1
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Le Voyer T, Debray JC, Stolzenberg MC, Schmutz M, Pellé O, Becquard T, Rodrigo Riestra M, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Bretot C, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Mutations disrupting the kinase domain of IKKα lead to immunodeficiency and immune dysregulation in humans. J Exp Med 2025; 222:e20240843. [PMID: 39812688 PMCID: PMC11734625 DOI: 10.1084/jem.20240843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was unexpectedly partially impaired. Reintroducing wt CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of biallelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding, and suggesting IKKα's role in canonical NF-κB target gene expression in humans.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Boris Sorin
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charline Courteille
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Duong Ho-Nhat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Jean-Christophe Debray
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Olivier Pellé
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Thomas Becquard
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - María Rodrigo Riestra
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Laure Delage
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Marie Jeanpierre
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charlotte Boussard
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Brunaud
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aude Magérus
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Charles Bretot
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Victor Michel
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Camille Roux
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hopitaux de Paris (AP-HP), University Paris Cité, Paris, France
| | - Cécile Masson
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Christine Bole-Feysot
- Genomic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Nicolas Cagnard
- Bioinformatic Platform, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| | - Aurélien Corneau
- UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, Sorbonne Université, Paris, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- NF-κB, Differentiation and Cancer, URP7324, University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alain Fischer
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Cécile Boulanger
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children’s Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France
| |
Collapse
|
2
|
García-García VA, Alameda JP, Fernández-Aceñero MJ, Navarro M, García-Escudero R, Page A, Mateo-Gallego R, Paramio JM, Ramírez Á, García-Fernández RA, Bravo A, Casanova ML. Nuclear versus cytoplasmic IKKα signaling in keratinocytes leads to opposite skin phenotypes and inflammatory responses, and a different predisposition to cancer. Oncogene 2025; 44:165-178. [PMID: 39511409 PMCID: PMC11725495 DOI: 10.1038/s41388-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
IKKα is known as an essential protein for skin homeostasis. However, the lack of suitable models to investigate its functions in the skin has led to IKKα being mistakenly considered as a suppressor of non-melanoma skin cancer (NMSC) development. In this study, using our previously generated transgenic mouse models expressing exogenous IKKα in the cytoplasm (C-IKKα mice) or in the nucleus (N-IKKα mice) of basal keratinocytes, we demonstrate that at each subcellular localization, IKKα differently regulates signaling pathways important for maintaining the balance between keratinocyte proliferation and differentiation, and for the cutaneous inflammatory response. In addition, each type of IKKα-transgenic mice shows different predisposition to the development of spontaneous NMSC. Specifically, N-IKKα mice display an atrophic epidermis with exacerbated terminal differentiation, signs of premature skin aging, premalignant lesions, and develop squamous cell carcinomas (SCCs). Conversely, C-IKKα mice, whose keratinocytes are nearly devoid of endogenous nuclear IKKα, do not develop skin SCCs, although they exhibit hyperplastic skin with deficiencies in terminal epidermal differentiation, chronic cutaneous inflammation, and constitutive activation of STAT-3 and NF-κB signaling pathways. Altogether, our data demonstrate that alterations in the localization of IKKα in the nucleus or cytoplasm of keratinocytes cause opposite skin changes and differentially predispose to the growth of skin SCCs.
Collapse
Affiliation(s)
- Verónica A García-García
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
| | - Josefa P Alameda
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | | | - Manuel Navarro
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Ramón García-Escudero
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Angustias Page
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Raúl Mateo-Gallego
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
| | - Jesús M Paramio
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Ángel Ramírez
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Rosa A García-Fernández
- Department of Animal Medicine and Surgery, Facultad de Veterinaria, UCM, 28040, Madrid, Spain
| | - Ana Bravo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - M Llanos Casanova
- Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avda. Complutense 40, 28040, Madrid, Spain.
- Biomedical Research Institute, University Hospital "12 de Octubre", 28041, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
3
|
Cildir G, Aba U, Pehlivan D, Tvorogov D, Warnock NI, Ipsir C, Arik E, Kok CH, Bozkurt C, Tekeoglu S, Inal G, Cesur M, Kucukosmanoglu E, Karahan I, Savas B, Balci D, Yaman A, Demirbaş ND, Tezcan I, Haskologlu S, Dogu F, Ikinciogulları A, Keskin O, Tumes DJ, Erman B. Defective kinase activity of IKKα leads to combined immunodeficiency and disruption of immune tolerance in humans. Nat Commun 2024; 15:9944. [PMID: 39550372 PMCID: PMC11569180 DOI: 10.1038/s41467-024-54345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
IKKα is a multifunctional serine/threonine kinase that controls various biological processes, either dependent on or independent of its kinase activity. However, the importance of the kinase function of IKKα in human physiology remains unknown since no biallelic variants disrupting its kinase activity have been reported. In this study, we present a homozygous germline missense variant in the kinase domain of IKKα, which is present in three children from two Turkish families. This variant, referred to as IKKαG167R, is in the activation segment of the kinase domain and affects the conserved (DF/LG) motif responsible for coordinating magnesium atoms for ATP binding. As a result, IKKαG167R abolishes the kinase activity of IKKα, leading to impaired activation of the non-canonical NF-κB pathway. Patients carrying IKKαG167R exhibit a range of immune system abnormalities, including the absence of secondary lymphoid organs, hypogammaglobulinemia and limited diversity of T and B cell receptors with evidence of autoreactivity. Overall, our findings indicate that, unlike a nonsense IKKα variant that results in early embryonic lethality in humans, the deficiency of IKKα's kinase activity is compatible with human life. However, it significantly disrupts the homeostasis of the immune system, underscoring the essential and non-redundant kinase function of IKKα in humans.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Umran Aba
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
| | - Canberk Ipsir
- Department of Paediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Türkiye
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Elif Arik
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Chung Hoow Kok
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
- Data and Bioinformatics Innovation, Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, SA 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye
| | - Gaye Inal
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Mahmut Cesur
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ercan Kucukosmanoglu
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Ibrahim Karahan
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Berna Savas
- Department of Pathology, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Deniz Balci
- Department of General Surgery and Organ Transplantation, Bahcesehir University School of Medicine, Istanbul, Türkiye
| | - Ayhan Yaman
- Pediatric Intensive Care Unit, Department of Pediatrics, Istinye University, Bahcesehir Liv Hospital, Istanbul, Türkiye
| | - Nazli Deveci Demirbaş
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ilhan Tezcan
- Department of Paediatric Immunology, Hacettepe University Faculty of Medicine, İhsan Doğramacı Children's Hospital, Ankara, Türkiye
| | - Sule Haskologlu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Figen Dogu
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Aydan Ikinciogulları
- Department of Paediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ozlem Keskin
- Division of Paediatric Allergy and Immunology, Department of Paediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye.
| | - Damon J Tumes
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia.
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye.
- Institute of Child Health, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
4
|
Riley C, Ammar U, Alsfouk A, Anthony NG, Baiget J, Berretta G, Breen D, Huggan J, Lawson C, McIntosh K, Plevin R, Suckling CJ, Young LC, Paul A, Mackay SP. Design and Synthesis of Novel Aminoindazole-pyrrolo[2,3- b]pyridine Inhibitors of IKKα That Selectively Perturb Cellular Non-Canonical NF-κB Signalling. Molecules 2024; 29:3515. [PMID: 39124921 PMCID: PMC11314561 DOI: 10.3390/molecules29153515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The inhibitory-kappaB kinases (IKKs) IKKα and IKKβ play central roles in regulating the non-canonical and canonical NF-κB signalling pathways. Whilst the proteins that transduce the signals of each pathway have been extensively characterised, the clear dissection of the functional roles of IKKα-mediated non-canonical NF-κB signalling versus IKKβ-driven canonical signalling remains to be fully elucidated. Progress has relied upon complementary molecular and pharmacological tools; however, the lack of highly potent and selective IKKα inhibitors has limited advances. Herein, we report the development of an aminoindazole-pyrrolo[2,3-b]pyridine scaffold into a novel series of IKKα inhibitors. We demonstrate high potency and selectivity against IKKα over IKKβ in vitro and explain the structure-activity relationships using structure-based molecular modelling. We show selective target engagement with IKKα in the non-canonical NF-κB pathway for both U2OS osteosarcoma and PC-3M prostate cancer cells by employing isoform-related pharmacodynamic markers from both pathways. Two compounds (SU1261 [IKKα Ki = 10 nM; IKKβ Ki = 680 nM] and SU1349 [IKKα Ki = 16 nM; IKKβ Ki = 3352 nM]) represent the first selective and potent pharmacological tools that can be used to interrogate the different signalling functions of IKKα and IKKβ in cells. Our understanding of the regulatory role of IKKα in various inflammatory-based conditions will be advanced using these pharmacological agents.
Collapse
Affiliation(s)
- Christopher Riley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Usama Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Aisha Alsfouk
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nahoum G. Anthony
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Jessica Baiget
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Giacomo Berretta
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - David Breen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Judith Huggan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kathryn McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Louise C. Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
5
|
Riller Q, Sorin B, Courteille C, Ho-Nhat D, Voyer TL, Debray JC, Stolzenberg MC, Pellé O, Becquard T, Riestra MR, Berteloot L, Migaud M, Delage L, Jeanpierre M, Boussard C, Brunaud C, Magérus A, Michel V, Roux C, Picard C, Masson C, Bole-Feysot C, Cagnard N, Corneau A, Meyts I, Baud V, Casanova JL, Fischer A, Dejardin E, Puel A, Boulanger C, Neven B, Rieux-Laucat F. Compound heterozygous mutations in the kinase domain of IKKα lead to immunodeficiency and immune dysregulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307356. [PMID: 38798321 PMCID: PMC11118628 DOI: 10.1101/2024.05.17.24307356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/29/2024]
Abstract
IKKα, encoded by CHUK , is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. Absence of IKKα cause fetal encasement syndrome in human, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and cause combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features. We showed that both variants were loss-of-function. Non-canonical NF-κB activation was profoundly diminished in stromal and immune cells while the canonical pathway was partially impaired. Reintroducing wild-type CHUK restored non-canonical NF-κB activation. The patient had neutralizing autoantibodies against type I IFN, akin to non-canonical NF-κB pathway deficiencies. Thus, this is the first case of bi-allelic CHUK mutations disrupting IKKα kinase function, broadening non-canonical NF-κB defect understanding and suggesting IKKα's role in canonical NF-κB target gene expression in human.
