1
|
Halmi CA, Leonard CE, McIntosh AT, Taneyhill LA. N-cadherin facilitates trigeminal sensory neuron outgrowth and target tissue innervation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.594965. [PMID: 38826314 PMCID: PMC11142107 DOI: 10.1101/2024.05.20.594965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The trigeminal ganglion emerges from the condensation of two distinct precursor cell populations, cranial placodes and neural crest. While its dual cellular origin is well understood, the molecules underlying its formation remain relatively obscure. Trigeminal ganglion assembly is mediated, in part, by neural cadherin (N-cadherin), which is initially expressed by placodal neurons and required for their proper coalescence with neural crest cells. Axon outgrowth first occurs from placodal neurons, but as gangliogenesis proceeds, neural crest cells also differentiate into N-cadherin-expressing neurons, and both extend axons toward targets. However, the role of N-cadherin in axon outgrowth and target innervation has not been explored. Our data show that N-cadherin knockdown in chick trigeminal placode cells decreases trigeminal ganglion size, nerve growth, and target innervation in vivo , and reduces neurite complexity of neural crest-derived neurons in vitro. Furthermore, blocking N-cadherin-mediated adhesion prevents axon extension in most placodal neurons in vitro . Collectively, these findings reveal cell- and non-cell autonomous functions for N-cadherin, highlighting its critical role in mediating reciprocal interactions between neural crest- and placode-derived neurons throughout trigeminal ganglion development.
Collapse
|
2
|
Guo X, Lee T, Sun J, Sun J, Cai W, Yang Q, Sun T. Molecular Lineages and Spatial Distributions of Subplate Neurons in the Human Fetal Cerebral Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407137. [PMID: 39495628 DOI: 10.1002/advs.202407137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Indexed: 11/06/2024]
Abstract
The expansion of neural progenitors and production of distinct neurons are crucial for architectural assembly and formation of connectivity in human brains. Subplate neurons (SPNs) are among the firstborn neurons in the human fetal cerebral cortex, and play a critical role in establishing intra- and extracortical connections. However, little is known about SPN origin and developmental lineages. In this study, spatial landscapes and molecular trajectories of SPNs in the human fetal cortices from gestational weeks (GW) 10 to 25 are created by performing spatial transcriptomics and single-cell RNA sequencing. Genes known to be evolutionarily human-specific and genes associated with extracellular matrices (ECMs) are found to maintain stable proportions of subplate neurons among other neuronal types. Enriched ECM gene expression in SPNs varies in distinct cortical regions, with the highest level in the frontal lobe of human fetal brains. This study reveals molecular origin and lineage specification of subplate neurons in the human fetal cerebral cortices, and highlights underpinnings of SPNs to cortical neurogenesis and early structural folding.
Collapse
Affiliation(s)
- Xueyu Guo
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Jason Sun
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, 361005, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, 361005, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, 362046, China
| | - Qingwei Yang
- Department of Neurology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361006, China
| | - Tao Sun
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China
| |
Collapse
|
3
|
Thalhammer M, Nimpal M, Schulz J, Meedt V, Menegaux A, Schmitz-Koep B, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Hedderich D, Sorg C. Consistently lower volumes across thalamus nuclei in very premature-born adults. Neuroimage 2024; 297:120732. [PMID: 39004408 DOI: 10.1016/j.neuroimage.2024.120732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024] Open
Abstract
Lasting thalamus volume reduction after preterm birth is a prominent finding. However, whether thalamic nuclei volumes are affected differentially by preterm birth and whether nuclei aberrations are relevant for cognitive functioning remains unknown. Using T1-weighted MR-images of 83 adults born very preterm (≤ 32 weeks' gestation; VP) and/or with very low body weight (≤ 1,500 g; VLBW) as well as of 92 full-term born (≥ 37 weeks' gestation) controls, we compared thalamic nuclei volumes of six subregions (anterior, lateral, ventral, intralaminar, medial, and pulvinar) across groups at the age of 26 years. To characterize the functional relevance of volume aberrations, cognitive performance was assessed by full-scale intelligence quotient using the Wechsler Adult Intelligence Scale and linked to volume reductions using multiple linear regression analyses. Thalamic volumes were significantly lower across all examined nuclei in VP/VLBW adults compared to controls, suggesting an overall rather than focal impairment. Lower nuclei volumes were linked to higher intensity of neonatal treatment, indicating vulnerability to stress exposure after birth. Furthermore, we found that single results for lateral, medial, and pulvinar nuclei volumes were associated with full-scale intelligence quotient in preterm adults, albeit not surviving correction for multiple hypotheses testing. These findings provide evidence that lower thalamic volume in preterm adults is observable across all subregions rather than focused on single nuclei. Data suggest the same mechanisms of aberrant thalamus development across all nuclei after premature birth.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany.
| | - Mehul Nimpal
- Faculty of Biology, Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Veronica Meedt
- Faculty of Biology, Ludwig Maximilian University of Munich
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Marcel Daamen
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany; Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Henning Boecker
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Clinical Functional Imaging Group, Bonn, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Dennis Hedderich
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, School of Medicine and Health, Munich, Germany; Technical University of Munich, School of Medicine and Health, TUM-NIC Neuroimaging Center, Munich, Germany; Department of Psychiatry, Technical University of Munich, School of Medicine and Health, Munich, Germany
| |
Collapse
|
4
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
5
|
Ahmed B, Duque A, Rakic P, Molnár Z. Correlation between the number of interstitial neurons of the white matter and number of neurons within cortical layers: Histological analyses in postnatal macaque. J Comp Neurol 2024; 532:e25626. [PMID: 39031698 PMCID: PMC11262481 DOI: 10.1002/cne.25626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
We have examined the number and distribution of NeuN-immunoreactive cortical white matter interstitial cells (WMICs) and compared them to the neurons in layers 1-6 across the overlying cortex in coronal sections from postnatal macaques. The data have been gathered from over 300 selected regions at gyral crowns, at sulci, and at linear regions of the cortex where we also determined cortical layer thicknesses: standard thicknesses and tangential thicknesses. Cortical thicknesses and cell numbers showed variability according to gyral, linear, or sulcal regions. In spite of these variations, our standardized cell numbers in layers 1 to 6b and interstitial cells underlying layer 6b-white matter boundary have shown a consistent correlation between the number of WMICs and the number of layer 5 and 6a cortical neurons on all cortical regions studied: for each WMIC, there are on the order of five cortical neurons in layer 5 and approximately three cortical neurons in layer 6a, irrespective of the origins of the selected cortical area or whether they are from gyral, linear, or sulcal regions. We propose that the number of interstitial neurons in the postnatal macaque cortex is correlated to the density of neurons within layers 5 and 6a and, from a clinical perspective, the change in density or distribution of interstitial neurons in schizophrenia or epilepsy may in fact be linked to the number of layers 5 and 6a neurons.
Collapse
Affiliation(s)
- Bashir Ahmed
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | - Alvaro Duque
- Yale University School of Medicine, Department of Neuroscience, New Haven, CT, USA
| | - Pasko Rakic
- Yale University School of Medicine, Department of Neuroscience, New Haven, CT, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Chang M, Nehs S, Xu Z, Kanold PO. Distinct distribution of subplate neuron subtypes between the sensory cortices during the early postnatal period. J Comp Neurol 2024; 532:e25594. [PMID: 38407509 PMCID: PMC11186582 DOI: 10.1002/cne.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Subplate neurons (SpNs) are a heterogeneous neuronal population actively involved in early cortical circuit formation. In rodents, many SpNs survive and form layer 6b. The molecular heterogeneity of SpNs raises the question of whether different subpopulations of SpNs survive through the early postnatal period similarly and whether such diverse SpN populations in the auditory cortex (ACtx) share a common distribution pattern with other sensory systems. To address that, we investigated the expression pattern of multiple specific SpN markers in the ACtx, as well as in the visual (VCtx) and somatosensory (SCtx) cortices as controls, using complexin 3 (Cplx3) antibodies and different SpN-specific Cre-driver mice, such as connective tissue growth factor (CTGF), dopamine receptor D1 (Drd1a), and neurexophilin 4 (Nxph4). We focused on two early time windows in auditory development: (1) during the second postnatal week (PNW) before ear-canal opening and (2) during the third PNW after ear-canal opening. We compared the expression pattern of different SpN markers in ACtx with VCtx and SCtx. At both examined timepoints, Cplx3 and Nxph4 expressing SpNs form the largest and smallest population in the ACtx, respectively. Similar distribution patterns are observable in the VCtx and SCtx during the second PNW but not during the third PNW, for a higher proportion of Drd1a expressing SpNs is detected in the VCtx and CTGF expressing SpNs in the SCtx. This study suggests that different populations of SpNs might contribute differently to the development of individual sensory circuits.
