1
|
Uusi-Oukari M, Korpi ER. GABAergic mechanisms in alcohol dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 175:75-123. [PMID: 38555121 DOI: 10.1016/bs.irn.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The target of alcohol's effect on the central nervous system has been sought for more than 50 years in the brain's GABA system. The behavioral and emotional effects of alcohol in humans and rodents are very similar to those of barbiturates and benzodiazepines, and GABAA receptors have been shown to be one of the sites of alcohol action. The mechanisms of GABAergic inhibition have been a hotspot of research but have turned out to be complex and controversial. Genetics support the involvement of some GABAA receptor subunits in the development of alcohol dependence and in alcohol use disorders (AUD). Since the effect of alcohol on the GABAA system resembles that of a GABAergic positive modulator, it may be possible to develop GABAergic drug treatments that could substitute for alcohol. The adaptation mechanisms of the GABA system and the plasticity of the brain are a big challenge for drug development: the drugs that act on GABAA receptors developed so far also may cause adaptation and development of additional addiction. Human polymorphisms should be studied further to get insight about how they affect receptor function, expression or other factors to make reasonable predictions/hypotheses about what non-addictive interventions would help in alcohol dependence and AUD.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
3
|
Belelli D, Hales TG, Lambert JJ, Luscher B, Olsen R, Peters JA, Rudolph U, Sieghart W. GABA A receptors in GtoPdb v.2021.3. IUPHAR/BPS GUIDE TO PHARMACOLOGY CITE 2021; 2021. [PMID: 35005623 DOI: 10.2218/gtopdb/f72/2021.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].
Collapse
|
4
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
5
|
Di Capua A, Reale A, Paolino M, Chemi G, Brogi S, Cappelli A, Giorgi G, Grande F, Di Cesare Mannelli L, Ghelardini C, Matucci R, Garofalo A, Anzini M. Design, synthesis and biological evaluation of 7-substituted 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f] [1,4]diazepines as safe anxiolytic agents. Eur J Med Chem 2020; 200:112405. [PMID: 32492595 DOI: 10.1016/j.ejmech.2020.112405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/27/2022]
Abstract
A series of 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f][1,4]diazepine-7-carboxylate esters were synthesized and tested as central benzodiazepine receptor (CBR) ligands by the ability to displace [3H]flumazenil from rat cortical membranes. All the compounds showed high affinity with IC50 values ranging from 5.19 to 16.22 nM. In particular, compounds 12b (IC50 = 8.66 nM) and 12d (IC50 = 5.19 nM) appeared as the most effective ligands being their affinity values significantly lower than that of diazepam (IC50 = 18.52 nM). Compounds 12a-f were examined in vivo for their pharmacological effects in mice and five potential benzodiazepine (BDZ) actions were thus taken into consideration: anxiolytic, anticonvulsant, anti-amnesic, hypnotic, and locomotor activities. All the new synthesized compounds were able to induce a significant antianxiety effect and, among them, compound 12f protected pentylenetetrazole (PTZ)-induced convulsions in a dose-dependent manner reaching a 40% effect at 30 mg/kg. In addition, all the compounds were able to significantly prevent the memory impairment evoked by scopolamine, while none of them was able to interfere with pentobarbital-evoked sleep and influence motor coordination. Moreover, title compounds did not affect locomotor and exploratory activity at the same time and doses at which the anti-anxiety effect was observed. Finally, molecular docking simulations were carried out in order to assess the binding mode for compounds 12a-f. The obtained results demonstrated that these compounds bind the BDZ binding site in a similar fashion to flumazenil.
Collapse
Affiliation(s)
- Angela Di Capua
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Giulia Chemi
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Gianluca Giorgi
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Fedora Grande
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione (Dipartimento d'Eccellenza 2018-2022), Università della Calabria, Edificio Polifunzionale, 87036, Arcavacata di Rende (CS), Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale G. Pieraccini 6, I-50139, Firenze, Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale G. Pieraccini 6, I-50139, Firenze, Italy
| | - Rosanna Matucci
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - Sezione di Farmacologia e Tossicologia, Università di Firenze, Viale G. Pieraccini 6, I-50139, Firenze, Italy
| | - Antonio Garofalo
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione (Dipartimento d'Eccellenza 2018-2022), Università della Calabria, Edificio Polifunzionale, 87036, Arcavacata di Rende (CS), Italy
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia, (Dipartimento d'Eccellenza 2018-2022), Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| |
Collapse
|
6
|
Abstract
Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia.
Collapse
Affiliation(s)
- W Wisden
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - X Yu
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - N P Franks
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
7
|
Multiple actions of fenamates and other nonsteroidal anti-inflammatory drugs on GABAA receptors. Eur J Pharmacol 2019; 853:247-255. [DOI: 10.1016/j.ejphar.2019.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
|
8
|
Ishiguro M, Kobayashi S, Matsuyama K, Nagamine T. Effects of propofol on IPSCs in CA1 and dentate gyrus cells of rat hippocampus: Propofol effects on hippocampal cells' IPSCs. Neurosci Res 2018; 143:13-19. [PMID: 29778809 DOI: 10.1016/j.neures.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Abstract
Propofol (2, 6-diisopropylphenol) is one of the most popular intravenous anesthetic agents. In this study, we compared the effects of propofol on inhibitory postsynaptic currents (IPSCs) induced by single and paired electrical stimulations in CA1 pyramidal cells (CA1-PCs) and dentate gyrus granule cells (DG-GCs) in rat hippocampal slices using the whole cell patch-clamp technique. In the absence of propofol, the amplitude of evoked IPSC by single stimulation and decay time constants were stable in both CA1-PCs and DG-GCs for 30 min. Propofol (1 μM and 10 μM) increased both IPSC amplitude in CA1-PCs, but not in DG-GCs. Further, using a paired pulse stimulation protocol, the ratio of IPSC amplitudes (the second response: A2/the first response: A1) was increased by propofol in CA1, but not in DG-GCs. These results suggest that propofol selectively affects IPSCs in CA1-PCs, which is similar to previously reported actions of benzodiazepines.