Collapse
|
6
|
Shi G, Hu Y. TNFR1 and TNFR2, Which Link NF-κB Activation, Drive Lung Cancer Progression, Cell Dedifferentiation, and Metastasis. Cancers (Basel) 2023; 15:4299. [PMID: 37686574 PMCID: PMC10487001 DOI: 10.3390/cancers15174299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
TNFR1 and TNFR2, encoded by TNFRSF1A and TNFRSF1B, respectively, are the most well-characterized members among the TNFR superfamily. TNFR1 is expressed in most cell types, while TNFR2 has been reported to be preferentially expressed in leukocytes. Lung cancer remains the leading cause of cancer mortality worldwide but TNFRs' activities in lung cancer development have not been fully evaluated. Recently, overexpressed TNFR1 was reported in a large proportion of human lung squamous cell carcinomas. Increased TNFR1 coupled with increased UBCH10 caused lung SCC cell dedifferentiation with epithelial-mesenchymal transition features and the metastasis in a combined spontaneous lung SCC and TNFR1 transgenic mouse model. UBCH10, an E2 ubiquitin-conjugating enzyme that is an oncogene, increased Sox2, c-Myc, Twist1, and Bcl2 levels. Increased TNFR1 upregulated UBCH10 expression by activating c-Rel and p65 NF-κB. Lung SCC patients overexpressing TNFRSF1A and one of these target genes died early compared to lung SCC patients expressing lower levels of these genes. Recently, we also revealed that TNFR2 was required for lung adenocarcinoma progression, delivering a signaling pathway of TNF/TNFR2/NF-κB-c-Rel, in which macrophage-produced ROS and TNF converted CD4 T cells to Foxp3 Treg cells, generating an immunosuppressive tumor microenvironment and promoting lung ADC progression. In human lung ADC cohorts, TNFRSF1B expression was highly correlated with TNF, FOXP3, and CD4 expression. Of note, TNF stimulated the activities of TNFR1 and TNFR2, two membrane-binding receptors, which accelerate tumorigenesis through diverse mechanisms. This review focuses on these new findings regarding the roles of TNFR1 and TNFR2 in lung SCC and ADC development in humans and mice, and highlights the potential therapeutic targets of human lung cancers.
Collapse
Affiliation(s)
| | - Yinling Hu
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| |
Collapse
|
7
|
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. BIOLOGY 2023; 12:776. [PMID: 37372061 DOI: 10.3390/biology12060776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
8
|
Tseng KF, Tsai PH, Wang JS, Chen FY, Shen MY. Sesamol Attenuates Renal Inflammation and Arrests Reactive-Oxygen-Species-Mediated IL-1β Secretion via the HO-1-Induced Inhibition of the IKKα/NFκB Pathway In Vivo and In Vitro. Antioxidants (Basel) 2022; 11:antiox11122461. [PMID: 36552668 PMCID: PMC9774643 DOI: 10.3390/antiox11122461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic nephritis leads to irreversible renal fibrosis, ultimately leading to chronic kidney disease (CKD) and death. Macrophage infiltration and interleukin 1β (IL-1β) upregulation are involved in inflammation-mediated renal fibrosis and CKD. Sesamol (SM), which is extracted from sesame seeds, has antioxidant and anti-inflammatory properties. We aimed to explore whether SM mitigates macrophage-mediated renal inflammation and its underlying mechanisms. ApoE-/- mice were subjected to 5/6 nephrectomy (5/6 Nx) with or without the oral gavage of SM for eight weeks. Blood and urine samples and all the kidney remnants were collected for analysis. Additionally, THP-1 cells were used to explore the mechanism through which SM attenuates renal inflammation. Compared with the sham group, the 5/6 Nx ApoE-/- mice exhibited a significant increase in the macrophage infiltration of the kidneys (nephritis), upregulation of IL-1β, generation of reactive oxygen species, reduced creatinine clearance, and renal fibrosis. However, the administration of SM significantly alleviated these effects. SM suppressed the H2O2-induced secretion of IL-1β from the THP-1 cells via the heme oxygenase-1-induced inhibition of the IKKα-NF-κB pathway. SM attenuated renal inflammation and arrested macrophage accumulation by inhibiting IKKα, revealing a novel mechanism of the therapeutic effects of SM on renal injury and offering a potential approach to CKD treatment.
Collapse
Affiliation(s)
- Kuo-Feng Tseng
- Department of Biological Science and Technology, China Medical University, Taichung 40406, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jie-Sian Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, Division of Nephrology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: or ; Tel.: +886-4-2205-3366 (ext. 5809)
| |
Collapse
|
9
|
Kearly A, Ottens K, Battaglia MC, Satterthwaite AB, Garrett-Sinha LA. B Cell Activation Results in IKK-Dependent, but Not c-Rel- or RelA-Dependent, Decreases in Transcription of the B Cell Tolerance-Inducing Gene Ets1. Immunohorizons 2022; 6:779-789. [PMID: 36445360 PMCID: PMC10069408 DOI: 10.4049/immunohorizons.2100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Ets1 is a key transcription factor in B cells that is required to prevent premature differentiation into Ab-secreting cells. Previously, we showed that BCR and TLR signaling downregulate Ets1 levels and that the kinases PI3K, Btk, IKK, and JNK are required for this process. PI3K is important in activating Btk by generating the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate, to which Btk binds via its PH domain. Btk in turn is important in activating the IKK kinase pathway, which it does by activating phospholipase Cγ2→protein kinase Cβ signaling. In this study, we have further investigated the pathways regulating Ets1 in mouse B cells. Although IKK is well known for its role in activating the canonical NF-κB pathway, IKK-mediated downregulation of Ets1 does not require either RelA or c-Rel. We also examined the potential roles of two other IKK targets that are not part of the NF-κB signaling pathway, Foxo3a and mTORC2, in regulating Ets1. We find that loss of Foxo3a or inhibition of mTORC2 does not block BCR-induced Ets1 downregulation. Therefore, these two pathways are not key IKK targets, implicating other as yet undefined IKK targets to play a role in this process.
Collapse
Affiliation(s)
- Alyssa Kearly
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| | - Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael C Battaglia
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; and
| |
Collapse
|
10
|
A TNFR1-UBCH10 axis drives lung squamous cell carcinoma dedifferentiation and metastasis through a cell-autonomous signaling loop. Cell Death Dis 2022; 13:885. [PMID: 36270982 PMCID: PMC9587052 DOI: 10.1038/s41419-022-05308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1), encoded by TNFRSF1A, is a critical transducer of inflammatory pathways, but its physiological role in human cancer is not completely understood. Here, we observed high expression of TNFR1 in many human lung squamous cell carcinoma (SCCs) samples and in spontaneous lung SCCs derived from kinase-dead Ikkα knock-in (KA/KA) mice. Knocking out Tnfrf1a in KA/KA mice blocked lung SCC formation. When injected via tail vein, KALLU+ lung SCC cells that highly expressed TNFR1/TNF, Sox2, c-Myc, Twist1, Bcl2, and UBCH10, generated dedifferentiated spindle cell carcinomas with epithelial-mesenchymal transition markers in mouse lungs. In contrast, KALLU+ cells with silenced TNFR1 and KALLU- cells that expressed low levels of TNFR1 generated well-differentiated lung SCCs and were less tumorigenic and metastatic. We identified a downstream effector of TNFR1: oncogenic UBCH10, an E2 ubiquitin-conjugating enzyme with targets including Twist1, c-Myc, and Sox2, which enhanced SCC cell dedifferentiation. Furthermore, Tg-K5.TNFR1;KA/KA mice, which expressed transgenic TNFR1 in keratin 5-positve epithelial cells, developed more poorly differentiated and metastatic lung SCCs than those found in KA/KA mice. These findings demonstrate that an overexpressed TNFR1-UBCH10 axis advances lung carcinogenesis and metastasis through a dedifferentiation mechanism. Constituents in this pathway may contribute to the development of differentiation-related therapies for lung SCC.
Collapse
|
11
|
Hammond NL, Dixon MJ. Revisiting the embryogenesis of lip and palate development. Oral Dis 2022; 28:1306-1326. [PMID: 35226783 PMCID: PMC10234451 DOI: 10.1111/odi.14174] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Clefts of the lip and palate (CLP), the major causes of congenital facial malformation globally, result from failure of fusion of the facial processes during embryogenesis. With a prevalence of 1 in 500-2500 live births, CLP causes major morbidity throughout life as a result of problems with facial appearance, feeding, speaking, obstructive apnoea, hearing and social adjustment and requires complex, multi-disciplinary care at considerable cost to healthcare systems worldwide. Long-term outcomes for affected individuals include increased mortality compared with their unaffected siblings. The frequent occurrence and major healthcare burden imposed by CLP highlight the importance of dissecting the molecular mechanisms driving facial development. Identification of the genetic mutations underlying syndromic forms of CLP, where CLP occurs in association with non-cleft clinical features, allied to developmental studies using appropriate animal models is central to our understanding of the molecular events underlying development of the lip and palate and, ultimately, how these are disturbed in CLP.
