1
|
Kang JE, Seo HW, Kim DE, Shin YH, Bae S, Yoon CH. ABT-263, a BCL-2 inhibitor, selectively eliminates latently HIV-1-infected cells without viral reactivation. PLoS One 2025; 20:e0322962. [PMID: 40392781 PMCID: PMC12091775 DOI: 10.1371/journal.pone.0322962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/22/2025] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a hazardous pathogen responsible for causing acquired immunodeficiency syndrome (AIDS). HIV-1 provirus survives in latently infected cells for a long time, despite treatment with combinational anti-retroviral therapy (cART); therefore, it is considered as a major obstacle in HIV-1 treatment. Several strategies have been developed to selectively eliminate latently HIV-1-infected cells; however, clinical success has not yet been reported. Here, we identified several key factors associated with cell apoptosis, which were upregulated in latently infected cells. Subsequently, we screened compounds targeting these factors to selectively kill latently HIV-1-infected cells. Among these, ABT-263 (Navitoclax), a BCL-2 inhibitor, exhibited a potent and selective killing effect on latently HIV-1-infected cells and exerted synergistic effects with combinations of other compounds targeting myeloid cell leukemia-1 (MCL-1), X-linked inhibitor of apoptosis protein (XIAP), and BAX. In an ex vivo model, latently HIV-1-infected memory CD4+ T cells were efficiently eliminated via treatment with ABT-263 alone and its combinations with other modulatory compounds. Taken together, our results demonstrate that the balance of pro- and anti-apoptotic factors is crucial for the survival of latently HIV-1-infected cells. Thus, disrupting this balance using ABT-263 or combinations having ABT-263 without proviral reactivation may be useful for developing a novel strategy to eliminate latently infected cells in individuals infected with HIV-1.
Collapse
Affiliation(s)
- Jeong Eun Kang
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Health, Cheongju, Republic of Korea
| | - Hyun Wook Seo
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Health, Cheongju, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Health, Cheongju, Republic of Korea
| | - Young Hyun Shin
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Health, Cheongju, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Health, Cheongju, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Mickens KL, Dillon SM, Guo K, Thompson AN, Barrett BS, Wood C, Kechris K, Santiago ML, Wilson CC. Death and survival of gut CD4 T cells following HIV-1 infection ex vivo. PNAS NEXUS 2024; 3:pgae486. [PMID: 39780917 PMCID: PMC11707799 DOI: 10.1093/pnasnexus/pgae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 01/11/2025]
Abstract
The gastrointestinal tract is ground zero for the massive and sustained CD4 T cell depletion during acute HIV-1 infection. To date, the molecular mechanisms governing this fundamental pathogenic process remain unclear. HIV-1 infection in the gastrointestinal tract is associated with chronic inflammation due to a disrupted epithelial barrier that results in microbial translocation. Here, we utilized the lamina propria aggregate culture model to demonstrate that the profound induction of granzyme B by bacteria in primary gut CD4 T cells ex vivo significantly contributes to HIV-1-mediated CD4 T cell death. Counterintuitively, a substantial fraction of gut granzyme B+ CD4 T cells harboring high levels of HIV-1 infection survive via a pathway linked to CD120b/TNFR2. Our findings underscore previously undescribed mechanisms governing the death and survival of gut CD4 T cells during HIV-1 infection that could inform strategies to counter HIV-1 pathogenesis and persistence in this critical tissue compartment.
Collapse
Affiliation(s)
- Kaylee L Mickens
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Stephanie M Dillon
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Ashley N Thompson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Bradley S Barrett
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Center for Innovative Design and Analysis, 13001 E 17th Place, Mail Stop B119, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Cara C Wilson
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, 12700 E 19th Ave, Mail Stop B168, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Omar A, Marques N, Crawford N. Cancer and HIV: The Molecular Mechanisms of the Deadly Duo. Cancers (Basel) 2024; 16:546. [PMID: 38339297 PMCID: PMC10854577 DOI: 10.3390/cancers16030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The immune deficiency associated with human immunodeficiency virus (HIV) infection causes a distinct increased risk of developing certain cancer types. Kaposi sarcoma (KS), invasive cervical cancer and non-Hodgkin's lymphoma (NHL) are the prominent malignancies that manifest as a result of opportunistic viral infections in patients with advanced HIV infection. Despite the implementation of antiretroviral therapy (ART), the prevalence of these acquired immunodeficiency syndrome (AIDS)-defining malignancies (ADMs) remains high in developing countries. In contrast, developed countries have experienced a steady decline in the occurrence of these cancer types. However, there has been an increased mortality rate attributed to non-ADMs. Here, we provide a review of the molecular mechanisms that are responsible for the development of ADMs and non-ADMs which occur in HIV-infected individuals. It is evident that ART alone is not sufficient to fully mitigate the potential for ADMs and non-ADMs in HIV-infected individuals. To enhance the diagnosis and treatment of both HIV and malignancies, a thorough comprehension of the mechanisms driving the development of such cancers is imperative.
Collapse
Affiliation(s)
- Aadilah Omar
- Division of Oncology, Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | | | | |
Collapse
|
4
|
Cannon L, Fehrman S, Pinzone M, Weissman S, O'Doherty U. Machine Learning Bolsters Evidence That D1, Nef, and Tat Influence HIV Reservoir Dynamics. Pathog Immun 2024; 8:37-58. [PMID: 38292079 PMCID: PMC10827039 DOI: 10.20411/pai.v8i2.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Background The primary hurdle to curing HIV is due to the establishment of a reservoir early in infection. In an effort to find new treatment strategies, we and others have focused on understanding the selection pressures exerted on the reservoir by studying how proviral sequences change over time. Methods To gain insights into the dynamics of the HIV reservoir we analyzed longitudinal near full-length sequences from 7 people living with HIV between 1 and 20 years following the initiation of antiretroviral treatment. We used this data to employ Bayesian mixed effects models to characterize the decay of the reservoir using single-phase and multiphasic decay models based on near full-length sequencing. In addition, we developed a machine-learning approach utilizing logistic regression to identify elements within the HIV genome most associated with proviral decay and persistence. By systematically analyzing proviruses that are deleted for a specific element, we gain insights into their role in reservoir contraction and expansion. Results Our analyses indicate that biphasic decay models of intact reservoir dynamics were better than single-phase models with a stronger statistical fit. Based on the biphasic decay pattern of the intact reservoir, we estimated the half-lives of the first and second phases of decay to be 18.2 (17.3 to 19.2, 95%CI) and 433 (227 to 6400, 95%CI) months, respectively.In contrast, the dynamics of defective proviruses differed favoring neither model definitively, with an estimated half-life of 87.3 (78.1 to 98.8, 95% CI) months during the first phase of the biphasic model. Machine-learning analysis of HIV genomes at the nucleotide level revealed that the presence of the splice donor site D1 was the principal genomic element associated with contraction. This role of D1 was then validated in an in vitro system. Using the same approach, we additionally found supporting evidence that HIV nef may confer a protective advantage for latently infected T cells while tat was associated with clonal expansion. Conclusions The nature of intact reservoir decay suggests that the long-lived HIV reservoir contains at least 2 distinct compartments. The first compartment decays faster than the second compartment. Our machine-learning analysis of HIV proviral sequences reveals specific genomic elements are associated with contraction while others are associated with persistence and expansion. Together, these opposing forces shape the reservoir over time.
Collapse
Affiliation(s)
- LaMont Cannon
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia
| | - Sophia Fehrman
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, Virginia
| | - Marilia Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Nolan DJ, Rose R, Zhang R, Leong A, Fogel GB, Scholte LLS, Bethony JM, Bracci P, Lamers SL, McGrath MS. The Persistence of HIV Diversity, Transcription, and Nef Protein in Kaposi's Sarcoma Tumors during Antiretroviral Therapy. Viruses 2022; 14:v14122774. [PMID: 36560778 PMCID: PMC9782636 DOI: 10.3390/v14122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Epidemic Kaposi's sarcoma (KS), defined by co-infection with Human Herpes Virus 8 (HHV-8) and the Human Immunodeficiency Virus (HIV), is a major cause of mortality in sub-Saharan Africa. Antiretroviral therapy (ART) significantly reduces the risk of developing KS, and for those with KS, tumors frequently resolve with ART alone. However, for unknown reasons, a significant number of KS cases do not resolve and can progress to death. To explore how HIV responds to ART in the KS tumor microenvironment, we sequenced HIV env-nef found in DNA and RNA isolated from plasma, peripheral blood mononuclear cells, and tumor biopsies, before and after ART, in four Ugandan study participants who had unresponsive or progressive KS after 180-250 days of ART. We performed immunohistochemistry experiments to detect viral proteins in matched formalin-fixed tumor biopsies. Our sequencing results showed that HIV diversity and RNA expression in KS tumors are maintained after ART, despite undetectable plasma viral loads. The presence of spliced HIV transcripts in KS tumors after ART was consistent with a transcriptionally active viral reservoir. Immunohistochemistry staining found colocalization of HIV Nef protein and tissue-resident macrophages in the KS tumors. Overall, our results demonstrated that even after ART reduced plasma HIV viral load to undetectable levels and restored immune function, HIV in KS tumors continues to be transcriptionally and translationally active, which could influence tumor maintenance and progression.