Collapse
Affiliation(s)
- Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sophia Nehs
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zheng Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Schmitz‐Koep B, Menegaux A, Zimmermann J, Thalhammer M, Neubauer A, Wendt J, Schinz D, Daamen M, Boecker H, Zimmer C, Priller J, Wolke D, Bartmann P, Sorg C, Hedderich DM. Altered gray-to-white matter tissue contrast in preterm-born adults. CNS Neurosci Ther 2023; 29:3199-3211. [PMID: 37365964 PMCID: PMC10580354 DOI: 10.1111/cns.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
AIMS To investigate cortical organization in brain magnetic resonance imaging (MRI) of preterm-born adults using percent contrast of gray-to-white matter signal intensities (GWPC), which is an in vivo proxy measure for cortical microstructure. METHODS Using structural MRI, we analyzed GWPC at different percentile fractions across the cortex (0%, 10%, 20%, 30%, 40%, 50%, and 60%) in a large and prospectively collected cohort of 86 very preterm-born (<32 weeks of gestation and/or birth weight <1500 g, VP/VLBW) adults and 103 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. RESULTS GWPC was significantly decreased in VP/VLBW adults in frontal, parietal, and temporal associative cortices, predominantly in the right hemisphere. Differences were pronounced at 20%, 30%, and 40%, hence, in middle cortical layers. GWPC was significantly increased in right paracentral lobule in VP/VLBW adults. GWPC in frontal and temporal cortices was positively correlated with birth weight, and negatively with duration of ventilation (p < 0.05). Furthermore, GWPC in right paracentral lobule was negatively correlated with IQ (p < 0.05). CONCLUSIONS Widespread aberrant gray-to-white matter contrast suggests lastingly altered cortical microstructure after preterm birth, mainly in middle cortical layers, with differential effects on associative and primary cortices.
Collapse
Affiliation(s)
- Benita Schmitz‐Koep
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Juliana Zimmermann
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Antonia Neubauer
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Jil Wendt
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - David Schinz
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Marcel Daamen
- Department of Diagnostic and Interventional RadiologyUniversity Hospital Bonn, Clinical Functional Imaging GroupBonnGermany
- Department of Neonatology and Pediatric Intensive CareUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Department of Diagnostic and Interventional RadiologyUniversity Hospital Bonn, Clinical Functional Imaging GroupBonnGermany
| | - Claus Zimmer
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| | - Josef Priller
- Department of PsychiatryTechnical University of Munich, School of MedicineMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive CareUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
- Department of PsychiatryTechnical University of Munich, School of MedicineMunichGermany
| | - Dennis M. Hedderich
- Department of Diagnostic and Interventional NeuroradiologyTechnical University of Munich; School of MedicineMunichGermany
- Technical University of Munich, School of Medicine, TUM‐NIC Neuroimaging CenterMunichGermany
| |
Collapse
|
8
|
Salamon I, Park Y, Miškić T, Kopić J, Matteson P, Page NF, Roque A, McAuliffe GW, Favate J, Garcia-Forn M, Shah P, Judaš M, Millonig JH, Kostović I, De Rubeis S, Hart RP, Krsnik Ž, Rasin MR. Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex. Nat Commun 2023; 14:6025. [PMID: 37758766 PMCID: PMC10533865 DOI: 10.1038/s41467-023-41730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.
Collapse
Affiliation(s)
- Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers University, School of Graduate Studies, New Brunswick, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Terezija Miškić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Alfonso Roque
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Geoffrey W McAuliffe
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Miloš Judaš
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia.
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
9
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. Cereb Cortex 2023; 33:9038-9053. [PMID: 37259176 PMCID: PMC10350824 DOI: 10.1093/cercor/bhad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Sensory perturbation in one modality results in the adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity," which has been examined during or after the classic "critical period." Because peripheral perturbations can alter the auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters the ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo widefield imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activities in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs, shifting the excitation-inhibition balance toward excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Binghan Xue
- Department of Biology, University of Maryland, College Park, MD 20742, United States
| | - Chih-Ting Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Joseph P Y Kao
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
10
|
Wilson S, Pietsch M, Cordero-Grande L, Christiaens D, Uus A, Karolis VR, Kyriakopoulou V, Colford K, Price AN, Hutter J, Rutherford MA, Hughes EJ, Counsell SJ, Tournier JD, Hajnal JV, Edwards AD, O’Muircheartaigh J, Arichi T. Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain. eLife 2023; 12:e83727. [PMID: 37010273 PMCID: PMC10125021 DOI: 10.7554/elife.83727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.
Collapse
Affiliation(s)
- Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de MadridMadridSpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)MadridSpain
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Department of Electrical Engineering (ESAT/PSI), Katholieke Universiteit LeuvenLeuvenBelgium
| | - Alena Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' HospitalLondonUnited Kingdom
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental Sciences, King’s College LondonLondonUnited Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation TrustLondonUnited Kingdom
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Mukherjee D, Xue B, Chen CT, Chang M, Kao JPY, Kanold PO. Early retinal deprivation crossmodally alters nascent subplate circuits and activity in the auditory cortex during the precritical period. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529453. [PMID: 36865142 PMCID: PMC9980129 DOI: 10.1101/2023.02.21.529453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Sensory perturbation in one modality results in adaptive reorganization of neural pathways within the spared modalities, a phenomenon known as "crossmodal plasticity", which has been examined during or after the classic 'critical period'. Because peripheral perturbations can alter auditory cortex (ACX) activity and functional connectivity of the ACX subplate neurons (SPNs) even before the classic critical period, called the precritical period, we investigated if retinal deprivation at birth crossmodally alters ACX activity and SPN circuits during the precritical period. We deprived newborn mice of visual inputs after birth by performing bilateral enucleation. We performed in vivo imaging in the ACX of awake pups during the first two postnatal weeks to investigate cortical activity. We found that enucleation alters spontaneous and sound-evoked activity in the ACX in an age-dependent manner. Next, we performed whole-cell patch clamp recording combined with laser scanning photostimulation in ACX slices to investigate circuit changes in SPNs. We found that enucleation alters the intracortical inhibitory circuits impinging on SPNs shifting the excitation-inhibition balance towards excitation and this shift persists after ear opening. Together, our results indicate that crossmodal functional changes exist in the developing sensory cortices at early ages before the onset of the classic critical period.
Collapse
|
13
|
Gellért L, Luhmann HJ, Kilb W. Axonal connections between S1 barrel, M1, and S2 cortex in the newborn mouse. Front Neuroanat 2023; 17:1105998. [PMID: 36760662 PMCID: PMC9905141 DOI: 10.3389/fnana.2023.1105998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The development of functionally interconnected networks between primary (S1), secondary somatosensory (S2), and motor (M1) cortical areas requires coherent neuronal activity via corticocortical projections. However, the anatomical substrate of functional connections between S1 and M1 or S2 during early development remains elusive. In the present study, we used ex vivo carbocyanine dye (DiI) tracing in paraformaldehyde-fixed newborn mouse brain to investigate axonal projections of neurons in different layers of S1 barrel field (S1Bf), M1, and S2 toward the subplate (SP), a hub layer for sensory information transfer in the immature cortex. In addition, we performed extracellular recordings in neocortical slices to unravel the functional connectivity between these areas. Our experiments demonstrate that already at P0 neurons from the cortical plate (CP), layer 5/6 (L5/6), and the SP of both M1 and S2 send projections through the SP of S1Bf. Reciprocally, neurons from CP to SP of S1Bf send projections through the SP of M1 and S2. Electrophysiological recordings with multi-electrode arrays in cortical slices revealed weak, but functional synaptic connections between SP and L5/6 within and between S1 and M1. An even lower functional connectivity was observed between S1 and S2. In summary, our findings demonstrate that functional connections between SP and upper cortical layers are not confined to the same cortical area, but corticocortical connection between adjacent cortical areas exist already at the day of birth. Hereby, SP can integrate early cortical activity of M1, S1, and S2 and shape the development of sensorimotor integration at an early stage.