Collapse
Affiliation(s)
- Nigel L. Hammond
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michael J. Dixon
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
12
|
Lan Y, Jiang R. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis. Curr Top Dev Biol 2022; 148:13-50. [PMID: 35461563 PMCID: PMC9060390 DOI: 10.1016/bs.ctdb.2021.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Cleft lip and cleft palate are common birth defects resulting from genetic and/or environmental perturbations of facial development in utero. Facial morphogenesis commences during early embryogenesis, with cranial neural crest cells interacting with the surface ectoderm to form initially partly separate facial primordia consisting of the medial and lateral nasal prominences, and paired maxillary and mandibular processes. As these facial primordia grow around the primitive oral cavity and merge toward the ventral midline, the surface ectoderm undergoes a critical differentiation step to form an outer layer of flattened and tightly connected periderm cells with a non-stick apical surface that prevents epithelial adhesion. Formation of the upper lip and palate requires spatiotemporally regulated inter-epithelial adhesions and subsequent dissolution of the intervening epithelial seam between the maxillary and medial/lateral nasal processes and between the palatal shelves. Proper regulation of epithelial integrity plays a paramount role during human facial development, as mutations in genes encoding epithelial adhesion molecules and their regulators have been associated with syndromic and non-syndromic orofacial clefts. In this chapter, we summarize mouse genetic studies that have been instrumental in unraveling the mechanisms regulating epithelial integrity and periderm differentiation during facial and palate development. Since proper epithelial integrity also plays crucial roles in wound healing and cancer, understanding the mechanisms regulating epithelial integrity during facial development have direct implications for improvement in clinical care of craniofacial patients.
Collapse
Affiliation(s)
- Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
13
|
IKKα-deficient lung adenocarcinomas generate an immunosuppressive microenvironment by overproducing Treg-inducing cytokines. Proc Natl Acad Sci U S A 2022; 119:2120956119. [PMID: 35121655 PMCID: PMC8833198 DOI: 10.1073/pnas.2120956119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
The tumor microenvironment (TME) provides potential targets for cancer therapy. However, how signals originating in cancer cells affect tumor-directed immunity is largely unknown. Deletions in the CHUK locus, coding for IκB kinase α (IKKα), correlate with reduced lung adenocarcinoma (ADC) patient survival and promote KrasG12D-initiated ADC development in mice, but it is unknown how reduced IKKα expression affects the TME. Here, we report that low IKKα expression in human and mouse lung ADC cells correlates with increased monocyte-derived macrophage and regulatory T cell (Treg) scores and elevated transcription of genes coding for macrophage-recruiting and Treg-inducing cytokines (CSF1, CCL22, TNF, and IL-23A). By stimulating recruitment of monocyte-derived macrophages from the bone marrow and enforcing a TNF/TNFR2/c-Rel signaling cascade that stimulates Treg generation, these cytokines promote lung ADC progression. Depletion of TNFR2, c-Rel, or TNF in CD4+ T cells or monocyte-derived macrophages dampens Treg generation and lung tumorigenesis. Treg depletion also attenuates carcinogenesis. In conclusion, reduced cancer cell IKKα activity enhances formation of a protumorigenic TME through a pathway whose constituents may serve as therapeutic targets for KRAS-initiated lung ADC.
Collapse
|
14
|
Shen Y, Boulton APR, Yellon RL, Cook MC. Skin manifestations of inborn errors of NF-κB. Front Pediatr 2022; 10:1098426. [PMID: 36733767 PMCID: PMC9888762 DOI: 10.3389/fped.2022.1098426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.
Collapse
Affiliation(s)
- Yitong Shen
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Anne P R Boulton
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Robert L Yellon
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Matthew C Cook
- Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.,Centre for Personalised Immunology, Australian National University, Canberra, Australia.,Cambridge Institute of Therapeutic Immunology and Infectious Disease, and Department of Medicine, University of Cambridge, United Kingdom
| |
Collapse
|
15
|
Jia J, Zhang P, Zhang C, Jiang G, Zheng W, Song S, Ai C. Sulfated polysaccharides from pacific abalone attenuated DSS-induced acute and chronic ulcerative colitis in mice via regulating intestinal micro-ecology and the NF-κB pathway. Food Funct 2021; 12:11351-11365. [PMID: 34668909 DOI: 10.1039/d1fo02431k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Due to potential side effects of current drugs in colitis treatment, polysaccharides with anti-inflammatory activities can be considered as alternative molecules for colitis treatment. Sulfated polysaccharide from pacific abalone (AGSP) reduced the level of lipopolysaccharides (LPS) and increased the production of short chain fatty acids in the colon of mice, and it reduced the levels of interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α and increased the IL-10 level in in vitro cell models, suggesting that it can be used as a probiotic agent to inhibit intestinal inflammation. Furthermore, AGSP reduced the disease activity index and intestinal damage, improved the mucosal immune response, and inhibited oxidative damage in mice with DSS-induced acute and chronic colitis, which can be associated with modulation of the NF-κB signaling pathway and gut microbiota. AGSP regulated the structure of the gut microbiota and reduced the level of Bacteroides that had positive correlation with the colitis symptoms. The in vitro result showed that AGSP may inhibit mucin degradation by Bacteroides via the change of the polysaccharide utilization strategy, which can protect intestinal barrier integrity. This study is useful to understand the mechanism by which AGSP ameliorates colitis and related diseases and promotes further development of AGSP.
Collapse
Affiliation(s)
- Jinhui Jia
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Panpan Zhang
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chenxi Zhang
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Guoping Jiang
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Weiyun Zheng
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Shuang Song
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunqing Ai
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
16
|
Basal and IL-1β enhanced chondrocyte chemotactic activity on monocytes are co-dependent on both IKKα and IKKβ NF-κB activating kinases. Sci Rep 2021; 11:21697. [PMID: 34737366 PMCID: PMC8568921 DOI: 10.1038/s41598-021-01063-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023] Open
Abstract
IKKα and IKKβ are essential kinases for activating NF-κB transcription factors that regulate cellular differentiation and inflammation. By virtue of their small size, chemokines support the crosstalk between cartilage and other joint compartments and contribute to immune cell chemotaxis in osteoarthritis (OA). Here we employed shRNA retroviruses to stably and efficiently ablate the expression of each IKK in primary OA chondrocytes to determine their individual contributions for monocyte chemotaxis in response to chondrocyte conditioned media. Both IKKα and IKKβ KDs blunted both the monocyte chemotactic potential and the protein levels of CCL2/MCP-1, the chemokine with the highest concentration and the strongest association with monocyte chemotaxis. These findings were mirrored by gene expression analysis indicating that the lowest levels of CCL2/MCP-1 and other monocyte-active chemokines were in IKKαKD cells under both basal and IL-1β stimulated conditions. We find that in their response to IL-1β stimulation IKKαKD primary OA chondrocytes have reduced levels of phosphorylated NFkappaB p65pSer536 and H3pSer10. Confocal microscopy analysis revealed co-localized p65 and H3pSer10 nuclear signals in agreement with our findings that IKKαKD effectively blunts their basal level and IL-1β dependent increases. Our results suggest that IKKα could be a novel OA disease target.
Collapse
|
17
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
18
|
Bainter W, Lougaris V, Wallace JG, Badran Y, Hoyos-Bachiloglu R, Peters Z, Wilkie H, Das M, Janssen E, Beano A, Farhat KB, Kam C, Bercich L, Incardona P, Villanacci V, Bondioni MP, Meini A, Baronio M, Abarzua P, Parolini S, Tabellini G, Maio S, Schmidt B, Goldsmith JD, Murphy G, Hollander G, Plebani A, Chou J, Geha RS. Combined immunodeficiency with autoimmunity caused by a homozygous missense mutation in inhibitor of nuclear factor 𝛋B kinase alpha (IKKα). Sci Immunol 2021; 6:eabf6723. [PMID: 34533979 DOI: 10.1126/sciimmunol.abf6723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassilios Lougaris
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yousef Badran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Zachary Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hazel Wilkie
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Beano
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Khaoula Ben Farhat
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luisa Bercich
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Incardona
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Vincenzo Villanacci
- Department of Pathology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Maria Pia Bondioni
- Department of Pediatric Radiology, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Antonella Meini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Manuela Baronio
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Phammela Abarzua
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Silvia Parolini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Giovanna Tabellini
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Maio
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey D Goldsmith
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - George Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georg Hollander
- Department of Paediatrics, the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Paediatric Immunology, Department of Biomedicine, University of Basel, University Children's Hospital Basel, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Alessandro Plebani
- Pediatrics Clinic, Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 2021; 12:716469. [PMID: 34434197 PMCID: PMC8381650 DOI: 10.3389/fimmu.2021.716469] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.