Collapse
Affiliation(s)
- Masanori Ishiguro
- Department of Systems Neuroscience, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Suguru Kobayashi
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kiyoji Matsuyama
- Department of Occupational Therapy, Sapporo Medical University School of Health Sciences, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takashi Nagamine
- Department of Systems Neuroscience, Sapporo Medical University School of Medicine, South 1, West 17, Chuo-ku, Sapporo, 060-8556, Japan
| |
Collapse
|
9
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
10
|
Wang JB, Kofuji P, Fernando JCR, Moss SJ, Huganir RL, Burt DR. The α1,α2, and α3 Subunits of GABAA Receptors: Comparison in Seizure-Prone and -Resistant Mice and during Development. J Mol Neurosci 2017; 3:177-184. [DOI: 10.1007/bf03380136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Wisden W. A Tribute to Peter H Seeburg (1944-2016): A Founding Father of Molecular Neurobiology. Front Mol Neurosci 2016; 9:133. [PMID: 27965536 PMCID: PMC5126100 DOI: 10.3389/fnmol.2016.00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Affiliation(s)
- William Wisden
- Department of Life Sciences and Centre for Neurotechnology, Imperial College London London, UK
| |
Collapse
|
12
|
Chagraoui A, Skiba M, Thuillez C, Thibaut F. To what extent is it possible to dissociate the anxiolytic and sedative/hypnotic properties of GABAA receptors modulators? Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:189-202. [PMID: 27495357 DOI: 10.1016/j.pnpbp.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/16/2023]
Abstract
The relatively common view indicates a possible dissociation between the anxiolytic and sedative/hypnotic properties of benzodiazepines (BZs). Indeed, GABAA receptor (GABAAR) subtypes have specific cerebral distribution in distinct neural circuits. Thus, GABAAR subtype-selective drugs may be expected to perform distinct functions. However, standard behavioral test assays provide limited direction towards highlighting new action mechanisms of ligands targeting GABAARs. Automated behavioral tests, lack sensitivity as some behavioral characteristics or subtle behavioral changes of drug effects or that are not considered in the overall analysis (Ohl et al., 2001) and observation-based analyses are not always performed. In addition, despite the use of genetically engineered mice, any possible dissociation between the anxiolytic and sedative properties of BZs remains controversial. Moreover, the involvement the different subtypes of GABAAR subtypes in the anxious behavior and the mechanism of action of anxiolytic agents remains unclear since there has been little success in the pharmacological investigations so far. This raises the question of the involvement of the different subunits in anxiolytic-like and/or sedative effects; and the actual implication of these subunits, particularly, α-subunits in the modulation of sedation and/or anxiety-related disorders. This present review was prompted by several conflicting studies on the degree of involvement of these subunits in anxiolytic-like and/or sedative effects. To this end, we explored the GABAergic system, particularly, the role of different subunits containing synaptic GABAARs. We report herein the targeting gene encoding the different subunits and their contribution in anxiolytic-like and/or sedative actions, as well as, the mechanism underlying tolerance to BZs.
Collapse
Affiliation(s)
- A Chagraoui
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France.
| | - M Skiba
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedecine, Normandy University, France
| | - C Thuillez
- Department of Pharmacology, Rouen University Hospital, Rouen, and INSERM U1096, Laboratory of New Pharmacological Targets for Endothelial Protection and Heart Failure, Institute for Research and Innovation in Biomedicine, Normandy University, France
| | - F Thibaut
- Department of Psychiatry, University Hospital Cochin (site Tarnier), University of Paris-Descartes and INSERM U 894 Laboratory of Psychiatry and Neurosciences, Paris, France
| |
Collapse
|
13
|
Synthesis and pharmacological evaluation of functionalized isoindolinones on GABA-activated chloride currents in rat cerebellum granule cells in culture. Bioorg Med Chem Lett 2016; 26:5284-5289. [DOI: 10.1016/j.bmcl.2016.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/17/2023]
|
14
|
Anticonvulsive Activity in Audiogenic DBA/2 Mice of 1,4-Benzodiazepines and 1,5-Benzodiazepines with Different Activities at Cerebellar Granule Cell GABAA Receptors. J Mol Neurosci 2016; 60:539-547. [DOI: 10.1007/s12031-016-0838-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
15
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
16
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters. Brain Res 2015; 1620:1-16. [DOI: 10.1016/j.brainres.2015.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 11/19/2022]
|
18
|
Nikas P, Gatta E, Cupello A, Di Braccio M, Grossi G, Pellistri F, Robello M. Study of the Interaction of 1,4- and 1,5-Benzodiazepines with GABAA Receptors of Rat Cerebellum Granule Cells in Culture. J Mol Neurosci 2015; 56:768-772. [DOI: 10.1007/s12031-015-0495-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
|
19
|
Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, Kowolik CM, Li H, Hambrecht AC, Roberts E, Jandial R. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A 2014; 111:984-9. [PMID: 24395782 PMCID: PMC3903266 DOI: 10.1073/pnas.1322098111] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dispersion of tumors throughout the body is a neoplastic process responsible for the vast majority of deaths from cancer. Despite disseminating to distant organs as malignant scouts, most tumor cells fail to remain viable after their arrival. The physiologic microenvironment of the brain must become a tumor-favorable microenvironment for successful metastatic colonization by circulating breast cancer cells. Bidirectional interplay of breast cancer cells and native brain cells in metastasis is poorly understood and rarely studied. We had the rare opportunity to investigate uncommonly available specimens of matched fresh breast-to-brain metastases tissue and derived cells from patients undergoing neurosurgical resection. We hypothesized that, to metastasize, breast cancers may escape their normative genetic constraints by accommodating and coinhabiting the neural niche. This acquisition or expression of brain-like properties by breast cancer cells could be a malignant adaptation required for brain colonization. Indeed, we found breast-to-brain metastatic tissue and cells displayed a GABAergic phenotype similar to that of neuronal cells. The GABAA receptor, GABA transporter, GABA transaminase, parvalbumin, and reelin were all highly expressed in breast cancer metastases to the brain. Proliferative advantage was conferred by the ability of breast-to-brain metastases to take up and catabolize GABA into succinate with the resultant formation of NADH as a biosynthetic source through the GABA shunt. The results suggest that breast cancers exhibit neural characteristics when occupying the brain microenvironment and co-opt GABA as an oncometabolite.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Choy
- Divisions of Neurosurgery and
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010; and
| | | | - Hubert Li
- Immunology, and
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA 91010; and
| | - Amanda C. Hambrecht
- Divisions of Neurosurgery and
- Department of Biology, University of Southern California, Los Angeles, CA 90089
| | | | - Rahul Jandial
- Divisions of Neurosurgery and
- Department of Biology, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
20
|
Cupello A, Di Braccio M, Gatta E, Grossi G, Nikas P, Pellistri F, Robello M. GABA A Receptors of Cerebellar Granule Cells in Culture: Interaction with Benzodiazepines. Neurochem Res 2013; 38:2453-2462. [PMID: 24122079 DOI: 10.1007/s11064-013-1171-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/17/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022]
Abstract
GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 β2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.
