1
|
Huber M, Chávez A. Assessing Rapid Adaptation Through Epigenetic Inheritance: A New Experimental Approach. PLANT, CELL & ENVIRONMENT 2025; 48:1494-1499. [PMID: 39450906 PMCID: PMC11695797 DOI: 10.1111/pce.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Epigenetic inheritance is hypothesized to lead to rapid adaptation, yet evidence is scarce, possibly because of the current experimental approaches. We propose a new approach to simultaneously assess whether species adapt through selection of epimutations or formation of stress‐induced epialleles.
Collapse
Affiliation(s)
- Meret Huber
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzMainzGermany
| | - Alexandra Chávez
- Institute of Organismic and Molecular EvolutionJohannes Gutenberg University MainzMainzGermany
| |
Collapse
|
2
|
Cui J, Wang R, Gu R, Chen M, Wang Z, Li L, Hong J, Cui S. Telomere-to-telomere Phragmites australis reference genome assembly with a B chromosome provides insights into its evolution and polysaccharide biosynthesis. Commun Biol 2025; 8:73. [PMID: 39825185 PMCID: PMC11742667 DOI: 10.1038/s42003-025-07532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Phragmites australis is a globally distributed grass species (Poaceae) recognized for its vast biomass and exceptional environmental adaptability, making it an ideal model for studying wetland ecosystems and plant stress resilience. However, genomic resources for this species have been limited. In this study, we assembled a chromosome-level reference genome of P. australis containing one B chromosome. An explosion of LTR-RTs, centered on the Copia family, occurred during the late Pleistocene, driving the expansion of P. australis genome size and subgenomic differentiation. Comparative genomic analysis showed that P. australis underwent two whole gene duplication events, was segregated from Cleistogenes songorica at 34.6 Mya, and that 41.26% of the gene families underwent expansion. Based on multi-tissue transcriptomic data, we identified structural genes in the biosynthetic pathway of pharmacologically active Phragmitis rhizoma polysaccharides with essential roles in rhizome development. This study deepens our understanding of Arundinoideae evolution, genome dynamics, and the genetic basis of key traits, providing essential data and a genetic foundation for wetland restoration, bioenergy development, and plant stress.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Rui Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ruoqing Gu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Minghui Chen
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
| | - Ziyao Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jianming Hong
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| |
Collapse
|
3
|
Finnegan EJ, Crisp PA, Zhang P, Eglitis-Sexton J, Greenwood J, Hintzsche J, Li J, Taylor J, Wallace X, Swain S. Testing the potential of zebularine to induce heritable changes in crop growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:26. [PMID: 39792151 PMCID: PMC11723894 DOI: 10.1007/s00122-024-04799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
KEY MESSAGE Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release. The speed of breeding can be enhanced by using modern technologies including high-throughput phenomics, genomic selection, and directed mutation via CRISPR. Here we test the concept of modifying gene regulation by transiently disrupting DNA methylation with the methyltransferase inhibitor, zebularine (Zeb), as a means to uncover novel phenotypes in an elite cultivar to facilitate breeding for epigenetically controlled traits. The development and architecture of the wheat inflorescence, including spikelet density, are an important component of yield, and both grain size and number have been extensively modified during domestication and breeding of wheat cultivars. We identified several Zeb-treated plants with a dominant mutation that increased spikelet density compared to the untreated controls. Our analysis showed that in addition to causing loss of DNA methylation, Zeb treatment resulted in major chromosomal abnormalities, including trisomy and the formation of a novel telocentric chromosome. We provide evidence that increased copy number of the domestication gene, Q, is the most likely cause of increased spikelet density in two Zeb-treated plants. Collateral damage to chromosomes in Zeb-treated plants suggests that this is not a viable approach to epigenetic breeding.
Collapse
Affiliation(s)
- E Jean Finnegan
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia.
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Peter A Crisp
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, QLD, Australia
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Judith Eglitis-Sexton
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, QLD, Australia
| | - Julian Greenwood
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jessica Hintzsche
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jen Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Stephen Swain
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| |
Collapse
|
4
|
Lee S, Bae SH, Jeon Y, Seo PJ, Choi Y. DEMETER DNA demethylase reshapes the global DNA methylation landscape and controls cell identity transition during plant regeneration. BMC Genomics 2024; 25:1234. [PMID: 39716048 DOI: 10.1186/s12864-024-11144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Plants possess a high potential for somatic cell reprogramming, enabling the transition from differentiated tissue to pluripotent callus, followed by the formation of de novo shoots during plant regeneration. Despite extensive studies on the molecular network and key genetic factors involved in this process, the underlying epigenetic landscape remains incompletely understood. RESULTS Here, we explored the dynamics of the methylome and transcriptome during the two-step plant regeneration process. During the leaf-to-callus transition in Arabidopsis Ler, CG methylation shifted across genic regions, exhibiting a similar number of differentially methylated regions (DMRs) for both hypo- and hypermethylation. Pericentromeric regions underwent substantial CG and extensive CHH hypomethylation, alongside some CHG hypermethylation. Upon shoot regeneration from callus, genic regions displayed extensive reconfiguration of CG methylation, while pericentromeric methylation levels highly increased across all cytosine contexts, coinciding with the activation of the RNA-directed DNA methylation (RdDM) pathway. However, mutation in DEMETER (DME) DNA demethylase gene resulted in significant genic CG redistribution and global non-CG hypomethylation in pericentromeric regions, particularly during shoot regeneration. This non-CG hypomethylation observed in dme-2 mutants was, at least partly, due to RdDM downregulation. The dme-2 mutants affected gene expression involved in pluripotency and shoot meristem development, resulting in enhanced shoot regeneration through a reprogrammed state established by pericentromeric hypomethylation compared to wild type. CONCLUSION Our study demonstrates epigenetic changes, accompanied by transcriptome alterations, during pluripotency acquisition (leaf-to-callus) and regeneration (callus-to-de novo shoot). Additionally, it highlights the functions of the DME demethylase, particularly its close association with the RdDM pathway, which underlies pericentromeric non-CG methylation maintenance. These results provide important insights into the epigenetic reconfiguration associated with cell identity transition during somatic cell reprogramming.
