1
|
Palsson G, Hardarson MT, Jonsson H, Steinthorsdottir V, Stefansson OA, Eggertsson HP, Gudjonsson SA, Olason PI, Gylfason A, Masson G, Thorsteinsdottir U, Sulem P, Helgason A, Gudbjartsson DF, Halldorsson BV, Stefansson K. Complete human recombination maps. Nature 2025; 639:700-707. [PMID: 39843742 PMCID: PMC11922761 DOI: 10.1038/s41586-024-08450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025]
Abstract
Human recombination maps are a valuable resource for association and linkage studies and crucial for many inferences of population history and natural selection. Existing maps1-5 are based solely on cross-over (CO) recombination, omitting non-cross-overs (NCOs)-the more common form of recombination6-owing to the difficulty in detecting them. Using whole-genome sequence data in families, we estimate the number of NCOs transmitted from parent to offspring and derive complete, sex-specific recombination maps including both NCOs and COs. Mothers have fewer but longer NCOs than fathers, and oocytes accumulate NCOs in a non-regulated fashion with maternal age. Recombination, primarily NCO, is responsible for 1.8% (95% confidence interval: 1.3-2.3) and 11.3% (95% confidence interval: 9.0-13.6) of paternal and maternal de novo mutations, respectively, and may drive the increase in de novo mutations with maternal age. NCOs are substantially more prominent than COs in centromeres, possibly to avoid large-scale genomic changes that may cause aneuploidy. Our results demonstrate that NCOs highlight to a much greater extent than COs the differences in the meiotic process between the sexes, in which maternal NCOs may reflect the safeguarding of oocytes from infancy until ovulation.
Collapse
Affiliation(s)
| | - Marteinn T Hardarson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavík, Iceland
| | | | | | | | | | | | | | | | | | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- School of Technology, Reykjavik University, Reykjavík, Iceland.
| | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
2
|
Borck PC, Boyle I, Jankovic K, Bick N, Foster K, Lau AC, Parker-Burns LI, Lubicki DA, Li T, Borah AA, Lofaso NJ, Das Sharma S, Chan T, Kishen RV, Adeagbo A, Raghavan S, Aquilanti E, Prensner JR, Krill-Burger JM, Golub TR, Campbell CD, Dempster JM, Chan EM, Vazquez F. SKI complex loss renders 9p21.3-deleted or MSI-H cancers dependent on PELO. Nature 2025; 638:1104-1111. [PMID: 39910293 PMCID: PMC11864980 DOI: 10.1038/s41586-024-08509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Cancer genome alterations often lead to vulnerabilities that can be used to selectively target cancer cells. Various inhibitors of such synthetic lethal targets have been approved by the FDA or are in clinical trials, highlighting the potential of this approach1-3. Here we analysed large-scale CRISPR knockout screening data from the Cancer Dependency Map and identified a new synthetic lethal target, PELO, for two independent molecular subtypes of cancer: biallelic deletion of chromosomal region 9p21.3 or microsatellite instability-high (MSI-H). In 9p21.3-deleted cancers, PELO dependency emerges from biallelic deletion of the 9p21.3 gene FOCAD, a stabilizer of the superkiller complex (SKIc). In MSI-H cancers, PELO is required owing to MSI-H-associated mutations in TTC37 (also known as SKIC3), a critical component of the SKIc. We show that both cancer subtypes converge to destabilize the SKIc, which extracts mRNA from stalled ribosomes. In SKIc-deficient cells, PELO depletion induces the unfolded protein response, a stress response to accumulation of misfolded or unfolded nascent polypeptides. Together, our findings indicate PELO as a promising therapeutic target for a large patient population with cancers characterized as MSI-H with deleterious TTC37 mutations or with biallelic 9p21.3 deletions involving FOCAD.
Collapse
Affiliation(s)
| | | | - Kristina Jankovic
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Nolan Bick
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyla Foster
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anthony C Lau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lucy I Parker-Burns
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tianxia Li
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ashir A Borah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas J Lofaso
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sohani Das Sharma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Tessla Chan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Riya V Kishen
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisa Aquilanti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics and Biological Chemistry, Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Edmond M Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Medicine, Division of Hematology/Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | |
Collapse
|
3
|
Xu X, Jané P, Taelman V, Jané E, Dumont RA, Garama Y, Kim F, Del Val Gómez M, Gariani K, Walter MA. The Theranostic Genome. Nat Commun 2024; 15:10904. [PMID: 39738156 DOI: 10.1038/s41467-024-55291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications. Using a deep learning-based hybrid human-AI pipeline that cross-references PubMed, the Gene Expression Omnibus, DisGeNET, The Cancer Genome Atlas and the NIH Molecular Imaging and Contrast Agent Database, we bridge individual genes in human cancers with respective theranostic compounds. Cross-referencing the Theranostic Genome with RNAseq data from over 17'000 human tissues identifies theranostic targets and lead compounds for various human cancers, and allows tailoring targeted theranostics to relevant cancer subpopulations. We expect the Theranostic Genome to facilitate the development of new targeted theranostics to better diagnose, understand, treat, and monitor a variety of human cancers.
Collapse
Affiliation(s)
- Xiaoying Xu
- University of Lucerne, Lucerne, LU, Switzerland
| | - Pablo Jané
- University of Geneva, Geneva, GE, Switzerland
- Nuclear Medicine and Molecular Imaging Division, Geneva University Hospitals, Geneva, GE, Switzerland
| | | | - Eduardo Jané
- Departamento de Matemática Aplicada a la Ingeniería Aeroespacial - ETSIAE, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | | | | | | | - María Del Val Gómez
- Servicio de Medicina Nuclear, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Karim Gariani
- Division of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Geneva, GE, Switzerland
| | - Martin A Walter
- University of Lucerne, Lucerne, LU, Switzerland.
- St. Anna Hospital, University of Lucerne, Lucerne, LU, Switzerland.
| |
Collapse
|
4
|
Song Y, Boerner T, Drill E, Shin P, Kumar S, Sigel C, Cercek A, Kemeny N, Abou-Alfa G, Iacobuzio-Donahue C, Cowzer D, Schultz N, Walch H, Balachandran V, Groot Koerkamp B, Kingham P, Soares K, Wei A, D'Angelica M, Drebin J, Chandwani R, Harding JJ, Jarnagin W. A Novel Approach to Quantify Heterogeneity of Intrahepatic Cholangiocarcinoma: The Hidden-Genome Classifier. Clin Cancer Res 2024; 30:3499-3511. [PMID: 38864854 PMCID: PMC11326964 DOI: 10.1158/1078-0432.ccr-24-0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (IHC) is a heterogeneous tumor. The hidden-genome classifier, a supervised machine learning-based algorithm, was used to quantify tumor heterogeneity and improve classification. EXPERIMENTAL DESIGN A retrospective review of 1,370 patients with IHC, extrahepatic cholangiocarcinoma (EHC), gallbladder cancer (GBC), hepatocellular carcinoma (HCC), or biphenotypic tumors was conducted. A hidden-genome model classified 527 IHC based on genetic similarity to EHC/GBC or HCC. Genetic, histologic, and clinical data were correlated. RESULTS In this study, 410 IHC (78%) had >50% genetic homology with EHC/GBC; 122 (23%) had >90% homology ("biliary class"), characterized by alterations of KRAS, SMAD4, and CDKN2A loss; 117 IHC (22%) had >50% genetic homology with HCC; and 30 (5.7%) had >90% homology ("HCC class"), characterized by TERT alterations. Patients with biliary- versus non-biliary-class IHC had median overall survival (OS) of 1 year (95% CI, 0.77, 1.5) versus 1.8 years (95% CI, 1.6, 2.0) for unresectable disease and 2.4 years (95% CI, 2.1, NR) versus 5.1 years (95% CI, 4.8, 6.9) for resectable disease. Large-duct IHC (n = 28) was more common in the biliary class (n = 27); the HCC class was composed mostly of small-duct IHC (64%, P = 0.02). The hidden genomic classifier predicted OS independent of FGFR2 and IDH1 alterations. By contrast, the histology subtype did not predict OS. CONCLUSIONS IHC genetics form a spectrum with worse OS for tumors genetically aligned with EHC/GBC. The classifier proved superior to histologic subtypes for predicting OS independent of FGFR2 and IDH1 alterations. These results may explain the differential treatment responses seen in IHC and may direct therapy by helping stratify patients in future clinical trials.
Collapse
Affiliation(s)
- Yi Song
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Boerner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esther Drill
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Shin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandeep Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carlie Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Henry Walch
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod Balachandran
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Kingham
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Soares
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice Wei
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael D'Angelica
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey Drebin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - James J Harding
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
5
|
Van Drunen R, Dai Y, Wei H, Fekry B, Noori S, Shivshankar S, Bravo R, Zhao Z, Yoo SH, Justice N, Wu JQ, Tong Q, Eckel-Mahan K. Cell-specific regulation of the circadian clock by BMAL1 in the paraventricular nucleus: Implications for regulation of systemic biological rhythms. Cell Rep 2024; 43:114380. [PMID: 38935503 PMCID: PMC11446153 DOI: 10.1016/j.celrep.2024.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Circadian rhythms are internal biological rhythms driving temporal tissue-specific, metabolic programs. Loss of the circadian transcription factor BMAL1 in the paraventricular nucleus (PVN) of the hypothalamus reveals its importance in metabolic rhythms, but its functions in individual PVN cells are poorly understood. Here, loss of BMAL1 in the PVN results in arrhythmicity of processes controlling energy balance and alters peripheral diurnal gene expression. BMAL1 chromatin immunoprecipitation sequencing (ChIP-seq) and single-nucleus RNA sequencing (snRNA-seq) reveal its temporal regulation of target genes, including oxytocin (OXT), and restoring circulating OXT peaks in BMAL1-PVN knockout (KO) mice rescues absent activity rhythms. While glutamatergic neurons undergo day/night changes in expression of genes involved in cell morphogenesis, astrocytes and oligodendrocytes show gene expression changes in cytoskeletal organization and oxidative phosphorylation. Collectively, our findings show diurnal gene regulation in neuronal and non-neuronal PVN cells and that BMAL1 contributes to diurnal OXT secretion, which is important for systemic diurnal rhythms.