Collapse
Affiliation(s)
- Laura Barnabei
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Emmanuel Laplantine
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - William Mbongo
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| |
Collapse
|
20
|
Li J, Wang H, Zhang L, An N, Ni W, Gao Q, Yu Y. Capsaicin affects macrophage anti-inflammatory activity via the MAPK and NF-κB signaling pathways. INT J VITAM NUTR RES 2021. [PMID: 34235954 DOI: 10.1024/0300-9831/a000721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Capsaicin, the main constituent in chili, is an extremely spicy vanillin alkaloid and is found in several Capsicum species in China. Traditionally, it has been used to treat inflammatory diseases such as allergic rhinitis, neuralgia after shingles, refractory female urethral syndrome, spontaneous recalcitrant anal pruritus, and solid tumors. Constant stimulation of the body by inflammatory factors can lead to chronic inflammation. Capsaicin possesses anti-inflammatory activity; however, the underlying mechanism is unknown. We investigated the effect of capsaicin on the secretion of macrophage inflammatory factors in a lipopolysaccharide-induced inflammation model using 56 healthy, SPF grade, BALB/c mice. To this end, mice peritoneal macrophages were isolated and stimulated with lipopolysaccharide (1 μg/mL) and capsaicin (25, 50, 75, or 100 μg/mL) for 24 h. At all concentrations tested, capsaicin significantly promoted the phagocytosis of neutral red dye by macrophages. Furthermore, the gene expression and secretion of inflammatory cytokines significantly increased after induction with lipopolysaccharide (P<0.01); the interleukin (IL)-6 level was 204 μg/mL, tumor necrosis factor (TNF)-α level was 860 μg/mL, and nitric oxide (NO) level was 19.8 μg/mL. However, the treatment with capsaicin reduced their levels (P<0.01) and protein expression of lipopolysaccharide-induced extracellular signal-related kinase 1/2 and p65 (P<0.05). Overall, capsaicin reduced the secretion of inflammatory cytokines (P<0.01), interleukins, TNF-α (P<0.01), and NO by inhibiting the nuclear factor-kappa B and microtubule-associated protein kinase signaling pathways, and thereby reduced lipopolysaccharide-induced inflammatory response in macrophages.
Collapse
Affiliation(s)
- Jingshuang Li
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Hui Wang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Ni An
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Wan Ni
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Quanqi Gao
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yang Yu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
21
|
Serpen JY, Armenti ST, Prasov L. Immunogenetics of the Ocular Anterior Segment: Lessons from Inherited Disorders. J Ophthalmol 2021; 2021:6691291. [PMID: 34258050 PMCID: PMC8257379 DOI: 10.1155/2021/6691291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune and autoinflammatory diseases cause morbidity in multiple organ systems including the ocular anterior segment. Genetic disorders of the innate and adaptive immune system present an avenue to study more common inflammatory disorders and host-pathogen interactions. Many of these Mendelian disorders have ophthalmic manifestations. In this review, we highlight the ophthalmic and molecular features of disorders of the innate immune system. A comprehensive literature review was performed using PubMed and the Online Mendelian Inheritance in Man databases spanning 1973-2020 with a focus on three specific categories of genetic disorders: RIG-I-like receptors and downstream signaling, inflammasomes, and RNA processing disorders. Tissue expression, clinical associations, and animal and functional studies were reviewed for each of these genes. These genes have broad roles in cellular physiology and may be implicated in more common conditions with interferon upregulation including systemic lupus erythematosus and type 1 diabetes. This review contributes to our understanding of rare inherited conditions with ocular involvement and has implications for further characterizing the effect of perturbations in integral molecular pathways.
Collapse
Affiliation(s)
- Jasmine Y. Serpen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T. Armenti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Zhu F, Willette-Brown J, Zhang J, Ferre EMN, Sun Z, Wu X, Lionakis MS, Hu Y. NLRP3 Inhibition Ameliorates Severe Cutaneous Autoimmune Manifestations in a Mouse Model of Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy-Like Disease. J Invest Dermatol 2021; 141:1404-1415. [PMID: 33188780 PMCID: PMC8110612 DOI: 10.1016/j.jid.2020.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy show diverse endocrine and nonendocrine manifestations initiated by self-reactive T cells because of AIRE mutation-induced defective central tolerance. A large number of American patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy suffer from early-onset cutaneous inflammatory lesions accompanied by an infiltration of T cells and myeloid cells. The role of myeloid cells in this setting remains to be fully investigated. In this study, we characterize the autoinflammatory phenotypes in the skin of both autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like kinase-dead Ikkα knockin mice and patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. We found a marked infiltration of autoreactive CD4 T cells, macrophages, and neutrophils; elevated uric acid; and increased NLRP3, a major inflammasome component. Depleting autoreactive CD4 T cells or ablating Ccl2/Cxcr2 genes significantly attenuated the inflammasome activity, inflammation, and skin phenotypes in kinase-dead Ikkα knockin mice. Importantly, treatment with an NLRP3 inhibitor reduced skin phenotypes and decreased infiltration of CD4 T cells, macrophages, and neutrophils. These results suggest that increased myeloid cell infiltration contributes to autoreactive CD4 T cell-mediated skin autoinflammation. Thus, our findings reveal that the combined infiltration of macrophages and neutrophils is required for autoreactive CD4 T cell-mediated skin disease pathogenesis and that the NLRP3-dependent inflammasome is a potential therapeutic target for the cutaneous manifestations of autoimmune diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Jami Willette-Brown
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Jian Zhang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA; Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Elise M N Ferre
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yinling Hu
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA.
| |
Collapse
|
23
|
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 2021; 8:287-297. [PMID: 33997176 PMCID: PMC8093649 DOI: 10.1016/j.gendis.2020.06.005] [Citation(s) in RCA: 260] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2019] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor kappa B (NF-kB) family of transcription factors plays an essential role as stressors in the cellular environment, and controls the expression of important regulatory genes such as immunity, inflammation, death, and cell proliferation. NF-kB protein is located in the cytoplasm, and can be activated by various cellular stimuli. There are two pathways for NF-kB activation, as the canonical and non-canonical pathways, which require complex molecular interactions with adapter proteins and phosphorylation and ubiquitinase enzymes. Accordingly, this increases NF-kB translocation in the nucleus and regulates gene expression. In this study, the concepts that emerge in different cellular systems allow the design of NF-kB function in humans. This would not only allow the development for rare diseases associated with NF-kB, but would also be used as a source of useful information to eliminate widespread consequences such as cancer or inflammatory/immune diseases.
Collapse
Affiliation(s)
| | - Bettina Schock
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1336616357, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
| | | | - Seyed Amir Jalali
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1336616357, Iran
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
| |
Collapse
|
24
|
Liao Y, Hua Y, Li Y, Zhang C, Yu W, Guo P, Zou K, Li W, Sun Y, Wang R, Zuo Y, Sui S, Tian C, Hao J, Chen M, Hu S, Chen M, Long Q, Wang X, Zou L, Xie F, Guo W, Deng W. CRSP8 promotes thyroid cancer progression by antagonizing IKKα-induced cell differentiation. Cell Death Differ 2021; 28:1347-1363. [PMID: 33162555 PMCID: PMC8027816 DOI: 10.1038/s41418-020-00656-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
CRSP8 plays an important role in recruiting mediators to genes through direct interaction with various DNA-bound transactivators. In this study, we uncovered the unique function of CRSP8 in suppressing thyroid cancer differentiation and promoting thyroid cancer progression via targeting IKKα signaling. CRSP8 was highly expressed in human thyroid cancer cells and tissues, especially in anaplastic thyroid cancer (ATC). Knockdown of CRSP8 suppressed cell growth, migration, invasion, stemness, and induced apoptosis and differentiation in ATC cells, while its overexpression displayed opposite effects in differentiated thyroid cancer (DTC) cells. Mechanistically, CRSP8 downregulated IKKα expression by binding to the IKKα promoter region (-257 to -143) to negatively regulate its transcription. Knockdown or overexpression of IKKα significantly reversed the expression changes of the differentiation and EMT-related markers and cell growth changes mediated by CRSP8 knockdown or overexpression in ATC or DTC cells. The in vivo study also validated that CRSP8 knockdown inhibited the growth of thyroid cancer by upregulating IKKα signaling in a mouse model of human ATC. Furthermore, we found that CRSP8 regulated the sensitivity of thyroid cancer cells to chemotherapeutics, including cisplatin and epirubicin. Collectively, our results demonstrated that CRSP8 functioned as a modulator of IKKα signaling and a suppressor of thyroid cancer differentiation, suggesting a potential therapeutic strategy for ATC by targeting CRSP8/IKKα pathway.
Collapse
Affiliation(s)
- Yina Liao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Shanghai Center for Thyroid Disease, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yijun Hua
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wendan Yu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ping Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Kun Zou
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wenyang Li
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yao Sun
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ruozhu Wang
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yan Zuo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Silei Sui
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Tian
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Manyu Chen
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Sheng Hu
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaonan Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Lijuan Zou
- The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wei Guo
- Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Li X, Hu Y. Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers (Basel) 2021; 13:cancers13061411. [PMID: 33808757 PMCID: PMC8003426 DOI: 10.3390/cancers13061411] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary CHUK/IKKα has emerged as a novel tumor suppressor in several organs of humans and mice. In general, activation of NF-κB promotes inflammation and tumorigenesis. IKKα reduction stimulates inflammatory responses including NF-κB’s targets and NF-κB-independent pathways for tumor promotion. Specific phenomena from genetically-modified mice and human TCGA database show the crosstalk between IKKα and NF-κB although their nature paths for normal organ development and the disease and cancer pathogenesis remains largely under investigation. In this review, we focus on the interplay between IKKα and NF-κB signaling during carcinogenesis. A better understanding of their relationship will provide insight into therapeutic targets of cancer. Abstract Studies analyzing human cancer genome sequences and genetically modified mouse models have extensively expanded our understanding of human tumorigenesis, even challenging or reversing the dogma of certain genes as originally characterized by in vitro studies. Inhibitor-κB kinase α (IKKα), which is encoded by the conserved helix-loop-helix ubiquitous kinase (CHUK) gene, is first identified as a serine/threonine protein kinase in the inhibitor-κB kinase complex (IKK), which is composed of IKKα, IKKβ, and IKKγ (NEMO). IKK phosphorylates serine residues 32 and 36 of IκBα, a nuclear factor-κB (NF-κB) inhibitor, to induce IκBα protein degradation, resulting in the nuclear translocation of NF-κB dimers that function as transcriptional factors to regulate immunity, infection, lymphoid organ/cell development, cell death/growth, and tumorigenesis. NF-κB and IKK are broadly and differentially expressed in the cells of our body. For a long time, the idea that the IKK complex acts as a direct upstream activator of NF-κB in carcinogenesis has been predominately accepted in the field. Surprisingly, IKKα has emerged as a novel suppressor for skin, lung, esophageal, and nasopharyngeal squamous cell carcinoma, as well as lung and pancreatic adenocarcinoma (ADC). Thus, Ikkα loss is a tumor driver in mice. On the other hand, lacking the RANKL/RANK/IKKα pathway impairs mammary gland development and attenuates oncogene- and chemical carcinogen-induced breast and prostate tumorigenesis and metastasis. In general, NF-κB activation leads one of the major inflammatory pathways and stimulates tumorigenesis. Since IKKα and NF-κB play significant roles in human health, revealing the interplay between them greatly benefits the diagnosis, treatment, and prevention of human cancer. In this review, we discuss the intriguing attribution of NF-κB to CHUK/IKKα-involved carcinogenesis.