Collapse
Affiliation(s)
- Seunga Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea
| | - Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Yunji Jeon
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea.
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, Korea.
| |
Collapse
|
5
|
Kerckhofs E, Schubert D. Conserved functions of chromatin regulators in basal Archaeplastida. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1301-1311. [PMID: 37680033 DOI: 10.1111/tpj.16446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Chromatin is a dynamic network that regulates genome organization and gene expression. Different types of chromatin regulators are highly conserved among Archaeplastida, including unicellular algae, while some chromatin genes are only present in land plant genomes. Here, we review recent advances in understanding the function of conserved chromatin factors in basal land plants and algae. We focus on the role of Polycomb-group genes which mediate H3K27me3-based silencing and play a role in balancing gene dosage and regulating haploid-to-diploid transitions by tissue-specific repression of the transcription factors KNOX and BELL in many representatives of the green lineage. Moreover, H3K27me3 predominantly occupies repetitive elements which can lead to their silencing in a unicellular alga and basal land plants, while it covers mostly protein-coding genes in higher land plants. In addition, we discuss the role of nuclear matrix constituent proteins as putative functional lamin analogs that are highly conserved among land plants and might have an ancestral function in stress response regulation. In summary, our review highlights the importance of studying chromatin regulation in a wide range of organisms in the Archaeplastida.
Collapse
Affiliation(s)
- Elise Kerckhofs
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Daniel Schubert
- Epigenetics of Plants, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Mabry ME, Abrahams RS, Al-Shehbaz IA, Baker WJ, Barak S, Barker MS, Barrett RL, Beric A, Bhattacharya S, Carey SB, Conant GC, Conran JG, Dassanayake M, Edger PP, Hall JC, Hao Y, Hendriks KP, Hibberd JM, King GJ, Kliebenstein DJ, Koch MA, Leitch IJ, Lens F, Lysak MA, McAlvay AC, McKibben MTW, Mercati F, Moore RC, Mummenhoff K, Murphy DJ, Nikolov LA, Pisias M, Roalson EH, Schranz ME, Thomas SK, Yu Q, Yocca A, Pires JC, Harkess AE. Complementing model species with model clades. THE PLANT CELL 2024; 36:1205-1226. [PMID: 37824826 PMCID: PMC11062466 DOI: 10.1093/plcell/koad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Model species continue to underpin groundbreaking plant science research. At the same time, the phylogenetic resolution of the land plant tree of life continues to improve. The intersection of these 2 research paths creates a unique opportunity to further extend the usefulness of model species across larger taxonomic groups. Here we promote the utility of the Arabidopsis thaliana model species, especially the ability to connect its genetic and functional resources, to species across the entire Brassicales order. We focus on the utility of using genomics and phylogenomics to bridge the evolution and diversification of several traits across the Brassicales to the resources in Arabidopsis, thereby extending scope from a model species by establishing a "model clade." These Brassicales-wide traits are discussed in the context of both the model species Arabidopsis and the family Brassicaceae. We promote the utility of such a "model clade" and make suggestions for building global networks to support future studies in the model order Brassicales.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - R Shawn Abrahams
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | | | | | - Simon Barak
- Ben-Gurion University of the Negev, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 8499000, Israel
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, NSW 2567, Australia
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO 63108, USA
| | - Samik Bhattacharya
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Gavin C Conant
- Department of Biological Sciences, Bioinformatics Research Center, Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
| | - John G Conran
- ACEBB and SGC, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48864, USA
| | - Jocelyn C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | | | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Frederic Lens
- Functional Traits, Naturalis Biodiversity Center, PO Box 9517, Leiden 2300 RA, the Netherlands
- Institute of Biology Leiden, Plant Sciences, Leiden University, 2333 BE Leiden, the Netherlands
| | - Martin A Lysak
- CEITEC, and NCBR, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alex C McAlvay
- Institute of Economic Botany, New York Botanical Garden, The Bronx, NY 10458, USA
| | - Michael T W McKibben
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Francesco Mercati
- National Research Council (CNR), Institute of Biosciences and Bioresource (IBBR), Palermo 90129, Italy
| | | | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, D-49076 Osnabrück, Germany
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne, VIC 3004, Australia
| | | | - Michael Pisias
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Eric H Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Shawn K Thomas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO 65211, USA
| | - Qingyi Yu
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Hilo, HI 96720, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Alex E Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
7
|
Vu GTH, Cao HX, Hofmann M, Steiner W, Gailing O. Uncovering epigenetic and transcriptional regulation of growth in Douglas-fir: identification of differential methylation regions in mega-sized introns. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:863-875. [PMID: 37984804 PMCID: PMC10955500 DOI: 10.1111/pbi.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Tree growth performance can be partly explained by genetics, while a large proportion of growth variation is thought to be controlled by environmental factors. However, to what extent DNA methylation, a stable epigenetic modification, contributes to phenotypic plasticity in the growth performance of long-lived trees remains unclear. In this study, a comparative analysis of targeted DNA genotyping, DNA methylation and mRNAseq profiling for needles of 44-year-old Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco) having contrasting growth characteristics was performed. In total, we identified 195 differentially expressed genes (DEGs) and 115 differentially methylated loci (DML) that are associated with genes involved in fitness-related processes such as growth, stress management, plant development and energy resources. Interestingly, all four intronic DML were identified in mega-sized (between 100 and 180 kbp in length) and highly expressed genes, suggesting specialized regulation mechanisms of these long intron genes in gymnosperms. DNA repetitive sequences mainly comprising long-terminal repeats of retroelements are involved in growth-associated DNA methylation regulation (both hyper- and hypomethylation) of 99 DML (86.1% of total DML). Furthermore, nearly 14% of the DML was not tagged by single nucleotide polymorphisms, suggesting a unique contribution of the epigenetic variation in tree growth.