Collapse
Affiliation(s)
- Rachel Van Drunen
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haichao Wei
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Baharan Fekry
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sina Noori
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Samay Shivshankar
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Rafael Bravo
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Seung-Hee Yoo
- MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nicholas Justice
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jia Qian Wu
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qingchun Tong
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- UT Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Shen C, Lu Q, Yang D, Zhang X, Huang X, Li R, Que Z, Chen N. Genome-wide identification analysis in wild-type Solanum pinnatisectum reveals some genes defending against Phytophthora infestans. Front Genet 2024; 15:1379784. [PMID: 38812971 PMCID: PMC11134371 DOI: 10.3389/fgene.2024.1379784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Solanum pinnatisectum exhibits strong resistance to late blight caused by Phytophthora infestans but only an incomplete genome assembly based on short Illumina reads has been published. In this study, we generated the first chromosome-level draft genome for the wild-type potato species S. pinnatisectum in China using Oxford Nanopore technology sequencing and Hi-C technology. The high-quality assembled genome size is 664 Mb with a scaffold N50 value of 49.17 Mb, of which 65.87% was occupied by repetitive sequences, and predominant long terminal repeats (42.51% of the entire genome). The genome of S. pinnatisectum was predicted to contain 34,245 genes, of which 99.34% were functionally annotated. Moreover, 303 NBS-coding disease resistance (R) genes were predicted in the S. pinnatisectum genome to investigate the potential mechanisms of resistance to late blight disease. The high-quality chromosome-level reference genome of S. pinnatisectum is expected to provide potential valuable resources for intensively and effectively investigating molecular breeding and genetic research in the future.
Collapse
Affiliation(s)
- Chunxiu Shen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Qineng Lu
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Di Yang
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | | | | | - Rungen Li
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Zhiqun Que
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| | - Na Chen
- Jiangxi Key Laboratory of Crop Growth and Development Regulation, College of Life Sciences, Resources and Environment Sciences, Yichun University, Yichun, China
| |
Collapse
|
7
|
Che H, Jiang P, Choy LYL, Cheng SH, Peng W, Chan RWY, Liu J, Zhou Q, Lam WKJ, Yu SCY, Lau SL, Leung TY, Wong J, Wong VWS, Wong GLH, Chan SL, Chan KCA, Lo YMD. Genomic origin, fragmentomics, and transcriptional properties of long cell-free DNA molecules in human plasma. Genome Res 2024; 34:189-200. [PMID: 38408788 PMCID: PMC10984381 DOI: 10.1101/gr.278556.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.
Collapse
Affiliation(s)
- Huiwen Che
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - L Y Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Suk Hang Cheng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wenlei Peng
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rebecca W Y Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Liu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - W K Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Stephanie C Y Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - So Ling Lau
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tak Y Leung
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Grace L H Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Stephen L Chan
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Clinical Oncology, Sir Y.K. Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - K C Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y M Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
8
|
Espejo Valle-Inclán J, Cortés-Ciriano I. ReConPlot: an R package for the visualization and interpretation of genomic rearrangements. Bioinformatics 2023; 39:btad719. [PMID: 38058190 PMCID: PMC10710371 DOI: 10.1093/bioinformatics/btad719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
MOTIVATION Whole-genome sequencing studies of human tumours have revealed that complex forms of structural variation, collectively known as complex genome rearrangements (CGRs), are pervasive across diverse cancer types. Detection, classification, and mechanistic interpretation of CGRs requires the visualization of complex patterns of somatic copy number aberrations (SCNAs) and structural variants (SVs). However, there is a lack of tools specifically designed to facilitate the visualization and study of CGRs. RESULTS We present ReConPlot (REarrangement and COpy Number PLOT), an R package that provides functionalities for the joint visualization of SCNAs and SVs across one or multiple chromosomes. ReConPlot is based on the popular ggplot2 package, thus allowing customization of plots and the generation of publication-quality figures with minimal effort. Overall, ReConPlot facilitates the exploration, interpretation, and reporting of CGR patterns. AVAILABILITY AND IMPLEMENTATION The R package ReConPlot is available at https://github.com/cortes-ciriano-lab/ReConPlot. Detailed documentation and a tutorial with examples are provided with the package.
Collapse
Affiliation(s)
- Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
9
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
10
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tarawneh TS, Rodepeter FR, Teply-Szymanski J, Ross P, Koch V, Thölken C, Schäfer JA, Gremke N, Mack HID, Gold J, Riera-Knorrenschild J, Wilhelm C, Rinke A, Middeke M, Klemmer A, Romey M, Hattesohl A, Jesinghaus M, Görg C, Figiel J, Chung HR, Wündisch T, Neubauer A, Denkert C, Mack EKM. Combined Focused Next-Generation Sequencing Assays to Guide Precision Oncology in Solid Tumors: A Retrospective Analysis from an Institutional Molecular Tumor Board. Cancers (Basel) 2022; 14:4430. [PMID: 36139590 PMCID: PMC9496918 DOI: 10.3390/cancers14184430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increasing knowledge of cancer biology and an expanding spectrum of molecularly targeted therapies provide the basis for precision oncology. Despite extensive gene diagnostics, previous reports indicate that less than 10% of patients benefit from this concept. METHODS We retrospectively analyzed all patients referred to our center's Molecular Tumor Board (MTB) from 2018 to 2021. Molecular testing by next-generation sequencing (NGS) included a 67-gene panel for the detection of short-sequence variants and copy-number alterations, a 53- or 137-gene fusion panel and an ultra-low-coverage whole-genome sequencing for the detection of additional copy-number alterations outside the panel's target regions. Immunohistochemistry for microsatellite instability and PD-L1 expression complemented NGS. RESULTS A total of 109 patients were referred to the MTB. In all, 78 patients received therapeutic proposals (70 based on NGS) and 33 were treated accordingly. Evaluable patients treated with MTB-recommended therapy (n = 30) had significantly longer progression-free survival than patients treated with other therapies (n = 17) (4.3 vs. 1.9 months, p = 0.0094). Seven patients treated with off-label regimens experienced major clinical benefits. CONCLUSION The combined focused sequencing assays detected targetable alterations in the majority of patients. Patient benefits appeared to lie in the same range as with large-scale sequencing approaches.
Collapse
Affiliation(s)
- Thomas S. Tarawneh
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Fiona R. Rodepeter
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Petra Ross
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Vera Koch
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
- Institute of Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Clemens Thölken
- Institute of Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Jonas A. Schäfer
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Niklas Gremke
- Department of Gynecology, Gynecologic Endocrinology and Oncology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Hildegard I. D. Mack
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Judith Gold
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Jorge Riera-Knorrenschild
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Christian Wilhelm
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Anja Rinke
- Department of Gastroenterology and Endocrinology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Martin Middeke
- Comprehensive Cancer Center Marburg, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Andreas Klemmer
- Department of Pulmonary and Critical Care Medicine, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Marcel Romey
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Akira Hattesohl
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Christian Görg
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
- Department of Gastroenterology and Endocrinology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Jens Figiel
- Department of Diagnostic and Interventional Radiology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Ho-Ryun Chung
- Institute of Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
| | - Thomas Wündisch
- Comprehensive Cancer Center Marburg, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Elisabeth K. M. Mack
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|
12
|
Costallat M, Batsché E, Rachez C, Muchardt C. The 'Alu-ome' shapes the epigenetic environment of regulatory elements controlling cellular defense. Nucleic Acids Res 2022; 50:5095-5110. [PMID: 35544277 PMCID: PMC9122584 DOI: 10.1093/nar/gkac346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Promoters and enhancers are sites of transcription initiation (TSSs) and carry specific histone modifications, including H3K4me1, H3K4me3, and H3K27ac. Yet, the principles governing the boundaries of such regulatory elements are still poorly characterized. Alu elements are good candidates for a boundary function, being highly abundant in gene-rich regions, while essentially excluded from regulatory elements. Here, we show that the interval ranging from TSS to first upstream Alu, accommodates all H3K4me3 and most H3K27ac marks, while excluding DNA methylation. Remarkably, the average length of these intervals greatly varies in-between tissues, being longer in stem- and shorter in immune-cells. The very shortest TSS-to-first-Alu intervals were observed at promoters active in T-cells, particularly at immune genes, where first-Alus were traversed by RNA polymerase II transcription, while accumulating H3K4me1 signal. Finally, DNA methylation at first-Alus was found to evolve with age, regressing from young to middle-aged, then recovering later in life. Thus, the first-Alus upstream of TSSs appear as dynamic boundaries marking the transition from DNA methylation to active histone modifications at regulatory elements, while also participating in the recording of immune gene transcriptional events by positioning H3K4me1-modified nucleosomes.