Collapse
Affiliation(s)
- David J. Nolan
- Bioinfoexperts, LLC, Thibodaux, LA 70301, USA
- Correspondence:
| | | | - Rongzhen Zhang
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| | - Alan Leong
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| | | | - Larissa L. S. Scholte
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA
| | - Paige Bracci
- The AIDS and Cancer Specimen Resource, San Francisco, CA 94110, USA
| | | | - Michael S. McGrath
- Departments of Laboratory Medicine, Pathology and Medicine, The University of California at San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
6
|
Frequency and functional profile of circulating TCRαβ + double negative T cells in HIV/TB co-infection. BMC Infect Dis 2022; 22:890. [PMID: 36443691 PMCID: PMC9703676 DOI: 10.1186/s12879-022-07807-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Increased frequency of circulating double negative T (DNT, CD4-CD8-CD3+) cells with protective immune function has been observed in human immunodeficiency virus (HIV) infection and tuberculosis (TB). Here the role of circulating TCRαβ+ DNT cells was further investigated in HIV/TB co-infection. METHODS A cross-sectional study was conducted to investigate the frequency and functional profiles of peripheral TCRαβ+ DNT cells including apoptosis, chemokine and cytokine expression among healthy individuals and patients with TB, HIV infection and HIV/TB co-infection by cell surface staining and intracellular cytokine staining combined with flow cytometry. RESULTS Significantly increased frequency of TCRαβ+ DNT cells was observed in HIV/TB co-infection than that in TB (p < 0.001), HIV infection (p = 0.039) and healthy controls (p < 0.001). Compared with TB, HIV/TB co-infection had higher frequency of Fas expression (p = 0.007) and lower frequency of Annexin V expression on TCRαβ+ DNT cells (p = 0.049), and the frequency of Annexin V expression on Fas+TCRαβ+ DNT cells had no significant difference. TCRαβ+ DNT cells expressed less CCR5 in HIV/TB co-infection than that in TB (p = 0.014), and more CXCR4 in HIV/TB co-infection than that in HIV infection (p = 0.043). Compared with healthy controls, TB and HIV/TB co-infection had higher frequency of TCRαβ+ DNT cells secreting Granzyme A (p = 0.046; p = 0.005). In TB and HIV/TB co-infection, TCRαβ+ DNT cells secreted more granzyme A (p = 0.002; p = 0.002) and perforin (p < 0.001; p = 0.017) than CD4+ T cells but similar to CD8+ T cells. CONCLUSIONS Reduced apoptosis may take part in the mechanism of increased frequency of peripheral TCRαβ+ DNT cells in HIV/TB co-infection. TCRαβ+ DNT cells may play a cytotoxic T cells-like function in HIV/TB co-infection.
Collapse
|
7
|
Cevallos C, Ojeda DS, Sánchez L, Urquiza J, Delpino MV, Quarleri J. HIV-induced bystander cell death in astrocytes requires cell-to-cell viral transmission. J Neurochem 2022; 163:338-356. [PMID: 36205031 DOI: 10.1111/jnc.15703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 01/18/2023]
Abstract
Human immunodeficiency virus (HIV) neuroinvasion occurs early after infection through the trafficking of virus-infected immune cells into the central nervous system (CNS) and viral dissemination into the brain. There, it can infect resident brain cells including astrocytes, the most abundant cell type that is crucial to brain homeostasis. In this report, we examined the HIV-related mechanism able to induce bystander cell death in astrocytes mediated by cell-to-cell contact with productively infected (PI) ones. We first demonstrate that HIV-induced bystander cell death involves mitochondrial dysfunction that promotes exacerbated reactive oxygen species production. Such a phenomenon is a contagious cell death that requires contact with HIV-PI astrocytes that trigger caspase-dependent (apoptosis and pyroptosis) and caspase-independent cell death pathways. The HIV accessory proteins Nef, Vpu, and Vpr counteract astrocyte death among PI cells but, in contrast, participate to promote contagious bystander cell death by inducing mitochondrial reactive oxygen species production. Our findings indicate that astrocytes PI by HIV became capable to counteract infection-derived death signals, surviving, and spreading the bystander cell death into neighboring uninfected cells by a cell-to-cell contact-dependent mechanism. Considering that astrocytes have been proposed as a long-term HIV reservoir in the CNS, ascertaining the mechanism of survival and contagious bystander death will afford clear targets in the current goal to achieve a functional cure.
Collapse
Affiliation(s)
- Cintia Cevallos
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Diego S Ojeda
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Lautaro Sánchez
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Javier Urquiza
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Victoria Delpino
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Jorge Quarleri
- Facultad de Medicina, Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
8
|
Duette G, Hiener B, Morgan H, Mazur FG, Mathivanan V, Horsburgh BA, Fisher K, Tong O, Lee E, Ahn H, Shaik A, Fromentin R, Hoh R, Bacchus-Souffan C, Nasr N, Cunningham AL, Hunt PW, Chomont N, Turville SG, Deeks SG, Kelleher AD, Schlub TE, Palmer S. The HIV-1 proviral landscape reveals that Nef contributes to HIV-1 persistence in effector memory CD4+ T cells. J Clin Invest 2022; 132:154422. [PMID: 35133986 PMCID: PMC8970682 DOI: 10.1172/jci154422] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bonnie Hiener
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Hannah Morgan
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Fernando G. Mazur
- Post-graduation Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, Brazil
| | - Vennila Mathivanan
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Bethany A. Horsburgh
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Katie Fisher
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Haelee Ahn
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ansari Shaik
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Rémi Fromentin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Charline Bacchus-Souffan
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nicolas Chomont
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Stuart G. Turville
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Anthony D. Kelleher
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy E. Schlub
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Mohan J, Ghazi T, Chuturgoon AA. A Critical Review of the Biochemical Mechanisms and Epigenetic Modifications in HIV- and Antiretroviral-Induced Metabolic Syndrome. Int J Mol Sci 2021; 22:ijms222112020. [PMID: 34769448 PMCID: PMC8584285 DOI: 10.3390/ijms222112020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a non-communicable disease characterised by a cluster of metabolic irregularities. Alarmingly, the prevalence of MetS in people living with Human Immunodeficiency Virus (HIV) and antiretroviral (ARV) usage is increasing rapidly. This study aimed to look at biochemical mechanisms and epigenetic modifications associated with HIV, ARVs, and MetS. More specifically, emphasis was placed on mitochondrial dysfunction, insulin resistance, inflammation, lipodystrophy, and dyslipidaemia. We found that mitochondrial dysfunction was the most common mechanism that induced metabolic complications. Our findings suggest that protease inhibitors (PIs) are more commonly implicated in MetS-related effects than other classes of ARVs. Furthermore, we highlight epigenetic studies linking HIV and ARV usage to MetS and stress the need for more studies, as the current literature remains limited despite the advancement in and popularity of epigenetics.
Collapse
|
10
|
Kojima K, Ichijo H, Naguro I. Molecular functions of ASK family in diseases caused by stress-induced inflammation and apoptosis. J Biochem 2021; 169:395-407. [PMID: 33377973 DOI: 10.1093/jb/mvaa145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
VCells are constantly exposed to various types of stress, and disruption of the proper response leads to a variety of diseases. Among them, inflammation and apoptosis are important examples of critical responses and should be tightly regulated, as inappropriate control of these responses is detrimental to the organism. In several disease states, these responses are abnormally regulated, with adverse effects. Apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases that regulate inflammation and apoptosis after a variety of stimuli, such as oxidative stress and endoplasmic reticulum stress. In this review, we summarize recent reports on the ASK family in terms of their involvement in inflammatory diseases, focussing on upstream stimuli that regulate ASK family members.
Collapse
Affiliation(s)
- Kazuki Kojima
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Protein N-myristoylation: functions and mechanisms in control of innate immunity. Cell Mol Immunol 2021; 18:878-888. [PMID: 33731917 PMCID: PMC7966921 DOI: 10.1038/s41423-021-00663-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.
Collapse
|
12
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
13
|
Nematullah M, Hoda MN, Nimker S, Khan F. Restoration of PP2A levels in inflamed microglial cells: Important for neuroprotective M2 microglial viability. Toxicol Appl Pharmacol 2020; 409:115294. [PMID: 33069748 DOI: 10.1016/j.taap.2020.115294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
PP2A, a trimeric Serine/Threonine Protein Phosphatase 2A highly expressed in brain, is a master regulator of cellular functions. Reduction in PP2A activity has been linked to progression of microglial mediated neuroinflammatory diseases. Inflammatory conditions are characterized by increased population of CD86+ve M1 cells and a therapeutic strategy to polarize microglial cells towards CD206+ve M2 cells is the need of hour. In this paper we analyzed A: whether the level of PP2A is altered in CD86+ve cells, B: whether FTY720, a known modulator of PP2A, is able to restore the level of PP2A in inflamed CD86+ve cells. Results revealed that PP2A activity was significantly diminished in inflamed cells but the surprising observation was the cell viability of only 35.99% upon FTY720 treatment in inflamed cells lacking basal PP2A activity. A sharp increase at mRNA level of CD95 and ASK-1 indicated that apoptosis occurred in these cells through CD95/ASK-1/JNK pathway. Importantly, flow cytometric analysis revealed apoptosis of not only CD86+ve cells but also CD206+ve cells. Previous studies have reported that FTY720 polarizes microglial cells towards M2 states; however apoptosis of M2 cells was not studied. As western blot analysis revealed that FTY720 failed to completely restore PP2A, another PP2A modulator, Memantine, was used for co-treatment. Upon co-treatment, the level of PP2A was completely restored and also viability of microglial cells was significantly improved with a significant reduction in apoptosis of M2 cells. These findings suggest that co-treatment strategy may prove beneficial to balance M1/M2 microglial population, thereby improving neuronal functions.