Collapse
Affiliation(s)
- Giang Thi Ha Vu
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| | - Martin Hofmann
- Nordwestdeutsche Forstliche VersuchsanstaltAbteilung WaldgenressourcenHann. MündenGermany
| | - Wilfried Steiner
- Nordwestdeutsche Forstliche VersuchsanstaltAbteilung WaldgenressourcenHann. MündenGermany
| | - Oliver Gailing
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| |
Collapse
|
8
|
Cissé OH, Curran SJ, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Combs C, Thapar S, Dekker JP, Grewal S, Cushion M, Ma L, Kovacs JA. Regional centromere configuration in the fungal pathogens of the Pneumocystis genus. mBio 2024; 15:e0318523. [PMID: 38380929 PMCID: PMC10936427 DOI: 10.1128/mbio.03185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly J. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H. Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R. Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A. Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Christian Combs
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sabrina Thapar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - John P. Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Thieme M, Minadakis N, Himber C, Keller B, Xu W, Rutowicz K, Matteoli C, Böhrer M, Rymen B, Laudencia-Chingcuanco D, Vogel JP, Sibout R, Stritt C, Blevins T, Roulin AC. Transposition of HOPPLA in siRNA-deficient plants suggests a limited effect of the environment on retrotransposon mobility in Brachypodium distachyon. PLoS Genet 2024; 20:e1011200. [PMID: 38470914 PMCID: PMC10959353 DOI: 10.1371/journal.pgen.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bettina Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Kinga Rutowicz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Calvin Matteoli
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Debbie Laudencia-Chingcuanco
- United States Department of Agriculture Agricultural Research Service Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Richard Sibout
- Institut National de la Recherche Agronomique Unité BIA- 1268 Biopolymères Interactions Assemblages Equipe Paroi Végétale et Polymères Pariétaux (PVPP), Nantes, France
| | - Christoph Stritt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne C. Roulin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Liu Y, Zhang Z, Hu H, Chen W, Zhang F, Wang Q, Wang C, Yan K, Du J. Molecular basis of chromatin remodelling by DDM1 involved in plant DNA methylation. NATURE PLANTS 2024; 10:374-380. [PMID: 38413824 DOI: 10.1038/s41477-024-01640-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Eukaryotic gene regulation occurs at the chromatin level, which requires changing the chromatin structure by a group of ATP-dependent DNA translocases-namely, the chromatin remodellers1. In plants, chromatin remodellers function in various biological processes and possess both conserved and plant-specific components2-5. DECREASE IN DNA METHYLATION 1 (DDM1) is a plant chromatin remodeller that plays a key role in the maintenance DNA methylation6-11. Here we determined the structures of Arabidopsis DDM1 in complex with nucleosome in ADP-BeFx-bound, ADP-bound and nucleotide-free conformations. We show that DDM1 specifically recognizes the H4 tail and nucleosomal DNA. The conformational differences between ADP-BeFx-bound, ADP-bound and nucleotide-free DDM1 suggest a chromatin remodelling cycle coupled to ATP binding, hydrolysis and ADP release. This, in turn, triggers conformational changes in the DDM1-bound nucleosomal DNA, which alters the nucleosome structure and promotes DNA sliding. Together, our data reveal the molecular basis of chromatin remodelling by DDM1.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhihui Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hongmiao Hu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Wei Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qian Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Changshi Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Kaige Yan
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Wassing IE, Nishiyama A, Hiruta M, Jia Q, Shikimachi R, Kikuchi A, Sugimura K, Hong X, Chiba Y, Peng J, Jenness C, Nakanishi M, Zhao L, Arita K, Funabiki H. CDCA7 is a hemimethylated DNA adaptor for the nucleosome remodeler HELLS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572350. [PMID: 38187757 PMCID: PMC10769307 DOI: 10.1101/2023.12.19.572350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mutations of the SNF2 family ATPase HELLS and its activator CDCA7 cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, characterized by hypomethylation at heterochromatin. The unique zinc-finger domain, zf-4CXXC_R1, of CDCA7 is widely conserved across eukaryotes but is absent from species that lack HELLS and DNA methyltransferases, implying its specialized relation with methylated DNA. Here we demonstrate that zf-4CXXC_R1 acts as a hemimethylated DNA sensor. The zf-4CXXC_R1 domain of CDCA7 selectively binds to DNA with a hemimethylated CpG, but not unmethylated or fully methylated CpG, and ICF disease mutations eliminated this binding. CDCA7 and HELLS interact via their N-terminal alpha helices, through which HELLS is recruited to hemimethylated DNA. While placement of a hemimethylated CpG within the nucleosome core particle can hinder its recognition by CDCA7, cryo-EM structure analysis of the CDCA7-nucleosome complex suggests that zf-4CXXC_R1 recognizes a hemimethylated CpG in the major groove at linker DNA. Our study provides insights into how the CDCA7-HELLS nucleosome remodeling complex uniquely assists maintenance DNA methylation.