Collapse
Affiliation(s)
- Mickael Costallat
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | - Eric Batsché
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | - Christophe Rachez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| | - Christian Muchardt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Biological Adaptation and Ageing, B2A-IBPS, 75005, Paris, France
| |
Collapse
|
13
|
Chakraborty S, Ecker BL, Seier K, Aveson VG, Balachandran VP, Drebin JA, D'Angelica MI, Kingham TP, Sigel CS, Soares KC, Vakiani E, Wei AC, Chandwani R, Gonen M, Shen R, Jarnagin WR. Genome-Derived Classification Signature for Ampullary Adenocarcinoma to Improve Clinical Cancer Care. Clin Cancer Res 2021; 27:5891-5899. [PMID: 34433650 DOI: 10.1158/1078-0432.ccr-21-1906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The clinical behavior of ampullary adenocarcinoma varies widely. Targeted tumor sequencing may better define biologically distinct subtypes to improve diagnosis and management. EXPERIMENTAL DESIGN The hidden-genome algorithm, a multilevel meta-feature regression model, was trained on a prospectively sequenced cohort of 3,411 patients (1,001 pancreatic adenocarcinoma, 165 distal bile-duct adenocarcinoma, 2,245 colorectal adenocarcinoma) and subsequently applied to targeted panel DNA-sequencing data from ampullary adenocarcinomas. Genomic classification (i.e., colorectal vs. pancreatic) was correlated with standard histologic classification [i.e., intestinal (INT) vs. pancreatobiliary (PB)] and clinical outcome. RESULTS Colorectal genomic subtype prediction was primarily influenced by mutations in APC and PIK3CA, tumor mutational burden, and DNA mismatch repair (MMR)-deficiency signature. Pancreatic genomic-subtype prediction was dictated by KRAS gene alterations, particularly KRAS G12D, KRAS G12R, and KRAS G12V. Distal bile-duct adenocarcinoma genomic subtype was most influenced by copy-number gains in the MDM2 gene. Despite high (73%) concordance between immunomorphologic subtype and genomic category, there was significant genomic heterogeneity within both histologic subtypes. Genomic scores with higher colorectal probability were associated with greater survival compared with those with a higher pancreatic probability. CONCLUSIONS The genomic classifier provides insight into the heterogeneity of ampullary adenocarcinoma and improves stratification, which is dictated by the proportion of colorectal and pancreatic genomic alterations. This approach is reproducible with available molecular testing and obviates subjective histologic interpretation.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett L Ecker
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ken Seier
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victoria G Aveson
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vinod P Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael I D'Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Carlie S Sigel
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin C Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Efsevia Vakiani
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice C Wei
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rohit Chandwani
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York.,Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William R Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
14
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Rubes J. Anchoring the CerEla1.0 Genome Assembly to Red Deer ( Cervus elaphus) and Cattle ( Bos taurus) Chromosomes and Specification of Evolutionary Chromosome Rearrangements in Cervidae. Animals (Basel) 2021; 11:ani11092614. [PMID: 34573579 PMCID: PMC8465983 DOI: 10.3390/ani11092614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The red deer (Cervus elaphus) de novo genome assembly (CerEla1.0) has provided a great resource for genetic studies in various deer species. In this study, we used gene order comparisons between C. elaphus CerEla1.0 and B. taurus ARS-UCD1.2 genome assemblies and fluorescence in situ hybridization (FISH) with bovine BAC probes to verify the red deer-bovine chromosome relationships and anchor the CerEla1.0 C-scaffolds to karyotypes of both species. We showed the homology between bovine and deer chromosomes and determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds. Using a set of BAC probes, we were able to narrow the positions of evolutionary chromosome breakpoints defining the family Cervidae. In addition, we revealed several errors in the current CerEla1.0 genome assembly. Finally, we expanded our analysis to other Cervidae and confirmed the locations of the cervid evolutionary fissions and orientation of the fused chromosomes in eight cervid species. Our results can serve as a basis for necessary improvements of the red deer genome assembly and provide support to other genetic studies in Cervidae. Abstract The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.
Collapse
|
15
|
Abdelwahed M, Maaloul I, Benoit V, Hilbert P, Hachicha M, Kamoun H, Keskes-Ammar L, Belguith N. Copy-number variation of the NPHP1 gene in patients with juvenile Nephronophthisis. Acta Clin Belg 2021; 76:16-24. [PMID: 31402777 DOI: 10.1080/17843286.2019.1655231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Juvenile nephronophthisis (NPHP) is an autosomal recessive cystic disease of the kidney. It represents the most frequent genetic cause of chronic renal failure in children. Methods: we investigated clinical and molecular features in two children with Juvenile nephronophthisis using firstly Multiplex ligation-dependent probe amplification (MLPA) and secondly multiplex PCR. Results: we report a homozygous NPHP1 deletion in two children. Conclusion: NPHP1 deletion analysis using diagnostic methods (e.g. MLPA, Multiplex PCR) should always be considered in patients with nephronophthisis, especially from consanguineous families. Our results provide insights into genotype-phenotype correlations in juvenile nephronophthisis that can be utilized in genetic counseling.
Collapse
Affiliation(s)
- Mayssa Abdelwahed
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Ines Maaloul
- Pediatric Department of Hedi Chaker Hospital, Sfax, Tunisia
| | - Valerie Benoit
- Center of Human Genetics, Institute of Pathology and Genetics, Biopark Charleroi Brussels, Gosselies, Belgium
| | - Pascale Hilbert
- Center of Human Genetics, Institute of Pathology and Genetics, Biopark Charleroi Brussels, Gosselies, Belgium
| | | | - Hassen Kamoun
- Medical Genetics Department of Hedi Chaker Hospital, Sfax, Tunisia
| | - Leila Keskes-Ammar
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Sfax, Tunisia
- Medical Genetics Department of Hedi Chaker Hospital, Sfax, Tunisia
| |
Collapse
|
16
|
Williams JD, Houserova D, Johnson BR, Dyniewski B, Berroyer A, French H, Barchie AA, Bilbrey DD, Demeis JD, Ghee KR, Hughes AG, Kreitz NW, McInnis CH, Pudner SC, Reeves MN, Stahly AN, Turcu A, Watters BC, Daly GT, Langley RJ, Gillespie MN, Prakash A, Larson ED, Kasukurthi MV, Huang J, Jinks-Robertson S, Borchert GM. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop:loop 'G4 Kissing' interaction. Nucleic Acids Res 2020; 48:5907-5925. [PMID: 32383760 PMCID: PMC7293029 DOI: 10.1093/nar/gkaa357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
Mammalian antibody switch regions (∼1500 bp) are composed of a series of closely neighboring G4-capable sequences. Whereas numerous structural and genome-wide analyses of roles for minimal G4s in transcriptional regulation have been reported, Long G4-capable regions (LG4s)-like those at antibody switch regions-remain virtually unexplored. Using a novel computational approach we have identified 301 LG4s in the human genome and find LG4s prone to mutation and significantly associated with chromosomal rearrangements in malignancy. Strikingly, 217 LG4s overlap annotated enhancers, and we find the promoters regulated by these enhancers markedly enriched in G4-capable sequences suggesting G4s facilitate promoter-enhancer interactions. Finally, and much to our surprise, we also find single-stranded loops of minimal G4s within individual LG4 loci are frequently highly complementary to one another with 178 LG4 loci averaging >35 internal loop:loop complements of >8 bp. As such, we hypothesized (then experimentally confirmed) that G4 loops within individual LG4 loci directly basepair with one another (similar to characterized stem-loop kissing interactions) forming a hitherto undescribed, higher-order, G4-based secondary structure we term a 'G4 Kiss or G4K'. In conclusion, LG4s adopt novel, higher-order, composite G4 structures directly contributing to the inherent instability, regulatory capacity, and maintenance of these conspicuous genomic regions.
Collapse
Affiliation(s)
- Jonathan D Williams
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Dominika Houserova
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Bradley R Johnson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Brad Dyniewski
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Alexandra Berroyer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Hannah French
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Addison A Barchie
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Dakota D Bilbrey
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Jeffrey D Demeis
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Kanesha R Ghee
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Alexandra G Hughes
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Naden W Kreitz
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Cameron H McInnis
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Susanna C Pudner
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Monica N Reeves
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ashlyn N Stahly
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Ana Turcu
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Brianna C Watters
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Grant T Daly
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Raymond J Langley
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Mark N Gillespie
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mitchell Cancer Institute, Mobile, AL 36688, USA
| | - Erik D Larson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI 49007, USA
| | | | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA
| | - Glen M Borchert
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
17
|
Genome-wide unique insertion sequences among five Brucella species and demonstration of differential identification of Brucella by multiplex PCR assay. Sci Rep 2020; 10:6368. [PMID: 32286356 PMCID: PMC7156498 DOI: 10.1038/s41598-020-62472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/02/2020] [Indexed: 11/17/2022] Open
Abstract
Brucellosis is a neglected zoonotic disease caused by alpha proteobacterial genus Brucella comprising of facultative intracellular pathogenic species that can infect both animals and humans. In this study, we aimed to identify genome-wide unique insertion sequence (IS) elements among Brucella abortus, B. melitensis, B. ovis, B. suis and B. canis for use in species differentiation by conducting an intensive in silico-based comparative genomic analysis. As a result, 25, 27, 37, 86 and 3 unique ISs were identified respectively and they had a striking pattern of distribution among them. To explain, a particular IS would be present in four species with 100% identity whereas completely absent in the fifth species. However, flanking regions of that IS element would be highly identical and conserved in all five species. Species-specific primers designed on these flanking conserved regions resulted in two different amplicons grouping the species into two: one that possesses IS and the other that lacks it. Seeking for species-specific amplicon size for particular species was sufficient to identify it irrespective of biovar. A multiplex PCR developed using these primers resulted in successful differentiation of the five species irrespective of biovars with significant specificity and sensitivity when examined on clinical samples.