Collapse
|
14
|
Mukherjee D, Kanold PO. Changing subplate circuits: Early activity dependent circuit plasticity. Front Cell Neurosci 2023; 16:1067365. [PMID: 36713777 PMCID: PMC9874351 DOI: 10.3389/fncel.2022.1067365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Early neural activity in the developing sensory system comprises spontaneous bursts of patterned activity, which is fundamental for sculpting and refinement of immature cortical connections. The crude early connections that are initially refined by spontaneous activity, are further elaborated by sensory-driven activity from the periphery such that orderly and mature connections are established for the proper functioning of the cortices. Subplate neurons (SPNs) are one of the first-born mature neurons that are transiently present during early development, the period of heightened activity-dependent plasticity. SPNs are well integrated within the developing sensory cortices. Their structural and functional properties such as relative mature intrinsic membrane properties, heightened connectivity via chemical and electrical synapses, robust activation by neuromodulatory inputs-place them in an ideal position to serve as crucial elements in monitoring and regulating spontaneous endogenous network activity. Moreover, SPNs are the earliest substrates to receive early sensory-driven activity from the periphery and are involved in its modulation, amplification, and transmission before the maturation of the direct adult-like thalamocortical connectivity. Consequently, SPNs are vulnerable to sensory manipulations in the periphery. A broad range of early sensory deprivations alters SPN circuit organization and functions that might be associated with long term neurodevelopmental and psychiatric disorders. Here we provide a comprehensive overview of SPN function in activity-dependent development during early life and integrate recent findings on the impact of early sensory deprivation on SPNs that could eventually lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Patrick O. Kanold ✉
| |
Collapse
|
15
|
Beopoulos A, Géa M, Fasano A, Iris F. Autism spectrum disorders pathogenesis: Toward a comprehensive model based on neuroanatomic and neurodevelopment considerations. Front Neurosci 2022; 16:988735. [PMID: 36408388 PMCID: PMC9671112 DOI: 10.3389/fnins.2022.988735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) involves alterations in neural connectivity affecting cortical network organization and excitation to inhibition ratio. It is characterized by an early increase in brain volume mediated by abnormal cortical overgrowth patterns and by increases in size, spine density, and neuron population in the amygdala and surrounding nuclei. Neuronal expansion is followed by a rapid decline from adolescence to middle age. Since no known neurobiological mechanism in human postnatal life is capable of generating large excesses of frontocortical neurons, this likely occurs due to a dysregulation of layer formation and layer-specific neuronal migration during key early stages of prenatal cerebral cortex development. This leads to the dysregulation of post-natal synaptic pruning and results in a huge variety of forms and degrees of signal-over-noise discrimination losses, accounting for ASD clinical heterogeneities, including autonomic nervous system abnormalities and comorbidities. We postulate that sudden changes in environmental conditions linked to serotonin/kynurenine supply to the developing fetus, throughout the critical GW7 - GW20 (Gestational Week) developmental window, are likely to promote ASD pathogenesis during fetal brain development. This appears to be driven by discrete alterations in differentiation and patterning mechanisms arising from in utero RNA editing, favoring vulnerability outcomes over plasticity outcomes. This paper attempts to provide a comprehensive model of the pathogenesis and progression of ASD neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research and Treatment, Massachusetts General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
16
|
Ben-Simon Y, Kaefer K, Velicky P, Csicsvari J, Danzl JG, Jonas P. A direct excitatory projection from entorhinal layer 6b neurons to the hippocampus contributes to spatial coding and memory. Nat Commun 2022; 13:4826. [PMID: 35974109 PMCID: PMC9381769 DOI: 10.1038/s41467-022-32559-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
The mammalian hippocampal formation (HF) plays a key role in several higher brain functions, such as spatial coding, learning and memory. Its simple circuit architecture is often viewed as a trisynaptic loop, processing input originating from the superficial layers of the entorhinal cortex (EC) and sending it back to its deeper layers. Here, we show that excitatory neurons in layer 6b of the mouse EC project to all sub-regions comprising the HF and receive input from the CA1, thalamus and claustrum. Furthermore, their output is characterized by unique slow-decaying excitatory postsynaptic currents capable of driving plateau-like potentials in their postsynaptic targets. Optogenetic inhibition of the EC-6b pathway affects spatial coding in CA1 pyramidal neurons, while cell ablation impairs not only acquisition of new spatial memories, but also degradation of previously acquired ones. Our results provide evidence of a functional role for cortical layer 6b neurons in the adult brain.
Collapse
Affiliation(s)
- Yoav Ben-Simon
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
- Department of Neurophysiology and Pharmacology, Vienna Medical University, Vienna, Austria.
| | - Karola Kaefer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Department of Neuroinformatics, Radboud University, Nijmegen, The Netherlands
| | - Philipp Velicky
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Johann G Danzl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| |
Collapse
|
17
|
Gasterstädt I, Schröder M, Cronin L, Kusch J, Rennau LM, Mücher B, Herlitze S, Jack A, Wahle P. Chemogenetic Silencing of Differentiating Cortical Neurons Impairs Dendritic and Axonal Growth. Front Cell Neurosci 2022; 16:941620. [PMID: 35910251 PMCID: PMC9336219 DOI: 10.3389/fncel.2022.941620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Electrical activity is considered a key driver for the neurochemical and morphological maturation of neurons and the formation of neuronal networks. Designer receptors exclusively activated by designer drugs (DREADDs) are tools for controlling neuronal activity at the single cell level by triggering specific G protein signaling. Our objective was to investigate if prolonged silencing of differentiating cortical neurons can influence dendritic and axonal maturation. The DREADD hM4Di couples to Gi/o signaling and evokes hyperpolarization via GIRK channels. HM4Di was biolistically transfected into neurons in organotypic slice cultures of rat visual cortex, and activated by clozapine-N-oxide (CNO) dissolved in H2O; controls expressed hM4Di, but were mock-stimulated with H2O. Neurons were analyzed after treatment for two postnatal time periods, DIV 5-10 and 10-20. We found that CNO treatment delays the maturation of apical dendrites of L2/3 pyramidal cells. Further, the number of collaterals arising from the main axon was significantly lower, as was the number of bouton terminaux along pyramidal cell and basket cell axons. The dendritic maturation of L5/6 pyramidal cells and of multipolar interneurons (basket cells and bitufted cells) was not altered by CNO treatment. Returning CNO-treated cultures to CNO-free medium for 7 days was sufficient to recover dendritic and axonal complexity. Our findings add to the view that activity is a key driver in particular of postnatal L2/3 pyramidal cell maturation. Our results further suggest that inhibitory G protein signaling may represent a factor balancing the strong driving force of neurotrophic factors, electrical activity and calcium signaling.