Collapse
Affiliation(s)
- Isabel E. Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Moeri Hiruta
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Reia Shikimachi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Amika Kikuchi
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Keita Sugimura
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Xin Hong
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Yoshie Chiba
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Christopher Jenness
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Tokyo 108-8639 Japan
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Kyohei Arita
- Structural Biology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
12
|
Djihinto OY, Meacci D, Medjigodo AA, Bernardini F, Djogbénou LS. Relative expression of key genes involved in nucleic acids methylation in Anopheles gambiae sensu stricto. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:754-766. [PMID: 37417368 DOI: 10.1111/mve.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
In vertebrates, enzymes responsible for DNA methylation, one of the epigenetic mechanisms, are encoded by genes falling into the cytosine methyltransferases genes family (Dnmt1, Dnmt3a,b and Dnmt3L). However, in Diptera, only the methyltransferase Dnmt2 was found, suggesting that DNA methylation might act differently for species in this order. Moreover, genes involved in epigenetic dynamics, such as Ten-eleven Translocation dioxygenases (TET) and Methyl-CpG-binding domain (MBDs), present in vertebrates, might play a role in insects. This work aimed at investigating nucleic acids methylation in the malaria vector Anopheles gambiae (Diptera: Culicidae) by analysing the expression of Dnmt2, TET2 and MBDs genes using quantitative real-time polymerase chain reaction (qRT-PCR) at pre-immature stages and in reproductive tissues of adult mosquitoes. In addition, the effect of two DNA methylation inhibitors on larval survival was evaluated. The qPCR results showed an overall low expression of Dnmt2 at all developmental stages and in adult reproductive tissues. In contrast, MBD and TET2 showed an overall higher expression. In adult mosquito reproductive tissues, the expression level of the three genes in males' testes was significantly higher than that in females' ovaries. The chemical treatments did not affect larval survival. The findings suggest that mechanisms other than DNA methylation underlie epigenetic regulation in An. gambiae.
Collapse
Affiliation(s)
- Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Dario Meacci
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Adandé A Medjigodo
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Federica Bernardini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
- Institut Régional de Santé Publique (IRSP), University of Abomey-Calavi, Ouidah, Benin
| |
Collapse
|
13
|
Williams CJ, Dai D, Tran KA, Monroe JG, Williams BP. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants. Genome Biol 2023; 24:227. [PMID: 37828516 PMCID: PMC10571256 DOI: 10.1186/s13059-023-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND In several eukaryotes, DNA methylation occurs within the coding regions of many genes, termed gene body methylation (GbM). Whereas the role of DNA methylation on the silencing of transposons and repetitive DNA is well understood, gene body methylation is not associated with transcriptional repression, and its biological importance remains unclear. RESULTS We report a newly discovered type of GbM in plants, which is under constitutive addition and removal by dynamic methylation modifiers in all cells, including the germline. Methylation at Dynamic GbM genes is removed by the DRDD demethylation pathway and added by an unknown source of de novo methylation, most likely the maintenance methyltransferase MET1. We show that the Dynamic GbM state is present at homologous genes across divergent lineages spanning over 100 million years, indicating evolutionary conservation. We demonstrate that Dynamic GbM is tightly associated with the presence of a promoter or regulatory chromatin state within the gene body, in contrast to other gene body methylated genes. We find Dynamic GbM is associated with enhanced gene expression plasticity across development and diverse physiological conditions, whereas stably methylated GbM genes exhibit reduced plasticity. Dynamic GbM genes exhibit reduced dynamic range in drdd mutants, indicating a causal link between DNA demethylation and enhanced gene expression plasticity. CONCLUSIONS We propose a new model for GbM in regulating gene expression plasticity, including a novel type of GbM in which increased gene expression plasticity is associated with the activity of DNA methylation writers and erasers and the enrichment of a regulatory chromatin state.
Collapse
Affiliation(s)
- Clara J Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Dawei Dai
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - Kevin A Tran
- Department of Plant & Microbial Biology, University of California, Berkeley, USA
| | - J Grey Monroe
- Department of Plant Sciences, University of California, Davis, USA
| | - Ben P Williams
- Department of Plant & Microbial Biology, University of California, Berkeley, USA.
| |
Collapse
|
14
|
Liu B, Zhao M. How transposable elements are recognized and epigenetically silenced in plants? CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102428. [PMID: 37481986 DOI: 10.1016/j.pbi.2023.102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Plant genomes are littered with transposable elements (TEs). Because TEs are potentially highly mutagenic, host organisms have evolved a set of defense mechanisms to recognize and epigenetically silence them. Although the maintenance of TE silencing is well studied, our understanding of the initiation of TE silencing is limited, but it clearly involves small RNAs and DNA methylation. Once TEs are silent, the silent state can be maintained to subsequent generations. However, under some circumstances, such inheritance is unstable, leading to the escape of TEs to the silencing machinery, resulting in the transcriptional activation of TEs. Epigenetic control of TEs has been found to be closely linked to many other epigenetic phenomena, such as genomic imprinting, and is known to contribute to regulation of genes, especially those near TEs. Here we review and discuss the current models of TE silencing, its unstable inheritance after hybridization, and the effects of epigenetic regulation of TEs on genomic imprinting.