Collapse
|
18
|
Hu Q, Maurais EG, Ly P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res 2020; 28:19-30. [PMID: 31933061 PMCID: PMC7131874 DOI: 10.1007/s10577-020-09626-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022]
Abstract
Human chromosomes are arranged in a linear and conserved sequence order that undergoes further spatial folding within the three-dimensional space of the nucleus. Although structural variations in this organization are an important source of natural genetic diversity, cytogenetic aberrations can also underlie a number of human diseases and disorders. Approaches for studying chromosome structure began half a century ago with karyotyping of Giemsa-banded chromosomes and has now evolved to encompass high-resolution fluorescence microscopy, reporter-based assays, and next-generation DNA sequencing technologies. Here, we provide a general overview of experimental methods at different resolution and sensitivity scales and discuss how they can be complemented to provide synergistic insight into the study of human chromosome structural rearrangements. These approaches range from kilobase-level resolution DNA fluorescence in situ hybridization (FISH)-based imaging approaches of individual cells to genome-wide sequencing strategies that can capture nucleotide-level information from diverse sample types. Technological advances coupled to the combinatorial use of multiple methods have resulted in the discovery of new rearrangement classes along with mechanistic insights into the processes that drive structural alterations in the human genome.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Ly
- Department of Pathology, Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
A Multireference-Based Whole Genome Assembly for the Obligate Ant-Following Antbird, Rhegmatorhina melanosticta (Thamnophilidae). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current generation high-throughput sequencing technology has facilitated the generation of more genomic-scale data than ever before, thus greatly improving our understanding of avian biology across a range of disciplines. Recent developments in linked-read sequencing (Chromium 10×) and reference-based whole-genome assembly offer an exciting prospect of more accessible chromosome-level genome sequencing in the near future. We sequenced and assembled a genome of the Hairy-crested Antbird (Rhegmatorhina melanosticta), which represents the first publicly available genome for any antbird (Thamnophilidae). Our objectives were to (1) assemble scaffolds to chromosome level based on multiple reference genomes, and report on differences relative to other genomes, (2) assess genome completeness and compare content to other related genomes, and (3) assess the suitability of linked-read sequencing technology for future studies in comparative phylogenomics and population genomics studies. Our R. melanosticta assembly was both highly contiguous (de novo scaffold N50 = 3.3 Mb, reference based N50 = 53.3 Mb) and relatively complete (contained close to 90% of evolutionarily conserved single-copy avian genes and known tetrapod ultraconserved elements). The high contiguity and completeness of this assembly enabled the genome to be successfully mapped to the chromosome level, which uncovered a consistent structural difference between R. melanosticta and other avian genomes. Our results are consistent with the observation that avian genomes are structurally conserved. Additionally, our results demonstrate the utility of linked-read sequencing for non-model genomics. Finally, we demonstrate the value of our R. melanosticta genome for future researchers by mapping reduced representation sequencing data, and by accurately reconstructing the phylogenetic relationships among a sample of thamnophilid species.
Collapse
|
20
|
Lyu X, Chastain M, Chai W. Genome-wide mapping and profiling of γH2AX binding hotspots in response to different replication stress inducers. BMC Genomics 2019; 20:579. [PMID: 31299901 PMCID: PMC6625122 DOI: 10.1186/s12864-019-5934-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Replication stress (RS) gives rise to DNA damage that threatens genome stability. RS can originate from different sources that stall replication by diverse mechanisms. However, the mechanism underlying how different types of RS contribute to genome instability is unclear, in part due to the poor understanding of the distribution and characteristics of damage sites induced by different RS mechanisms. RESULTS We use ChIP-seq to map γH2AX binding sites genome-wide caused by aphidicolin (APH), hydroxyurea (HU), and methyl methanesulfonate (MMS) treatments in human lymphocyte cells. Mapping of γH2AX ChIP-seq reveals that APH, HU, and MMS treatments induce non-random γH2AX chromatin binding at discrete regions, suggesting that there are γH2AX binding hotspots in the genome. Characterization of the distribution and sequence/epigenetic features of γH2AX binding sites reveals that the three treatments induce γH2AX binding at largely non-overlapping regions, suggesting that RS may cause damage at specific genomic loci in a manner dependent on the fork stalling mechanism. Nonetheless, γH2AX binding sites induced by the three treatments share common features including compact chromatin, coinciding with larger-than-average genes, and depletion of CpG islands and transcription start sites. Moreover, we observe significant enrichment of SINEs in γH2AX sites in all treatments, indicating that SINEs may be a common barrier for replication polymerases. CONCLUSIONS Our results identify the location and common features of genome instability hotspots induced by different types of RS, and help in deciphering the mechanisms underlying RS-induced genetic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Xinxing Lyu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
21
|
Currall BB, Antolik CW, Collins RL, Talkowski ME. Next Generation Sequencing of Prenatal Structural Chromosomal Rearrangements Using Large-Insert Libraries. Methods Mol Biol 2019; 1885:251-265. [PMID: 30506203 DOI: 10.1007/978-1-4939-8889-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Precise tests for genomic structural variation (SV) are essential for accurate diagnosis of prenatal genome abnormalities. The two most ubiquitous traditional methods for prenatal SV assessment, karyotyping and chromosomal microarrays, do not provide sufficient resolution for some clinically actionable SVs. Standard whole-genome sequencing (WGS) overcomes shortcomings of traditional techniques by providing base-pair resolution of the entire accessible genome. However, while sequencing costs have continued to decline in recent years, conventional WGS costs remain high for most routine clinical applications. Here, we describe a specialized WGS technique using large inserts (liWGS; also known as "jumping libraries") to resolve large (>5000-10,000 nucleotides) SVs at kilobase-resolution in prenatal samples, and at a fraction of the cost of standard WGS. We explicate the protocols for generating liWGS libraries and supplement with an overview for processing and analyzing liWGS data.
Collapse
Affiliation(s)
- Benjamin B Currall
- Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Harvard Medical School, Cambridge, MA, USA
| | - Caroline W Antolik
- Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Harvard Medical School, Cambridge, MA, USA
| | - Ryan L Collins
- Massachusetts General Hospital, Boston, MA, USA
- Broad Institute, Harvard Medical School, Cambridge, MA, USA
| | - Michael E Talkowski
- Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
22
|
Tan ZW, Guarnera E, Berezovsky IN. Exploring chromatin hierarchical organization via Markov State Modelling. PLoS Comput Biol 2018; 14:e1006686. [PMID: 30596637 PMCID: PMC6355033 DOI: 10.1371/journal.pcbi.1006686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 01/31/2019] [Accepted: 11/27/2018] [Indexed: 01/02/2023] Open
Abstract
We propose a new computational method for exploring chromatin structural organization based on Markov State Modelling of Hi-C data represented as an interaction network between genomic loci. A Markov process describes the random walk of a traveling probe in the corresponding energy landscape, mimicking the motion of a biomolecule involved in chromatin function. By studying the metastability of the associated Markov State Model upon annealing, the hierarchical structure of individual chromosomes is observed, and corresponding set of structural partitions is identified at each level of hierarchy. Then, the notion of effective interaction between partitions is derived, delineating the overall topology and architecture of chromosomes. Mapping epigenetic data on the graphs of intra-chromosomal effective interactions helps in understanding how chromosome organization facilitates its function. A sketch of whole-genome interactions obtained from the analysis of 539 partitions from all 23 chromosomes, complemented by distributions of gene expression regulators and epigenetic factors, sheds light on the structure-function relationships in chromatin, delineating chromosomal territories, as well as structural partitions analogous to topologically associating domains and active / passive epigenomic compartments. In addition to the overall genome architecture shown by effective interactions, the affinity between partitions of different chromosomes was analyzed as an indicator of the degree of association between partitions in functionally relevant genomic interactions. The overall static picture of whole-genome interactions obtained with the method presented in this work provides a foundation for chromatin structural reconstruction, for the modelling of chromatin dynamics, and for exploring the regulation of genome function. The algorithms used in this study are implemented in a freely available Python package ChromaWalker (https://bitbucket.org/ZhenWahTan/chromawalker).
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix, Singapore
| | - Igor N. Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Matrix, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore
| |
Collapse
|
23
|
Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med 2018; 50:1-11. [PMID: 30089796 PMCID: PMC6082854 DOI: 10.1038/s12276-018-0112-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/16/2022] Open
Abstract
Next-generation sequencing technology has enabled the comprehensive detection of genomic alterations in human somatic cells, including point mutations, chromosomal rearrangements, and structural variations (SVs). Using sophisticated bioinformatics algorithms, unbiased catalogs of SVs are emerging from thousands of human cancer genomes for the first time. Via careful examination of SV breakpoints at single-nucleotide resolution as well as local DNA copy number changes, diverse patterns of genomic rearrangements are being revealed. These "SV signatures" provide deep insight into the mutational processes that have shaped genome changes in human somatic cells. This review summarizes the characteristics of recently identified complex SVs, including chromothripsis, chromoplexy, microhomology-mediated breakage-induced replication (MMBIR), and others, to provide a holistic snapshot of the current knowledge on genomic rearrangements in somatic cells.
Collapse
Affiliation(s)
- Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea.
| |
Collapse
|
24
|
Koganebuchi K, Gakuhari T, Takeshima H, Sato K, Fujii K, Kumabe T, Kasagi S, Sato T, Tajima A, Shibata H, Ogawa M, Oota H. A new targeted capture method using bacterial artificial chromosome (BAC) libraries as baits for sequencing relatively large genes. PLoS One 2018; 13:e0200170. [PMID: 30001370 PMCID: PMC6042959 DOI: 10.1371/journal.pone.0200170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
To analyze a specific genome region using next-generation sequencing technologies, the enrichment of DNA libraries with targeted capture methods has been standardized. For enrichment of mitochondrial genome, a previous study developed an original targeted capture method that use baits constructed from long-range polymerase chain reaction (PCR) amplicons, common laboratory reagents, and equipment. In this study, a new targeted capture method is presented, that of bacterial artificial chromosome (BAC) double capture (BDC), modifying the previous method, but using BAC libraries as baits for sequencing a relatively large gene. We applied the BDC approach for the 214 kb autosomal region, ring finger protein 213, which is the susceptibility gene of moyamoya disease (MMD). To evaluate the reliability of BDC, cost and data quality were compared with those of a commercial kit. While the ratio of duplicate reads was higher, the cost was less than that of the commercial kit. The data quality was sufficiently the same as that of the kit. Thus, BDC can be an easy, low-cost, and useful method for analyzing individual genome regions with substantial length.