Collapse
Affiliation(s)
- Aroldo Cupello
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genoa, Italy,
| | | | | | | | | | | | | |
Collapse
|
21
|
Chang T, Alexopoulos H, Pettingill P, McMenamin M, Deacon R, Erdelyi F, Szabó G, Buckley CJ, Vincent A. Immunization against GAD induces antibody binding to GAD-independent antigens and brainstem GABAergic neuronal loss. PLoS One 2013; 8:e72921. [PMID: 24058450 PMCID: PMC3776810 DOI: 10.1371/journal.pone.0072921] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Stiff person syndrome (SPS) is a highly-disabling neurological disorder of the CNS characterized by progressive muscular rigidity and spasms. In approximately 60–80% of patients there are autoantibodies to glutamic acid decarboxylase (GAD), the enzyme that synthesizes gamma-amino butyric acid (GABA), the predominant inhibitory neurotransmitter of the CNS. Although GAD is intracellular, it is thought that autoimmunity to GAD65 may play a role in the development of SPS. To test this hypothesis, we immunized mice, that expressed enhanced green fluorescent protein (EGFP) under the GAD65 promoter, with either GAD65 (n = 13) or phosphate buffered saline (PBS) (n = 13). Immunization with GAD65 resulted in autoantibodies that immunoprecipitated GAD, bound to CNS tissue in a highly characteristic pattern, and surprisingly bound not only to GAD intracellularly but also to the surface of cerebellar neurons in culture. Moreover, immunization resulted in immunoglobulin diffusion into the brainstem, and a partial loss of GAD-EGFP expressing cells in the brainstem. Although immunization with GAD65 did not produce any behavioral abnormality in the mice, the induction of neuronal-surface antibodies and the trend towards loss of GABAergic neurons in the brainstem, supports a role for humoral autoimmunity in the pathogenesis of SPS and suggests that the mechanisms may involve spread to antigens expressed on the surface of these neurons.
Collapse
Affiliation(s)
- Thashi Chang
- Neuroimmunology Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Clinical Medicine, University of Colombo, Colombo, Sri Lanka
| | - Harry Alexopoulos
- Neuroimmunology Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Philippa Pettingill
- Neuroimmunology Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mary McMenamin
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert Deacon
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Ferenc Erdelyi
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gabor Szabó
- Department of Gene Technology and Developmental Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Camilla J. Buckley
- Neuroimmunology Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Angela Vincent
- Neuroimmunology Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Kilb W, Kirischuk S, Luhmann HJ. Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits 2013; 7:139. [PMID: 24027498 PMCID: PMC3760143 DOI: 10.3389/fncir.2013.00139] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/16/2013] [Indexed: 11/13/2022] Open
Abstract
In the last three decades it became evident that the GABAergic system plays an essential role for the development of the central nervous system, by influencing the proliferation of neuronal precursors, neuronal migration and differentiation, as well as by controlling early activity patterns and thus formation of neuronal networks. GABA controls neuronal development via depolarizing membrane responses upon activation of ionotropic GABA receptors. However, many of these effects occur before the onset of synaptic GABAergic activity and thus require the presence of extrasynaptic tonic currents in neuronal precursors and immature neurons. This review summarizes our current knowledge about the role of tonic GABAergic currents during early brain development. In this review we compare the temporal sequence of the expression and functional relevance of different GABA receptor subunits, GABA synthesizing enzymes and GABA transporters. We also refer to other possible endogenous agonists of GABAA receptors. In addition, we describe functional consequences mediated by the GABAergic system during early developmental periods and discuss current models about the origin of extrasynaptic GABA and/or other endogenous GABAergic agonists during early developmental states. Finally, we present evidence that tonic GABAergic activity is also critically involved in the generation of physiological as well as pathophysiological activity patterns before and after the establishment of functional GABAergic synaptic connections.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology and Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | | | | |
Collapse
|
23
|
Modulation of native GABAA receptor activity by triazolo 1,5-benzodiazepines. Neuroscience 2013; 243:158-64. [DOI: 10.1016/j.neuroscience.2013.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/16/2013] [Accepted: 04/07/2013] [Indexed: 11/21/2022]
|
24
|
Spanne A, Jörntell H. Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Comput Biol 2013; 9:e1002979. [PMID: 23516353 PMCID: PMC3597523 DOI: 10.1371/journal.pcbi.1002979] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/23/2013] [Indexed: 02/08/2023] Open
Abstract
Why are sensory signals and motor command signals combined in the neurons of origin of the spinocerebellar pathways and why are the granule cells that receive this input thresholded with respect to their spike output? In this paper, we synthesize a number of findings into a new hypothesis for how the spinocerebellar systems and the cerebellar cortex can interact to support coordination of our multi-segmented limbs and bodies. A central idea is that recombination of the signals available to the spinocerebellar neurons can be used to approximate a wide array of functions including the spatial and temporal dependencies between limb segments, i.e. information that is necessary in order to achieve coordination. We find that random recombination of sensory and motor signals is not a good strategy since, surprisingly, the number of granule cells severely limits the number of recombinations that can be represented within the cerebellum. Instead, we propose that the spinal circuitry provides useful recombinations, which can be described as linear projections through aspects of the multi-dimensional sensorimotor input space. Granule cells, potentially with the aid of differentiated thresholding from Golgi cells, enhance the utility of these projections by allowing the Purkinje cell to establish piecewise-linear approximations of non-linear functions. Our hypothesis provides a novel view on the function of the spinal circuitry and cerebellar granule layer, illustrating how the coordinating functions of the cerebellum can be crucially supported by the recombinations performed by the neurons of the spinocerebellar systems.
Collapse
Affiliation(s)
- Anton Spanne
- Neural basis for Sensorimotor Control, BMC F10, Lund University, SE-22184 Lund, Sweden
| | - Henrik Jörntell
- Neural basis for Sensorimotor Control, BMC F10, Lund University, SE-22184 Lund, Sweden
- * E-mail:
| |
Collapse
|
25
|
Loria CJ, Stevens AM, Crummy E, Casadesus G, Jacono FJ, Dick TE, Siegel RE. Respiratory and behavioral dysfunction following loss of the GABAA receptor α4 subunit. Brain Behav 2013; 3:104-13. [PMID: 23533098 PMCID: PMC3607152 DOI: 10.1002/brb3.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/10/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptor plasticity participates in mediating adaptation to environmental change. Previous studies in rats demonstrated that extrasynaptic GABAA receptor subunits and receptors in the pons, a brainstem region involved in respiratory control, are upregulated by exposure to sustained hypobaric hypoxia. In these animals, expression of the mRNA encoding the extrasynaptic α4 subunit rose after 3 days in sustained hypoxia, while those encoding the α6 and δ subunits increased dramatically by 2 weeks. However, the participation of extrasynaptic subunits in maintaining respiration in normoxic conditions remains unknown. To examine the importance of α4 in a normal environment, respiratory function, motor and anxiety-like behaviors, and expression of other GABAA receptor subunit mRNAs were compared in wild-type (WT) and α4 subunit-deficient mice. Loss of the α4 subunit did not impact frequency, but did lead to reduced ventilatory pattern variability. In addition, mice lacking the subunit exhibited increased anxiety-like behavior. Finally, α4 subunit loss resulted in reduced expression of other extrasynaptic (α6 and δ) subunit mRNAs in the pons without altering those encoding the most prominent synaptic subunits. These findings on subunit-deficient mice maintained in normoxia, in conjunction with earlier findings on animals maintained in chronic hypoxia, suggest that the expression and regulation of extrasynaptic GABAA receptor subunits in the pons is interdependent and that their levels influence respiratory control as well as adaptation to stress.