Collapse
Affiliation(s)
- Beibei Liu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
15
|
Baduel P, Sasaki E. The genetic basis of epigenetic variation and its consequences for adaptation. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102409. [PMID: 37451221 DOI: 10.1016/j.pbi.2023.102409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Recent population genomic studies in plants have shed new light on natural epigenetic variation by identifying key genetic determinants, "trans modifiers," that influence epigenetic states genome-wide and their interplay with environmental factors. Here, we review this progress by focusing on the epigenetic control of transposition and life-cycle transitions to highlight the ecological consequences of this genetic architecture and its evolutionary significance. This knowledge provides new opportunities to address long-standing questions about the establishment of environment-associated epigenetic variation and its relevance in adaptation.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure (IBENS), ENS, PSL University, CNRS, 46 rue d'Ulm, Paris 75005, France
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
16
|
Funabiki H, Wassing IE, Jia Q, Luo JD, Carroll T. Coevolution of the CDCA7-HELLS ICF-related nucleosome remodeling complex and DNA methyltransferases. eLife 2023; 12:RP86721. [PMID: 37769127 PMCID: PMC10538959 DOI: 10.7554/elife.86721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family ATPase HELLS and its plant ortholog DDM1 are critical for maintaining 5mC. Mutations in HELLS, its activator CDCA7, and the de novo DNA methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While DNMT3, the maintenance DNA methyltransferase DNMT1, HELLS, and CDCA7 are all highly conserved in vertebrates and green plants, they are frequently co-lost in other evolutionary clades. The presence-absence patterns of these genes are not random; almost all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another maintenance methyltransferase, DNMT5). Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator UHRF1. We hypothesize that CDCA7 becomes dispensable in species that lost HELLS or DNA methylation, and/or the loss of CDCA7 triggers the replacement of DNA methylation by other chromatin regulation mechanisms. Our study suggests that a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance is broadly inherited from the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Isabel E Wassing
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Qingyuan Jia
- Laboratory of Chromosome and Cell Biology, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
17
|
Panda K, Mohanasundaram B, Gutierrez J, McLain L, Castillo SE, Sheng H, Casto A, Gratacós G, Chakrabarti A, Fahlgren N, Pandey S, Gehan MA, Slotkin RK. The plant response to high CO 2 levels is heritable and orchestrated by DNA methylation. THE NEW PHYTOLOGIST 2023; 238:2427-2439. [PMID: 36918471 DOI: 10.1111/nph.18876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2 ) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2 environment while transgenerational studies are rare. We aimed to determine transgenerational growth responses in plants after exposure to high CO2 by investigating the direct progeny when returned to baseline CO2 levels. We found that both the flowering plant Arabidopsis thaliana and seedless nonvascular plant Physcomitrium patens continue to display accelerated growth rates in the progeny of plants exposed to high CO2 . We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response. More specifically, the pathway of RNA-directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2 exposure.
Collapse
Affiliation(s)
- Kaushik Panda
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Jorge Gutierrez
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Lauren McLain
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Hudanyun Sheng
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Anna Casto
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Gustavo Gratacós
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Ayan Chakrabarti
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri, MO, 65211, Columbia, USA
| |
Collapse
|
18
|
Cissé OH, Curran S, Folco HD, Liu Y, Bishop L, Wang H, Fischer ER, Davis AS, Babb-Biernacki S, Doyle VP, Richards JK, Hassan SA, Dekker JP, Khil PP, Brenchley JM, Grewal S, Cushion M, Ma L, Kovacs JA. The Host Adapted Fungal Pathogens of Pneumocystis Genus Utilize Genic Regional Centromeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540427. [PMID: 37425787 PMCID: PMC10327204 DOI: 10.1101/2023.05.12.540427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.
Collapse
Affiliation(s)
- Ousmane H Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - H Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yueqin Liu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bishop
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Honghui Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth R Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, USA
| | - Spenser Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vinson P Doyle
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Lousiana State University AgCenter, Baton Rouge, Louisiana, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason M Brenchley
- Laboratory of Viral Diseases, National Institute of Allergy, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiv Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Cushion
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
20
|
Lyons DB, Briffa A, He S, Choi J, Hollwey E, Colicchio J, Anderson I, Feng X, Howard M, Zilberman D. Extensive de novo activity stabilizes epigenetic inheritance of CG methylation in Arabidopsis transposons. Cell Rep 2023; 42:112132. [PMID: 36827183 DOI: 10.1016/j.celrep.2023.112132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Cytosine methylation within CG dinucleotides (mCG) can be epigenetically inherited over many generations. Such inheritance is thought to be mediated by a semiconservative mechanism that produces binary present/absent methylation patterns. However, we show here that, in Arabidopsis thaliana h1ddm1 mutants, intermediate heterochromatic mCG is stably inherited across many generations and is quantitatively associated with transposon expression. We develop a mathematical model that estimates the rates of semiconservative maintenance failure and de novo methylation at each transposon, demonstrating that mCG can be stably inherited at any level via a dynamic balance of these activities. We find that DRM2-the core methyltransferase of the RNA-directed DNA methylation pathway-catalyzes most of the heterochromatic de novo mCG, with de novo rates orders of magnitude higher than previously thought, whereas chromomethylases make smaller contributions. Our results demonstrate that stable epigenetic inheritance of mCG in plant heterochromatin is enabled by extensive de novo methylation.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth Hollwey
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Jack Colicchio
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ian Anderson
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoqi Feng
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | | | - Daniel Zilberman
- John Innes Centre, Norwich NR4 7UH, UK; Institute of Science and Technology, 3400 Klosterneuburg, Austria.
| |
Collapse
|
21
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
22
|
Fukagawa T, Kakutani T. Transgenerational epigenetic control of constitutive heterochromatin, transposons, and centromeres. Curr Opin Genet Dev 2023; 78:102021. [PMID: 36716679 DOI: 10.1016/j.gde.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Epigenetic mechanisms are important not only for development but also for genome stability and chromosome dynamics. The latter types of epigenetic controls can often be transgenerational. Here, we review recent progress in two examples of transgenerational epigenetic control: i) the control of constitutive heterochromatin and transposable elements and ii) epigenetic mechanisms that regulate centromere specification and functions. We also discuss the biological significance of enigmatic associations among centromeres, transposons, and constitutive heterochromatin.