Collapse
Affiliation(s)
- Kae Koganebuchi
- Department of Biological Structure, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Takashi Gakuhari
- Center for Cultural Resource Studies, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hirohiko Takeshima
- Department of Marine Biology, School of Marine Science and Technology, Tokai University, Shizuoka, Shizuoka, Japan
| | - Kimitoshi Sato
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kiyotaka Fujii
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroki Shibata
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Motoyuki Ogawa
- Department of Biological Structure, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroki Oota
- Department of Biological Structure, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
25
|
Chow JFC, Yeung WSB, Lee VCY, Lau EYL, Ng EHY. Evaluation of preimplantation genetic testing for chromosomal structural rearrangement by a commonly used next generation sequencing workflow. Eur J Obstet Gynecol Reprod Biol 2018; 224:66-73. [PMID: 29547808 DOI: 10.1016/j.ejogrb.2018.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate the applicability of a commonly used next generation sequencing workflow in detecting unbalanced meiotic segregation products for reciprocal translocation and inversion carriers. STUDY DESIGN All preimplantation genetic testing treatment cycles performed for reciprocal translocation or inversion carriers from 2012 to April 2017 were included. Three hundreds and forty-two archived whole genome amplified DNA, which had previously analyzed by array comparative genomic hybridization (aCGH), were retrospectively analyzed by next generation sequencing (NGS). Concordance on overall diagnosis and segmental aneuploidies related to the translocation/inversion breakpoints between aCGH and NGS were determined. RESULTS Retrospective analysis of 287 blastomere biopsies and 55 trophectoderm (TE) biopsies showed that the concordance rate on the overall diagnosis between aCGH and NGS on abnormal samples was 100% (266/266), irrespective to the type of biopsy. The concordance rates of normal biopsies were 98.4% (61/62) on blastomere and 78.6% (11/14) on TE biopsies. NGS detected a de novo segmental aneuploidy on one blastomere biopsy and three possible low level mosaic aneuploidies on 3 TE biopsies, which were previously concluded as euploid by aCGH. Using the karyotype of reciprocal translocation/inversion carriers, size of anticipated segmental aneuploidies could be calculated and be used to predict the applicability of NGS before proceeding to treatment. CONCLUSION This is the first report to evaluate the applicability of a commercial NGS-based workflow for preimplantation testing for reciprocal translocations/inversions. Our study demonstrated that NGS can diagnose unbalanced translocation/inversion products with the same efficiency as aCGH. The applicability of NGS, with respect to individual karyotype, can be predicted before proceeding to treatment.
Collapse
Affiliation(s)
- Judy F C Chow
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong.
| | | | - Estella Y L Lau
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
26
|
Rabbani B, Nakaoka H, Akhondzadeh S, Tekin M, Mahdieh N. Next generation sequencing: implications in personalized medicine and pharmacogenomics. MOLECULAR BIOSYSTEMS 2017; 12:1818-30. [PMID: 27066891 DOI: 10.1039/c6mb00115g] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A breakthrough in next generation sequencing (NGS) in the last decade provided an unprecedented opportunity to investigate genetic variations in humans and their roles in health and disease. NGS offers regional genomic sequencing such as whole exome sequencing of coding regions of all genes, as well as whole genome sequencing. RNA-seq offers sequencing of the entire transcriptome and ChIP-seq allows for sequencing the epigenetic architecture of the genome. Identifying genetic variations in individuals can be used to predict disease risk, with the potential to halt or retard disease progression. NGS can also be used to predict the response to or adverse effects of drugs or to calculate appropriate drug dosage. Such a personalized medicine also provides the possibility to treat diseases based on the genetic makeup of the patient. Here, we review the basics of NGS technologies and their application in human diseases to foster human healthcare and personalized medicine.
Collapse
Affiliation(s)
- Bahareh Rabbani
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Niayesh-Vali asr Intersection, Tehran, Iran.
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mustafa Tekin
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Niayesh-Vali asr Intersection, Tehran, Iran.
| |
Collapse
|
27
|
Deeg CM, Hassan E, Mutz P, Rheinemann L, Götz V, Magar L, Schilling M, Kallfass C, Nürnberger C, Soubies S, Kochs G, Haller O, Schwemmle M, Staeheli P. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein. J Exp Med 2017; 214:1239-1248. [PMID: 28396461 PMCID: PMC5413327 DOI: 10.1084/jem.20161033] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/07/2016] [Accepted: 02/15/2017] [Indexed: 11/08/2022] Open
Abstract
Deeg et al. show a novel line of transgenic mice expressing restriction factor MxA exhibits robust resistance to influenza viruses of avian but not human origin. In vivo evasion of MxA is mediated by distinct amino acids in the nucleoprotein of human influenza viruses. Zoonotic transmission of influenza A viruses can give rise to devastating pandemics, but currently it is impossible to predict the pandemic potential of circulating avian influenza viruses. Here, we describe a new mouse model suitable for such risk assessment, based on the observation that the innate restriction factor MxA represents an effective species barrier that must be overcome by zoonotic viruses. Our mouse lacks functional endogenous Mx genes but instead carries the human MX1 locus as a transgene. Such transgenic mice were largely resistant to highly pathogenic avian H5 and H7 influenza A viruses, but were almost as susceptible to infection with influenza viruses of human origin as nontransgenic littermates. Influenza A viruses that successfully established stable lineages in humans have acquired adaptive mutations which allow partial MxA escape. Accordingly, an engineered avian H7N7 influenza virus carrying a nucleoprotein with signature mutations typically found in human virus isolates was more virulent in transgenic mice than parental virus, demonstrating that a few amino acid changes in the viral target protein can mediate escape from MxA restriction in vivo. Similar mutations probably need to be acquired by emerging influenza A viruses before they can spread in the human population.
Collapse
Affiliation(s)
- Christoph M Deeg
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Ebrahim Hassan
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, 79085 Freiburg, Germany.,Microbiology Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Pascal Mutz
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Lara Rheinemann
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Veronika Götz
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Linda Magar
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Mirjam Schilling
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Kallfass
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Cindy Nürnberger
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, 79085 Freiburg, Germany
| | - Sébastien Soubies
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Otto Haller
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
28
|
Tyner C, Barber GP, Casper J, Clawson H, Diekhans M, Eisenhart C, Fischer CM, Gibson D, Gonzalez JN, Guruvadoo L, Haeussler M, Heitner S, Hinrichs AS, Karolchik D, Lee BT, Lee CM, Nejad P, Raney BJ, Rosenbloom KR, Speir ML, Villarreal C, Vivian J, Zweig AS, Haussler D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2017 update. Nucleic Acids Res 2017; 45:D626-D634. [PMID: 27899642 PMCID: PMC5210591 DOI: 10.1093/nar/gkw1134] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
Since its 2001 debut, the University of California, Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) team has provided continuous support to the international genomics and biomedical communities through a web-based, open source platform designed for the fast, scalable display of sequence alignments and annotations landscaped against a vast collection of quality reference genome assemblies. The browser's publicly accessible databases are the backbone of a rich, integrated bioinformatics tool suite that includes a graphical interface for data queries and downloads, alignment programs, command-line utilities and more. This year's highlights include newly designed home and gateway pages; a new 'multi-region' track display configuration for exon-only, gene-only and custom regions visualization; new genome browsers for three species (brown kiwi, crab-eating macaque and Malayan flying lemur); eight updated genome assemblies; extended support for new data types such as CRAM, RNA-seq expression data and long-range chromatin interaction pairs; and the unveiling of a new supported mirror site in Japan.
Collapse
Affiliation(s)
- Cath Tyner
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Galt P Barber
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan Casper
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hiram Clawson
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark Diekhans
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Clayton M Fischer
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Gibson
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Luvina Guruvadoo
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Maximilian Haeussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Steve Heitner
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Angie S Hinrichs
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Donna Karolchik
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian T Lee
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher M Lee
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Parisa Nejad
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian J Raney
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kate R Rosenbloom
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matthew L Speir
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chris Villarreal
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Vivian
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ann S Zweig
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, CA 95064, USA
| | - Robert M Kuhn
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - W James Kent
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
29
|
Daban JR. Stacked thin layers of metaphase chromatin explain the geometry of chromosome rearrangements and banding. Sci Rep 2015; 5:14891. [PMID: 26446309 PMCID: PMC4597206 DOI: 10.1038/srep14891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023] Open
Abstract
The three-dimensional organization of tightly condensed chromatin within metaphase chromosomes has been one of the most challenging problems in structural biology since the discovery of the nucleosome. This study shows that chromosome images obtained from typical banded karyotypes and from different multicolour cytogenetic analyses can be used to gain information about the internal structure of chromosomes. Chromatin bands and the connection surfaces in sister chromatid exchanges and in cancer translocations are planar and orthogonal to the chromosome axis. Chromosome stretching produces band splitting and even the thinnest bands are orthogonal and well defined, indicating that short stretches of DNA can occupy completely the chromosome cross-section. These observations impose strong physical constraints on models that attempt to explain chromatin folding in chromosomes. The thin-plate model, which consists of many stacked layers of planar chromatin perpendicular to the chromosome axis, is compatible with the observed orientation of bands, with the existence of thin bands, and with band splitting; it is also compatible with the orthogonal orientation and planar geometry of the connection surfaces in chromosome rearrangements. The results obtained provide a consistent interpretation of the chromosome structural properties that are used in clinical cytogenetics for the diagnosis of hereditary diseases and cancers.
Collapse
Affiliation(s)
- Joan-Ramon Daban
- Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain
| |
Collapse
|
30
|
Durmaz AA, Karaca E, Demkow U, Toruner G, Schoumans J, Cogulu O. Evolution of genetic techniques: past, present, and beyond. BIOMED RESEARCH INTERNATIONAL 2015; 2015:461524. [PMID: 25874212 PMCID: PMC4385642 DOI: 10.1155/2015/461524] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/05/2014] [Indexed: 12/05/2022]
Abstract
Genetics is the study of heredity, which means the study of genes and factors related to all aspects of genes. The scientific history of genetics began with the works of Gregor Mendel in the mid-19th century. Prior to Mendel, genetics was primarily theoretical whilst, after Mendel, the science of genetics was broadened to include experimental genetics. Developments in all fields of genetics and genetic technology in the first half of the 20th century provided a basis for the later developments. In the second half of the 20th century, the molecular background of genetics has become more understandable. Rapid technological advancements, followed by the completion of Human Genome Project, have contributed a great deal to the knowledge of genetic factors and their impact on human life and diseases. Currently, more than 1800 disease genes have been identified, more than 2000 genetic tests have become available, and in conjunction with this at least 350 biotechnology-based products have been released onto the market. Novel technologies, particularly next generation sequencing, have dramatically accelerated the pace of biological research, while at the same time increasing expectations. In this paper, a brief summary of genetic history with short explanations of most popular genetic techniques is given.