Collapse
Affiliation(s)
- C Jean Loria
- Department of Pharmacology, Case Western Reserve University 10900 Euclid Avenue, Cleveland, Ohio, 44106
| | | | | | | | | | | | | |
Collapse
|
26
|
POSTER COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1992.tb16283.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Tan KR, Rudolph U, Lüscher C. Hooked on benzodiazepines: GABAA receptor subtypes and addiction. Trends Neurosci 2011; 34:188-97. [PMID: 21353710 DOI: 10.1016/j.tins.2011.01.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/04/2011] [Accepted: 01/14/2011] [Indexed: 12/21/2022]
Abstract
Benzodiazepines are widely used clinically to treat anxiety and insomnia. They also induce muscle relaxation, control epileptic seizures, and can produce amnesia. Moreover, benzodiazepines are often abused after chronic clinical treatment and also for recreational purposes. Within weeks, tolerance to the pharmacological effects can develop as a sign of dependence. In vulnerable individuals with compulsive drug use, addiction will be diagnosed. Here we review recent observations from animal models regarding the cellular and molecular basis that might underlie the addictive properties of benzodiazepines. These data reveal how benzodiazepines, acting through specific GABA(A) receptor subtypes, activate midbrain dopamine neurons, and how this could hijack the mesolimbic reward system. Such findings have important implications for the future design of benzodiazepines with reduced or even absent addiction liability.
Collapse
Affiliation(s)
- Kelly R Tan
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
28
|
Ring H, Boije H, Daniel C, Ohlson J, Ohman M, Hallböök F. Increased A-to-I RNA editing of the transcript for GABAA receptor subunit α3 during chick retinal development. Vis Neurosci 2010; 27:149-57. [PMID: 20843408 DOI: 10.1017/s0952523810000180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a cotranscriptional or posttranscriptional gene regulatory mechanism that increases the diversity of the proteome in the nervous system. Recently, the transcript for GABA type A receptor subunit α3 was found to be subjected to RNA editing. The aim of this study was to determine if editing of the chicken α3 subunit transcript occurs in the retina and if the editing is temporally regulated during development. We also raised the question if editing of the α3 transcript was temporally associated with the suggested developmental shift from excitation to inhibition in the GABA system. The editing frequency was studied by using Sanger and Pyrosequencing, and to monitor the temporal aspects, we studied the messenger RNA expression of the GABAA receptor subunits and chloride pumps, known to be involved in the switch. The results showed that the chick α3 subunit was subjected to RNA editing, and its expression was restricted to cells in the inner nuclear and ganglion cell layer in the retina. The extent of editing increased during development (after embryonic days 8-9) concomitantly with an increase of expression of the chloride pump KCC2. Expression of several GABAA receptor subunits known to mediate synaptic GABA actions was upregulated at this time. We conclude that editing of the chick GABAA subunit α3 transcript in chick retina gives rise to an amino acid change that may be of importance in the switch from excitatory to inhibitory receptors.
Collapse
Affiliation(s)
- Henrik Ring
- Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Nam HW, Lee MR, Hinton DJ, Choi DS. Reduced effect of NMDA glutamate receptor antagonist on ethanol-induced ataxia and striatal glutamate levels in mice lacking ENT1. Neurosci Lett 2010; 479:277-81. [PMID: 20570605 DOI: 10.1016/j.neulet.2010.05.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/25/2010] [Indexed: 12/26/2022]
Abstract
Alcohol-sensitive type 1 equilibrative nucleotide transporter (ENT1) is known to regulate glutamate signaling in the striatum as well as ethanol intoxication. However, it was unclear whether altered extracellular glutamate levels in ENT1(-/-) mice contribute to ethanol-induced behavioral changes. Here we report that altered glutamate signaling in ENT1(-/-) mice is implicated in the ethanol-induced locomotion and ataxia by NMDA receptor antagonist, CGP37849. ENT1(-/-) mice appear less intoxicated following sequential treatment with CGP37849 and ethanol, compared to ENT1(+/+) littermates on the rotarod. These results indicate that inhibiting NMDA glutamate receptors is critical to regulate the response and susceptibility of alcohol related behaviors. Interestingly, a microdialysis experiment showed that the ventral striatum of ENT1(-/-) mice is less sensitive to the glutamate-reducing effect of the NMDA receptor antagonist compared to the dorsal striatum. Our findings suggest that differential glutamate neurotransmission in the striatum regulates ethanol intoxication.
Collapse
Affiliation(s)
- Hyung Wook Nam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
30
|
Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci 2010; 3:19. [PMID: 20126519 PMCID: PMC2805432 DOI: 10.3389/neuro.03.019.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/29/2009] [Indexed: 11/20/2022] Open
Abstract
Over the past decade the advent of mouse transgenics has generated new perspectives on the study of cerebellar molecular mechanisms that are essential for eyeblink conditioning. However, it also appears that results from eyeblink conditioning experiments done in mice differ in some aspects from results previously obtained in other mammals. In this review article we will, based on studies using (cell-specific) mouse mutants and region-specific lesions, re-examine the general eyeblink behavior in mice and the neuro-anatomical circuits that might contribute to the different peaks in the conditioned eyeblink trace. We conclude that the learning process in mice has at least two stages: An early stage, which includes short-latency responses that are at least partly controlled by extracerebellar structures such as the amygdala, and a later stage, which is represented by well-timed conditioned responses that are mainly controlled by the pontocerebellar and olivocerebellar systems. We refer to this overall concept as the Amygdala-Cerebellum-Dynamic-Conditioning Model (ACDC model).