Collapse
Affiliation(s)
- Md Nematullah
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - M N Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Centre, Dignity Health, Phoenix, AZ 85013, USA
| | | | - Farah Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
14
|
Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. J Bacteriol 2020; 202:JB.00365-20. [PMID: 32868406 DOI: 10.1128/jb.00365-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-activated effector deployment, prototyped by interferon-dependent immunity, is a common mechanistic theme shared by immune systems of several animals and prokaryotes. Prokaryotic versions include CRISPR-Cas with the CRISPR polymerase domain, their minimal variants, and systems with second messenger oligonucleotide or dinucleotide synthetase (SMODS). Cyclic or linear oligonucleotide signals in these systems help set a threshold for the activation of potentially deleterious downstream effectors in response to invader detection. We establish such a regulatory mechanism to be a more general principle of immune systems, which can also operate independently of such messengers. Using sensitive sequence analysis and comparative genomics, we identify 12 new prokaryotic immune systems, which we unify by this principle of threshold-dependent effector activation. These display regulatory mechanisms paralleling physiological signaling based on 3'-5' cyclic mononucleotides, NAD+-derived messengers, two- and one-component signaling that includes histidine kinase-based signaling, and proteolytic activation. Furthermore, these systems allowed the identification of multiple new sensory signal sensory components, such as a tetratricopeptide repeat (TPR) scaffold predicted to recognize NAD+-derived signals, unreported versions of the STING domain, prokaryotic YEATS domains, and a predicted nucleotide sensor related to receiver domains. We also identify previously unrecognized invader detection components and effector components, such as prokaryotic versions of the Wnt domain. Finally, we show that there have been multiple acquisitions of unidentified STING domains in eukaryotes, while the TPR scaffold was incorporated into the animal immunity/apoptosis signal-regulating kinase (ASK) signalosome.IMPORTANCE Both prokaryotic and eukaryotic immune systems face the dangers of premature activation of effectors and degradation of self-molecules in the absence of an invader. To mitigate this, they have evolved threshold-setting regulatory mechanisms for the triggering of effectors only upon the detection of a sufficiently strong invader signal. This work defines general templates for such regulation in effector-based immune systems. Using this, we identify several previously uncharacterized prokaryotic immune mechanisms that accomplish the regulation of downstream effector deployment by using nucleotide, NAD+-derived, two-component, and one-component signals paralleling physiological homeostasis. This study has also helped identify several previously unknown sensor and effector modules in these systems. Our findings also augment the growing evidence for the emergence of key animal immunity and chromatin regulatory components from prokaryotic progenitors.
Collapse
|
15
|
Extracellular Vesicles from Human Papilloma Virus-Infected Cervical Cancer Cells Enhance HIV-1 Replication in Differentiated U1 Cell Line. Viruses 2020; 12:v12020239. [PMID: 32098055 PMCID: PMC7077309 DOI: 10.3390/v12020239] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
In the current study, we hypothesized that extracellular vesicles (EVs) secreted from human papilloma virus (HPV)-infected cervical cancer cells exacerbate human immunodeficiency virus (HIV)-1 replication in differentiated U1 cell line through an oxidative stress pathway. To test the hypothesis, we treated an HIV-1-infected macrophage cell line (U1) with HPV-infected Caski cell culture supernatant (CCS). We observed a significant increase in HIV-1 replication, which was associated with an increase in the expression of cytochrome P450 (CYPs 1A1 and 2A6) in the CCS-treated U1 cells. Furthermore, we isolated EVs from CCS (CCS-EVs), which showed the presence of CYPs (1A1, 2A6), superoxide dismutase 1 (SOD1), and HPV oncoproteins HPV16 E6. CCS-EVs when exposed to the U1 cells also significantly increased HIV-1 replication. Treatment of antioxidant, CYP1A1 and CYP2A6 inhibitors, and chemodietary agents with antioxidant properties significantly reduced the CCS and CCS-EVs mediated HIV-1 replication in U1 cells. Altogether, we demonstrate that cervical cancer cells exacerbate HIV-1 replication in differentiated U1 cell line via transferring CYPs and HPV oncoproteins through EVs. We also show that the viral replication occurs via CYP and oxidative stress pathways, and the viral replication is also reduced by chemodietary agents. This study provides important information regarding biological interactions between HPV and HIV-1 via EVs leading to enhanced HIV-1 replication.
Collapse
|
16
|
Paim AC, Badley AD, Cummins NW. Mechanisms of Human Immunodeficiency Virus-Associated Lymphocyte Regulated Cell Death. AIDS Res Hum Retroviruses 2020; 36:101-115. [PMID: 31659912 PMCID: PMC7044792 DOI: 10.1089/aid.2019.0213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) causes CD4 T cell depletion through a number of mechanisms, including programmed cell death pathways (both apoptotic and nonapoptotic). In the setting of HIV-1 infection, the enhanced lymphocyte cell death occurs as a consequence of complex interactions between the host immune system and viral factors, which are reviewed herein. On the other hand, the main challenge to HIV-1 eradication is the development of latent infection in a subset of long lived cells, including CD4+ T cells and macrophages, which resist HIV-induced cell death. Understanding the potential mechanisms of how HIV-1 induces lymphocyte cell death is critical to the "kick and kill" cure strategy, which relies on the effective killing of reactivated, HIV-1-infected cells.
Collapse
Affiliation(s)
- Ana C. Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
17
|
Li DJ, Tong J, Li YH, Meng HB, Ji QX, Zhang GY, Zhu JH, Zhang WJ, Zeng FY, Huang G, Hua X, Shen FM, Wang P. Melatonin safeguards against fatty liver by antagonizing TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner. J Pineal Res 2019; 67:e12611. [PMID: 31541591 DOI: 10.1111/jpi.12611] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/17/2019] [Accepted: 09/14/2019] [Indexed: 12/15/2022]
Abstract
Melatonin has been previously shown to prevent nonalcoholic fatty liver disease (NAFLD), yet the underlying mechanisms are poorly understood. Here, we identified a previously unknown regulatory action of melatonin on apoptosis signal-regulating kinase 1 (ASK1) signaling pathway in the pathogenesis and development of NAFLD. Although melatonin administration did not alter food intake, it significantly alleviated fatty liver phenotypes, including the body weight gain, insulin resistance, hepatic lipid accumulation, steatohepatitis, and fibrosis in a high-fat diet (HFD)-induced NAFLD mouse model (in vivo). The protection of melatonin against NAFLD was not affected by inactivation of Kupffer cell in this model. In NAFLD mice liver, ASK1 signal cascade was substantially activated, evidence by the enhancement of total ASK1, phospho-ASK1, phospho-MKK3/6, phospho-p38, phospho-MKK4/7, and phospho-JNK. Melatonin treatment significantly suppressed the ASK1 upregulation and the phosphorylation of ASK1, MKK3/6, MKK4/7, p38, and JNK. Mechanistically, we found that lipid stress triggered the interaction between ASK1 and TNF receptor-associated factors (TRAFs), including TRAF1, TRAF2, and TRAF6, which resulted in ASK1 deubiquitination and thereby increased ASK1 protein stability. Melatonin did not alter ASK1 mRNA level; however, it activated a scaffold protein β-arrestin-1 and enabled it to bind to ASK1, which antagonized the TRAFs-mediated ASK1 deubiquitination, and thus reduced ASK1 protein stability. Consistent with these findings, knockout of β-arrestin-1 in mice partly abolished the protection of melatonin against NAFLD. Taken together, our results for the first time demonstrate that melatonin safeguards against NAFLD by eliminating ASK1 activation via inhibiting TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner.
Collapse
Affiliation(s)
- Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jie Tong
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yong-Hua Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Bo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing-Xin Ji
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Jia-Hui Zhu
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Wen-Jing Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Gang Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Hua
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Pei Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
18
|
Lasso G, Mayer SV, Winkelmann ER, Chu T, Elliot O, Patino-Galindo JA, Park K, Rabadan R, Honig B, Shapira SD. A Structure-Informed Atlas of Human-Virus Interactions. Cell 2019; 178:1526-1541.e16. [PMID: 31474372 PMCID: PMC6736651 DOI: 10.1016/j.cell.2019.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022]
Abstract
While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sandra V Mayer
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Evandro R Winkelmann
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Tim Chu
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Oliver Elliot
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Kernyu Park
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY, USA; Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA.