Collapse
Affiliation(s)
- Asude Alpman Durmaz
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Emin Karaca
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology, Warsaw University Faculty of Medicine, 61 02-091 Warsaw, Poland
| | - Gokce Toruner
- Institute of Genomic Medicine, UMDNJ-NJ Medical School, Newark, NJ 07103, USA
| | - Jacqueline Schoumans
- Department of Medical Genetics, Cancer Cytogenetic Unit, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Ozgur Cogulu
- Department of Medical Genetics, Ege University Faculty of Medicine, 35100 Izmir, Turkey
| |
Collapse
|
31
|
Watanabe Y, Yamamoto H, Oikawa R, Toyota M, Yamamoto M, Kokudo N, Tanaka S, Arii S, Yotsuyanagi H, Koike K, Itoh F. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences. Genome Res 2015; 25:328-37. [PMID: 25653310 PMCID: PMC4352876 DOI: 10.1101/gr.175240.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan; Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki 210-0806, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Ritsuko Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Minoru Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masakazu Yamamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, University of Tokyo 113-8655, Japan
| | - Shinji Tanaka
- Department of Hepatobiliary Pancreatic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Shigeki Arii
- Department of Hepatobiliary Pancreatic Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo 113-0034, Japan
| | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|
32
|
Stevens SJC, Blom EW, Siegelaer ITJ, Smeets EEJGL. A recurrent deletion syndrome at chromosome bands 2p11.2-2p12 flanked by segmental duplications at the breakpoints and including REEP1. Eur J Hum Genet 2014; 23:543-6. [PMID: 24986827 DOI: 10.1038/ejhg.2014.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023] Open
Abstract
We identified an identical and recurrent 9.4-Mbp deletion at chromosome bands 2p11.2-2p12, which occurred de novo in two unrelated patients. It is flanked at the distal and proximal breakpoints by two homologous segmental duplications consisting of low copy repeat (LCR) blocks in direct orientation, which have >99% sequence identity. Despite the fact that the deletion was almost 10 Mbp in size, the patients showed a relatively mild clinical phenotype, that is, mild-to-moderate intellectual disability, a happy disposition, speech delay and delayed motor development. Their phenotype matches with that of previously described patients. The 2p11.2-2p12 deletion includes the REEP1 gene that is associated with spastic paraplegia and phenotypic features related to this are apparent in most 2p11.2-2p12 deletion patients, but not in all. Other hemizygous genes that may contribute to the clinical phenotype include LRRTM1 and CTNNA2. We propose a recurrent but rare 2p11.2-2p12 deletion syndrome based on (1) the identical, non-random localisation of the de novo deletion breakpoints in two unrelated patients and a patient from literature, (2) the patients' phenotypic similarity and their phenotypic overlap with other 2p deletions and (3) the presence of highly identical LCR blocks flanking both breakpoints, consistent with a non-allelic homologous recombination (NAHR)-mediated rearrangement.
Collapse
Affiliation(s)
- Servi J C Stevens
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eveline W Blom
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ingrid T J Siegelaer
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Eric E J G L Smeets
- Department Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
33
|
Altemose N, Miga KH, Maggioni M, Willard HF. Genomic characterization of large heterochromatic gaps in the human genome assembly. PLoS Comput Biol 2014; 10:e1003628. [PMID: 24831296 PMCID: PMC4022460 DOI: 10.1371/journal.pcbi.1003628] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/26/2014] [Indexed: 01/24/2023] Open
Abstract
The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3). The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb) and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations. At least 5–10% of the human genome remains unassembled, unmapped, and poorly characterized. The reference assembly annotates these missing regions as multi-megabase heterochromatic gaps, found primarily near centromeres and on the short arms of the acrocentric chromosomes. This missing fraction of the genome consists predominantly of long arrays of near-identical tandem repeats called satellite DNA. Due to the repetitive nature of satellite DNA, sequence assembly algorithms cannot uniquely align overlapping sequence reads, and thus satellite-rich domains have been omitted from the reference assembly and from most genome-wide studies of variation and function. Existing methods for analyzing some satellite DNAs cannot be easily extended to a large portion of satellites whose repeat structures are complex and largely uncharacterized, such as Human Satellites 2 and 3 (HSat2,3). Here we characterize HSat2,3 using a novel approach that does not depend on having a well-defined repeat structure. By classifying genome-wide HSat2,3 sequences into subfamilies and localizing them to chromosomes, we have generated an initial HSat2,3 genomic reference, which serves as a critical foundation for future studies of variation and function in these regions. This approach should be generally applicable to other classes of satellite DNA, in both the human genome and other complex genomes.
Collapse
Affiliation(s)
- Nicolas Altemose
- Genome Biology Group, Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Karen H. Miga
- Genome Biology Group, Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| | - Mauro Maggioni
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
| | - Huntington F. Willard
- Genome Biology Group, Duke Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
34
|
Abstract
The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.
Collapse
Affiliation(s)
- Megan E. Aldrup-MacDonald
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; E-Mail:
- Division of Human Genetics, Duke University, Durham, NC 27710, USA
| | - Beth A. Sullivan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; E-Mail:
- Division of Human Genetics, Duke University, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-684-9038
| |
Collapse
|
35
|
High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat Biotechnol 2013; 31:1143-7. [PMID: 24270850 PMCID: PMC3880131 DOI: 10.1038/nbt.2768] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/08/2013] [Indexed: 12/23/2022]
Abstract
Despite advances in DNA-sequencing technology, assembly of complex genomes remains a major challenge, particularly for genomes sequenced using short reads, which yield highly fragmented assemblies. Here we show that genome-wide in vivo chromatin interaction frequency data, which are measurable with chromosome conformation capture–based experiments, can be used as genomic distance proxies to accurately position individual contigs without requiring any sequence overlap. We also use these data to construct approximate genome scaffolds de novo. Applying our approach to incomplete regions of the human genome, we predict the positions of 65 previously unplaced contigs, in agreement with alternative methods in 26/31 cases attempted in common. Our approach can theoretically bridge any gap size and should be applicable to any species for which global chromatin interaction data can be generated.
Collapse
|
36
|
Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M. Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome Res 2013; 23:1763-73. [PMID: 24077392 PMCID: PMC3814877 DOI: 10.1101/gr.156240.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between macaque boundary region 14/15 and the orthologous human regions. We construct a 1.6-Mb contig of macaque BAC clones in the region orthologous to the ancestral hominoid fission site and use it to define the structural changes that occurred on human 14q pericentromeric and 15q subtelomeric regions. We characterize the novel euchromatin–heterochromatin transition region (∼20 Mb) acquired during the neocentromere establishment on chromosome 14, and find it was mainly derived through pericentromeric duplications from ancestral hominoid chromosomes homologous to human 2q14–qter and 10. Further, we show a relationship between evolutionary hotspots and low-copy repeat loci for chromosome 15, revealing a possible role of segmental duplications not only in mediating but also in “stitching” together rearrangement breakpoints.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Background Segmental duplications (SDs) or low-copy repeats play important roles in both gene and genome evolution. SDs have been extensively investigated in many organisms, however, there is no information about SDs in the silkworm, Bombyx mori. Result In this study, we identified and annotated the SDs in the silkworm genome. Our results suggested that SDs constitute ~1.4% of the silkworm genome sequence (≥1 kb in length and ≥90% in the identity of sequence); the number is similar to that in Drosophila melanogaster but smaller than mammalian organisms. Almost half (42%) of the SD sequences are not assigned to chromosomes, indicating that the SDs are challenges for the assembling of genome sequences. We also provided experimental validation of large duplications using qPCR. The analysis of SD content indicated that the genes related to immunity, detoxification, reproduction, and environmental signal recognition are significantly enriched in the silkworm SDs. Conclusion Our results suggested that segmental duplications have been problematic for sequencing and assembling of the silkworm genome. SDs may have important biological significances in immunity, detoxification, reproduction, and environmental signal recognition in the silkworm. This study provides insight into the evolution of the silkworm genome and an invaluable resource for insect genomics research.
Collapse
|
38
|
Ching RW, Ahmed K, Boutros PC, Penn LZ, Bazett-Jones DP. Identifying gene locus associations with promyelocytic leukemia nuclear bodies using immuno-TRAP. ACTA ACUST UNITED AC 2013; 201:325-35. [PMID: 23589495 PMCID: PMC3628506 DOI: 10.1083/jcb.201211097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Important insights into nuclear function would arise if gene loci physically interacting with particular subnuclear domains could be readily identified. Immunofluorescence microscopy combined with fluorescence in situ hybridization (immuno-FISH), the method that would typically be used in such a study, is limited by spatial resolution and requires prior assumptions for selecting genes to probe. Our new technique, immuno-TRAP, overcomes these limitations. Using promyelocytic leukemia nuclear bodies (PML NBs) as a model, we used immuno-TRAP to determine if specific genes localize within molecular dimensions with these bodies. Although we confirmed a TP53 gene-PML NB association, immuno-TRAP allowed us to uncover novel locus-PML NB associations, including the ABCA7 and TFF1 loci and, most surprisingly, the PML locus itself. These associations were cell type specific and reflected the cell's physiological state. Combined with microarrays or deep sequencing, immuno-TRAP provides powerful opportunities for identifying gene locus associations with potentially any nuclear subcompartment.