Collapse
Affiliation(s)
- Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan. https://twitter.com/tatsuofukagawa1
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
23
|
Stenz L, Beyens M, Gill ME, Paoloni-Giacobino A, De Geyter C. Altered DNA methylation in estrogen-responsive repetitive sequences of spermatozoa of infertile men with shortened anogenital distance. Clin Epigenetics 2022; 14:185. [PMID: 36572941 PMCID: PMC9793642 DOI: 10.1186/s13148-022-01409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND It has been suggested that antenatal exposure to environmental endocrine disruptors is responsible for adverse trends in male reproductive health, including male infertility, impaired semen quality, cryptorchidism and testicular cancer, a condition known as testicular dysgenesis syndrome. Anogenital distance (AGD) is an anthropomorphic measure of antenatal exposure to endocrine disruptors, with higher exposure levels leading to shortened AGD. We hypothesized that exposure to endocrine disruptors could lead to changes in DNA methylation during early embryonic development, which could then persist in the sperm of infertile men with shortened AGD. RESULTS Using fluorescence activated cell sorting based on staining with either YO-PRO-1 (YOPRO) or chromomycin-3 (CMA3), we isolated four sperm fractions from eleven infertile men with short AGD and ten healthy semen donors. We examined DNA methylation in these sorted spermatozoa using reduced representation bisulfite sequencing. We found that fractions of spermatozoa from infertile men stained with CMA3 or YOPRO were more likely to contain transposable elements harboring an estrogen receptor response element (ERE). Abnormal sperm (as judged by high CMA3 or YOPRO staining) from infertile men shows substantial hypomethylation in estrogenic Alu sequences. Conversely, normal sperm fractions (as judged by low CMA3 or YO-PRO-1 staining) of either healthy donors or infertile patients were more likely to contain hypermethylated Alu sequences with ERE. CONCLUSIONS Shortened AGD, as related to previous exposure to endocrine disruptors, and male infertility are accompanied by increased presence of hormonal response elements in the differentially methylated regulatory sequences of the genome of sperm fractions characterized by chromatin decondensation and apoptosis.
Collapse
Affiliation(s)
- Ludwig Stenz
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, 1211 Geneva, Switzerland ,Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse, 64, 4055 Basel, Switzerland
| | - Matthias Beyens
- BISC Global, Bioinformatics and Statistics Consulting, Gaston Crommenlaan, 8, 9050 Ghent, Belgium
| | - Mark E. Gill
- grid.6612.30000 0004 1937 0642Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse, 134, 4031 Basel, Switzerland
| | - Ariane Paoloni-Giacobino
- grid.8591.50000 0001 2322 4988Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet, 1, 1211 Geneva, Switzerland ,Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse, 64, 4055 Basel, Switzerland
| | - Christian De Geyter
- Swiss Centre for Applied Human Toxicology (SCAHT), Missionsstrasse, 64, 4055 Basel, Switzerland ,grid.6612.30000 0004 1937 0642Reproductive Medicine and Gynecological Endocrinology (RME), University Hospital, University of Basel, Vogesenstrasse, 134, 4031 Basel, Switzerland
| |
Collapse
|
24
|
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The Epigenetic Control of the Transposable Element Life Cycle in Plant Genomes and Beyond. Annu Rev Genet 2022; 56:63-87. [DOI: 10.1146/annurev-genet-072920-015534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Within the life cycle of a living organism, another life cycle exists for the selfish genome inhabitants, which are called transposable elements (TEs). These mobile sequences invade, duplicate, amplify, and diversify within a genome, increasing the genome's size and generating new mutations. Cells act to defend their genome, but rather than permanently destroying TEs, they use chromatin-level repression and epigenetic inheritance to silence TE activity. This level of silencing is ephemeral and reversible, leading to a dynamic equilibrium between TE suppression and reactivation within a host genome. The coexistence of the TE and host genome can also lead to the domestication of the TE to serve in host genome evolution and function. In this review, we describe the life cycle of a TE, with emphasis on how epigenetic regulation is harnessed to control TEs for host genome stability and innovation.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Graduate Program in the Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - R. Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
25
|
Miyao A, Yamanouchi U. Transposable element finder (TEF): finding active transposable elements from next generation sequencing data. BMC Bioinformatics 2022; 23:500. [PMID: 36418944 PMCID: PMC9682801 DOI: 10.1186/s12859-022-05011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Detection of newly transposed events by transposable elements (TEs) from next generation sequence (NGS) data is difficult, due to their multiple distribution sites over the genome containing older TEs. The previously reported Transposon Insertion Finder (TIF) detects TE transpositions on the reference genome from NGS short reads using end sequences of target TE. TIF requires the sequence of target TE and is not able to detect transpositions for TEs with an unknown sequence. RESULT The new algorithm Transposable Element Finder (TEF) enables the detection of TE transpositions, even for TEs with an unknown sequence. TEF is a finding tool of transposed TEs, in contrast to TIF as a detection tool of transposed sites for TEs with a known sequence. The transposition event is often accompanied with a target site duplication (TSD). Focusing on TSD, two algorithms to detect both ends of TE, TSDs and target sites are reported here. One is based on the grouping with TSDs and direct comparison of k-mers from NGS without similarity search. The other is based on the junction mapping of TE end sequence candidates. Both methods succeed to detect both ends and TSDs of known active TEs in several tests with rice, Arabidopsis and Drosophila data and discover several new TEs in new locations. PCR confirmed the detected transpositions of TEs in several test cases in rice. CONCLUSIONS TEF detects transposed TEs with TSDs as a result of TE transposition, sequences of both ends and their inserted positions of transposed TEs by direct comparison of NGS data between two samples. Genotypes of transpositions are verified by counting of junctions of head and tail, and non-insertion sequences in NGS reads. TEF is easy to run and independent of any TE library, which makes it useful to detect insertions from unknown TEs bypassed by common TE annotation pipelines.