Collapse
Affiliation(s)
- Henk-Jan Boele
- Department of Neuroscience, Erasmus Medical Center, RotterdamThe Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, RotterdamThe Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, AmsterdamThe Netherlands
| |
Collapse
|
31
|
Protein kinase Cdelta regulates ethanol intoxication and enhancement of GABA-stimulated tonic current. J Neurosci 2009; 28:11890-9. [PMID: 19005054 DOI: 10.1523/jneurosci.3156-08.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ethanol alters the distribution and abundance of PKCdelta in neural cell lines. Here we investigated whether PKCdelta also regulates behavioral responses to ethanol. PKCdelta(-/-) mice showed reduced intoxication when administered ethanol and reduced ataxia when administered the nonselective GABA(A) receptor agonists pentobarbital and pregnanolone. However, their response to flunitrazepam was not altered, suggesting that PKCdelta regulates benzodiazepine-insensitive GABA(A) receptors, most of which contain delta subunits and mediate tonic inhibitory currents in neurons. Indeed, the distribution of PKCdelta overlapped with GABA(A) delta subunits in thalamus and hippocampus, and ethanol failed to enhance tonic GABA currents in PKCdelta(-/-) thalamic and hippocampal neurons. Moreover, using an ATP analog-sensitive PKCdelta mutant in mouse L(tk(-)) fibroblasts that express alpha4beta3delta GABA(A) receptors, we found that ethanol enhancement of GABA currents was PKCdelta-dependent. Thus, PKCdelta enhances ethanol intoxication partly through regulation of GABA(A) receptors that contain delta subunits and mediate tonic inhibitory currents. These findings indicate that PKCdelta contributes to a high level of behavioral response to ethanol, which is negatively associated with risk of developing an alcohol use disorder in humans.
Collapse
|
32
|
Jansen M, Rabe H, Strehle A, Dieler S, Debus F, Dannhardt G, Akabas MH, Lüddens H. Synthesis of GABAA receptor agonists and evaluation of their alpha-subunit selectivity and orientation in the GABA binding site. J Med Chem 2008; 51:4430-48. [PMID: 18651727 DOI: 10.1021/jm701562x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drugs used to treat various disorders target GABA A receptors. To develop alpha subunit selective compounds, we synthesized 5-(4-piperidyl)-3-isoxazolol (4-PIOL) derivatives. The 3-isoxazolol moiety was substituted by 1,3,5-oxadiazol-2-one, 1,3,5-oxadiazol-2-thione, and substituted 1,2,4-triazol-3-ol heterocycles with modifications to the basic piperidine substituent as well as substituents without basic nitrogen. Compounds were screened by [(3)H]muscimol binding and in patch-clamp experiments with heterologously expressed GABA A alpha ibeta 3gamma 2 receptors (i = 1-6). The effects of 5-aminomethyl-3 H-[1,3,4]oxadiazol-2-one 5d were comparable to GABA for all alpha subunit isoforms. 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-one 5a and 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-thione 6a were weak agonists at alpha 2-, alpha 3-, and alpha 5-containing receptors. When coapplied with GABA, they were antagonistic in alpha 2-, alpha 4-, and alpha 6-containing receptors and potentiated alpha 3-containing receptors. 6a protected GABA binding site cysteine-substitution mutants alpha 1F64C and alpha 1S68C from reacting with methanethiosulfonate-ethylsulfonate. 6a specifically covalently modified the alpha 1R66C thiol, in the GABA binding site, through its oxadiazolethione sulfur. These results demonstrate the feasibility of synthesizing alpha subtype selective GABA mimetic drugs.
Collapse
Affiliation(s)
- Michaela Jansen
- Department of Medicinal Chemistry, Johannes Gutenberg-UniVersity, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Anzini M, Braile C, Valenti S, Cappelli A, Vomero S, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Ghelardini C, Norcini M, Makovec F, Giorgi G, Ian Fryer R. Ethyl 8-Fluoro-6-(3-nitrophenyl)-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate as Novel, Highly Potent, and Safe Antianxiety Agent. J Med Chem 2008; 51:4730-43. [DOI: 10.1021/jm8002944] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maurizio Anzini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Carlo Braile
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Salvatore Valenti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Andrea Cappelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Salvatore Vomero
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Luciana Marinelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Vittorio Limongelli
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Ettore Novellino
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Laura Betti
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Gino Giannaccini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Antonio Lucacchini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Carla Ghelardini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Monica Norcini
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Francesco Makovec
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - Gianluca Giorgi
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| | - R. Ian Fryer
- Dipartimento Farmaco Chimico Tecnologico and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy, Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy, Dipartimento di Psichiatria, Neurobiologia Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy, Dipartimento di Farmacologia Preclinica e Clinica “M. Aiazzi Mancini”,
| |
Collapse
|
34
|
Kumar M, Luo X, Quirk PL, Siegel RE. Antisense suppression of GABAA receptor β subunit levels in cultured cerebellar granule neurons demonstrates their importance in receptor expression. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00217.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Berezhnoy D, Gravielle MC, Downing S, Kostakis E, Basile AS, Skolnick P, Gibbs TT, Farb DH. Pharmacological Properties of DOV 315,090, an ocinaplon metabolite. BMC Pharmacol 2008; 8:11. [PMID: 18554397 PMCID: PMC2529273 DOI: 10.1186/1471-2210-8-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/13/2008] [Indexed: 11/30/2022] Open
Abstract
Background Compounds targeting the benzodiazepine binding site of the GABAA-R are widely prescribed for the treatment of anxiety disorders, epilepsy, and insomnia as well as for pre-anesthetic sedation and muscle relaxation. It has been hypothesized that these various pharmacological effects are mediated by different GABAA-R subtypes. If this hypothesis is correct, then it may be possible to develop compounds targeting particular GABAA-R subtypes as, for example, selective anxiolytics with a diminished side effect profile. The pyrazolo[1,5-a]-pyrimidine ocinaplon is anxioselective in both preclinical studies and in patients with generalized anxiety disorder, but does not exhibit the selectivity between α1/α2-containing receptors for an anxioselective that is predicted by studies using transgenic mice. Results We hypothesized that the pharmacological properties of ocinaplon in vivo might be influenced by an active biotransformation product with greater selectivity for the α2 subunit relative to α1. One hour after administration of ocinaplon, the plasma concentration of its primary biotransformation product, DOV 315,090, is 38% of the parent compound. The pharmacological properties of DOV 315,090 were assessed using radioligand binding studies and two-electrode voltage clamp electrophysiology. We report that DOV 315,090 possesses modulatory activity at GABAA-Rs, but that its selectivity profile is similar to that of ocinaplon. Conclusion These findings imply that DOV 315,090 could contribute to the action of ocinaplon in vivo, but that the anxioselective properties of ocinaplon cannot be readily explained by a subtype selective effect/action of DOV 315,090. Further inquiry is required to identify the extent to which different subtypes are involved in the anxiolytic and other pharmacological effects of GABAA-R modulators.