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Kumari S, Kumar M, Verma R, Ghosh JK, Tripathi RK. HIV-1 Nef-GCC185 interaction regulates assembly of cellular protein complexes at TGN targeting MHC-I downregulation. Life Sci 2019; 229:13-20. [PMID: 30953643 DOI: 10.1016/j.lfs.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
Abstract
AIM HIV-1 Nef downregulates surface MHC-I to protect the infected cells from CTLs-mediated killing. Although MHC-I downregulation has been extensively studied, the Nef-dependent assembly of the multi-protein complex and subsequent pathways activation has not yet been well explored. The present study is aimed for the identification of Nef-mediated sequential recruitment of cellular proteins that constitute the functional multi-protein complex, required for the downregulation of MHC-I. MAIN METHODS Different Cellular protein complexes were identified by co-immunoprecipitation in Nef or NefE4A mutant-expressing Jurkat T, and THP-1 cells followed by exposure to Nef-specific peptides 24 h post infection. The MHC-I downregulation was analyzed by confocal microscopy and flow cytometry. KEY FINDINGS We found the association of Nef with PACS-2, GCC185, PI3K, AP-1, SFK, and MHC-I proteins that probably constitute a functional multi-protein complex. Furthermore, the immunoprecipitations with PACS-2 and GCC185 in the presence or absence of Nef, Nef E4A mutant and Nef with CP-inhibitor divide the functional complex of Nef into Nef-dependent (AP-1 and PI3K) and GCC185-dependent complex (MHC-I and SFK). The molecular mechanisms for activation of cellular pathways have been deciphered on the basis of these interactions that are brought in close proximity through Nef-GCC185 interaction. Knockdown of GCC185 using siRNA in Jurkat T cells showed a direct relationship between the assembly of functional multi-protein complex and MHC-I accumulation at GCC185. SIGNIFICANCE Overall, our study elucidates that GCC185 is a focal point for the assembly of the Nef-mediated multi-protein complex at TGN.
Collapse
Affiliation(s)
- Sushila Kumari
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Manjeet Kumar
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Richa Verma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Raj Kamal Tripathi
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Janakipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
20
|
Abstract
Latent viral reservoirs in long-living cell populations are the main obstacle to a cure of HIV/AIDS. HIV-1 latency is controlled by the activation status of infected cells and their ability to return to a resting phenotype associated with silencing of viral gene expression. These cellular features are not just determined by the host since HIV-1 has evolved sophisticated mechanisms to alter cellular activation and survival to its advantage. Especially the HIV-1 accessory proteins Nef and Vpu exert numerous activities to promote viral replication and immune evasion affecting the size and preservation of the viral reservoir. Here, we review how antagonistic and synergistic functions of Nef and Vpu might affect HIV-1 latency. We also discuss whether these two accessory factors represent suitable targets to improve the ‘shock and kill’ cure strategy.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| | - Smitha Srinivasachar
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| |
Collapse
|
21
|
Kumar P, Rawat K, Sharma T, Kumari S, Saxena R, Kumar B, Baghel T, Afshan T, Siddiqi MI, Nazir A, Ghosh JK, Tripathi RK. HIV-1 Nef physically associate with CAMKIIδ - ASK-1 complex to inhibit p38MAPK signalling and apoptosis in infected cells. Life Sci 2019; 224:263-273. [PMID: 30902545 DOI: 10.1016/j.lfs.2019.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 11/15/2022]
Abstract
Human immunodeficiency type 1 virus accessory protein Nef is a key modulator of AIDS pathogenesis. With no enzymatic activity, Nef regulated functions in host cells largely depends on its ability to form multi-protein complex with the cellular proteins. Here, we identified Calcium (Ca2+)/Calmodulin dependent protein kinase II subunit delta (CAMKIIδ) as novel Nef interacting host protein. Further, we confirmed that Nef mediated [Ca2+]I promote formation of Nef-CAMKIIδ - apoptosis signal-regulating kinase (ASK-1) heterotrimeric complex. The assembly of Nef with CAMKIIδ - ASK-1 inhibits the downstream p38MAPK phosphorylation resulting in abrogation of apoptosis. Further, using competitive peptide inhibitors against Nef binding domains to CAMKIIδ, identified in the present study and ASK-1, individually blocked physical interaction of Nef with CAMKIIδ-ASK-1 complex and restored p38MAPK phosphorylation and apoptosis. Altogether, our study indicates that HIV-Nef modulates cytosolic [Ca2+]I and blocks CAMKIIδ - ASK-1 kinase activity to inhibit apoptosis of infected cells.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Kavita Rawat
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Tanuj Sharma
- Division of Molecular and Structural Biology, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Sushila Kumari
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Reshu Saxena
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Balawant Kumar
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Tanvi Baghel
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Tayyaba Afshan
- Division of Molecular and Structural Biology, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Aamir Nazir
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Jimut Kanti Ghosh
- Division of Molecular and Structural Biology, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India
| | - Raj Kamal Tripathi
- Division of Toxicology and Experimental Medicine, Central Drug Research Institute, Council of Scientific & Industrial Research, BS-10/1, Sector-10 Jankipuram Extension, Uttar Pradesh, India..
| |
Collapse
|
22
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
23
|
Santerre M, Chatila W, Wang Y, Mukerjee R, Sawaya BE. HIV-1 Nef promotes cell proliferation and microRNA dysregulation in lung cells. Cell Cycle 2019; 18:130-142. [PMID: 30563405 DOI: 10.1080/15384101.2018.1557487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. Lung cancer is the most frequent non-AIDS-defining malignancies in HIV-infected patients. The mechanism of the increased risk for lung cancer in HIV-1 patients is poorly understood. HIV-1 Nef protein has been suggested to be one of the key players in HIV-related lung disease. In here, we showed the involvement of Nef protein in cell modifications such as fibroblasts (IMR-90) and normal (BEAS-2B) or cancerous (A549) epithelial cells. We demonstrated that Nef protein reprograms initial stages of lung cancer (e.g. changes in the metabolism, improved cell survival and invasion, increase the angiogenesis factor VEGF). Additionally, we showed that Nef is provoking a global decrease of mature miRNA and a decrease of DICER1 and AGO expression in lung cells. MiRNAs play a crucial role in cell signaling and homeostasis, functioning as oncogenes or tumor suppressors, and their dysregulation can contribute to the tumorigenic process. These results showed that HIV-1 Nef protein is directly involved in preventing cell death and contributes to tumor progression.
Collapse
Affiliation(s)
- Maryline Santerre
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Wissam Chatila
- b Departments of Thoracic Medicine and Surgery , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Ying Wang
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Ruma Mukerjee
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| | - Bassel E Sawaya
- a Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA.,c Departments of Neurology , Lewis Katz School of Medicine, Temple University, Philadelphia , PA , USA
| |
Collapse
|
24
|
Implications of HIV-1 Nef for "Shock and Kill" Strategies to Eliminate Latent Viral Reservoirs. Viruses 2018; 10:v10120677. [PMID: 30513570 PMCID: PMC6316150 DOI: 10.3390/v10120677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Finding a cure for HIV is challenging because the virus is able to integrate itself into the host cell genome and establish a silent state, called latency, allowing it to evade antiviral drugs and the immune system. Various “shock and kill” strategies are being explored in attempts to eliminate latent HIV reservoirs. The goal of these approaches is to reactivate latent viruses (“shock”), thereby exposing them to clearance by viral cytopathic effects or immune-mediated responses (“kill”). To date, there has been limited clinical success using these methods. In this review, we highlight various functions of the HIV accessory protein Nef and discuss their double-edged effects that may contribute to the limited effectiveness of current “shock and kill” methods to eradicate latent HIV reservoirs in treated individuals.
Collapse
|
25
|
Gilani U, Shaukat M, Rasheed A, Shahid M, Tasneem F, Arshad M, Rashid N, Shahzad N. The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses. J Med Virol 2018; 91:1-13. [PMID: 30133783 DOI: 10.1002/jmv.25292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022]
Abstract
It is evidenced that 20% of all tumors in humans are caused by oncoviruses, including human papilloma viruses, Epstein-Barr virus, Kaposi sarcoma virus, human polyomaviruses, human T-lymphotrophic virus-1, and hepatitis B and C viruses. Human immunodeficiency virus is also involved in carcinogenesis, although not directly, but by facilitating the infection of many oncoviruses through compromising the immune system. Being intracellular parasites with the property of establishing latency and integrating into the host genome, these viruses are a therapeutic challenge for biomedical researchers. Therefore, strategies able to target nucleotide sequences within episomal or integrated viral genomes are of prime importance in antiviral or anticancerous armamentarium. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a powerful genome editing tool. Standing out as a precise and efficient oncoviruses method, it has been extensively applied in recent experimental ventures in the field of molecular medicine, particularly in combating infections including tumor inducing viruses. This review is aimed at collating the experimental and clinical advances in CRISPR/Cas9 technology in terms of its applications against oncoviruses. Primarily, it will focus on the application of CRISPR/Cas9 in combating tumor viruses, types of mechanisms targeted, and the significant outcomes till date. The technical pitfalls of the CRISPR/Cas9 and the comparative approaches in evaluating this technique with respect to other available alternatives are also described briefly. Furthermore, the review also discussed the clinical aspects and the ethical, legal, and social issues associated with the use of CRISPR/Cas9.
Collapse
Affiliation(s)
- Usman Gilani
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Memoona Shaukat
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Arisha Rasheed
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehak Shahid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Fareeda Tasneem
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
26
|
Nikitina E, Larionova I, Choinzonov E, Kzhyshkowska J. Monocytes and Macrophages as Viral Targets and Reservoirs. Int J Mol Sci 2018; 19:E2821. [PMID: 30231586 PMCID: PMC6163364 DOI: 10.3390/ijms19092821] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cell biology to utilize monocytes/macrophages as vessels for dissemination, long-term persistence within tissues and virus replication. Viruses enter cells through endocytosis, phagocytosis, macropinocytosis or membrane fusion. These processes play important roles in the mechanisms contributing to the pathogenesis of these agents and in establishing viral genome persistence and latency. Upon viral infection, monocytes respond with an elevated expression of proinflammatory signalling molecules and antiviral responses, as is shown in the case of the influenza, Chikungunya, human herpes and Zika viruses. Human immunodeficiency virus initiates acute inflammation on site during the early stages of infection but there is a shift of M1 to M2 at the later stages of infection. Cytomegalovirus creates a balance between pro- and anti-inflammatory processes by inducing a specific phenotype within the M1/M2 continuum. Despite facilitating inflammation, infected macrophages generally display abolished apoptosis and restricted cytopathic effect, which sustains the virus production. The majority of viruses discussed in this review employ monocytes/macrophages as a repository but certain viruses use these cells for productive replication. This review focuses on viral adaptations to enter monocytes/macrophages, immune escape, reprogramming of infected cells and the response of the host cells.