Collapse
Affiliation(s)
- Akio Miyao
- grid.416835.d0000 0001 2222 0432Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| | - Utako Yamanouchi
- grid.416835.d0000 0001 2222 0432Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki 305-8518 Japan
| |
Collapse
|
26
|
Tonosaki K, Fujimoto R, Dennis ES, Raboy V, Osabe K. Will epigenetics be a key player in crop breeding? FRONTIERS IN PLANT SCIENCE 2022; 13:958350. [PMID: 36247549 PMCID: PMC9562705 DOI: 10.3389/fpls.2022.958350] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
If food and feed production are to keep up with world demand in the face of climate change, continued progress in understanding and utilizing both genetic and epigenetic sources of crop variation is necessary. Progress in plant breeding has traditionally been thought to be due to selection for spontaneous DNA sequence mutations that impart desirable phenotypes. These spontaneous mutations can expand phenotypic diversity, from which breeders can select agronomically useful traits. However, it has become clear that phenotypic diversity can be generated even when the genome sequence is unaltered. Epigenetic gene regulation is a mechanism by which genome expression is regulated without altering the DNA sequence. With the development of high throughput DNA sequencers, it has become possible to analyze the epigenetic state of the whole genome, which is termed the epigenome. These techniques enable us to identify spontaneous epigenetic mutations (epimutations) with high throughput and identify the epimutations that lead to increased phenotypic diversity. These epimutations can create new phenotypes and the causative epimutations can be inherited over generations. There is evidence of selected agronomic traits being conditioned by heritable epimutations, and breeders may have historically selected for epiallele-conditioned agronomic traits. These results imply that not only DNA sequence diversity, but the diversity of epigenetic states can contribute to increased phenotypic diversity. However, since the modes of induction and transmission of epialleles and their stability differ from that of genetic alleles, the importance of inheritance as classically defined also differs. For example, there may be a difference between the types of epigenetic inheritance important to crop breeding and crop production. The former may depend more on longer-term inheritance whereas the latter may simply take advantage of shorter-term phenomena. With the advances in our understanding of epigenetics, epigenetics may bring new perspectives for crop improvement, such as the use of epigenetic variation or epigenome editing in breeding. In this review, we will introduce the role of epigenetic variation in plant breeding, largely focusing on DNA methylation, and conclude by asking to what extent new knowledge of epigenetics in crop breeding has led to documented cases of its successful use.
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Victor Raboy
- Independent Researcher Portland, Portland, OR, United States
| | - Kenji Osabe
- Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Abstract
Transposons were once thought to be junk repetitive DNA in the genome. However, their importance gradually became apparent as it became clear that they regulate gene expression, which is essential for organisms to survive, and that they are important factors in the driving force of evolution. Since there are multiple transposons in the genomes of all organisms, transposons have likely been activated and increased in copy number throughout their long history. This review focuses on environmental stress as a factor in transposon activation, paying particular attention to transposons in plants that are activated by environmental stresses. It is now known that plants respond to environmental stress in various ways, and correspondingly, many transposons respond to stress. The relationship between environmental stress and transposons is reviewed, including the mechanisms of their activation and the effects of transposon activation on host plants.
Collapse
|
28
|
Sasaki T, Ro K, Caillieux E, Manabe R, Bohl-Viallefond G, Baduel P, Colot V, Kakutani T, Quadrana L. Fast co-evolution of anti-silencing systems shapes the invasiveness of Mu-like DNA transposons in eudicots. EMBO J 2022; 41:e110070. [PMID: 35285528 PMCID: PMC9016345 DOI: 10.15252/embj.2021110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) constitute a major threat to genome stability and are therefore typically silenced by epigenetic mechanisms. In response, some TEs have evolved counteracting systems to suppress epigenetic silencing. In the model plant Arabidopsis thaliana, two such anti-silencing systems have been identified and found to be mediated by the VANC DNA-binding proteins encoded by VANDAL transposons. Here, we show that anti-silencing systems have rapidly diversified since their origin in eudicots by gaining and losing VANC-containing domains, such as DUF1985, DUF287, and Ulp1, as well as target sequence motifs. We further demonstrate that these motifs determine anti-silencing specificity by sequence, density, and helical periodicity. Moreover, such rapid diversification yielded at least 10 distinct VANC-induced anti-silencing systems in Arabidopsis. Strikingly, anti-silencing of non-autonomous VANDALs, which can act as reservoirs of 24-nt small RNAs, is critical to prevent the demise of cognate autonomous TEs and to ensure their propagation. Our findings illustrate how complex co-evolutionary dynamics between TEs and host suppression pathways have shaped the emergence of new epigenetic control mechanisms.
Collapse
Affiliation(s)
- Taku Sasaki
- Department of Biological Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kyudo Ro
- Department of Biological Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Erwann Caillieux
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Riku Manabe
- Department of Biological Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Grégoire Bohl-Viallefond
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Tetsuji Kakutani
- Department of Biological Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, Paris, France
| |
Collapse
|
29
|
Belyayev A, Josefiová J, Jandová M, Kalendar R, Mahelka V, Mandák B, Krak K. The structural diversity of CACTA transposons in genomes of Chenopodium (Amaranthaceae, Caryophyllales) species: specific traits and comparison with the similar elements of angiosperms. Mob DNA 2022; 13:8. [PMID: 35379321 PMCID: PMC8978399 DOI: 10.1186/s13100-022-00265-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. Results Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. Conclusions Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00265-3.