Collapse
Affiliation(s)
- Dmytro Berezhnoy
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Maria C Gravielle
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Scott Downing
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Emmanuel Kostakis
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Anthony S Basile
- DOV Pharmaceutical, Inc, 150 Pierce St., Somerset, NJ 08873-4185, USA
| | - Phil Skolnick
- DOV Pharmaceutical, Inc, 150 Pierce St., Somerset, NJ 08873-4185, USA
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| |
Collapse
|
36
|
Jordan AD, Kordik CP, Reitz AB, Sanfilippo PJ. Section Review Central & Peripheral Nervous Systems: Novel anxiolytic agents - 1994 to present. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.10.1047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Volkmann K, Rieger S, Babaryka A, Köster RW. The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Dev Biol 2008; 313:167-80. [DOI: 10.1016/j.ydbio.2007.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/18/2007] [Accepted: 10/15/2007] [Indexed: 11/27/2022]
|
38
|
Rousseaux CG. A Review of Glutamate Receptors I: Current Understanding of Their Biology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
39
|
Schindler J, Lewandrowski U, Sickmann A, Friauf E. Aqueous Polymer Two-Phase Systems for the Proteomic Analysis of Plasma Membranes from Minute Brain Samples. J Proteome Res 2008; 7:432-42. [DOI: 10.1021/pr0704736] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Herden CJ, Pardo NE, Hajela RK, Yuan Y, Atchison WD. Differential Effects of Methylmercury on γ-Aminobutyric Acid Type A Receptor Currents in Rat Cerebellar Granule and Cerebral Cortical Neurons in Culture. J Pharmacol Exp Ther 2007; 324:517-28. [DOI: 10.1124/jpet.107.123976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Goetz T, Arslan A, Wisden W, Wulff P. GABA(A) receptors: structure and function in the basal ganglia. PROGRESS IN BRAIN RESEARCH 2007; 160:21-41. [PMID: 17499107 PMCID: PMC2648504 DOI: 10.1016/s0079-6123(06)60003-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
gamma-Aminobutyric acid type A (GABA(A)) receptors, the major inhibitory neurotransmitter receptors responsible for fast inhibition in the basal ganglia, belong to the superfamily of "cys-cys loop" ligand-gated ion channels. GABA(A) receptors form as pentameric assemblies of subunits, with a central Cl(-) permeable pore. On binding of two GABA molecules to the extracellular receptor domain, a conformational change is induced in the oligomer and Cl(-), in most adult neurons, moves into the cell leading to an inhibitory hyperpolarization. Nineteen mammalian subunit genes have been identified, each showing distinct regional and cell-type-specific expression. The combinatorial assembly of the subunits generates considerable functional diversity. Here we place the focus on GABA(A) receptor expression in the basal ganglia: striatum, globus pallidus, substantia nigra and subthalamic nucleus, where, in addition to the standard alpha1beta2/3gamma2 receptor subtype, significant levels of other subunits (alpha2, alpha3, alpha4, gamma1, gamma3 and delta) are expressed in some nuclei.
Collapse
Affiliation(s)
- T. Goetz
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - A. Arslan
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - W. Wisden
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - P. Wulff
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Corresponding author. Tel.: +0044-1224-551941; Fax: +0044-1224-555719; E-mail:
| |
Collapse
|
42
|
McClatchy DB, Liao L, Park SK, Venable JD, Yates JR. Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. Genome Res 2007; 17:1378-88. [PMID: 17675365 PMCID: PMC1950906 DOI: 10.1101/gr.6375007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Large-scale proteomic analysis of the mammalian brain has been successfully performed with mass spectrometry techniques, such as Multidimensional Protein Identification Technology (MudPIT), to identify hundreds to thousands of proteins. Strategies to efficiently quantify protein expression levels in the brain in a large-scale fashion, however, are lacking. Here, we demonstrate a novel quantification strategy for brain proteomics called SILAM (Stable Isotope Labeling in Mammals). We utilized a (15)N metabolically labeled rat brain as an internal standard to perform quantitative MudPIT analysis on the synaptosomal fraction of the cerebellum during post-natal development. We quantified the protein expression level of 1138 proteins in four developmental time points, and 196 protein alterations were determined to be statistically significant. Over 50% of the developmental changes observed have been previously reported using other protein quantification techniques, and we also identified proteins as potential novel regulators of neurodevelopment. We report the first large-scale proteomic analysis of synaptic development in the cerebellum, and we demonstrate a useful quantitative strategy for studying animal models of neurological disease.
Collapse
Affiliation(s)
- Daniel B. McClatchy
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Lujian Liao
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sung Kyu Park
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John D. Venable
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
- Corresponding author.E-mail ; fax (858) 784-8883
| |
Collapse
|
43
|
Kaja S, Hann V, Payne HL, Thompson CL. Aberrant cerebellar granule cell-specific GABAA receptor expression in the epileptic and ataxic mouse mutant, Tottering. Neuroscience 2007; 148:115-25. [PMID: 17614209 DOI: 10.1016/j.neuroscience.2007.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/04/2007] [Accepted: 03/06/2007] [Indexed: 11/22/2022]
Abstract
The Tottering (cacna1a(tg)) mouse arose as a consequence of a spontaneous mutation in cacna1a, the gene encoding the pore-forming subunit of the pre-synaptic P/Q-type voltage-gated calcium channel (VGCC, Ca(V)2.1). The mouse phenotype includes ataxia and intermittent myoclonic seizures which have been attributed to impaired excitatory neurotransmission at cerebellar granule cell (CGC) parallel fiber-Purkinje cell (PF-PC) synapses [Zhou YD, Turner TJ, Dunlap K (2003) Enhanced G-protein-dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca(2+)-channel mutant mouse, tottering. J Physiol 547:497-507]. We hypothesized that the expression of cerebellar GABA(A) receptors may be affected by the mutation. Indeed, abnormal GABA(A) receptor function and expression in the cacna1a(tg) forebrain has been reported previously [Tehrani MH, Barnes EM Jr (1995) Reduced function of gamma-aminobutyric acid A receptors in tottering mouse brain: role of cAMP-dependent protein kinase. Epilepsy Res 22:13-21; Tehrani MH, Baumgartner BJ, Liu SC, Barnes EM Jr (1997) Aberrant expression of GABA(A) receptor subunits in the tottering mouse: an animal model for absence seizures. Epilepsy Res 28:213-223]. Here we show a deficit of 40.2+/-3.6% in the total number of cerebellar GABA(A) receptors expressed (gamma2+delta subtypes) in adult cacna1a(tg) relative to controls. [(3)H]Muscimol autoradiography