Collapse
Affiliation(s)
- Ina Gasterstädt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Max Schröder
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lukas Cronin
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julian Kusch
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Lisa-Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Brix Mücher
- Department of General Zoology and Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Petra Wahle,
| |
Collapse
|
18
|
Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022; 82:408-427. [PMID: 35644985 PMCID: PMC10924780 DOI: 10.1002/dneu.22879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
19
|
Jang YH, Kim J, Kim S, Lee K, Na JY, Ahn JH, Kim H, Kim BN, Lee HJ. Abnormal thalamocortical connectivity of preterm infants with elevated thyroid stimulating hormone identified with diffusion tensor imaging. Sci Rep 2022; 12:9257. [PMID: 35661740 PMCID: PMC9166724 DOI: 10.1038/s41598-022-12864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
While thyroid disturbances during perinatal and postnatal periods in preterm infants with congenital hypothyroidism reportedly disrupt neuronal development, no study has considered the effect of thyroid disturbances in premature infants with subclinical hypothyroidism with elevations of thyroid stimulating hormone. We aimed to identify altered fiber integrity from the thalamus to cortices in preterm infants with subclinical hypothyroidism. All preterm infants born were categorized according to thyroid stimulating hormone levels through serial thyroid function tests (36 preterm controls and 29 preterm infants with subclinical hypothyroidism). Diffusion tensor images were acquired to determine differences in thalamocortical fiber lengths between the groups, and cerebral asymmetries were investigated to observe neurodevelopmental changes. Thalamocortical fiber lengths in the subclinical hypothyroidism group were significantly reduced in the bilateral superior temporal gyrus, heschl's gyrus, lingual gyrus, and calcarine cortex (all p < 0.05). According to the asymmetric value in the orbitofrontal regions, there is a left dominance in the subclinical hypothyroidism group contrary to the controls (p = 0.012), and that of the cuneus areas showed significant decreases in the subclinical hypothyroidism group (p = 0.035). These findings could reflect altered neurodevelopment, which could help treatment plans using biomarkers for subclinical hypothyroidism.
Collapse
Affiliation(s)
- Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Jinsup Kim
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Radiological Science, Daewon University College, Jecheon, Republic of Korea
| | - Kyungmi Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae Yoon Na
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
- Clinical Research Institute of Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Child Psychotherapy, Hanyang University Graduate School of Medicine, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea.
- Clinical Research Institute of Developmental Medicine, Seoul Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Lee KG, Rajakumar N. Partial ablation of frontal cortical subplate leads to developmental abnormalities in KCC2 in the prefrontal cortex. Mol Cell Neurosci 2022; 120:103733. [DOI: 10.1016/j.mcn.2022.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022] Open
|
21
|
Kikkawa T, Osumi N. Multiple Functions of the Dmrt Genes in the Development of the Central Nervous System. Front Neurosci 2021; 15:789583. [PMID: 34955736 PMCID: PMC8695973 DOI: 10.3389/fnins.2021.789583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The Dmrt genes encode the transcription factor containing the DM (doublesex and mab-3) domain, an intertwined zinc finger-like DNA binding module. While Dmrt genes are mainly involved in the sexual development of various species, recent studies have revealed that Dmrt genes, which belong to the DmrtA subfamily, are differentially expressed in the embryonic brain and spinal cord and are essential for the development of the central nervous system. Herein, we summarize recent studies that reveal the multiple functions of the Dmrt genes in various aspects of vertebrate neural development, including brain patterning, neurogenesis, and the specification of neurons.
Collapse
Affiliation(s)
- Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
23
|
Adeyelu T, Gandhi T, Lee CC. Crossed Connections From Insular Cortex to the Contralateral Thalamus. Front Neural Circuits 2021; 15:710925. [PMID: 34949990 PMCID: PMC8688809 DOI: 10.3389/fncir.2021.710925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Sensory information in all modalities, except olfaction, is processed at the level of the thalamus before subsequent transmission to the cerebral cortex. This incoming sensory stream is refined and modulated in the thalamus by numerous descending corticothalamic projections originating in layer 6 that ultimately alter the sensitivity and selectivity for sensory features. In general, these sensory thalamo-cortico-thalamic loops are considered strictly unilateral, i.e., no contralateral crosstalk between cortex and thalamus. However, in contrast to this canonical view, we characterize here a prominent contralateral corticothalamic projection originating in the insular cortex, utilizing both retrograde tracing and cre-lox mediated viral anterograde tracing strategies with the Ntsr1-Cre transgenic mouse line. From our studies, we find that the insular contralateral corticothalamic projection originates from a separate population of layer 6 neurons than the ipsilateral corticothalamic projection. Furthermore, the contralateral projection targets a topographically distinct subregion of the thalamus than the ipsilateral projection. These findings suggest a unique bilateral mechanism for the top-down refinement of ascending sensory information.
Collapse
Affiliation(s)
| | | | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
24
|
Mukherjee D, Meng X, Kao JPY, Kanold PO. Impaired Hearing and Altered Subplate Circuits During the First and Second Postnatal Weeks of Otoferlin-Deficient Mice. Cereb Cortex 2021; 32:2816-2830. [PMID: 34849612 DOI: 10.1093/cercor/bhab383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 02/01/2023] Open
Abstract
Sensory deprivation from the periphery impacts cortical development. Otoferlin deficiency leads to impaired cochlear synaptic transmission and is associated with progressive hearing loss in adults. However, it remains elusive how sensory deprivation due to otoferlin deficiency impacts the early development of the auditory cortex (ACX) especially before the onset of low threshold hearing. To test that, we performed in vivo imaging of the ACX in awake mice lacking otoferlin (Otof-/-) during the first and second postnatal weeks and found that spontaneous and sound-driven cortical activity were progressively impaired. We then characterized the effects on developing auditory cortical circuits by performing in vitro recordings from subplate neurons (SPN), the first primary targets of thalamocortical inputs. We found that in Otof-/- pups, SPNs received exuberant connections from excitatory and inhibitory neurons. Moreover, as a population, SPNs showed higher similarity with respect to their circuit topology in the absence of otoferlin. Together, our results show that otoferlin deficiency results in impaired hearing and has a powerful influence on cortical connections and spontaneous activity in early development even before complete deafness. Therefore, peripheral activity has the potential to sculpt cortical structures from the earliest ages, even before hearing impairment is diagnosed.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Biology, University of Maryland, College Park, MD 20742, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Kelley KW, Pașca SP. Human brain organogenesis: Toward a cellular understanding of development and disease. Cell 2021; 185:42-61. [PMID: 34774127 DOI: 10.1016/j.cell.2021.10.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.
Collapse
Affiliation(s)
- Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA; Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
26
|
Sheikh A, Meng X, Kao JPY, Kanold PO. Neonatal Hypoxia-Ischemia Causes Persistent Intracortical Circuit Changes in Layer 4 of Rat Auditory Cortex. Cereb Cortex 2021; 32:2575-2589. [PMID: 34729599 DOI: 10.1093/cercor/bhab365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
The connection between early brain injury and subsequent development of disorders is unknown. Neonatal hypoxia-ischemia (HI) alters circuits associated with subplate neurons (SPNs). SPNs are among the first maturing cortical neurons, project to thalamorecipient layer 4 (L4), and are required for the development of thalamocortical connections. Thus, early HI might influence L4 and such influence might persist. We investigated functional circuits to L4 neurons in neonatal rat HI models of different severities (mild and moderate) shortly after injury and at adolescence. We used laser-scanning photostimulation in slices of auditory cortex during P5-10 and P18-23. Mild injuries did not initially (P6/P7) alter the convergence of excitatory inputs from L2/3, but hyperconnectivity emerged by P8-10. Inputs from L4 showed initial hypoconnectivity which resolved by P8-10. Moderate injuries resulted in initial hypoconnectivity from both layers which resolved by P8-10 and led to persistent strengthening of connections. Inhibitory inputs to L4 cells showed similar changes. Functional changes were mirrored by reduced dendritic complexity. We also observed a persistent increase in similarity of L4 circuits, suggesting that HI interferes with developmental circuit refinement and diversification. Altogether, our results show that neonatal HI injuries lead to persistent changes in intracortical connections.
Collapse
Affiliation(s)
- Aminah Sheikh
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Xiangying Meng
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Patrick O Kanold
- Department of Biology, University of Maryland, College Park, MD 20742, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Hedderich DM, Menegaux A, Li H, Schmitz-Koep B, Stämpfli P, Bäuml JG, Berndt MT, Bäuerlein FJB, Grothe MJ, Dyrba M, Avram M, Boecker H, Daamen M, Zimmer C, Bartmann P, Wolke D, Sorg C. Aberrant Claustrum Microstructure in Humans after Premature Birth. Cereb Cortex 2021; 31:5549-5559. [PMID: 34171095 DOI: 10.1093/cercor/bhab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.