Collapse
|
26
|
Dinçer T, Gümüş E, Toraman B, Er İ, Yildiz G, Yüksel Z, Kalay E. A novel homozygous RIPK4 variant in a family with severe Bartsocas-Papas syndrome. Am J Med Genet A 2021; 185:1691-1699. [PMID: 33713555 DOI: 10.1002/ajmg.a.62154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Bartsocas-Papas syndrome (BPS) is a rare autosomal recessive disorder characterized by popliteal pterygia, syndactyly, ankyloblepharon, filiform bands between the jaws, cleft lip and palate, and genital malformations. Most of the BPS cases reported to date are fatal either in the prenatal or neonatal period. Causative genetic defects of BPS were mapped on the RIPK4 gene encoding receptor-interacting serine/threonine kinase 4, which is critical for epidermal differentiation and development. RIPK4 variants are associated with a wide range of clinical features ranging from milder ectodermal dysplasia to severe BPS. Here, we evaluated a consanguineous Turkish family, who had two pregnancies with severe multiple malformations compatible with BPS phenotype. In order to identify the underlying genetic defect, direct sequencing of the coding region and exon-intron boundaries of RIPK4 was carried out. A homozygous transversion (c.481G>C) that leads to the substitution of a conserved aspartic acid to histidine (p.Asp161His) in the kinase domain of the protein was detected. Pathogenicity predictions, molecular modeling, and cell-based functional assays showed that Asp161 residue is required for the kinase activity of the protein, which indicates that the identified variant is responsible for the severe BPS phenotype in the family.
Collapse
Affiliation(s)
- Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Evren Gümüş
- Department of Medical Genetics, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Bayram Toraman
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İdris Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, Trabzon, Turkey
| | - Gokhan Yildiz
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Zafer Yüksel
- Department of Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Ersan Kalay
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
27
|
PKCα/ERK/C7ORF41 axis regulates epidermal keratinocyte differentiation through the IKKα nuclear translocation. Biochem J 2021; 478:839-854. [PMID: 33528492 DOI: 10.1042/bcj20200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
Aberrant differentiation of keratinocytes disrupts the skin barrier and causes a series of skin diseases. However, the molecular basis of keratinocyte differentiation is still poorly understood. In the present study, we examined the expression of C7ORF41 using tissue microarrays by immunohistochemistry and found that C7ORF41 is specifically expressed in the basal layers of skin epithelium and its expression is gradually decreased during keratinocytes differentiation. Importantly, we corroborated the pivotal role of C7ORF41 during keratinocyte differentiation by C7ORF41 knockdown or overexpression in TPA-induced Hacat keratinocytes. Mechanismly, we first demonstrated that C7ORF41 inhibited keratinocyte differentiation mainly through formatting a complex with IKKα in the cytoplasm, which thus blocked the nuclear translocation of IKKα. Furthermore, we also demonstrated that inhibiting the PKCα/ERK signaling pathway reversed the reduction in C7ORF41 in TPA-induced keratinocytes, indicating that C7ORF41 expression could be regulated by upstream PKCα/ERK signaling pathway during keratinocyte differentiation. Collectively, our study uncovers a novel regulatory network PKCα/ERK/C7ORF41/IKKα during keratinocyte differentiation, which provides potential therapeutic targets for skin diseases.
Collapse
|
28
|
Zhou P, Zeng Y, Rao Z, Li Y, Zheng H, Luo R. Molecular characterization and functional analysis of duck IKKα. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103880. [PMID: 33022353 DOI: 10.1016/j.dci.2020.103880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
IκB kinase α (IKKα) is a vital component of the IKK complex, which is involved in innate immune response, inflammation, cell death and proliferation. Although the functional characteristics of IKKα have been extensively studied in mammals and fish, the roles of IKKα in avian remain largely unknown. In this study, we cloned and characterized the duck IKKα (duIKKα) gene for the first time. DuIKKα encoded a protein of 757 amino acid residues and showed high sequence identities with the goose IKKα. The duIKKα was expressed in all tested tissues, and a relatively high expression of duIKKα mRNA was detected in liver and heart. Overexpression of duIKKα dramatically increased NF-κB activity and induced the expression of duck cytokines IFN-β, IL-1β, IL-6, IL-8 and RANTES in DEFs. Knockdown of duIKKα by small interfering RNA significantly decreased LPS-, poly(I:C)-, poly(dA:dT)-, duck enteritis virus (DEV)-, or duck Tembusu virus (DTMUV)-induced NF-κB activation. Moreover, duIKKα exhibited antiviral activity against DTMUV infection. These findings provide important insights into the roles of duIKKα in avian innate immunity.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Yue Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zaixiao Rao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaqian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huijun Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China.
| |
Collapse
|
29
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
30
|
Li Y, Tang L, Yue J, Gou X, Lin A, Weatherbee SD, Wu X. Regulation of epidermal differentiation through KDF1-mediated deubiquitination of IKKα. EMBO Rep 2020; 21:e48566. [PMID: 32239614 DOI: 10.15252/embr.201948566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
Progenitor cells at the basal layer of skin epidermis play an essential role in maintaining tissue homeostasis and enhancing wound repair in skin. The proliferation, differentiation, and cell death of epidermal progenitor cells have to be delicately regulated, as deregulation of this process can lead to many skin diseases, including skin cancers. However, the underlying molecular mechanisms involved in skin homeostasis remain poorly defined. In this study, with quantitative proteomics approach, we identified an important interaction between KDF1 (keratinocyte differentiation factor 1) and IKKα (IκB kinase α) in differentiating skin keratinocytes. Ablation of either KDF1 or IKKα in mice leads to similar but striking abnormalities in skin development, particularly in skin epidermal differentiation. With biochemical and mouse genetics approach, we further demonstrate that the interaction of IKKα and KDF1 is essential for epidermal differentiation. To probe deeper into the mechanisms, we find that KDF1 associates with a deubiquitinating protease USP7 (ubiquitin-specific peptidase 7), and KDF1 can regulate skin differentiation through deubiquitination and stabilization of IKKα. Taken together, our study unravels an important molecular mechanism underlying epidermal differentiation and skin tissue homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | | | - Jiping Yue
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Xuewen Gou
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Anning Lin
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | | | - Xiaoyang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Phytochemicals as potential IKK-β inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones. Inflammopharmacology 2019; 28:83-93. [DOI: 10.1007/s10787-019-00640-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
|
32
|
Rogerson C, O'Shaughnessy RFL. Protein kinases involved in epidermal barrier formation: The AKT family and other animals. Exp Dermatol 2019; 27:892-900. [PMID: 29845670 DOI: 10.1111/exd.13696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Formation of a stratified epidermis is required for the performance of the essential functions of the skin; to act as an outside-in barrier against the access of microorganisms and other external factors, to prevent loss of water and solutes via inside-out barrier functions and to withstand mechanical stresses. Epidermal barrier function is initiated during embryonic development and is then maintained throughout life and restored after injury. A variety of interrelated processes are required for the formation of a stratified epidermis, and how these processes are both temporally and spatially regulated has long been an aspect of dermatological research. In this review, we describe the roles of multiple protein kinases in the regulation of processes required for epidermal barrier formation.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
33
|
Culley KL, Lessard SG, Green JD, Quinn J, Chang J, Khilnani T, Wondimu EB, Dragomir CL, Marcu KB, Goldring MB, Otero M. Inducible knockout of CHUK/IKKα in adult chondrocytes reduces progression of cartilage degradation in a surgical model of osteoarthritis. Sci Rep 2019; 9:8905. [PMID: 31222033 PMCID: PMC6586628 DOI: 10.1038/s41598-019-45334-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022] Open
Abstract
CHUK/IKKα contributes to collagenase-driven extracellular matrix remodeling and chondrocyte hypertrophic differentiation in vitro, in a kinase-independent manner. These processes contribute to osteoarthritis (OA), where chondrocytes experience a phenotypic shift towards hypertrophy concomitant with abnormal matrix remodeling. Here we investigated the contribution of IKKα to OA in vivo. To this end, we induced specific IKKα knockout in adult chondrocytes in AcanCreERT2/+; IKKαf/f mice treated with tamoxifen (cKO). Vehicle-treated littermates were used as wild type controls (WT). At 12 weeks of age, WT and cKO mice were subjected to the destabilization of medial meniscus (DMM) model of post-traumatic OA. The cKO mice showed reduced cartilage degradation and collagenase activity and fewer hypertrophy-like features at 12 weeks after DMM. Interestingly, in spite of the protection from structural articular cartilage damage, the postnatal growth plates of IKKα cKO mice after DMM displayed abnormal architecture and composition associated with increased chondrocyte apoptosis, which were not as evident in the articular chondrocytes of the same animals. Together, our results provide evidence of a novel in vivo functional role for IKKα in cartilage degradation in post-traumatic OA, and also suggest intrinsic, cell-autonomous effects of IKKα in chondrocytes that control chondrocyte phenotype and impact on cell survival, matrix homeostasis, and remodeling.