identified that this was partly due to a significant loss of CGC-specific alpha6 subunit-containing GABA(A) receptor subtypes. A large proportion of this loss of alpha6 receptors was attributable to a significantly reduced expression of the CGC-specific benzodiazepine-insensitive Ro15-4513 (BZ-IS) binding subtype, alpha6betagamma2 subunit-containing receptors. BZ-IS binding was reduced by 36.6+/-2.6% relative to controls in cerebellar membrane homogenates and by 37.2+/-3.7% in cerebellar sections. Quantitative immunoblotting revealed that the steady-state expression level of alpha6 and gamma2 subunits was selectively reduced relative to controls by 30.2+/-8.2% and 38.8+/-13.1%, respectively, alpha1, beta3 and delta were unaffected. Immunohistochemically probed control and cacna1a(tg) cerebellar sections verified that alpha6 and gamma2 subunit expression was reduced and that this deficit was restricted to the CGC layer. Thus, we have shown that abnormal cerebellar P/Q-type VGCC activity results in a deficit of CGC-specific subtype(s) of GABA(A) receptors which may contribute to, or may be a consequence of the impaired cerebellar network signaling that occurs in cacna1a(tg) mice.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Calcium Channels, N-Type/genetics
- Calcium Channels, N-Type/metabolism
- Cerebellar Ataxia/genetics
- Cerebellar Ataxia/metabolism
- Cerebellar Ataxia/physiopathology
- Cerebellar Cortex/metabolism
- Cerebellar Cortex/physiopathology
- Disease Models, Animal
- Epilepsy/genetics
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Genetic Predisposition to Disease/genetics
- Mice
- Mice, Neurologic Mutants
- Neurons/metabolism
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Receptors, GABA/genetics
- Receptors, GABA/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- S Kaja
- School of Biological and Biomedical Sciences, Science Research Laboratories, Durham University, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
44
|
Abstract
Fast synaptic inhibition in the brain and spinal cord is mediated largely by ionotropic gamma-aminobutyric acid (GABA) receptors. GABAA receptors play a key role in controlling neuronal activity; thus modulating their function will have important consequences for neuronal excitation. GABAA receptors are important therapeutic targets for a range of sedative, anxiolytic, and hypnotic agents and are involved in a number of CNS diseases, including sleep disturbances, anxiety, premenstrual syndrome, alcoholism, muscle spasms, Alzheimer's disease, chronic pain, schizophrenia, bipolar affective disorders, and epilepsy. This review focuses on the functional and pharmacological properties of GABAA receptors and trafficking as an essential mechanism underlying the dynamic regulation of synaptic strength.
Collapse
Affiliation(s)
- Guido Michels
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6074, USA.
| | | |
Collapse
|
45
|
Lovinger DM, Homanics GE. Tonic for what ails us? high-affinity GABAA receptors and alcohol. Alcohol 2007; 41:139-43. [PMID: 17521844 PMCID: PMC2043151 DOI: 10.1016/j.alcohol.2007.03.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 03/23/2007] [Indexed: 11/19/2022]
Abstract
Ethanol interactions with gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, play key roles in acute intoxication. However, the exact mechanisms of these ethanol interactions have been the subject of considerable confusion and controversy. Many studies suggest that ethanol potentiates the function of the type A GABA receptor (GABAA-R). However, these findings have not been consistently replicated in experiments that directly examined the effects of ethanol on GABAA-R-mediated ion current. Differences in ethanol sensitivity of different GABAA-R subtypes have been invoked as a potential explanation for the inconsistent findings, and recent work suggests that GABAA-Rs that contain the delta subunit and/or mediate tonic extrasynaptic GABA responses may be especially ethanol sensitive. However, considerable disagreement has arisen over these findings. This special issue of Alcohol contains articles from eight research groups that are examining this issue. The authors present their work, their views on the present state of this area of alcohol research, and their ideas about how to proceed with future studies that may help to address the present confusion and controversy. This editorial provides an introduction to this line of research and the current findings and controversies.
Collapse
|
46
|
Jia F, Pignataro L, Harrison NL. GABAA receptors in the thalamus: alpha4 subunit expression and alcohol sensitivity. Alcohol 2007; 41:177-85. [PMID: 17521848 DOI: 10.1016/j.alcohol.2007.03.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/21/2007] [Accepted: 03/22/2007] [Indexed: 11/25/2022]
Abstract
The inhibitory neurotransmitter gamma-aminobutyric acid (GABA) has long been implicated in the anxiolytic, amnesic, and sedative behavioral effects of alcohol. A large number of studies have investigated the interactions of alcohol with GABA receptors. Many investigators have reported effects of "high concentrations" (50-100 mM) of alcohol on GABA-mediated synaptic inhibition, but effects of the "low concentrations" (1-30 mM) of alcohol normally associated with mild intoxication have been elusive until recently. A novel form of "tonic inhibition" has been described in the central nervous system (CNS) that is generated by the persistent activation of extrasynaptic gamma-aminobutyric acid type A receptors (GABAA-Rs). These receptors are specific GABAA-R subtypes and distinct from the synaptic subtypes. Tonic inhibition regulates the excitability of individual neurons and the activity and rhythmicity of neural networks. Interestingly, several reports show that tonic inhibition is sensitive to low concentrations of alcohol. The thalamus is a structure that is critically important in the control of sleep and wakefulness. GABAergic inhibition in the thalamus plays a crucial role in the generation of sleep waves. Among the various GABAA-R subunits, the alpha1, alpha4, beta2, and delta subunits are heavily expressed in thalamic relay nuclei. Tonic inhibition has been demonstrated in thalamocortical relay neurons, where it is mediated by alpha4beta2delta GABAA-Rs. These extrasynaptic receptors are highly sensitive to gaboxadol, a novel hypnotic, but insensitive to benzodiazepines. Tonic inhibition is absent in thalamic relay neurons from alpha4 knockout mice, as are the sedative and analgesic effects of gaboxadol. The sedative effects of alcohol can promote sleep. However, alcohol also disrupts the normal sleep pattern and reduces sleep quality. As a result, sleep disturbance caused by alcohol can play a role in the progression of alcoholism. As an important regulator of sleep cycles, inhibition in the thalamus may therefore be involved in both the sedative effects of alcohol and the development of alcoholism. Investigating the effects of alcohol on both synaptic and extrasynaptic GABAA-Rs in the thalamus should help us to understand the mechanisms underlying the interaction between alcohol and sleep.