Collapse
Affiliation(s)
- Ekaterina Nikitina
- Department of Episomal-Persistent DNA in Cancer- and Chronic Diseases, German Cancer Research Center, 69120 Heidelberg, Germany.
- Department of Oncovirology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
| | - Irina Larionova
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Evgeniy Choinzonov
- Head and Neck Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634050, Russia.
| | - Julia Kzhyshkowska
- Department of Translational Cellular and Molecular Biomedicine, Tomsk State University, Tomsk 634050, Russia.
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, 68167 Heidelberg, Germany.
| |
Collapse
|
27
|
Sevilya Z, Chorin E, Gal-Garber O, Zelinger E, Turner D, Avidor B, Berke G, Hassin D. Killing of Latently HIV-Infected CD4 T Cells by Autologous CD8 T Cells Is Modulated by Nef. Front Immunol 2018; 9:2068. [PMID: 30254642 PMCID: PMC6141733 DOI: 10.3389/fimmu.2018.02068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-specific CD8 T cell activity in the course of HIV infection and the way it affects the virus that resides in the latent reservoir resting memory cells is debated. The PBMC of HIV-infected patients contain HIV-specific CD8 T cells and their potential targets, CD4 T cells latently infected by HIV. CD4 T cells and CD8 T cells procured from PBMC of HIV-infected patients were co-incubated and analyzed: Formation of CD8 T cells and HIV-infected CD4 T cell conjugates and apoptosis of these CD4 T cells were observed by fluorescence microscopy with in situ PCR of HIV LTR DNA. Furthermore, conjugation of CD8 T cells with CD4 T cells and apoptosis of CD4 T cells was observed and quantified by imaging flow cytometry using anti-human activated caspase 3 antibody and TUNEL assay. The conjugation activity and apoptosis were found to be much higher in patients with acute HIV infection or AIDS compared to patients in chronic infection on antiretroviral therapy (ART) or not. Patients on ART had low grade conjugation and apoptosis of isolated CD69, CD25, and HLA-DR-negative CD4 T cells (latent reservoir cells) by CD8 T cells. Using in situ PCR The latent reservoir CD4 T cells were shown to contain most of the HIV DNA. We demonstrate in HIV-infected patients, that CD8 T cells conjugate with and kill HIV-infected CD4 T cells, including HIV-infected resting memory CD4 T cells, throughout the course of HIV infection. We propose that in HIV-infected patients CD4 T cell annihilation is caused in part by ongoing activity of HIV-specific CD8 T cells. HIV Nef protein interacts with ASK 1 and inhibits its pro-apoptotic death signaling by Fas/FasL, thus protecting HIV-infected cells from CD8 T cells killing. A peptide that interrupts Nef-ASK1 interaction that had been delivered into CD4 T cells procured from patients on ART resulted in the increase of their apoptosis inflicted by autologous CD8 T cells. We suggest that elimination of the HIV-infected latent reservoir CD4 T cells can be achieved by Nef inhibition.
Collapse
Affiliation(s)
- Ziv Sevilya
- Internal Medicine Department A, Assuta Ashdod Medical Center, Ashdod, Israel.,Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ehud Chorin
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Gal-Garber
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel
| | - Einat Zelinger
- Interdepartmental Equipment Facility, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, Israel
| | - Dan Turner
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Boaz Avidor
- Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Berke
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Hassin
- Internal Medicine Department A, Assuta Ashdod Medical Center, Ashdod, Israel.,Crusaid Kobler AIDS center, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
28
|
Abstract
Dengue virus (DV) infection can cause either a self-limiting flu-like disease or a threatening hemorrhage that may evolve to shock and death. A variety of cell types, such as dendritic cells, monocytes, and B cells, can be infected by DV. However, despite the role of T lymphocytes in the control of DV replication, there remains a paucity of information on possible DV-T cell interactions during the disease course. In the present study, we have demonstrated that primary human naive CD4+ and CD8+ T cells are permissive for DV infection. Importantly, both T cell subtypes support viral replication and secrete viable virus particles. DV infection triggers the activation of both CD4+ and CD8+ T lymphocytes, but preactivation of T cells reduces the susceptibility of T cells to DV infection. Interestingly, the cytotoxicity-inducing protein granzyme A is highly secreted by human CD4+ but not CD8+ T cells after exposure to DV in vitro Additionally, using annexin V and polycaspase assays, we have demonstrated that T lymphocytes, in contrast to monocytes, are resistant to DV-induced apoptosis. Strikingly, both CD4+ and CD8+ T cells were found to be infected with DV in acutely infected dengue patients. Together, these results show that T cells are permissive for DV infection in vitro and in vivo, suggesting that this cell population may be a viral reservoir during the acute phase of the disease.IMPORTANCE Infection by dengue virus (DV) causes a flu-like disease that can evolve to severe hemorrhaging and death. T lymphocytes are important cells that regulate antibody secretion by B cells and trigger the death of infected cells. However, little is known about the direct interaction between DV and T lymphocytes. Here, we show that T lymphocytes from healthy donors are susceptible to infection by DV, leading to cell activation. Additionally, T cells seem to be resistant to DV-induced apoptosis, suggesting a potential role as a viral reservoir in humans. Finally, we show that both CD4+ and CD8+ T lymphocytes from acutely infected DV patients are infected by DV. Our results raise new questions about DV pathogenesis and vaccine development.
Collapse
|
29
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
30
|
Zhang P, Wang PX, Zhao LP, Zhang X, Ji YX, Zhang XJ, Fang C, Lu YX, Yang X, Gao MM, Zhang Y, Tian S, Zhu XY, Gong J, Ma XL, Li F, Wang Z, Huang Z, She ZG, Li H. The deubiquitinating enzyme TNFAIP3 mediates inactivation of hepatic ASK1 and ameliorates nonalcoholic steatohepatitis. Nat Med 2018; 24:84-94. [PMID: 29227477 DOI: 10.1038/nm.4453] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
Abstract
Activation of apoptosis signal-regulating kinase 1 (ASK1) in hepatocytes is a key process in the progression of nonalcoholic steatohepatitis (NASH) and a promising target for treatment of the condition. However, the mechanism underlying ASK1 activation is still unclear, and thus the endogenous regulators of this kinase remain open to be exploited as potential therapeutic targets. In screening for proteins that interact with ASK1 in the context of NASH, we identified the deubiquitinase tumor necrosis factor alpha-induced protein 3 (TNFAIP3) as a key endogenous suppressor of ASK1 activation, and we found that TNFAIP3 directly interacts with and deubiquitinates ASK1 in hepatocytes. Hepatocyte-specific ablation of Tnfaip3 exacerbated nonalcoholic fatty liver disease- and NASH-related phenotypes in mice, including glucose metabolism disorders, lipid accumulation and enhanced inflammation, in an ASK1-dependent manner. In contrast, transgenic or adeno-associated virus-mediated TNFAIP3 gene delivery in the liver in both mouse and nonhuman primate models of NASH substantially blocked the onset and progression of the disease. These results implicate TNFAIP3 as a functionally important endogenous suppressor of ASK1 hyperactivation in the pathogenesis of NASH and identify it as a potential new molecular target for NASH therapy.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Pi-Xiao Wang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Ling-Ping Zhao
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xin Zhang
- Institute of Model Animals of Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan-Xiao Ji
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital, Wuhan, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
| | - Chun Fang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yue-Xin Lu
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xia Yang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Mao-Mao Gao
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yan Zhang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Song Tian
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xue-Yong Zhu
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jun Gong
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feng Li
- Basic Medical School, Wuhan University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zan Huang
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animals of Wuhan University, Wuhan, China
- Basic Medical School, Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital, Wuhan, China
| |
Collapse
|
31
|
Okazaki T. ASK family in infection and inflammatory disease. Adv Biol Regul 2017; 66:37-45. [PMID: 29092784 DOI: 10.1016/j.jbior.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Living organisms are continuously exposed to pathogens such as viruses and bacteria. Soon after a limited number of germline-encoded receptors, called pathogen recognition receptors, sense pathogen-associated molecular patterns, hosts trigger innate immune responses, including production of type Ⅰ interferons, proinflammatory cytokines, and cellular apoptosis, to limit propagation of invading pathogens. Importantly, these host responses are also activated during inflammatory diseases, irrespective of pathogen infection, and often play a causal role in pathogenesis and progression of these diseases, thereby implying an intimate link between immune responses and inflammatory disease. The apoptosis signal-regulating kinase (ASK) family belongs to the larger MAP3K family that controls various stress responses. Here, I summarize the critical roles of members of the ASK family during infection and inflammatory disease, and discuss the relationship between these two noxious conditions.