Collapse
Affiliation(s)
- Reagan W Ching
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
39
|
Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:122-30. [PMID: 23592320 DOI: 10.1002/ajmg.c.31361] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) and megalencephaly-capillary malformation (MCAP) syndromes are highly recognizable and partly overlapping disorders of brain overgrowth (megalencephaly). Both syndromes are characterized by congenital or early postnatal megalencephaly, with a high risk for progressive ventriculomegaly leading to hydrocephalus and cerebellar tonsillar ectopia leading to Chiari malformation, and cortical brain abnormalities, specifically polymicrogyria. MCAP is further characterized by distinct cutaneous capillary malformations, finger or toe syndactyly, postaxial polydactyly, variable connective tissue dysplasia and mild focal or segmental body overgrowth, among other features. MPPH, on the other hand, lacks consistent vascular or somatic manifestations besides postaxial polydactyly in almost half of reported individuals. We identified de novo germline mutations in PIK3R2 and AKT3 in individuals with MPPH, and both postzygotic, mosaic and rare germline mutations in PIK3CA in individuals with MCAP. PIK3R2, AKT3, and PIK3CA are members of the critical phosphatidylinositol-3-kinase (PI3K)-vakt murine thymoma viral oncogene homolog (AKT) pathway that is well implicated in cell growth, proliferation, survival, apoptosis, among other diverse cellular functions. The identified mutations in these three genes have been shown to lead to gain of function and activation of the PI3K-AKT pathway. Germline and postzygotic mutations of PIK3CA and other PI3K-AKT-mTOR pathway genes have also been identified in several other overgrowth syndromes, highlighting the key role of this signaling pathway in normal development and pathophysiology of a large group of congenital anomalies.
Collapse
Affiliation(s)
- Ghayda M Mirzaa
- Department of Pediatrics, Center for Integrative Brain Research, University of Washington, Seattle Children's Research Institute, Seattle, WA, USA.
| | | | | |
Collapse
|
40
|
Genovese G, Handsaker RE, Li H, Altemose N, Lindgren AM, Chambert K, Pasaniuc B, Price AL, Reich D, Morton CC, Pollak MR, Wilson JG, McCarroll SA. Using population admixture to help complete maps of the human genome. Nat Genet 2013; 45:406-14, 414e1-2. [PMID: 23435088 PMCID: PMC3683849 DOI: 10.1038/ng.2565] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/31/2013] [Indexed: 12/16/2022]
Abstract
Tens of millions of base pairs of euchromatic human genome sequence, including many protein-coding genes, have no known location in the human genome. We describe an approach for localizing the human genome's missing pieces using the patterns of genome sequence variation created by population admixture. We mapped the locations of 70 scaffolds spanning 4 million base pairs of the human genome's unplaced euchromatic sequence, including more than a dozen protein-coding genes, and identified 8 new large interchromosomal segmental duplications. We find that most of these sequences are hidden in the genome's heterochromatin, particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed at the RNA level and have been maintained intact for millions of years while their expression patterns diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge of the locations of these sequences can inform disease association and genome biology studies.
Collapse
Affiliation(s)
- Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The University of California Santa Cruz (UCSC) Genome Browser is a popular Web-based tool for quickly displaying a requested portion of a genome at any scale, accompanied by a series of aligned annotation "tracks." The annotations generated by the UCSC Genome Bioinformatics Group and external collaborators include gene predictions, mRNA and expressed sequence tag alignments, simple nucleotide polymorphisms, expression and regulatory data, phenotype and variation data, and pairwise and multiple-species comparative genomics data. All information relevant to a region is presented in one window, facilitating biological analysis and interpretation. The database tables underlying the Genome Browser tracks can be viewed, downloaded, and manipulated using another Web-based application, the UCSC Table Browser. Users can upload personal datasets in a wide variety of formats as custom annotation tracks in both browsers for research or educational purposes. This unit describes how to use the Genome Browser and Table Browser for genome analysis, download the underlying database tables, and create and display custom annotation tracks.
Collapse
Affiliation(s)
- Donna Karolchik
- Center for Biomolecular Science and Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | | | | |
Collapse
|
42
|
Koutsogiannouli E, Papavassiliou AG, Papanikolaou NA. Complexity in cancer biology: is systems biology the answer? Cancer Med 2013; 2:164-77. [PMID: 23634284 PMCID: PMC3639655 DOI: 10.1002/cam4.62] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 12/18/2022] Open
Abstract
Complex phenotypes emerge from the interactions of thousands of macromolecules that are organized in multimolecular complexes and interacting functional modules. In turn, modules form functional networks in health and disease. Omics approaches collect data on changes for all genes and proteins and statistical analysis attempts to uncover the functional modules that perform the functions that characterize higher levels of biological organization. Systems biology attempts to transcend the study of individual genes/proteins and to integrate them into higher order information. Cancer cells exhibit defective genetic and epigenetic networks formed by altered complexes and network modules arising in different parts of tumor tissues that sustain autonomous cell behavior which ultimately lead tumor growth. We suggest that an understanding of tumor behavior must address not only molecular but also, and more importantly, tumor cell heterogeneity, by considering cancer tissue genetic and epigenetic networks, by characterizing changes in the types, composition, and interactions of complexes and networks in the different parts of tumor tissues, and by identifying critical hubs that connect them in time and space.
Collapse
Affiliation(s)
- Evangelia Koutsogiannouli
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki 54124, Thessaloniki, Greece
| | | | | |
Collapse
|
43
|
Self-assembly of thin plates from micrococcal nuclease-digested chromatin of metaphase chromosomes. Biophys J 2013; 103:567-575. [PMID: 22947873 DOI: 10.1016/j.bpj.2012.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/12/2012] [Accepted: 06/20/2012] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of the enormously long DNA molecules packaged within metaphase chromosomes has been one of the most elusive problems in structural biology. Chromosomal DNA is associated with histones and different structural models consider that the resulting long chromatin fibers are folded forming loops or more irregular three-dimensional networks. Here, we report that fragments of chromatin fibers obtained from human metaphase chromosomes digested with micrococcal nuclease associate spontaneously forming multilaminar platelike structures. These self-assembled structures are identical to the thin plates found previously in partially denatured chromosomes. Under metaphase ionic conditions, the fragments that are initially folded forming the typical 30-nm chromatin fibers are untwisted and incorporated into growing plates. Large plates can be self-assembled from very short chromatin fragments, indicating that metaphase chromatin has a high tendency to generate plates even when there are many discontinuities in the DNA chain. Self-assembly at 37°C favors the formation of thick plates having many layers. All these results demonstrate conclusively that metaphase chromatin has the intrinsic capacity to self-organize as a multilayered planar structure. A chromosome structure consistent of many stacked layers of planar chromatin avoids random entanglement of DNA, and gives compactness and a high physical consistency to chromatids.
Collapse
|
44
|
Di Caprio G, Schaak D, Schonbrun E. Hyperspectral fluorescence microfluidic (HFM) microscopy. BIOMEDICAL OPTICS EXPRESS 2013; 4:1486-93. [PMID: 24010010 PMCID: PMC3756569 DOI: 10.1364/boe.4.001486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 05/22/2023]
Abstract
We present an imaging system that collects hyperspectral images of cells travelling through a microfluidic channel. Using a single monochrome camera and a linear variable bandpass filter (LVF), the system captures a bright field image and a set of hyperspectral fluorescence images for each cell. While the bandwidth of the LVF is 20 nm, we have demonstrated that we can determine the peak wavelength of a fluorescent object's emission spectrum with an accuracy of below 3 nm. In addition, we have used this system to capture fluorescence spectra of individual spatially resolved cellular organelles and to spectrally resolve multiple fluorophores in individual cells.
Collapse
Affiliation(s)
- Giuseppe Di Caprio
- Rowland Institute at Harvard, Harvard University, 100 E. Land Boulevard, Cambridge MA, USA
| | - Diane Schaak
- Rowland Institute at Harvard, Harvard University, 100 E. Land Boulevard, Cambridge MA, USA
| | - Ethan Schonbrun
- Rowland Institute at Harvard, Harvard University, 100 E. Land Boulevard, Cambridge MA, USA
| |
Collapse
|
45
|
Schneider VA, Chen HC, Clausen C, Meric PA, Zhou Z, Bouk N, Husain N, Maglott DR, Church DM. Clone DB: an integrated NCBI resource for clone-associated data. Nucleic Acids Res 2012. [PMID: 23193260 PMCID: PMC3531087 DOI: 10.1093/nar/gks1164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents.
Collapse
Affiliation(s)
- Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ryu TK, Lee G, Rhee Y, Park HS, Chang M, Lee S, Lee J, Lee TK. Identification of nickel response genes in abnormal early developments of sea urchin by differential display polymerase chain reaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:18-24. [PMID: 22809708 DOI: 10.1016/j.ecoenv.2012.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 06/01/2023]
Abstract
Bioassays and biomarkers have been previously developed to assess the effects of heavy metal contaminants on the early life stages of the sea urchin. In this study, malformation in the early developmental processes was observed in sea urchin (Strongylocentrotus intermedius) larvae exposed to 10 ppm Ni for over 30 h. The most critical stage at which the triggering of nickel effects takes place is thought to be the blastula stage, which occurs after fertilization in larval development. To investigate the molecular-level responses of sea urchin exposed to heavy metal stress and to explore the differentially expressed genes that are induced or repressed by nickel, differential display polymerase chain reaction (DD-PCR) was used with sea urchin mRNAs. The malformation-related genes expressed in the early life stages of the sea urchin were cloned from larvae exposed to 10 ppm of nickel for 15 h, and accessed via DD-PCR. Sequence analysis results revealed that each of the genes evidenced high homology with EGF2, PCSK9, serine/threonine protein kinase, apolipophorin precursor protein, and MGC80921 protein/transcript variant 2. This result may prove useful in the development of novel biomarkers for the assessment of heavy metal stresses on sea urchin embryos.