Collapse
Affiliation(s)
- Fan Jia
- Department of Anesthesiology, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
47
|
Korpi ER, Debus F, Linden AM, Malécot C, Leppä E, Vekovischeva O, Rabe H, Böhme I, Aller MI, Wisden W, Lüddens H. Does ethanol act preferentially via selected brain GABAA receptor subtypes? the current evidence is ambiguous. Alcohol 2007; 41:163-76. [PMID: 17591542 DOI: 10.1016/j.alcohol.2007.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/17/2007] [Accepted: 03/19/2007] [Indexed: 12/28/2022]
Abstract
In rodent models, gamma-aminobutyric acid A (GABAA) receptors with the alpha6 and delta subunits, expressed in the cerebellar and cochlear nucleus granule cells, have been linked to ethanol sensitivity and voluntary ethanol drinking. Here, we review the findings. When considering both in vivo contributions and data on cloned receptors, the evidence for direct participation of the alpha6-containing receptors to increased ethanol sensitivity is poor. The alpha6 subunit-knockout mouse lines do not have any changed sensitivity to ethanol, although these mice do display increased benzodiazepine sensitivity. However, in general the compensations occurring in knockout mice (regardless of which particular gene is knocked out) tend to fog interpretations of drug actions at the systems level. For example, the alpha6 knockout mice have increased TASK-1 channel expression in their cerebellar granule cells, which could influence sensitivity to ethanol in the opposite direction to that obtained with the alpha6 knockouts. Indeed, TASK-1 knockout mice are more impaired than wild types in motor skills when given ethanol; this might explain why GABAA receptor alpha6 knockout mice have unchanged ethanol sensitivities. As an alternative to studying knockout mice, we examined the claimed delta subunit-dependent/gamma2 subunit-independent ethanol/[3H]Ro 15-4513 binding sites on GABAA receptors. We looked at [3H]Ro 15-4513 binding in HEK 293 cell membrane homogenates containing rat recombinant alpha6/4beta3delta receptors and in mouse brain sections. Specific high-affinity [3H]Ro 15-4513 binding could not be detected under any conditions to the recombinant receptors or to the cerebellar sections of gamma2(F77I) knockin mice, nor was this binding to brain sections of wild-type C57BL/6 inhibited by 1-100 mM ethanol. Since ethanol may act on many receptor and channel protein targets in neuronal membranes, we consider the alpha6 (and alpha4) subunit-containing GABAA receptors unlikely to be directly responsible for any major part of ethanol's actions. Therefore, we finish the review by discussing more generally alcohol and GABAA receptors and by suggesting potential future directions for this research.
Collapse
Affiliation(s)
- Esa R Korpi
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rabe H, Kronbach C, Rundfeldt C, Lüddens H. The novel anxiolytic ELB139 displays selectivity to recombinant GABAA receptors different from diazepam. Neuropharmacology 2007; 52:796-801. [PMID: 17087982 DOI: 10.1016/j.neuropharm.2006.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/26/2006] [Indexed: 11/17/2022]
Abstract
A chemically heterogeneous group of compounds acts at the benzodiazepine (BZ) recognition site of the diverse gamma-aminobutyric acid type A (GABA(A)) receptor complexes which can assemble from more than 16 known subunits. Most 1,4-BZs like diazepam recognize all GABA(A)/BZ receptors containing the alpha1-3 or alpha5 together with any beta and the gamma2 subunit. Other compounds differentiate less, e.g. Ro15-4513, that additionally recognizes alpha4- and a6-containing receptors, or differentiate more, e.g. zolpidem, that recognizes preferentially alpha1-containing receptors. Here we describe the functional properties of 1-(4-chloro-phenyl)-4-piperidin-1-yl-1,5-dihydro-imidazol-2-on (ELB139) in the presence and absence of the BZ receptor antagonist flumazenil (Ro15-1788) on recombinant alphaibeta2gamma2 (i=1-5) receptor subtypes expressed in HEK 293 cells. The properties were measured with the whole-cell variation of the patch-clamp technique and compared to those of diazepam. Like the latter, ELB139 did not potentiate GABA-induced currents in alpha4-containing receptors, but it displays functional subtype specificity between alpha1, alpha2, alpha3, and alpha5beta2gamma2 receptors with highest potency in alpha3-containing receptors but highest efficacy in alpha1- or alpha2-containing receptors, respectively. ELB139 acted as a partial agonist on these receptor subtypes reaching 40-50% of the efficacy of diazepam.
Collapse
Affiliation(s)
- Holger Rabe
- Laboratory of Molecular Biology, Department of Psychiatry, University of Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
49
|
Farrant M, Kaila K. The cellular, molecular and ionic basis of GABA(A) receptor signalling. PROGRESS IN BRAIN RESEARCH 2007; 160:59-87. [PMID: 17499109 DOI: 10.1016/s0079-6123(06)60005-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
GABA(A) receptors mediate fast synaptic inhibition in the CNS. Whilst this is undoubtedly true, it is a gross oversimplification of their actions. The receptors themselves are diverse, being formed from a variety of subunits, each with a different temporal and spatial pattern of expression. This diversity is reflected in differences in subcellular targetting and in the subtleties of their response to GABA. While activation of the receptors leads to an inevitable increase in membrane conductance, the voltage response is dictated by the distribution of the permeant Cl(-) and HCO(3)(-) ions, which is established by anion transporters. Similar to GABA(A) receptors, the expression of these transporters is not only developmentally regulated but shows cell-specific and subcellular variation. Untangling all these complexities allows us to appreciate the variety of GABA-mediated signalling, a diverse set of phenomena encompassing both synaptic and non-synaptic functions that can be overtly excitatory as well as inhibitory.
Collapse
Affiliation(s)
- Mark Farrant
- Department of Pharmacology, UCL (University College London), Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
50
|
Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 2006; 51:823-34. [PMID: 16982426 DOI: 10.1016/j.neuron.2006.08.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 01/03/2006] [Accepted: 08/22/2006] [Indexed: 11/23/2022]
Abstract
The number and diversity of plasticity mechanisms in the brain raises a central question: does a neural circuit store all memories by stereotyped application of the available plasticity mechanisms, or can subsets of these mechanisms be selectively engaged for specific memories? The uniform architecture of the cerebellum has inspired the idea that plasticity mechanisms like cerebellar long-term depression (LTD) contribute universally to memory storage. To test this idea, we investigated a set of closely related, cerebellum-dependent motor memories. In mutant mice lacking Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), the maintenance of cerebellar LTD is abolished. Although memory for an increase in the gain of the vestibulo-ocular reflex (VOR) induced with high-frequency stimuli was impaired in these mice, memories for decreases in VOR gain and increases in gain induced with low-frequency stimuli were intact. Thus, a particular plasticity mechanism need not support all cerebellum-dependent memories, but can be engaged selectively according to the parameters of training.
Collapse
Affiliation(s)
- Edward S Boyden
- Department of Neurobiology, Stanford University, California 94305, USA
| | | | | | | | | | | |
Collapse
|