Collapse
Affiliation(s)
- Dennis M Hedderich
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Aurore Menegaux
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Hongwei Li
- Department of Informatics, Technical University of Munich, 85748 Garching, Germany
| | - Benita Schmitz-Koep
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Stämpfli
- MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, 8032 Zurich, Switzerland
| | - Josef G Bäuml
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maria T Berndt
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 18147 Rostock, Germany
| | - Mihai Avram
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, Psychosomatics and Psychotherapy, Schleswig Holstein University Hospital, University Lübeck, 23538 Lübeck, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marcel Daamen
- Functional Neuroimaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, 53127 Bonn, Germany.,Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Peter Bartmann
- Department of Neonatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, CV4 7AL, Coventry, UK.,Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| | - Christian Sorg
- Department of Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.,Department of Psychiatry, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
28
|
Pal S, Dwivedi D, Pramanik T, Godbole G, Iwasato T, Jabaudon D, Bhalla US, Tole S. An Early Cortical Progenitor-Specific Mechanism Regulates Thalamocortical Innervation. J Neurosci 2021; 41:6822-6835. [PMID: 34193558 PMCID: PMC8360687 DOI: 10.1523/jneurosci.0226-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
The cortical subplate is critical in regulating the entry of thalamocortical sensory afferents into the cortex. These afferents reach the subplate at embryonic day (E)15.5 in the mouse, but "wait" for several days, entering the cortical plate postnatally. We report that when transcription factor LHX2 is lost in E11.5 cortical progenitors, which give rise to subplate neurons, thalamocortical afferents display premature, exuberant ingrowth into the E15.5 cortex. Embryonic mutant subplate neurons are correctly positioned below the cortical plate, but they display an altered transcriptome and immature electrophysiological properties during the waiting period. The sensory thalamus in these cortex-specific Lhx2 mutants displays atrophy and by postnatal day (P) 7, sensory innervation to the cortex is nearly eliminated leading to a loss of the somatosensory barrels. Strikingly, these phenotypes do not manifest if LHX2 is lost in postmitotic subplate neurons, and the transcriptomic dysregulation in the subplate resulting from postmitotic loss of LHX2 is vastly distinct from that seen when LHX2 is lost in progenitors. These results demonstrate a mechanism operating in subplate progenitors that has profound consequences on the growth of thalamocortical axons into the cortex.SIGNIFICANCE STATEMENT Thalamocortical nerves carry sensory information from the periphery to the cortex. When they first grow into the embryonic cortex, they "wait" at the subplate, a structure critical for the guidance and eventual connectivity of thalamic axons with their cortical targets. How the properties of subplate neurons are regulated is unclear. We report that transcription factor LHX2 is required in the progenitor "mother" cells of the cortical primordium when they are producing their "daughter" subplate neurons, in order for the thalamocortical pathway to wait at the subplate. Without LHX2 function in subplate progenitors, thalamocortical axons grow past the subplate, entering the cortical plate prematurely. This is followed by their eventual attrition and, consequently, a profound loss of sensory innervation of the mature cortex.
Collapse
Affiliation(s)
- Suranjana Pal
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India
| | - Tuli Pramanik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Geeta Godbole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, SOKENDAI (Graduate University for Advanced Studies), Mishima, 411-8540, Japan
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland; Department of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560001, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| |
Collapse
|
29
|
Žunić Išasegi I, Kopić J, Smilović D, Krsnik Ž, Kostović I. Transient Subplate Sublayer Forms Unique Corridor for Differential Ingrowth of Associative Pulvinar and Primary Visual Projection in the Prospective Visual Cortical Areas of the Human Fetal Occipital Lobe. Cereb Cortex 2021; 32:110-122. [PMID: 34255828 DOI: 10.1093/cercor/bhab197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
Cytoarchitectonical parcellation of the visual cortex into the striate and extrastriate cortex requires complex histogenetic events within a precise spatio-temporal frame to attain the specification of areal domains and associated thalamocortical connections during the fetal brain development. We analyzed a deep subplate cellular monolayer (subplate "corridor" cells) present during a restricted period of 13-15 postconceptional weeks, showing the 3D caudo-ventro-medial position in the human fetal occipital lobe, corresponding to the segregation point of pulvinocortical and geniculocortical fibers at the prospective area 17/18 border. Immunofluorescence stainings revealed subplate "corridor" cells as the specific class of the deepest subplate neurons (NeuN+, Tbr1+, Cplx3+) expressing axon guidance molecules (Sema-3A+, EphA6+), presumably for the attraction of pulvinocortical axons and the repulsion of geniculocortical axons growing at that time (SNAP25+, Syn+, FN+). Furthermore, quantitative analysis of the subplate "corridor" region of interest, considering cell number, immunofluorescence signal intensity per cell and per region, revealed significant differences to other regions across the tangential circumference of the developing cerebral wall. Thus, our study sheds new light on the deepest subplate sublayer, strategically aligned along the growing axon systems in the prospective visual system, suggesting the establishment of the area 17/18 border by differential thalamocortical input during the fetal brain development.
Collapse
Affiliation(s)
- Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Psychiatry and Psychological Medicine, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Smilović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Qin J, Wang M, Zhao T, Xiao X, Li X, Yang J, Yi L, Goffinet AM, Qu Y, Zhou L. Early Forebrain Neurons and Scaffold Fibers in Human Embryos. Cereb Cortex 2021; 30:913-928. [PMID: 31298263 DOI: 10.1093/cercor/bhz136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/21/2019] [Accepted: 05/31/2019] [Indexed: 12/24/2022] Open
Abstract
Neural progenitor proliferation, neuronal migration, areal organization, and pioneer axon wiring are critical events during early forebrain development, yet remain incompletely understood, especially in human. Here, we studied forebrain development in human embryos aged 5 to 8 postconceptional weeks (WPC5-8), stages that correspond to the neuroepithelium/early marginal zone (WPC5), telencephalic preplate (WPC6 & 7), and incipient cortical plate (WPC8). We show that early telencephalic neurons are formed at the neuroepithelial stage; the most precocious ones originate from local telencephalic neuroepithelium and possibly from the olfactory placode. At the preplate stage, forebrain organization is quite similar in human and mouse in terms of areal organization and of differentiation of Cajal-Retzius cells, pioneer neurons, and axons. Like in mice, axons from pioneer neurons in prethalamus, ventral telencephalon, and cortical preplate cross the diencephalon-telencephalon junction and the pallial-subpallial boundary, forming scaffolds that could guide thalamic and cortical axons at later stages. In accord with this model, at the early cortical plate stage, corticofugal axons run in ventral telencephalon in close contact with scaffold neurons, which express CELSR3 and FZD3, two molecules that regulates formation of similar scaffolds in mice.
Collapse
Affiliation(s)
- Jingwen Qin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou, P R China
| | - Xue Xiao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Xuejun Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Jieping Yang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou, P R China
| | - Lisha Yi
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou, P R China
| | - Andre M Goffinet
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou, P R China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Jinan University Guangzhou, P R China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou, P R China.,Key Laboratory of Neuroscience, School of Basic Medical Sciences; Institute of Neuroscience, The Second Affiliated Hospital Guangzhou Medical University Guangzhou, P R China
| |
Collapse
|
31
|
Chromatin remodeler Arid1a regulates subplate neuron identity and wiring of cortical connectivity. Proc Natl Acad Sci U S A 2021; 118:2100686118. [PMID: 34011608 PMCID: PMC8166177 DOI: 10.1073/pnas.2100686118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.
Collapse
|
32
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
33
|
Vasung L, Zhao C, Barkovich M, Rollins CK, Zhang J, Lepage C, Corcoran T, Velasco-Annis C, Yun HJ, Im K, Warfield SK, Evans AC, Huang H, Gholipour A, Grant PE. Association between Quantitative MR Markers of Cortical Evolving Organization and Gene Expression during Human Prenatal Brain Development. Cereb Cortex 2021; 31:3610-3621. [PMID: 33836056 PMCID: PMC8258434 DOI: 10.1093/cercor/bhab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between structural changes of the cerebral cortex revealed by Magnetic Resonance Imaging (MRI) and gene expression in the human fetal brain has not been explored. In this study, we aimed to test the hypothesis that relative regional thickness (a measure of cortical evolving organization) of fetal cortical compartments (cortical plate [CP] and subplate [SP]) is associated with expression levels of genes with known cortical phenotype. Mean regional SP/CP thickness ratios across age measured on in utero MRI of 25 healthy fetuses (20-33 gestational weeks [GWs]) were correlated with publicly available regional gene expression levels (23-24 GW fetuses). Larger SP/CP thickness ratios (more pronounced cortical evolving organization) was found in perisylvian regions. Furthermore, we found a significant association between SP/CP thickness ratio and expression levels of the FLNA gene (mutated in periventricular heterotopia, congenital heart disease, and vascular malformations). Further work is needed to identify early MRI biomarkers of gene expression that lead to abnormal cortical development.