Collapse
Affiliation(s)
- Tae Kwon Ryu
- Risk Assessment Division, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kim HG, Kim HT, Leach NT, Lan F, Ullmann R, Silahtaroglu A, Kurth I, Nowka A, Seong IS, Shen Y, Talkowski ME, Ruderfer D, Lee JH, Glotzbach C, Ha K, Kjaergaard S, Levin AV, Romeike BF, Kleefstra T, Bartsch O, Elsea SH, Jabs EW, MacDonald ME, Harris DJ, Quade BJ, Ropers HH, Shaffer LG, Kutsche K, Layman LC, Tommerup N, Kalscheuer VM, Shi Y, Morton CC, Kim CH, Gusella JF. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am J Hum Genet 2012; 91:56-72. [PMID: 22770980 PMCID: PMC3397276 DOI: 10.1016/j.ajhg.2012.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/18/2012] [Accepted: 05/10/2012] [Indexed: 12/30/2022] Open
Abstract
Potocki-Shaffer syndrome (PSS) is a contiguous gene disorder due to the interstitial deletion of band p11.2 of chromosome 11 and is characterized by multiple exostoses, parietal foramina, intellectual disability (ID), and craniofacial anomalies (CFAs). Despite the identification of individual genes responsible for multiple exostoses and parietal foramina in PSS, the identity of the gene(s) associated with the ID and CFA phenotypes has remained elusive. Through characterization of independent subjects with balanced translocations and supportive comparative deletion mapping of PSS subjects, we have uncovered evidence that the ID and CFA phenotypes are both caused by haploinsufficiency of a single gene, PHF21A, at 11p11.2. PHF21A encodes a plant homeodomain finger protein whose murine and zebrafish orthologs are both expressed in a manner consistent with a function in neurofacial and craniofacial development, and suppression of the latter led to both craniofacial abnormalities and neuronal apoptosis. Along with lysine-specific demethylase 1 (LSD1), PHF21A, also known as BHC80, is a component of the BRAF-histone deacetylase complex that represses target-gene transcription. In lymphoblastoid cell lines from two translocation subjects in whom PHF21A was directly disrupted by the respective breakpoints, we observed derepression of the neuronal gene SCN3A and reduced LSD1 occupancy at the SCN3A promoter, supporting a direct functional consequence of PHF21A haploinsufficiency on transcriptional regulation. Our finding that disruption of PHF21A by translocations in the PSS region is associated with ID adds to the growing list of ID-associated genes that emphasize the critical role of transcriptional regulation and chromatin remodeling in normal brain development and cognitive function.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Prabodha LBL, Dias DK, Nanayakkara BG, de Silva DC, Chandrasekharan NV, Ileyperuma I. Evaluation of 22q11.2 deletion in Cleft Palate patients. Ann Maxillofac Surg 2012; 2:121-6. [PMID: 23483617 PMCID: PMC3591068 DOI: 10.4103/2231-0746.101334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cleft palate is the commonest multifactorial epigenetic disorder with a prevalence of 0.43-2.45 per 1000. The objectives of this study were to evaluate the clinical features and identify the 22q11.2 deletion in patients with cleft palate in Sri Lanka. MATERIALS AND METHODS Cleft patients attending a Teaching Hospital in Sri Lanka were recruited for this study. The relevant data were obtained from review of case notes, interviews, and examination of patients according to a standard evaluation sheet. Quantitative multiplex polymerase chain reaction (PCR) was performed to identify the 22q11.2 deletion. A gel documentation system (Bio-Doc) was used to quantify the PCR product following electrophoresis on 0.8% agarose gel. RESULTS AND CONCLUSION There were 162 cleft palate patients of whom 59% were females. A total of 92 cleft palate subjects (56.2%) had other associated clinical features. Dysmorphic features (25.27%) and developmental delays (25.27%) were the commonest medical problems encountered. The cleft was limited to the soft palate in 125 patients, while in 25 patients it involved both the hard and the soft palate. There were seven subjects with bifid uvula and five subjects with submucous cleft palate. None of the patients had 22q11.2 deletion in this study population. A multicentered large population-based study is needed to confirm the results of this study and to develop guidelines on the appropriate use of 22q11.2 deletion testing, which are valid for cleft palate patients in Sri Lanka.
Collapse
Affiliation(s)
- L. B. Lahiru Prabodha
- Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Dayanath Kumara Dias
- Regional Cleft Centre & Maxillo-Facial Department, Teaching Hospital, Karapitiya, Galle, Sri Lanka
| | - B. Ganananda Nanayakkara
- Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | | | | - Isurani Ileyperuma
- Molecular Genetics Laboratory, Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| |
Collapse
|
49
|
Hodge JC, Kim TM, Dreyfuss JM, Somasundaram P, Christacos NC, Rousselle M, Quade BJ, Park PJ, Stewart EA, Morton CC. Expression profiling of uterine leiomyomata cytogenetic subgroups reveals distinct signatures in matched myometrium: transcriptional profilingof the t(12;14) and evidence in support of predisposing genetic heterogeneity. Hum Mol Genet 2012; 21:2312-29. [PMID: 22343407 PMCID: PMC3335314 DOI: 10.1093/hmg/dds051] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/24/2012] [Accepted: 02/13/2012] [Indexed: 01/22/2023] Open
Abstract
Uterine leiomyomata (UL), the most common neoplasm in reproductive-age women, are classified into distinct genetic subgroups based on recurrent chromosome abnormalities. To develop a molecular signature of UL with t(12;14)(q14-q15;q23-q24), we took advantage of the multiple UL arising as independent clonal lesions within a single uterus. We compared genome-wide expression levels of t(12;14) UL to non-t(12;14) UL from each of nine women in a paired analysis, with each sample weighted for the percentage of t(12;14) cells to adjust for mosaicism with normal cells. This resulted in a transcriptional profile that confirmed HMGA2, known to be overexpressed in t(12;14) UL, as the most significantly altered gene. Pathway analysis of the differentially expressed genes showed significant association with cell proliferation, particularly G1/S checkpoint regulation. This is consistent with the known larger size of t(12;14) UL relative to karyotypically normal UL or to UL in the deletion 7q22 subgroup. Unsupervised hierarchical clustering demonstrated that patient variability is relatively dominant to the distinction of t(12;14) UL compared with non-t(12;14) UL or of t(12;14) UL compared with del(7q) UL. The paired design we employed is therefore important to produce an accurate t(12;14) UL-specific gene list by removing the confounding effects of genotype and environment. Interestingly, myometrium not only clustered away from the tumors, but generally separated based on associated t(12;14) versus del(7q) status. Nine genes were identified whose expression can distinguish the myometrium origin. This suggests an underlying constitutional genetic predisposition to these somatic changes which could potentially lead to improved personalized management and treatment.
Collapse
Affiliation(s)
- Jennelle C. Hodge
- Department of Obstetrics, Gynecology and Reproductive Biology and
- Harvard Medical School, Boston, MA02115, USA
- Department of Laboratory Medicine and Pathology and
| | - Tae-Min Kim
- Harvard Medical School, Boston, MA02115, USA
| | | | | | - Nicole C. Christacos
- Department of Obstetrics, Gynecology and Reproductive Biology and
- Harvard Medical School, Boston, MA02115, USA
- Cytogenetics Department, Quest Diagnostics Nichols Institute, Chantilly, VA 20151, USA
| | | | - Bradley J. Quade
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA02115, USA
| | - Peter J. Park
- Harvard Medical School, Boston, MA02115, USA
- Harvard-Partners Center for Genetics and Genomics, Boston, MA 02115, USA
- Children's Hospital Informatics Program, Boston, MA 02115, USA and
| | - Elizabeth A. Stewart
- Department of Obstetrics, Gynecology and Reproductive Biology and
- Harvard Medical School, Boston, MA02115, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN55905, USA
| | - Cynthia C. Morton
- Department of Obstetrics, Gynecology and Reproductive Biology and
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA02115, USA
- Harvard-Partners Center for Genetics and Genomics, Boston, MA 02115, USA
| |
Collapse
|
50
|
CHELALA CLAUDE, DEVIGNES MARIEDOMINIQUE, IMBEAUD SANDRINE, ZOOROB RIMA, AUFFRAY CHARLES, CURIS EMMANUEL, BÉNAZETH SIMONE, COX DAVID. INCONSISTENCIES BETWEEN MAPS OF HUMAN CHROMOSOME 22 CORRELATE WITH INCREASED FREQUENCY OF DISEASE-RELATED LOCI. J BIOL SYST 2012. [DOI: 10.1142/s0218339002000743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationships between genetic or radiation hybrid (RH) and sequence maps of chromosome 22 have been reconsidered based on the sequence map. Integrated maps have been constructed by retaining only common markers between genetic or RH maps and the sequence map. Local inversions of markers have been detected. Ratios between either genetic or RH distances and sequence-based distances have been calculated for each map interval. Hot zones for recombination or radiation breakage have been delineated by merging together intervals displaying high distance ratios and located close to each other for sequence-constrained RH maps, and for female and male genetic maps. A statistically significant positive correlation was found between the distribution of disease-related genes and the hot zones for recombination or radiation breakage on both female genetic and Stanford-G3 RH maps. This observation indicates that investigation of chromosomal regions displaying inconsistencies between RH or genetic linkage and sequence-based maps can accelerate the initial phase of identification of disease-associated genes.
Collapse
Affiliation(s)
- CLAUDE CHELALA
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - MARIE-DOMINIQUE DEVIGNES
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - SANDRINE IMBEAUD
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - RIMA ZOOROB
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - CHARLES AUFFRAY
- CNRS FRE 2571, Génomique Fonctionnelle et Biologie Systémique en Santé, 19 rue Guy Mocquet, B.P. 8, 94801 Villejuif Cedex, France
| | - EMMANUEL CURIS
- Laboratoire de Biomathématique, Faculté de Pharmacie-Paris V, 4 avenue de l'Observatoire, 75006 Paris, France
| | - SIMONE BÉNAZETH
- Laboratoire de Biomathématique, Faculté de Pharmacie-Paris V, 4 avenue de l'Observatoire, 75006 Paris, France
| | - DAVID COX
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|