Collapse
Affiliation(s)
- Kirsty L Culley
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Samantha G Lessard
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Jordan D Green
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Justin Quinn
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Jun Chang
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Tyler Khilnani
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Elisabeth B Wondimu
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Medical College, New York, NY, 10021, USA
| | - Cecilia L Dragomir
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Medical College, New York, NY, 10021, USA
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
34
|
HPV-Mediated Resistance to TNF and TRAIL Is Characterized by Global Alterations in Apoptosis Regulatory Factors, Dysregulation of Death Receptors, and Induction of ROS/RNS. Int J Mol Sci 2019; 20:ijms20010198. [PMID: 30625987 PMCID: PMC6337392 DOI: 10.3390/ijms20010198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2018] [Revised: 12/23/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023] Open
Abstract
Persistent infection with high-risk human papilloma virus (HR-HPV) is the main risk factor for the development of invasive cervical cancer although is not sufficient to cause cervical cancer. Several host and environmental factors play a key role in cancer initiation/progression, including cytokines and other immune-response mediators. Here, we characterized the response to the individual and combined action of the pro-inflammatory cytokines tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) on HPV-transformed cells and human keratinocytes ectopically expressing E6 and E7 early proteins from different HPV types. We showed that keratinocytes expressing HPV early proteins exhibited global alterations in the expression of proteins involved in apoptosis regulation/execution, including TNF and TRAIL receptors. Besides, we provided evidence that TNF receptor 1 (TNFR1) was down-regulated and may be retained in the cytoplasm of keratinocytes expressing HPV16 oncoproteins. Finally, fluorescence analysis demonstrated that cytokine treatment induced the production and release of reactive oxygen and nitrogen species (ROS/RNS) in cells expressing HPV oncogenes. Alterations in ROS/RNS production and apoptosis regulatory factors expression in response to inflammatory mediators may favor the accumulation of genetic alterations in HPV-infected cells. Altogether, our results suggested that these events may contribute to lesion progression and cancer onset.
Collapse
|
35
|
Singh P, Marcu KB, Goldring MB, Otero M. Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann N Y Acad Sci 2018; 1442:17-34. [PMID: 30008181 DOI: 10.1111/nyas.13930] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
Articular chondrocytes are quiescent, fully differentiated cells responsible for the homeostasis of adult articular cartilage by maintaining cellular survival functions and the fine-tuned balance between anabolic and catabolic functions. This balance requires phenotypic stability that is lost in osteoarthritis (OA), a disease that affects and involves all joint tissues and especially impacts articular cartilage structural integrity. In OA, articular chondrocytes respond to the accumulation of injurious biochemical and biomechanical insults by shifting toward a degradative and hypertrophy-like state, involving abnormal matrix production and increased aggrecanase and collagenase activities. Hypertrophy is a necessary, transient developmental stage in growth plate chondrocytes that culminates in bone formation; in OA, however, chondrocyte hypertrophy is catastrophic and it is believed to initiate and perpetuate a cascade of events that ultimately result in permanent cartilage damage. Emphasizing changes in DNA methylation status and alterations in NF-κB signaling in OA, this review summarizes the data from the literature highlighting the loss of phenotypic stability and the hypertrophic differentiation of OA chondrocytes as central contributing factors to OA pathogenesis.
Collapse
Affiliation(s)
- Purva Singh
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, New York.,Department of Cell and Developmental Biology, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, New York
| |
Collapse
|
36
|
Göktuna SI, Diamanti MA, Chau TL. IKK
s and tumor cell plasticity. FEBS J 2018; 285:2161-2181. [DOI: 10.1111/febs.14444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serkan I. Göktuna
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
- National Nanotechnology Research Center (UNAM) Bilkent University Ankara Turkey
| | - Michaela A. Diamanti
- Georg‐Speyer‐Haus Institute for Tumor Biology and Experimental Therapy Frankfurt am Main Germany
| | - Tieu Lan Chau
- Department of Molecular Biology and Genetics Bilkent University Ankara Turkey
| |
Collapse
|
37
|
Zhu F, Hu Y. Integrity of IKK/NF-κB Shields Thymic Stroma That Suppresses Susceptibility to Autoimmunity, Fungal Infection, and Carcinogenesis. Bioessays 2018. [PMID: 29522649 DOI: 10.1002/bies.201700131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
A pathogenic connection between autoreactive T cells, fungal infection, and carcinogenesis has been demonstrated in studies of human autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) as well as in a mouse model in which kinase-dead Ikkα knock-in mice develop impaired central tolerance, autoreactive T cell-mediated autoimmunity, chronic fungal infection, and esophageal squamous cell carcinoma, which recapitulates APECED. IκB kinase α (IKKα) is one subunit of the IKK complex required for NF-κB activation. IKK/NF-κB is essential for central tolerance establishment by regulating the development of medullary thymic epithelial cells (mTECs) that facilitate the deletion of autoreactive T cells in the thymus. In this review, we extensively discuss the pathogenic roles of inborn errors in the IKK/NF-κB loci in the phenotypically related diseases APECED, immune deficiency syndrome, and severe combined immunodeficiency; differentiate how IKK/NF-κB components, through mTEC (stroma), T cells/leukocytes, or epithelial cells, contribute to the pathogenesis of infectious diseases, autoimmunity, and cancer; and highlight the medical significance of IKK/NF-κB in these diseases.
Collapse
Affiliation(s)
- Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, 21701, Maryland, USA
| |
Collapse
|
38
|
Alameda JP, Navarro M, Ramírez Á, Page A, Suárez-Cabrera C, Moreno-Maldonado R, Paramio JM, del Carmen Fariña M, Del Río M, Fernández-Aceñero MJ, Bravo A, de Los Llanos Casanova M. IKKα regulates the stratification and differentiation of the epidermis: implications for skin cancer development. Oncotarget 2018; 7:76779-76792. [PMID: 28881859 PMCID: PMC5363549 DOI: 10.18632/oncotarget.12527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
IKKα plays a mandatory role in keratinocyte differentiation and exerts an important task in non-melanoma skin cancer development. However, it is not fully understood how IKKα exerts these functions. To analyze in detail the role of IKKα in epidermal stratification and differentiation, we have generated tridimensional (3D) cultures of human HaCaT keratinocytes and fibroblasts in fibrin gels, obtaining human skin equivalents that comprise an epidermal and a dermal compartments that resembles both the structure and differentiation of normal human skin. We have found that IKKα expression must be strictly regulated in epidermis, as alterations in its levels lead to histological defects and promote the development of malignant features. Specifically, we have found that the augmented expression of IKKα results in increased proliferation and clonogenicity of human keratinocytes, and leads to an accelerated and altered differentiation, augmented ability of invasive growth, induction of the expression of oncogenic proteins (Podoplanin, Snail, Cyclin D1) and increased extracellular matrix proteolytic activity. All these characteristics make keratinocytes overexpressing IKKα to be at a higher risk of developing skin cancer. Comparison of genetic profile obtained by analysis of microarrays of RNA of skin equivalents from both genotypes supports the above described findings.
Collapse
Affiliation(s)
- Josefa P Alameda
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Manuel Navarro
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | - Cristian Suárez-Cabrera
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | | | - Jesús M Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| | | | - Marcela Del Río
- Epithelial Biomedicine Division, CIEMAT-CIBERER (U714), Madrid, Spain.,Department of Bioengineering, Carlos III University (UC3M), Leganés, Madrid, Spain.,Cátedra Fundación Jiménez Díaz (IIS-FJD) of Regenerative Medicine and Tissue Bioengineer, Madrid, Spain
| | | | - Ana Bravo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - María de Los Llanos Casanova
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Molecular Oncology, Institute of Biomedical Investigation University Hospital "12 de Octubre", Madrid, Spain
| |
Collapse
|
39
|
Song NY, Zhu F, Wang Z, Willette-Brown J, Xi S, Sun Z, Su L, Wu X, Ma B, Nussinov R, Xia X, Schrump DS, Johnson PF, Karin M, Hu Y. IKKα inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways. Proc Natl Acad Sci U S A 2018; 115:E812-E821. [PMID: 29311298 PMCID: PMC5789942 DOI: 10.1073/pnas.1717520115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are two distinct and predominant types of human lung cancer. IκB kinase α (IKKα) has been shown to suppress lung SCC development, but its role in ADC is unknown. We found inactivating mutations and homologous or hemizygous deletions in the CHUK locus, which encodes IKKα, in human lung ADCs. The CHUK deletions significantly reduced the survival time of patients with lung ADCs harboring KRAS mutations. In mice, lung-specific Ikkα ablation (IkkαΔLu ) induces spontaneous ADCs and promotes KrasG12D-initiated ADC development, accompanied by increased cell proliferation, decreased cell senescence, and reactive oxygen species (ROS) accumulation. IKKα deletion up-regulates NOX2 and down-regulates NRF2, leading to ROS accumulation and blockade of cell senescence induction, which together accelerate ADC development. Pharmacologic inhibition of NADPH oxidase or ROS impairs KrasG12D-mediated ADC development in IkkαΔLu mice. Therefore, IKKα modulates lung ADC development by controlling redox regulatory pathways. This study demonstrates that IKKα functions as a suppressor of lung ADC in human and mice through a unique mechanism that regulates tumor cell-associated ROS metabolism.