Collapse
Affiliation(s)
- Tomohiko Okazaki
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
32
|
Rusnak L, Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Adv Biol Regul 2017; 66:23-30. [PMID: 29102394 DOI: 10.1016/j.jbior.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a three-tiered kinase cascade where mitogen-activated protein kinase kinase kinases (MAP3Ks) lead to the activation of mitogen-activated protein kinase kinases (MAP2K), and ultimately MAPK proteins. MAPK signaling can promote a diverse set of biological outcomes, ranging from cell death to proliferation. There are multiple mechanisms which govern MAPK output, such as the duration and strength of the signal, cellular localization to upstream and downstream binding partners, pathway crosstalk and the binding to scaffold and adaptor molecules. This review will focus on scaffold and adaptor proteins that bind to and regulate apoptosis signal-regulating kinase 1 (ASK1), a MAP3K protein with a critical role in mediating stress response pathways.
Collapse
Affiliation(s)
- Lauren Rusnak
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA.
| | - Haian Fu
- Department of Pharmacology and Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30322, USA; Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology & Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Abstract
The modulation of tuberculosis (TB)-induced immunopathology caused by human immunodeficiency virus (HIV)-1 coinfection remains incompletely understood but underlies the change seen in the natural history, presentation, and prognosis of TB in such patients. The deleterious combination of these two pathogens has been dubbed a "deadly syndemic," with each favoring the replication of the other and thereby contributing to accelerated disease morbidity and mortality. HIV-1 is the best-recognized risk factor for the development of active TB and accounts for 13% of cases globally. The advent of combination antiretroviral therapy (ART) has considerably mitigated this risk. Rapid roll-out of ART globally and the recent recommendation by the World Health Organization (WHO) to initiate ART for everyone living with HIV at any CD4 cell count should lead to further reductions in HIV-1-associated TB incidence because susceptibility to TB is inversely proportional to CD4 count. However, it is important to note that even after successful ART, patients with HIV-1 are still at increased risk for TB. Indeed, in settings of high TB incidence, the occurrence of TB often remains the first presentation of, and thereby the entry into, HIV care. As advantageous as ART-induced immune recovery is, it may also give rise to immunopathology, especially in the lower-CD4-count strata in the form of the immune reconstitution inflammatory syndrome. TB-immune reconstitution inflammatory syndrome will continue to impact the HIV-TB syndemic.
Collapse
|
34
|
Jacob RA, Johnson AL, Pawlak EN, Dirk BS, Van Nynatten LR, Haeryfar SMM, Dikeakos JD. The interaction between HIV-1 Nef and adaptor protein-2 reduces Nef-mediated CD4 + T cell apoptosis. Virology 2017; 509:1-10. [PMID: 28577469 DOI: 10.1016/j.virol.2017.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023]
Abstract
Acquired Immune Deficiency Syndrome is characterized by a decline in CD4+ T cells. Here, we elucidated the mechanism underlying apoptosis in Human Immunodeficiency Virus-1 (HIV-1) infection by examining host apoptotic pathways hijacked by the HIV-1 Nef protein in the CD4+ T-cell line Sup-T1. Using a panel of Nef mutants unable to bind specific host proteins we uncovered that Nef generates pro- and anti-apoptotic signals. Apoptosis increased upon mutating the motifs involved in the interaction of Nef:AP-1 (NefM20A or NefEEEE62-65AAAA) or Nef:AP-2 (NefLL164/165AA), implying these interactions limit Nef-mediated apoptosis. In contrast, disrupting the Nef:PAK2 interaction motifs (NefH89A or NefF191A) reduced apoptosis. To validate further, apoptosis was measured after short-hairpin RNA knock-down of AP-1, AP-2 and PAK2. AP-2α depletion enhanced apoptosis, demonstrating that disrupting the Nef:AP-2α interaction limits Nef-mediated apoptosis. Collectively, we describe a mechanism by which HIV-1 regulates cell survival and demonstrate the consequence of interfering with Nef:host protein interactions.
Collapse
Affiliation(s)
- Rajesh Abraham Jacob
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Emily N Pawlak
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Logan R Van Nynatten
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, The University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.
| |
Collapse
|
35
|
Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017; 66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1) was identified as a MAP3K that activates the JNK and p38 pathways, and subsequent studies have reported ASK2 and ASK3 as members of the ASK family. The ASK family is activated by various intrinsic and extrinsic stresses, including oxidative stress, ER stress and osmotic stress. Numerous lines of evidence have revealed that members of the ASK family are critical for signal transduction systems to control a wide range of stress responses such as cell death, differentiation and cytokine induction. In this review, we focus on the precise signaling mechanisms of the ASK family in response to diverse stressors.
Collapse
Affiliation(s)
- Takuto Nishida
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kazuki Hattori
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
36
|
Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc Natl Acad Sci U S A 2017; 114:E2096-E2105. [PMID: 28242696 PMCID: PMC5358389 DOI: 10.1073/pnas.1620813114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptosis signal-regulating kinases (ASK1-3) are apical kinases of the p38 and JNK MAP kinase pathways. They are activated by diverse stress stimuli, including reactive oxygen species, cytokines, and osmotic stress; however, a molecular understanding of how ASK proteins are controlled remains obscure. Here, we report a biochemical analysis of the ASK1 kinase domain in conjunction with its N-terminal thioredoxin-binding domain, along with a central regulatory region that links the two. We show that in solution the central regulatory region mediates a compact arrangement of the kinase and thioredoxin-binding domains and the central regulatory region actively primes MKK6, a key ASK1 substrate, for phosphorylation. The crystal structure of the central regulatory region reveals an unusually compact tetratricopeptide repeat (TPR) region capped by a cryptic pleckstrin homology domain. Biochemical assays show that both a conserved surface on the pleckstrin homology domain and an intact TPR region are required for ASK1 activity. We propose a model in which the central regulatory region promotes ASK1 activity via its pleckstrin homology domain but also facilitates ASK1 autoinhibition by bringing the thioredoxin-binding and kinase domains into close proximity. Such an architecture provides a mechanism for control of ASK-type kinases by diverse activators and inhibitors and demonstrates an unexpected level of autoregulatory scaffolding in mammalian stress-activated MAP kinase signaling.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Abhishek Kumar
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Chontelle M King
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | - Elizabeth C Ledgerwood
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
37
|
Trypsteen W, Mohammadi P, Van Hecke C, Mestdagh P, Lefever S, Saeys Y, De Bleser P, Vandesompele J, Ciuffi A, Vandekerckhove L, De Spiegelaere W. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay. Sci Rep 2016; 6:36111. [PMID: 27782208 PMCID: PMC5080576 DOI: 10.1038/srep36111] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell’s molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.
Collapse
Affiliation(s)
- Wim Trypsteen
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Pejman Mohammadi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarissa Van Hecke
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology Ghent University, Ghent, Belgium
| | - Pieter De Bleser
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - Angela Ciuffi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Linos Vandekerckhove
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium.,Department of Morphology, Ghent University, Belgium
| |
Collapse
|
38
|
Pleiotropic properties of ASK1. Biochim Biophys Acta Gen Subj 2016; 1861:3030-3038. [PMID: 27693599 DOI: 10.1016/j.bbagen.2016.09.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/16/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Apoptosis signal-regulating kinase 1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), has the potential to induce cellular apoptosis under various physiological conditions. It has long been suggested that ASK1 is highly sensitive to oxidative stress and contributes substantially to apoptosis. However, recent studies have indicated that ASK1 has pleiotropic roles in living organisms through other mechanisms in addition to apoptosis. SCOPE OF THE REVIEW This review describes the physiological functions of ASK1 in living organisms, focusing on the regulatory mechanisms of ASK1 activity and its importance in the pathogenesis of various diseases. We also highlight recent works published within the past few years. MAJOR CONCLUSIONS ASK1 forms a high-molecular-mass complex within the cell, designated as the ASK1 signalosome. Soon after the discovery of ASK1, several regulatory components of the ASK1 signalosome have been revealed, including thioredoxin (Trx), tumor-necrosis factor α receptor-associated factors (TRAFs) and 14-3-3s. In parallel with the precise analyses unveiling the molecular basis of ASK1 regulation, the physiological or pathophysiological significance of ASK1 in diverse organs has been elucidated. In addition to the generation of global knockout mice or tissue-specific knockout mice, ASK1-specific inhibitors have illuminated the biological roles of ASK1. GENERAL SIGNIFICANCE The multi-faceted features of the function of ASK1 have been discovered over the past two decades, revealing that ASK1 is a crucial molecule for maintaining cellular homeostasis, especially under conditions of stress. Based on the results that ASK1 deficiency provides beneficial effects for several diseases, modulating ASK1 activity is a promising method to ameliorate a subset of diseases.
Collapse
|
39
|
Kumar M, Kaur S, Nazir A, Tripathi RK. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling. Biochem Biophys Res Commun 2016; 474:137-145. [DOI: 10.1016/j.bbrc.2016.04.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/18/2016] [Indexed: 01/28/2023]
|
40
|
Yuan FH, Chen YG, Zhang ZZ, Yue HT, Bi HT, Yuan K, Weng SP, He JG, Chen YH. Down-regulation apoptosis signal-regulating kinase 1 gene reduced the Litopenaeus vannamei hemocyte apoptosis in WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2016; 50:109-116. [PMID: 26806164 DOI: 10.1016/j.fsi.2015.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, is crucial in various cellular responses. In the present study, we identified and characterized an ASK1 homolog from Litopenaeus vannamei (LvASK1). The full-length cDNA of LvASK1 was 5400 bp long, with an open reading frame encoding a putative 1420 amino acid protein. LvASK1 was highly expressed in muscle, hemocyte, eyestalk and heart. Real-time RT-PCR analysis showed that the expression of the LvASK1 was upregulated during the white spot syndrome virus (WSSV) challenge. The knocked-down expression of LvASK1 by RNA interference significantly reduced the apoptotic ratio of the hemocytes collected from WSSV-infected L. vannamei. Furthermore, the down-regulation of LvASK1 also decreased the cumulative mortality of WSSV-infected L. vannamei. These results suggested that down-regulation of LvASK1 decreased the apoptotic rate of hemocytes in WSSV-infected shrimp, and that it could contribute to the reduction of cumulative mortality in WSSV-infected L. vannamei.