Collapse
Affiliation(s)
- Lana Vasung
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chenying Zhao
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Barkovich
- Department of Radiology, UCSF Benioff Children's Hospital, San Francisco, CA 94158, USA.,Department of Radiology & Biomedical Imaging, University of California, San Francisco, CA 94115, USA
| | - Caitlin K Rollins
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Claude Lepage
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Teddy Corcoran
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Clemente Velasco-Annis
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Keith Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Alan Charles Evans
- ACELab, McGill Centre for Integrative Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ali Gholipour
- Intelligent Medical Imaging Research Group, Boston Children's Hospital, Boston, MA 02115, USA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Ellen Grant
- The Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Department of Radiology, Boston Children's Hospital; and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Li J, Sun L, Peng XL, Yu XM, Qi SJ, Lu ZJ, Han JDJ, Shen Q. Integrative genomic analysis of early neurogenesis reveals a temporal genetic program for differentiation and specification of preplate and Cajal-Retzius neurons. PLoS Genet 2021; 17:e1009355. [PMID: 33760820 PMCID: PMC7990179 DOI: 10.1371/journal.pgen.1009355] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/12/2021] [Indexed: 01/02/2023] Open
Abstract
Neurogenesis in the developing neocortex begins with the generation of the preplate, which consists of early-born neurons including Cajal-Retzius (CR) cells and subplate neurons. Here, utilizing the Ebf2-EGFP transgenic mouse in which EGFP initially labels the preplate neurons then persists in CR cells, we reveal the dynamic transcriptome profiles of early neurogenesis and CR cell differentiation. Genome-wide RNA-seq and ChIP-seq analyses at multiple early neurogenic stages have revealed the temporal gene expression dynamics of early neurogenesis and distinct histone modification patterns in early differentiating neurons. We have identified a new set of coding genes and lncRNAs involved in early neuronal differentiation and validated with functional assays in vitro and in vivo. In addition, at E15.5 when Ebf2-EGFP+ cells are mostly CR neurons, single-cell sequencing analysis of purified Ebf2-EGFP+ cells uncovers molecular heterogeneities in CR neurons, but without apparent clustering of cells with distinct regional origins. Along a pseudotemporal trajectory these cells are classified into three different developing states, revealing genetic cascades from early generic neuronal differentiation to late fate specification during the establishment of CR neuron identity and function. Our findings shed light on the molecular mechanisms governing the early differentiation steps during cortical development, especially CR neuron differentiation. Neural stem cells and progenitor cells in the embryonic brain give rise to neurons following a precise temporal order after initial expansion. Early-born neurons including Cajal-Retzius (CR) cells and subplate neurons form the preplate in the developing cerebral cortex, then CR neurons occupy the layer 1, playing an important role in cortical histogenesis. The molecular mechanisms governing the early neuronal differentiation processes remain to be explored. Here, by genome-wide approaches including bulk RNA-seq, single-cell RNA-seq and ChIP-seq, we comprehensively characterized the temporal dynamic gene expression profile and epigenetic status at different stages during early cortical development and uncovered molecularly heterogeneous subpopulations within the CR cells. We revealed CR neuron signatures and cell type-specific histone modification patterns along early neuron specification. Using in vitro and in vivo assays, we identified novel lncRNAs as potential functional regulators in preplate differentiation and CR neuron identity establishment. Our study provides a comprehensive analysis of the genetic and epigenetic programs during neuronal differentiation and would help bring new insights into the early cortical neurogenesis process, particularly the differentiation of CR neurons.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- PTN graduate program, School of Life Sciences, Peking University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Lei Sun
- PTN graduate program, School of Life Sciences, Tsinghua University, Beijing, China
| | | | - Xiao-Ming Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Shao-Jun Qi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Brain and Spinal Cord Clinical Research Center, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
35
|
Supernumerary neurons within the cerebral cortical subplate in autism spectrum disorders. Brain Res 2021; 1760:147350. [PMID: 33607045 DOI: 10.1016/j.brainres.2021.147350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorders (ASDs) involve alterations to cortical connectivity that manifest as reduced coordinated activity between cortical regions. The neurons of the cortical subplate are a major contributor to establishing thalamocortical, corticothalamic and corticocortical long-range connections and only a subset of this cell population survives into adulthood. Previous reports of an indistinct gray-white matter boundary in subjects with ASD suggest that the adjacent subplate may also show organizational abnormalities. Frozen human postmortem tissue samples from the parietal lobe (BA7) were used to evaluate white-matter neuron densities adjacent to layer VI with an antibody to NeuN. In addition, fixed postmortem tissue samples from frontal (BA9), parietal (BA7) and temporal lobe (BA21) locations, were stained with a Golgi-Kopsch procedure, and used to examine the morphology of these neuronal profiles. Relative to control cases, ASD subjects showed a large average density increase of NeuN-positive profiles of 44.7 percent. The morphologies of these neurons were consistent with subplate cells of the fusiform, polymorphic and pyramidal cell types. Lower ratios of fusiform to other cell types are found early in development and although adult ASD subjects showed consistently lower ratios, these differences were not significant. The increased number of retained subplate profiles, along with cell type ratios redolent of earlier developmental stages, suggests either an abnormal initial population or a partial failure of the apoptosis seen in neurotypical development. These results indicate abnormalities within a neuron population that plays multiple roles in the developing and mature cerebral cortex, including the establishment of long-range cortical connections.
Collapse
|
36
|
Rao MS, Mizuno H. Elucidating mechanisms of neuronal circuit formation in layer 4 of the somatosensory cortex via intravital imaging. Neurosci Res 2020; 167:47-53. [PMID: 33309867 DOI: 10.1016/j.neures.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
The cerebral cortex has complex yet perfectly wired neuronal circuits that are important for high-level brain functions such as perception and cognition. The rodent's somatosensory system is widely used for understanding the mechanisms of circuit formation during early developmental periods. In this review, we summarize the developmental processes of circuit formation in layer 4 of the somatosensory cortex, and we describe the molecules involved in layer 4 circuit formation and neuronal activity-dependent mechanisms of circuit formation. We also introduce the dynamic mechanisms of circuit formation in layer 4 revealed by intravital two-photon imaging technologies, which include time-lapse imaging of neuronal morphology and calcium imaging of neuronal activity in newborn mice.
Collapse
Affiliation(s)
- Madhura S Rao
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional Imaging, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, 860-0811, Japan; Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
37
|
Chen H, Long J, Yang S, He B. Atypical Functional Covariance Connectivity Between Gray and White Matter in Children With Autism Spectrum Disorder. Autism Res 2020; 14:464-472. [PMID: 33206448 DOI: 10.1002/aur.2435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder with atypical gray matter (GM) and white matter (WM) functional developmental course. However, the functional co-developmental pattern between GM and WM in ASD is unclear. Here, we utilized a functional covariance connectivity method to explore the concordance pattern between GM and WM function in individuals with ASD. A multi-center resting-state fMRI dataset composed of 105 male children with ASD and 102 well-matched healthy controls (HCs) from six sites of the ABIDE dataset was utilized. GM and WM ALFF maps were calculated for each subject. Voxel by voxel functional covariance connectivity of the ALFF values across subjects was calculated between GM and WM for children with ASD and HCs. A Z-test combining FDR multi-comparison correction was then employed to determine whether the functional covariance is significantly different between the two groups. A "bundling" strategy was utilized to ensure that the GM/WM clusters showing atypical functional covariance were larger than 5 voxels. Finally, canonical correlation analysis was conducted to explore whether the atypical GM/WM functional covariance is related to ASD symptoms. Results showed atypical functional covariance connections between specific GM and WM regions, whereas the ALFF values of these regions indicated no significant difference between the two groups. Canonical correlation analysis revealed a significant relationship between the atypical functional covariance and stereotyped behaviors of ASD. The results indicated an altered functional co-developmental pattern between WM and GM in ASD. LAY SUMMARY: White matter (WM) and gray matter (GM) are two major human brain organs supporting brain function. WM and GM functions show a specific co-developmental pattern in typical developed individuals. This study showed that this GM/WM co-developmental pattern was altered in children with ASD, while this altered GM/WM co-developmental pattern was related to stereotyped behaviors. These findings may help understand the GM/WM functional development of ASD.