Collapse
Affiliation(s)
- Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Sichuan Xi
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Zhonghe Sun
- Laboratory of Molecular Technology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Ling Su
- Laboratory of Molecular Technology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Xiaolin Wu
- Laboratory of Molecular Technology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Buyong Ma
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Ruth Nussinov
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - David S Schrump
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702;
| |
Collapse
|
40
|
Larribère L, Galach M, Novak D, Arévalo K, Volz HC, Stark HJ, Boukamp P, Boutros M, Utikal J. An RNAi Screen Reveals an Essential Role for HIPK4 in Human Skin Epithelial Differentiation from iPSCs. Stem Cell Reports 2017; 9:1234-1245. [PMID: 28966120 PMCID: PMC5639458 DOI: 10.1016/j.stemcr.2017.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022] Open
Abstract
Molecular mechanisms responsible for the development of human skin epithelial cells are incompletely understood. As a consequence, the efficiency to establish a pure skin epithelial cell population from human induced pluripotent stem cells (hiPSCs) remains poor. Using an approach including RNAi and high-throughput imaging of early epithelial cells, we identified candidate kinases involved in their differentiation from hiPSCs. Among these, we found HIPK4 to be an important inhibitor of this process. Indeed, its silencing increased the amount of generated skin epithelial precursors at an early time point, increased the amount of generated keratinocytes at a later time point, and improved growth and differentiation of organotypic cultures, allowing for the formation of a denser basal layer and stratification with the expression of several keratins. Our data bring substantial input regarding regulation of human skin epithelial differentiation and for improving differentiation protocols from pluripotent stem cells. High-throughput RNAi screen setup during human skin epithelial differentiation Identification of HIPK4 as a crucial blocker of human skin epithelial differentiation Improvement of human organotypic epithelial cultures after HIPK4 silencing
Collapse
Affiliation(s)
- Lionel Larribère
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Marta Galach
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Novak
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karla Arévalo
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Hans Christian Volz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Cell and Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany; Department of Cardiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hans-Jürgen Stark
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Petra Boukamp
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; IUF-Leibniz Research Institute for Environmental Medicine, 40021 Düsseldorf, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Cell and Molecular Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69121 Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| |
Collapse
|
41
|
Zeitvogel J, Jokmin N, Rieker S, Klug I, Brandenberger C, Werfel T. GATA3 regulates FLG and FLG2 expression in human primary keratinocytes. Sci Rep 2017; 7:11847. [PMID: 28928464 PMCID: PMC5605628 DOI: 10.1038/s41598-017-10252-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022] Open
Abstract
GATA3 is a transcription factor with an important role in atopic diseases because of its role in the differentiation of Th2 lymphocytes. Moreover, GATA3 is expressed in keratinocytes and has a role in keratinocyte differentiation and the establishment of the epidermal barrier. In this study, we investigated the role of GATA3 in keratinocytes in the context of epidermal barrier integrity under inflammatory skin conditions. When analysing skin samples from atopic dermatitis and psoriasis patients or healthy controls, we detected decreased expression of GATA3 in the stratum spinosum and stratum granulosum of atopic dermatitis and psoriasis patients when compared to healthy controls. Our cell cultures experiments revealed that a downregulation in GATA3 by shRNA leads to a significant reduction of filaggrin mRNA under atopic dermatitis-like conditions in keratinocytes. Overexpression of GATA3 in keratinocytes reversed this effect and significantly upregulated filaggrin and, furthermore, filaggrin-2 mRNA expression. Our results demonstrate that GATA3 is involved in the regulation of filaggrin and filaggrin-2 expression during inflammatory conditions in the skin. Thus, GATA3 may be of special importance for the establishment and maintenance of an intact epidermal barrier, especially in atopic dermatitis.
Collapse
Affiliation(s)
- Jana Zeitvogel
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany.
| | - Neele Jokmin
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| | - Samira Rieker
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| | - Ilona Klug
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department for Dermatology, Allergy and Venereology, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
42
|
Anthony NG, Baiget J, Berretta G, Boyd M, Breen D, Edwards J, Gamble C, Gray AI, Harvey AL, Hatziieremia S, Ho KH, Huggan JK, Lang S, Llona-Minguez S, Luo JL, McIntosh K, Paul A, Plevin RJ, Robertson MN, Scott R, Suckling CJ, Sutcliffe OB, Young LC, Mackay SP. Inhibitory Kappa B Kinase α (IKKα) Inhibitors That Recapitulate Their Selectivity in Cells against Isoform-Related Biomarkers. J Med Chem 2017; 60:7043-7066. [PMID: 28737909 PMCID: PMC5578373 DOI: 10.1021/acs.jmedchem.7b00484] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2017] [Indexed: 01/01/2023]
Abstract
IKKβ plays a central role in the canonical NF-kB pathway, which has been extensively characterized. The role of IKKα in the noncanonical NF-kB pathway, and indeed in the canonical pathway as a complex with IKKβ, is less well understood. One major reason for this is the absence of chemical tools designed as selective inhibitors for IKKα over IKKβ. Herein, we report for the first time a series of novel, potent, and selective inhibitors of IKKα. We demonstrate effective target engagement and selectivity with IKKα in U2OS cells through inhibition of IKKα-driven p100 phosphorylation in the noncanonical NF-kB pathway without affecting IKKβ-dependent IKappa-Bα loss in the canonical pathway. These compounds represent the first chemical tools that can be used to further characterize the role of IKKα in cellular signaling, to dissect this from IKKβ and to validate it in its own right as a target in inflammatory diseases.
Collapse
Affiliation(s)
- Nahoum G. Anthony
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Jessica Baiget
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Giacomo Berretta
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Marie Boyd
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - David Breen
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute
of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, Scotland, United Kingdom
| | - Carly Gamble
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Alexander I. Gray
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Alan L. Harvey
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Sophia Hatziieremia
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Ka Ho Ho
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Judith K. Huggan
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Stuart Lang
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
| | - Sabin Llona-Minguez
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Jia Lin Luo
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Kathryn McIntosh
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Andrew Paul
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Robin J. Plevin
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Murray N. Robertson
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Rebecca Scott
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Colin J. Suckling
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, United Kingdom
| | - Oliver B. Sutcliffe
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Louise C. Young
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| | - Simon P. Mackay
- Strathclyde Institute
of Pharmacy and Biomedical Sciences, University
of Strathclyde, 161 Cathedral Street, Glasgow G4 0NR, Scotland, United
Kingdom
| |
Collapse
|
43
|
Kim HJ, Langenhan JL, Robinson ES, Privette E, Achtman JC, Mitrani RA, Zeidi M, Sharma MR, Feng R, Nevas JL, Calianno C, Okawa J, Taylor L, Pappas-Taffer L, Werth VP. Effect of long-term treatment with tumour necrosis factor-α inhibitors on single-dose ultraviolet-induced changes in human skin. Br J Dermatol 2017; 177:1762-1764. [PMID: 28815549 DOI: 10.1111/bjd.15897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Affiliation(s)
- H J Kim
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A.,Department of Dermatology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Dermatology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - J L Langenhan
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - E S Robinson
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - E Privette
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - J C Achtman
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - R A Mitrani
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - M Zeidi
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - M R Sharma
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - R Feng
- Departments of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - J L Nevas
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A
| | - C Calianno
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A
| | - J Okawa
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - L Taylor
- Departments of Pathology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - L Pappas-Taffer
- Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - V P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, U.S.A.,Departments of Dermatology, University of Pennsylvania, Philadelphia, PA, U.S.A
| |
Collapse
|
44
|
Shen H, Shin EM, Lee S, Mathavan S, Koh H, Osato M, Choi H, Tergaonkar V, Korzh V. Ikk2 regulates cytokinesis during vertebrate development. Sci Rep 2017; 7:8094. [PMID: 28808254 PMCID: PMC5556003 DOI: 10.1038/s41598-017-06904-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022] Open
Abstract
NFκB signaling has a pivotal role in regulation of development, innate immunity, and inflammation. Ikk2 is one of the two critical kinases that regulate the NFκB signaling pathway. While the role of Ikk2 in immunity, inflammation and oncogenesis has received attention, an understanding of the role of Ikk2 in vertebrate development has been compounded by the embryonic lethality seen in mice lacking Ikk2. We find that despite abnormal angiogenesis in IKK2 zygotic mutants of zebrafish, the maternal activity of Ikk2 supports embryogenesis and maturation of fertile animals and allows to study the role of IKK2 in development. Maternal-zygotic ikk2 mutants represent the first vertebrates globally devoid of maternal and zygotic Ikk2 activity. They are defective in cell proliferation as evidenced by abnormal cytokinesis, nuclear enlargement and syncytialisation of a significant portion of blastoderm. We further document that reduced phosphorylation of Aurora A by Ikk2 could underlie the basis of these defects in cell division.
Collapse
Affiliation(s)
- Hongyuan Shen
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Eun Myoung Shin
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Cancer Science Institute, NUS, Singapore, Singapore
| | - Serene Lee
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Motomi Osato
- Cancer Science Institute, NUS, Singapore, Singapore
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Singapore, Singapore. .,Department of Biochemistry, NUS, Singapore, Singapore. .,Center for Cancer Biology, Unisa, Adelaide, Australia.