Collapse
Affiliation(s)
- Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yong-Gui Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Ze-Zhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
41
|
Timilsina U, Gaur R. Modulation of apoptosis and viral latency - an axis to be well understood for successful cure of human immunodeficiency virus. J Gen Virol 2016; 97:813-824. [PMID: 26764023 DOI: 10.1099/jgv.0.000402] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the causative agent of the deadly disease AIDS, which is characterized by the progressive decline of CD4(+)T-cells. HIV-1-encoded proteins such as envelope gp120 (glycoprotein gp120), Tat (trans-activator of transcription), Nef (negative regulatory factor), Vpr (viral protein R), Vpu (viral protein unique) and protease are known to be effective in modulating host cell signalling pathways that lead to an alteration in apoptosis of both HIV-infected and uninfected bystander cells. Depending on the stage of the virus life cycle and host cell type, these viral proteins act as mediators of pro- or anti-apoptotic signals. HIV latency in viral reservoirs is a persistent phenomenon that has remained beyond the control of the human immune system. To cure HIV infections completely, it is crucial to reactivate latent HIV from cellular pools and to drive these apoptosis-resistant cells towards death. Several previous studies have reported the role of HIV-encoded proteins in apoptosis modulation, but the molecular basis for apoptosis evasion of some chronically HIV-infected cells and reactivated latently HIV-infected cells still needs to be elucidated. The current review summarizes our present understanding of apoptosis modulation in HIV-infected cells, uninfected bystander cells and latently infected cells, with a focus on highlighting strategies to activate the apoptotic pathway to kill latently infected cells.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi- 110021, India
| |
Collapse
|
42
|
Brobey RK, Dheghani M, Foster PP, Kuro-o M, Rosenblatt KP. Klotho Regulates 14-3-3ζ Monomerization and Binding to the ASK1 Signaling Complex in Response to Oxidative Stress. PLoS One 2015; 10:e0141968. [PMID: 26517365 PMCID: PMC4627807 DOI: 10.1371/journal.pone.0141968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/15/2015] [Indexed: 11/23/2022] Open
Abstract
The reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1) signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of free ASK1 which coincides with increased oxidative stress. Here, we tested the hypothesis that: 1) covalent interactions exist among three identified proteins constituting the ASK1 signaling complex; 2) in normal unstressed cells the ASK1, 14-3-3ζ and thioredoxin (Trx) proteins simultaneously engage in a tripartite complex formation; 3) Klotho's stabilizing effect on the complex relied solely on 14-3-3ζ expression and its apparent phosphorylation and dimerization changes. To verify the hypothesis, we performed 14-3-3ζ siRNA knock-down experiments in conjunction with cell-based assays to measure ASK1-client protein interactions in the presence and absence of Klotho, and with or without an oxidant such as rotenone. Our results show that Klotho activity induces posttranslational modifications in the complex targeting 14-3-3ζ monomer/dimer changes to effectively protect against ASK1 oxidation and dissociation. This is the first observation implicating all three proteins constituting the ASK1 signaling complex in close proximity.
Collapse
Affiliation(s)
- Reynolds K. Brobey
- Centers for Proteomics and Systems Biology, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler Street, Houston, Texas, 77030, United States of America
- Division of Oncology, Department of Internal Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 6410 Fannin, UTPB Suite 722, Houston, Texas 77030 United States of America
| | - Mehdi Dheghani
- Centers for Proteomics and Systems Biology, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler Street, Houston, Texas, 77030, United States of America
- Companion Dx Reference Laboratory, LLC, 10301 Stella Link Rd., Suite C, Houston, Texas 77025, United States of America
| | - Philip P. Foster
- Centers for Proteomics and Systems Biology, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler Street, Houston, Texas, 77030, United States of America
- Department of NanoMedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston (UTHealth), MD Anderson Cancer Center Bldg-3SCRB, 1881 East Road, Houston, Texas 77030, United States of America
- Division of Pulmonary Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 6431 Fannin, MSB 1.274, Houston, Texas 77030, United States of America
| | - Makoto Kuro-o
- Center for Molecular Medicine, Jichi Medical University, 3311–1 Yakushiji, Shimotsuke, Tochigi 329–0498, JAPAN
- Department of Pathology, Center for Mineral Metabolism, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390–9072, United States of America
| | - Kevin P Rosenblatt
- Centers for Proteomics and Systems Biology, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston (UTHealth) Medical School, 1825 Pressler Street, Houston, Texas, 77030, United States of America
- Companion Dx Reference Laboratory, LLC, 10301 Stella Link Rd., Suite C, Houston, Texas 77025, United States of America
| |
Collapse
|
43
|
Okazaki T, Higuchi M, Takeda K, Iwatsuki-Horimoto K, Kiso M, Miyagishi M, Yanai H, Kato A, Yoneyama M, Fujita T, Taniguchi T, Kawaoka Y, Ichijo H, Gotoh Y. The ASK family kinases differentially mediate induction of type I interferon and apoptosis during the antiviral response. Sci Signal 2015; 8:ra78. [PMID: 26243192 DOI: 10.1126/scisignal.aab1883] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral infection activates host defense mechanisms, including the production of type I interferon (IFN) and the apoptosis of infected cells. We investigated whether these two antiviral responses were differentially regulated in infected cells. We showed that the mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK) apoptosis signal-regulating kinase 1 (ASK1) was activated in cells by the synthetic double-stranded RNA analog polyinosinic:polycytidylic acid [poly(I:C)] and by RNA viruses, and that ASK1 played an essential role in both the induction of the gene encoding IFN-β (IFNB) and apoptotic cell death. In contrast, we found that the MAPKKK ASK2, a modulator of ASK1 signaling, was essential for ASK1-dependent apoptosis, but not for inducing IFNB expression. Furthermore, genetic deletion of either ASK1 or ASK2 in mice promoted the replication of influenza A virus in the lung. These results indicated that ASK1 and ASK2 are components of the antiviral defense mechanism and suggested that ASK2 acts as a key modulator that promotes apoptosis rather than the type I IFN response. Because ASK2 is selectively present in epithelium-rich tissues, such as the lung, ASK2-dependent apoptosis may contribute to an antiviral defense in tissues with a rapid repair rate in which cells could be readily replaced.
Collapse
Affiliation(s)
- Tomohiko Okazaki
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Maiko Higuchi
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohsuke Takeda
- Division of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology and Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan. Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 153-8505, Japan
| | - Atsushi Kato
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology and Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan. Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 153-8505, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan. Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Laboratory of Molecular Biology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Watkins RL, Foster JL, Garcia JV. In vivo analysis of Nef's role in HIV-1 replication, systemic T cell activation and CD4(+) T cell loss. Retrovirology 2015; 12:61. [PMID: 26169178 PMCID: PMC4501112 DOI: 10.1186/s12977-015-0187-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Nef is a multifunctional HIV-1 protein critical for progression to AIDS. Humans infected with nef(−) HIV-1 have greatly delayed or no disease consequences. We have contrasted nef(−) and nef(+) infection of BLT humanized mice to better characterize Nef’s pathogenic effects. Results Mice were inoculated with CCR5-tropic HIV-1JRCSF (JRCSF) or JRCSF with an irreversibly inactivated nef (JRCSFNefdd). In peripheral blood (PB), JRCSF exhibited high levels of viral RNA (peak viral loads of 4.71 × 106 ± 1.23 × 106 copies/ml) and a progressive, 75% loss of CD4+ T cells over 17 weeks. Similar losses were observed in CD4+ T cells from bone marrow, spleen, lymph node, lung and liver but thymocytes were not significantly decreased. JRCSFNefdd also had high peak viral loads (2.31 × 106 ± 1.67 × 106) but induced no loss of PB CD4+ T cells. In organs, JRCSFNefdd produced small, but significant, reductions in CD4+ T cell levels and did not affect the level of thymocytes. Uninfected mice have low levels of HLA-DR+CD38+CD8+ T cells in blood (1–2%). Six weeks post inoculation, JRCSF infection resulted in significantly elevated levels of activated CD8+ T cells (6.37 ± 1.07%). T cell activation coincided with PB CD4+ T cell loss which suggests a common Nef-dependent mechanism. At 12 weeks, in JRCSF infected animals PB T cell activation sharply increased to 19.7 ± 2.9% then subsided to 5.4 ± 1.4% at 14 weeks. HLA-DR+CD38+CD8+ T cell levels in JRCSFNefdd infected mice did not rise above 1–2% despite sustained high levels of viremia. Interestingly, we also noted that in mice engrafted with human tissue expressing a putative protective HLA-B allele (B42:01), JRCSFNefdd exhibited a substantial (200-fold) reduced viral load compared to JRCSF. Conclusions Nef expression was necessary for both systemic T cell activation and substantial CD4+ T cell loss from blood and tissues. JRCSFNefdd infection did not activate CD8+ T cells or reduce the level of CD4+ T cells in blood but did result in a small Nef-independent decrease in CD4+ T cells in organs. These observations strongly support the conclusion that viral pathogenicity is mostly driven by Nef. We also observed for the first time substantial host-specific suppression of HIV-1 replication in a small animal infection model. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard L Watkins
- Division of Infectious Diseases, UNC Center for AIDS Research, Genetic Medicine, University of North Carolina, Campus Box 7042, Chapel Hill, NC, 27599-7042, USA.