Collapse
Affiliation(s)
- Heng Chen
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinjin Long
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Shanshan Yang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Bifang He
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.,Key laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
38
|
Jakab A, Natalucci G, Koller B, Tuura R, Rüegger C, Hagmann C. Mental development is associated with cortical connectivity of the ventral and nonspecific thalamus of preterm newborns. Brain Behav 2020; 10:e01786. [PMID: 32790242 PMCID: PMC7559616 DOI: 10.1002/brb3.1786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The thalamus is a key hub for regulating cortical connectivity. Dysmaturation of thalamocortical networks that accompany white matter injury has been hypothesized as neuroanatomical correlate of late life neurocognitive impairment following preterm birth. Our objective was to find a link between thalamocortical connectivity measures at term equivalent age and two-year neurodevelopmental outcome in preterm infants. METHODS Diffusion tensor MRI data of 58 preterm infants (postmenstrual age at birth, mean (SD), 29.71 (1.47) weeks) were used in the study. We utilized probabilistic diffusion tractography to trace connections between the cortex and thalami. Possible associations between connectivity strength, the length of the probabilistic fiber pathways, and developmental scores (Bayley Scales of Infant Development, Second Edition) were analyzed using multivariate linear regression models. RESULTS We found strong correlation between mental developmental index and two complementary measures of thalamocortical networks: Connectivity strength projected to a cortical skeleton and pathway length emerging from thalamic voxels (partial correlation, R = .552 and R = .535, respectively, threshold-free cluster enhancement, corrected p-value < .05), while psychomotor development was not associated with thalamocortical connectivity. Post hoc stepwise linear regression analysis revealed that parental socioeconomic scale, postmenstrual age, and the duration of mechanical ventilation at the intensive care unit contribute to the variability of outcome. CONCLUSIONS Our findings independently validated previous observations in preterm infants, providing additional evidence injury or dysmaturation of tracts emerging from ventral-specific and various nonspecific thalamus projecting to late-maturing cortical regions are predictive of mental, but not psychomotor developmental outcomes.
Collapse
Affiliation(s)
- Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Giancarlo Natalucci
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Brigitte Koller
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Ruth Tuura
- Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christoph Rüegger
- Department of Neonatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Cornelia Hagmann
- Department of Neonatology and Pediatric Intensive Care, University Children's Hospital Zurich, Zurich, Switzerland.,Child Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Hooks BM, Chen C. Circuitry Underlying Experience-Dependent Plasticity in the Mouse Visual System. Neuron 2020; 106:21-36. [PMID: 32272065 DOI: 10.1016/j.neuron.2020.01.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Since the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex. We discuss how visual circuit development leads to precise connectivity and identify synaptic loci, which can be altered by activity or experience. Plasticity extends to visual features beyond ocular dominance, involving subcortical and cortical regions, and connections between cortical inhibitory interneurons. Experience-dependent plasticity contributes to the alignment of networks spanning retina to thalamus to cortex. Disruption of this plasticity may underlie aberrant sensory processing in some neurodevelopmental disorders.
Collapse
Affiliation(s)
- Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1458 BSTWR, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
41
|
Vasung L, Rollins CK, Velasco-Annis C, Yun HJ, Zhang J, Warfield SK, Feldman HA, Gholipour A, Grant PE. Spatiotemporal Differences in the Regional Cortical Plate and Subplate Volume Growth during Fetal Development. Cereb Cortex 2020; 30:4438-4453. [PMID: 32147720 PMCID: PMC7325717 DOI: 10.1093/cercor/bhaa033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
The regional specification of the cerebral cortex can be described by protomap and protocortex hypotheses. The protomap hypothesis suggests that the regional destiny of cortical neurons and the relative size of the cortical area are genetically determined early during embryonic development. The protocortex hypothesis suggests that the regional growth rate is predominantly shaped by external influences. In order to determine regional volumes of cortical compartments (cortical plate (CP) or subplate (SP)) and estimate their growth rates, we acquired T2-weighted in utero MRIs of 40 healthy fetuses and grouped them into early (<25.5 GW), mid- (25.5-31.6 GW), and late (>31.6 GW) prenatal periods. MRIs were segmented into CP and SP and further parcellated into 22 gyral regions. No significant difference was found between periods in regional volume fractions of the CP or SP. However, during the early and mid-prenatal periods, we found significant differences in relative growth rates (% increase per GW) between regions of cortical compartments. Thus, the relative size of these regions are most likely conserved and determined early during development whereas more subtle growth differences between regions are fine-tuned later, during periods of peak thalamocortical growth. This is in agreement with both the protomap and protocortex hypothesis.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin K Rollins
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Ferradal SL, Gagoski B, Jaimes C, Yi F, Carruthers C, Vu C, Litt JS, Larsen R, Sutton B, Grant PE, Zöllei L. System-Specific Patterns of Thalamocortical Connectivity in Early Brain Development as Revealed by Structural and Functional MRI. Cereb Cortex 2020; 29:1218-1229. [PMID: 29425270 DOI: 10.1093/cercor/bhy028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Indexed: 01/31/2023] Open
Abstract
The normal development of thalamocortical connections plays a critical role in shaping brain connectivity in the prenatal and postnatal periods. Recent studies using advanced magnetic resonance imaging (MRI) techniques in neonates and infants have shown that abnormal thalamocortical connectivity is associated with adverse neurodevelopmental outcomes. However, all these studies have focused on a single neuroimaging modality, overlooking the dynamic relationship between structure and function at this early stage. Here, we study the relationship between structural and functional thalamocortical connectivity patterns derived from healthy full-term infants scanned with diffusion-weighted MRI and resting-state functional MRI within the first weeks of life (mean gestational age = 39.3 ± 1.2 weeks; age at scan = 24.2 ± 7.9 days). Our results show that while there is, in general, good spatial agreement between both MRI modalities, there are regional variations that are system-specific: regions involving primary-sensory cortices exhibit greater structural/functional overlap, whereas higher-order association areas such as temporal and posterior parietal cortices show divergence in spatial patterns of each modality. This variability illustrates the complementarity of both modalities and highlights the importance of multimodal approaches.
