaemia (GVL) effect. Several studies have shown that in allogeneic responses both CD4 and CD8 cells are capable of strong antigen-specific growth inhibition of leukaemic progenitor cells, but that CD4 cells mainly exert the GVL effect against CML. Efficient activation of allogeneic CD4 cells, as well as CD8 cells, may explain the sensitivity of CML cells to elimination by allogeneic T cells. Identification of the antigens recognized by CD4 cells is crucial in understanding the mechanism through which CML cells are so successful in activating allogeneic T cells. In the present report, we describe the characterization of an allogeneic CD4 T-cell clone, DDII.4.4. This clone was found to react against an antigen that is specifically expressed in myeloid cells, including CD34+ CML cells. The antigen recognition is restricted by HLA-DRB1*16. To our knowledge, this is only the second report on an allogeneic CD4 T-cell clone that reacts with early CD34+ myeloid progenitor cells.
Collapse
Affiliation(s)
- Saskia B Ebeling
- Jordan Laboratory for Haemato-Oncology, Department of Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Yadav R, Yoshimura Y, Boesteanu A, Christianson GJ, Ajayi WU, Shashidharamurthy R, Stanic AK, Roopenian DC, Joyce S. The H4b minor histocompatibility antigen is caused by a combination of genetically determined and posttranslational modifications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5133-42. [PMID: 12734360 DOI: 10.4049/jimmunol.170.10.5133] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Minor histocompatibility (H) Ag disparities result in graft-vs-host disease and chronic solid allograft rejection in MHC-identical donor-recipient combinations. Minor H Ags are self protein-derived peptides presented by MHC class I molecules. Most arise as a consequence of allelic variation in the bound peptide (p) that results in TCR recognizing the p/MHC as foreign. We used a combinational peptide screening approach to identify the immune dominant H2K(b)-restricted epitope defining the mouse H4(b) minor H Ag. H4(b) is a consequence of a P3 threonine to isoleucine change in the MHC-bound peptide derived from epithelial membrane protein-3. This allelic variation also leads to phosphorylation of the H4(b) but not the H4(a) epitope. Further, ex vivo CD8(+) T lymphocytes bind phosphorylated Ag tetramers with high efficiency. Although we document the above process in the minor H Ag system, posttranslational modifications made possible by subtle amino acid changes could also contribute to immunogenicity and immune dominance in tumor immunotherapeutic settings.
Collapse
Affiliation(s)
- Rajwardhan Yadav
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Alner KA, Loman J, Hall EH, Mutcherson RJ, King TR. An X-encoded alloantigenicity between BALB/c and C57BL/6 strains of mice. Immunogenetics 2003; 55:87-94. [PMID: 12698287 DOI: 10.1007/s00251-003-0554-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2002] [Revised: 01/28/2003] [Indexed: 11/28/2022]
Abstract
To detect minor barriers to histocompatibility that might be encoded on the X chromosome in mice, we grafted reciprocal sets of (C57BL/6xBALB/c)F1, (C57BL/6xDBA/2)F1, and (BALB/cxDBA/2)F1 mice with tail skin from the respective paternal inbred strain. Our histogenic analysis suggests that, compared with the C57BL/6 mouse strain, the BALB/c strain generates X-linked antigen loss. In contrast, we detected no X-linked histogenic differences between strains C57BL/6 and DBA/2, or DBA/2 and BALB/c. To localize this X-linked barrier to histocompatibility, we produced a panel of 25 [(BALB/cxC57BL/6)F1xC57BL/6]N2 males that were grafted with C57BL/6 skin to determine which carried the BALB/c-derived component(s) necessary for graft rejection. DNA marker analysis showed one region of overlapping BALB/c-derived X-chromosomal segments among the graft rejecters, suggesting that this antigen-loss haplotype ( H-hix(c), for histoincompatibility on the X chromosome, c haplotype) may be restricted within the DXMit55 to the Xq telomere interval (which excludes only the centromeric tip of the X). Further backcrossing of H-hix(c) to C57BL/6 resulted in fewer rejecter mice than expected by the N4 generation, suggesting that a second, unlinked locus is also involved in this X-linked alloantigenicity. The vigorous rejection of male (C57BL/6xBALB)F1 and female (B6.C- H2(d)xC57BL/6)F1 skin by (BALB/cxC57BL/6)F1 males, as well as the assessment of markers on Chromosome 17 among N2 and N4 graft-recipient males, suggests that this second locus is H2, and that H-hix(b)-encoded alloantigens require both H2(b) and H2(d)-encoded presentation molecules for efficient graft rejection.
Collapse
Affiliation(s)
- Kadie-Ann Alner
- Department of Biological Sciences, Central Connecticut State University, 1615 Stanley Street, New Britain, CT 06050, USA
| | | | | | | | | |
Collapse
|