| | - John L Foster
- Division of Infectious Diseases, UNC Center for AIDS Research, Genetic Medicine, University of North Carolina, Campus Box 7042, Chapel Hill, NC, 27599-7042, USA.
| | - J Victor Garcia
- Division of Infectious Diseases, UNC Center for AIDS Research, Genetic Medicine, University of North Carolina, Campus Box 7042, Chapel Hill, NC, 27599-7042, USA.
| |
Collapse
|
45
|
Mycobacterium tuberculosis and Human Immunodeficiency Virus Type 1 Cooperatively Modulate Macrophage Apoptosis via Toll Like Receptor 2 and Calcium Homeostasis. PLoS One 2015; 10:e0131767. [PMID: 26132135 PMCID: PMC4489497 DOI: 10.1371/journal.pone.0131767] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
The emergence of drug resistant strains of Mycobacterium tuberculosis (M. tuberculosis) together with reports of co-infections with the human immunodeficiency virus (HIV) has renewed interest to better understand the intricate mechanisms prevalent during co-infections. In this study we report a synergistic effect of M. tuberculosis and HIV-1, and their antigens Rv3416 and Nef, respectively, in inhibiting apoptosis of macrophages. This inhibition involves the TLR2 pathway and second messengers that play complementing and contrasting roles in regulating apoptosis. Interestingly, the route of calcium influx into cells differentially regulates apoptosis during antigenic co-stimulation. While calcium released from intracellular stores was anti-apoptotic, calcium influx from the external milieu was pro-apoptotic. Further, molecular sensors of intracellular calcium release aid in antigen mediated inhibition of apoptosis. A cross-regulation between oxidative burst and differential routing of calcium influx governed apoptosis. Interestingly, the HIV-1 Nef supported anti-apoptotic responses in macrophages whereas Vpu had no significant effect. These results point to a synergistic liaison between M. tuberculosis and HIV-1 in regulating macrophage apoptosis.
Collapse
|
46
|
ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction. Nat Commun 2015; 6:6945. [PMID: 25901786 PMCID: PMC4423214 DOI: 10.1038/ncomms7945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
APOBEC3G (A3G) is an innate antiviral restriction factor that strongly inhibits the replication of human immunodeficiency virus type 1 (HIV-1). An HIV-1 accessory protein, Vif, hijacks the host ubiquitin–proteasome system to execute A3G degradation. Identification of the host pathways that obstruct the action of Vif could provide a new strategy for blocking viral replication. We demonstrate here that the host protein ASK1 (apoptosis signal-regulating kinase 1) interferes with the counteraction by Vif and revitalizes A3G-mediated viral restriction. ASK1 binds the BC-box of Vif, thereby disrupting the assembly of the Vif–ubiquitin ligase complex. Consequently, ASK1 stabilizes A3G and promotes its incorporation into viral particles, ultimately reducing viral infectivity. Furthermore, treatment with the antiretroviral drug AZT (zidovudine) induces ASK1 expression and restores the antiviral activity of A3G in HIV-1-infected cells. This study thus demonstrates a distinct function of ASK1 in restoring the host antiviral system that can be enhanced by AZT treatment. The human protein APOBEC3G (A3G) inhibits HIV-1 replication, but the viral protein Vif counteracts by inducing A3G degradation. Here Miyakawa et al. show that the antiretroviral drug AZT restores A3G function in vitro by stimulating expression of a host protein, ASK1, which interferes with the action of Vif.
Collapse
|
47
|
Eradication of HIV-1 from the macrophage reservoir: an uncertain goal? Viruses 2015; 7:1578-98. [PMID: 25835530 PMCID: PMC4411666 DOI: 10.3390/v7041578] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes latency in resting memory CD4+ T cells and cells of myeloid lineage. In contrast to the T cells, cells of myeloid lineage are resistant to the HIV-1 induced cytopathic effect. Cells of myeloid lineage including macrophages are present in anatomical sanctuaries making them a difficult drug target. In addition, the long life span of macrophages as compared to the CD4+ T cells make them important viral reservoirs in infected individuals especially in the late stage of viral infection where CD4+ T cells are largely depleted. In the past decade, HIV-1 persistence in resting CD4+ T cells has gained considerable attention. It is currently believed that rebound viremia following cessation of combination anti-retroviral therapy (cART) originates from this source. However, the clinical relevance of this reservoir has been questioned. It is suggested that the resting CD4+ T cells are only one source of residual viremia and other viral reservoirs such as tissue macrophages should be seriously considered. In the present review we will discuss how macrophages contribute to the development of long-lived latent reservoirs and how macrophages can be used as a therapeutic target in eradicating latent reservoir.
Collapse
|
48
|
Percario ZA, Ali M, Mangino G, Affabris E. Nef, the shuttling molecular adaptor of HIV, influences the cytokine network. Cytokine Growth Factor Rev 2014; 26:159-73. [PMID: 25529283 DOI: 10.1016/j.cytogfr.2014.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/05/2014] [Indexed: 12/17/2022]
Abstract
Several viruses manipulate host innate immune responses to avoid immune recognition and improve viral replication and spreading. The viral protein Nef of Human Immunodeficiency Virus is mainly involved in this "hijacking" activity and is a well established virulence factor. In the last few years there have been remarkable advances in outlining a defined framework of its functions. In particular Nef appears to be a shuttling molecular adaptor able to exert its effects both on infected and non infected bystander cell. In addition it is emerging fact that it has an important impact on the chemo-cytokine network. Nef protein represents an interesting new target to develop therapeutic drugs for treatment of seropositive patients. In this review we have tried to provide a unifying view of the multiple functions of this viral protein on the basis of recently available experimental data.
Collapse
Affiliation(s)
| | - Muhammad Ali
- Department of Sciences, University Roma Tre, Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| | | |
Collapse
|
49
|
Mbita Z, Hull R, Dlamini Z. Human immunodeficiency virus-1 (HIV-1)-mediated apoptosis: new therapeutic targets. Viruses 2014; 6:3181-227. [PMID: 25196285 PMCID: PMC4147692 DOI: 10.3390/v6083181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/12/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022] Open
Abstract
HIV has posed a significant challenge due to the ability of the virus to both impair and evade the host’s immune system. One of the most important mechanisms it has employed to do so is the modulation of the host’s native apoptotic pathways and mechanisms. Viral proteins alter normal apoptotic signaling resulting in increased viral load and the formation of viral reservoirs which ultimately increase infectivity. Both the host’s pro- and anti-apoptotic responses are regulated by the interactions of viral proteins with cell surface receptors or apoptotic pathway components. This dynamic has led to the development of therapies aimed at altering the ability of the virus to modulate apoptotic pathways. These therapies are aimed at preventing or inhibiting viral infection, or treating viral associated pathologies. These drugs target both the viral proteins and the apoptotic pathways of the host. This review will examine the cell types targeted by HIV, the surface receptors exploited by the virus and the mechanisms whereby HIV encoded proteins influence the apoptotic pathways. The viral manipulation of the hosts’ cell type to evade the immune system, establish viral reservoirs and enhance viral proliferation will be reviewed. The pathologies associated with the ability of HIV to alter apoptotic signaling and the drugs and therapies currently under development that target the ability of apoptotic signaling within HIV infection will also be discussed.
Collapse
Affiliation(s)
- Zukile Mbita
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| | - Zodwa Dlamini
- College of Agriculture and Environmental Sciences, University of South Africa, Florida Science Campus, C/o Christiaan de Wet and Pioneer Avenue P/Bag X6, Johannesburg 1710, South Africa.
| |
Collapse
|
50
|
Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. MOLECULAR AND CELLULAR THERAPIES 2014; 2:10. [PMID: 26056579 PMCID: PMC4452058 DOI: 10.1186/2052-8426-2-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/27/2014] [Indexed: 12/21/2022]
Abstract
Human immunodeficiency virus (HIV) is still a serious global health concern responsible for more than 25 million deaths in last three decades. More than 34 million people are living with HIV infection. Macrophages and CD4+ T cells are the principal targets of HIV-1. The pathogenesis of HIV-1 takes different routes in macrophages and CD4+ T cells. Macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time. In addition, macrophages being present in every organ system thus can disseminate virus to the different anatomical sites leading to the formation of viral sanctuaries. Complete cure of HIV-1 needs better understanding of viral pathogenesis in these reservoirs and implementation of knowledge into robust therapeutic products. In this review we will focus on the unique relationship between HIV-1 and macrophages. Furthermore, we will describe how successful antiretroviral therapy (ART) is in suppressing HIV and novel molecular and cellular strategies against HIV-1 in macrophages.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France
| | - Georges Herbein
- Department of Virology, UPRES EA4266 Pathogens & Inflammation, University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France ; Department of Virology, Hôpital Saint-Jacques, CHRU Besançon, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| |
Collapse
|