Collapse
Affiliation(s)
| | - Borjan Gagoski
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo Jaimes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Yi
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Catherine Vu
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Ryan Larsen
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brad Sutton
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P Ellen Grant
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lilla Zöllei
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Ohtaka-Maruyama C. Subplate Neurons as an Organizer of Mammalian Neocortical Development. Front Neuroanat 2020; 14:8. [PMID: 32265668 PMCID: PMC7103628 DOI: 10.3389/fnana.2020.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Subplate neurons (SpNs) are one of the earliest born and matured neurons in the developing cerebral cortex and play an important role in the early development of the neocortex. It has been known that SpNs have an essential role in thalamocortical axon (TCA) pathfinding and the establishment of the first neural circuit from the thalamus towards cortical layer IV. In addition to this function, it has recently been revealed in mouse corticogenesis that SpNs play an important role in the regulation of radial neuronal migration during the mid-embryonic stage. Moreover, accumulating studies throw light on the possible roles of SpNs in adult brain functions and also their involvement in psychiatric or other neurological disorders. As SpNs are unique to mammals, they may have contributed to the evolution of the mammalian neocortex by efficiently organizing cortical formation during the limited embryonic period of corticogenesis. By increasing our knowledge of the functions of SpNs, we will clarify how SpNs act as an organizer of mammalian neocortical formation.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
44
|
Kocovic DM, Limaye PV, Colburn LCH, Singh MB, Milosevic MM, Tadic J, Petronijevic M, Vrzic-Petronijevic S, Andjus PR, Antic SD. Cadmium versus Lanthanum Effects on Spontaneous Electrical Activity and Expression of Connexin Isoforms Cx26, Cx36, and Cx45 in the Human Fetal Cortex. Cereb Cortex 2020; 30:1244-1259. [PMID: 31408166 PMCID: PMC7132928 DOI: 10.1093/cercor/bhz163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/29/2022] Open
Abstract
Electrical activity is important for brain development. In brain slices, human subplate neurons exhibit spontaneous electrical activity that is highly sensitive to lanthanum. Based on the results of pharmacological experiments in human fetal tissue, we hypothesized that hemichannel-forming connexin (Cx) isoforms 26, 36, and 45 would be expressed on neurons in the subplate (SP) zone. RNA sequencing of dissected human cortical mantles at ages of 17-23 gestational weeks revealed that Cx45 has the highest expression, followed by Cx36 and Cx26. The levels of Cx and pannexin expression between male and female fetal cortices were not significantly different. Immunohistochemical analysis detected Cx45- and Cx26-expressing neurons in the upper segment of the SP zone. Cx45 was present on the cell bodies of human SP neurons, while Cx26 was found on both cell bodies and dendrites. Cx45, Cx36, and Cx26 were strongly expressed in the cortical plate, where newborn migrating neurons line up to form cortical layers. New information about the expression of 3 "neuronal" Cx isoforms in each cortical layer/zone (e.g., SP, cortical plate) and pharmacological data with cadmium and lanthanum may improve our understanding of the cellular mechanisms underlying neuronal development in human fetuses and potential vulnerabilities.
Collapse
Affiliation(s)
- Dusica M Kocovic
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Pallavi V Limaye
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Lauren C H Colburn
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Mandakini B Singh
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Milena M Milosevic
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| | - Jasmina Tadic
- Faculty of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | | | | | - Pavle R Andjus
- Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
| | - Srdjan D Antic
- Institute for Systems Genomics, Stem Cell Institute, Department of Neuroscience, UConn Health, Farmington, CT 06030, USA
| |
Collapse
|
45
|
Gamlin CR, Zhang C, Dyer MA, Wong ROL. Distinct Developmental Mechanisms Act Independently to Shape Biased Synaptic Divergence from an Inhibitory Neuron. Curr Biol 2020; 30:1258-1268.e2. [PMID: 32109390 DOI: 10.1016/j.cub.2020.01.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Neurons often contact more than one postsynaptic partner type and display stereotypic patterns of synaptic divergence. Such synaptic patterns usually involve some partners receiving more synapses than others. The developmental strategies generating "biased" synaptic distributions remain largely unknown. To gain insight, we took advantage of a compact circuit in the vertebrate retina, whereby the AII amacrine cell (AII AC) provides inhibition onto cone bipolar cell (BC) axons and retinal ganglion cell (RGC) dendrites, but makes the majority of its synapses with the BCs. Using light and electron microscopy, we reconstructed the morphology and connectivity of mouse retinal AII ACs across postnatal development. We found that AII ACs do not elaborate their presynaptic structures, the lobular appendages, until BCs differentiate about a week after RGCs are present. Lobular appendages are present in mutant mice lacking BCs, implying that although synchronized with BC axonal differentiation, presynaptic differentiation of the AII ACs is not dependent on cues from BCs. With maturation, AII ACs maintain a constant number of synapses with RGCs, preferentially increase synaptogenesis with BCs, and eliminate synapses with wide-field amacrine cells. Thus, AII ACs undergo partner type-specific changes in connectivity to attain their mature pattern of synaptic divergence. Moreover, AII ACs contact non-BCs to the same extent in bipolarless retinas, indicating that AII ACs establish partner-type-specific connectivity using diverse mechanisms that operate in parallel but independently.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Chi Zhang
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Children Research Hospital, Danny Thomas Place, Memphis, TN 38105, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
46
|
Innocenti GM. The Target of Exuberant Projections in Development. Cereb Cortex 2020; 30:3820-3826. [PMID: 31989156 DOI: 10.1093/cercor/bhz344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to neuronal death and elimination of synapses, the production of transient, exuberant axons, and axonal branches is a general phenomenon in development across species and systems. To understand what drives the decision of which axons are maintained and which are eliminated, it is important to monitor the interaction of juvenile axons at their target. As old and more recent work show, unlike what is claimed by Ribeiro Gomez et al. (2019), in the cerebral cortex, both classes of axons branch in the white matter near the target; axons destined to be maintained massively invade the gray matter where they develop terminal arbors and synapses. Axons destined to elimination remain in the white matter although a few transient, exploratory branches can enter the cortex. Axonal behavior and fate seem dictated by positional information probably conveyed by thalamic afferents and activity. Unlike what is suggested by Ribeiro Gomez et al. (2019), axonal selection should not be confused with synaptic reduction, which is a later event with minor or no impact on the topography of the connection.
Collapse
Affiliation(s)
- Giorgio M Innocenti
- Department of Neuroscience Karolinska Institutet, Stockholm, Sweden and Signal Processing Laboratory (LT55) Ecole Polytechnique Féderale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
47
|
Leikos S, Tokariev A, Koolen N, Nevalainen P, Vanhatalo S. Cortical responses to tactile stimuli in preterm infants. Eur J Neurosci 2019; 51:1059-1073. [PMID: 31679163 DOI: 10.1111/ejn.14613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The conventional assessment of preterm somatosensory functions using averaged cortical responses to electrical stimulation ignores the characteristic components of preterm somatosensory evoked responses (SERs). Our study aimed to systematically evaluate the occurrence and development of SERs after tactile stimulus in preterm infants. We analysed SERs performed during 45 electroencephalograms (EEGs) from 29 infants at the mean post-menstrual age of 30.7 weeks. Altogether 2,087 SERs were identified visually at single-trial level from unfiltered signals capturing also their slowest components. We observed salient SERs with a high-amplitude slow component at a high success rate after hand (95%) and foot (83%) stimuli. There was a clear developmental change in both the slow wave and the higher-frequency components of the SERs. Infants with intraventricular haemorrhage (IVH; eleven infants) had initially normal SERs, but those with bilateral IVH later showed a developmental decrease in the ipsilateral SER occurrence after 30 weeks of post-menstrual age. Our study shows that tactile stimulus applied at bedside elicits salient SERs with a large slow component and an overriding fast oscillation, which are specific to the preterm period. Prior experimental research indicates that such SERs allow studying both subplate and cortical functions. Our present findings further suggest that they might offer a window to the emergence of neurodevelopmental sequelae after major structural brain lesions and, hence, an additional tool for both research and clinical neurophysiological evaluation of infants before term age.
Collapse
Affiliation(s)
- Susanna Leikos
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anton Tokariev
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ninah Koolen
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Nevalainen
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Children's Clinical Neurophysiology, BABA Center, Children's Hospital, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Saito K, Okamoto M, Watanabe Y, Noguchi N, Nagasaka A, Nishina Y, Shinoda T, Sakakibara A, Miyata T. Dorsal-to-Ventral Cortical Expansion Is Physically Primed by Ventral Streaming of Early Embryonic Preplate Neurons. Cell Rep 2019; 29:1555-1567.e5. [DOI: 10.1016/j.celrep.2019.09.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
|
49
|
Arai Y, Cwetsch AW, Coppola E, Cipriani S, Nishihara H, Kanki H, Saillour Y, Freret-Hodara B, Dutriaux A, Okada N, Okano H, Dehay C, Nardelli J, Gressens P, Shimogori T, D’Onofrio G, Pierani A. Evolutionary Gain of Dbx1 Expression Drives Subplate Identity in the Cerebral Cortex. Cell Rep 2019; 29:645-658.e5. [DOI: 10.1016/j.celrep.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 10/25/2022] Open
|
50
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|