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Singapore, Singapore. .,International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
45
|
Hammond NL, Dixon J, Dixon MJ. Periderm: Life-cycle and function during orofacial and epidermal development. Semin Cell Dev Biol 2017; 91:75-83. [PMID: 28803895 DOI: 10.1016/j.semcdb.2017.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/26/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/31/2022]
Abstract
Development of the secondary palate involves a complex series of embryonic events which, if disrupted, result in the common congenital anomaly cleft palate. The secondary palate forms from paired palatal shelves which grow initially vertically before elevating to a horizontal position above the tongue and fusing together in the midline via the medial edge epithelia. As the epithelia of the vertical palatal shelves are in contact with the mandibular and lingual epithelia, pathological fusions between the palate and the mandible and/or the tongue must be prevented. This function is mediated by the single cell layered periderm which forms in a distinct and reproducible pattern early in embryogenesis, exhibits highly polarised expression of adhesion complexes, and is shed from the outer surface as the epidermis acquires its barrier function. Disruption of periderm formation and/or function underlies a series of birth defects that exhibit multiple inter-epithelial adhesions including the autosomal dominant popliteal pterygium syndrome and the autosomal recessive cocoon syndrome and Bartsocas Papas syndrome. Genetic analyses of these conditions have shown that IRF6, IKKA, SFN, RIPK4 and GRHL3, all of which are under the transcriptional control of p63, play a key role in periderm formation. Despite these observations, the medial edge epithelia must rapidly acquire the capability to fuse if the palatal shelves are not to remain cleft. This process is driven by TGFβ3-mediated, down-regulation of p63 in the medial edge epithelia which allows periderm migration out of the midline epithelial seam and reduces the proliferative potential of the midline epithelial seam thereby preventing cleft palate. Together, these findings indicate that periderm plays a transient but fundamental role during embryogenesis in preventing pathological adhesion between intimately apposed, adhesion-competent epithelia.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Jill Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Michael J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Sciences Centre, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
46
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
47
|
Khandelwal KD, Ockeloen CW, Venselaar H, Boulanger C, Brichard B, Sokal E, Pfundt R, Rinne T, van Beusekom E, Bloemen M, Vriend G, Revencu N, Carels CEL, van Bokhoven H, Zhou H. Identification of a de novo variant in CHUK in a patient with an EEC/AEC syndrome-like phenotype and hypogammaglobulinemia. Am J Med Genet A 2017; 173:1813-1820. [PMID: 28513979 DOI: 10.1002/ajmg.a.38274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/08/2017] [Indexed: 11/10/2022]
Abstract
The cardinal features of Ectrodactyly, Ectodermal dysplasia, Cleft lip/palate (EEC), and Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndromes are ectodermal dysplasia (ED), orofacial clefting, and limb anomalies. EEC and AEC are caused by heterozygous mutations in the transcription factor p63 encoded by TP63. Here, we report a patient with an EEC/AEC syndrome-like phenotype, including ankyloblepharon, ED, cleft palate, ectrodactyly, syndactyly, additional hypogammaglobulinemia, and growth delay. Neither pathogenic mutations in TP63 nor CNVs at the TP63 locus were identified. Exome sequencing revealed de novo heterozygous variants in CHUK (conserved helix-loop-helix ubiquitous kinase), PTGER4, and IFIT2. While the variant in PTGER4 might contribute to the immunodeficiency and growth delay, the variant in CHUK appeared to be most relevant for the EEC/AEC-like phenotype. CHUK is a direct target gene of p63 and encodes a component of the IKK complex that plays a key role in NF-κB pathway activation. The identified CHUK variant (g.101980394T>C; c.425A>G; p.His142Arg) is located in the kinase domain which is responsible for the phosphorylation activity of the protein. The variant may affect CHUK function and thus contribute to the disease phenotype in three ways: (1) the variant exhibits a dominant negative effect and results in an inactive IKK complex that affects the canonical NF-κB pathway; (2) it affects the feedback loop of the canonical and non-canonical NF-κB pathways that are CHUK kinase activity-dependent; and (3) it disrupts NF-κB independent epidermal development that is often p63-dependent. Therefore, we propose that the heterozygous CHUK variant is highly likely to be causative to the EEC/AEC-like and additional hypogammaglobulinemia phenotypes in the patient presented here.
Collapse
Affiliation(s)
- Kriti D Khandelwal
- Department of Orthodontics and Craniofacial Biology, Radboud university medical center, Nijmegen, The Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud university medical center, Nijmegen, The Netherlands
| | - Cécile Boulanger
- Department of Pediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Bénédicte Brichard
- Department of Pediatric Haematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Etienne Sokal
- Université Catholique de Louvain, Cliniques Universitaires St Luc, Service de Gastroentérologie et Hépatologie Pédiatrique, Brussels, Belgium
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Tuula Rinne
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerrit Vriend
- Centre for Molecular and Biomolecular Informatics, Radboud university medical center, Nijmegen, The Netherlands
| | - Nicole Revencu
- Centre for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Carine E L Carels
- Department of Orthodontics and Craniofacial Biology, Radboud university medical center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Cognitive Neurosciences, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Zhu F, Willette-Brown J, Song NY, Lomada D, Song Y, Xue L, Gray Z, Zhao Z, Davis SR, Sun Z, Zhang P, Wu X, Zhan Q, Richie ER, Hu Y. Autoreactive T Cells and Chronic Fungal Infection Drive Esophageal Carcinogenesis. Cell Host Microbe 2017; 21:478-493.e7. [PMID: 28407484 PMCID: PMC5868740 DOI: 10.1016/j.chom.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2016] [Revised: 01/30/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
Humans with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), a T cell-driven autoimmune disease caused by impaired central tolerance, are susceptible to chronic fungal infection and esophageal squamous cell carcinoma (ESCC). However, the relationship between autoreactive T cells and chronic fungal infection in ESCC development remains unclear. We find that kinase-dead Ikkα knockin mice develop APECED-like phenotypes, including impaired central tolerance, autoreactive T cells, chronic fungal infection, and ESCCs expressing specific human ESCC markers. Using this model, we investigated the link between ESCC and fungal infection. Autoreactive CD4 T cells permit fungal infection and incite tissue injury and inflammation. Antifungal treatment or autoreactive CD4 T cell depletion rescues, whereas oral fungal administration promotes, ESCC development. Inhibition of inflammation or epidermal growth factor receptor (EGFR) activity decreases fungal burden. Fungal infection is highly associated with ESCCs in non-autoimmune human patients. Therefore, autoreactive T cells and chronic fungal infection, fostered by inflammation and epithelial injury, promote ESCC development.
Collapse
Affiliation(s)
- Feng Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jami Willette-Brown
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Na-Young Song
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Dakshayani Lomada
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- Department of Pathology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zane Gray
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Sean R Davis
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhonghe Sun
- Laboratory of Molecular Technology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | - Xiaolin Wu
- Laboratory of Molecular Technology, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
49
|
Lisse TS, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci 2017; 130:975-988. [PMID: 28122935 PMCID: PMC5358334 DOI: 10.1242/jcs.197343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Although the functions of H2O2 in epidermal wound repair are conserved throughout evolution, the underlying signaling mechanisms are largely unknown. In this study we used human keratinocytes (HEK001) to investigate H2O2-dependent wound repair mechanisms. Scratch wounding led to H2O2 production in two or three cell layers at the wound margin within ∼30 min and subsequent cysteine modification of proteins via sulfenylation. Intriguingly, exogenous H2O2 treatment resulted in preferential sulfenylation of keratinocytes that adopted a migratory phenotype and detached from neighboring cells, suggesting that one of the primary functions of H2O2 is to stimulate signaling factors involved in cell migration. Based on previous findings that revealed epidermal growth factor receptor (EGFR) involvement in H2O2-dependent cell migration, we analyzed oxidation of a candidate upstream target, the inhibitor of κB kinase α (IKKα; encoded by CHUK), as a mechanism of action. We show that IKKα is sulfenylated at a conserved cysteine residue in the kinase domain, which correlates with de-repression of EGF promoter activity and increased EGF expression. Thus, this indicates that IKKα promotes migration through dynamic interactions with the EGF promoter depending on the redox state within cells. Summary: This study provides a newly identified mechanism by which H2O2-dependent oxidation of the inhibitor of κB kinase α and de-repression of epidermal growth factor promoter activity stimulates keratinocyte migration.
Collapse
Affiliation(s)
- Thomas S Lisse
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA .,The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sandra Rieger
- Davis Center for Regenerative Biology and Medicine, MDI Biological Laboratory, 159 Old Bar Harbor Road, Salisbury Cove, ME 04672, USA
| |
Collapse
|
50
|
Kung JE, Jura N. Structural Basis for the Non-catalytic Functions of Protein Kinases. Structure 2016; 24:7-24. [PMID: 26745528 DOI: 10.1016/j.str.2015.10.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 01/07/2023]
Abstract
Protein kinases are known primarily for their ability to phosphorylate protein substrates, which constitutes an essential biological process. Recently, compelling evidence has accumulated that the functions of many protein kinases extend beyond phosphorylation and include an impressive spectrum of non-catalytic roles, such as scaffolding, allosteric regulation, or even protein-DNA interactions. How the conserved kinase fold shared by all metazoan protein kinases can accomplish these diverse tasks in a specific and regulated manner is poorly understood. In this review, we analyze the molecular mechanisms supporting phosphorylation-independent signaling by kinases and attempt to identify common and unique structural characteristics that enable kinases to perform non-catalytic functions. We also discuss how post-translational modifications, protein-protein interactions, and small molecules modulate these non-canonical kinase functions. Finally, we highlight current efforts in the targeted design of small-molecule modulators of non-catalytic kinase functions, a new pharmacological challenge for which structural considerations are more important than ever.
Collapse
Affiliation(s)
- Jennifer E Kung
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|