Collapse
|
30
|
Colonna Romano N, Fanti L. Transposable Elements: Major Players in Shaping Genomic and Evolutionary Patterns. Cells 2022; 11:cells11061048. [PMID: 35326499 PMCID: PMC8947103 DOI: 10.3390/cells11061048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous genetic elements, able to jump from one location of the genome to another, in all organisms. For this reason, on the one hand, TEs can induce deleterious mutations, causing dysfunction, disease and even lethality in individuals. On the other hand, TEs can increase genetic variability, making populations better equipped to respond adaptively to environmental change. To counteract the deleterious effects of TEs, organisms have evolved strategies to avoid their activation. However, their mobilization does occur. Usually, TEs are maintained silent through several mechanisms, but they can be reactivated during certain developmental windows. Moreover, TEs can become de-repressed because of drastic changes in the external environment. Here, we describe the ‘double life’ of TEs, being both ‘parasites’ and ‘symbionts’ of the genome. We also argue that the transposition of TEs contributes to two important evolutionary processes: the temporal dynamic of evolution and the induction of genetic variability. Finally, we discuss how the interplay between two TE-dependent phenomena, insertional mutagenesis and epigenetic plasticity, plays a role in the process of evolution.
Collapse
|
31
|
DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat Commun 2022; 13:1335. [PMID: 35288562 PMCID: PMC8921224 DOI: 10.1038/s41467-022-28940-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
A contribution of DNA methylation to defense against invading nucleic acids and maintenance of genome integrity is uncontested; however, our understanding of the extent of involvement of this epigenetic mark in genome-wide gene regulation and plant developmental control is incomplete. Here, we knock out all five known DNA methyltransferases in Arabidopsis, generating DNA methylation-free plants. This quintuple mutant exhibits a suite of developmental defects, unequivocally demonstrating that DNA methylation is essential for multiple aspects of plant development. We show that CG methylation and non-CG methylation are required for a plethora of biological processes, including pavement cell shape, endoreduplication, cell death, flowering, trichome morphology, vasculature and meristem development, and root cell fate determination. Moreover, we find that DNA methylation has a strong dose-dependent effect on gene expression and repression of transposable elements. Taken together, our results demonstrate that DNA methylation is dispensable for Arabidopsis survival but essential for the proper regulation of multiple biological processes. Our understanding of the extent of involvement of DNA methylation in genome-wide gene regulation and plant developmental control is incomplete. Here, the authors knock out all five known DNA methyltransferases and show the developmental and gene expression changes in the DNA methylation-free Arabidopsis plants.
Collapse
|
32
|
Hüther P, Hagmann J, Nunn A, Kakoulidou I, Pisupati R, Langenberger D, Weigel D, Johannes F, Schultheiss SJ, Becker C. MethylScore, a pipeline for accurate and context-aware identification of differentially methylated regions from population-scale plant whole-genome bisulfite sequencing data. QUANTITATIVE PLANT BIOLOGY 2022; 3:e19. [PMID: 37077980 PMCID: PMC10095865 DOI: 10.1017/qpb.2022.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/03/2023]
Abstract
Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA methylation at single-nucleotide resolution. Different tools have been developed to extract differentially methylated regions (DMRs), often built upon assumptions from mammalian data. Here, we present MethylScore, a pipeline to analyse WGBS data and to account for the substantially more complex and variable nature of plant DNA methylation. MethylScore uses an unsupervised machine learning approach to segment the genome by classification into states of high and low methylation. It processes data from genomic alignments to DMR output and is designed to be usable by novice and expert users alike. We show how MethylScore can identify DMRs from hundreds of samples and how its data-driven approach can stratify associated samples without prior information. We identify DMRs in the A. thaliana 1,001 Genomes dataset to unveil known and unknown genotype-epigenotype associations .
Collapse
Affiliation(s)
- Patrick Hüther
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | | | - Adam Nunn
- ecSeq Bioinformatics GmbH, 04103 Leipzig, Germany
- Department of Computer Science, Leipzig University, 04107 Leipzig, Germany
| | - Ioanna Kakoulidou
- Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Rahul Pisupati
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | | | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | | | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| |
Collapse
|
33
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
34
|
Johnson KM, Sirovy KA, Kelly MW. Differential DNA methylation across environments has no effect on gene expression in the eastern oyster. J Anim Ecol 2021; 91:1135-1147. [PMID: 34882793 DOI: 10.1111/1365-2656.13645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been hypothesized that environmentally induced changes to gene body methylation could facilitate adaptive transgenerational responses to changing environments. We compared patterns of global gene expression (Tag-seq) and gene body methylation (reduced representation bisulfite sequencing) in 80 eastern oysters Crassostrea virginica from six full-sib families, common gardened for 14 months at two sites in the northern Gulf of Mexico that differed in mean salinity. At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite loads by nearly two orders of magnitude. They also differentially expressed 35% of measured transcripts. However, we observed differential methylation at only 1.4% of potentially methylated loci in comparisons between individuals from these different environments, and little correspondence between differential methylation and differential gene expression. Instead, methylation patterns were largely driven by genetic differences among families, with a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes differentially methylated between families than between environments. An analysis of CpG observed/expected values (CpG O/E) across the C. virginica genome showed a distinct bimodal distribution, with genes from the first cluster showing the lower CpG O/E values, greater methylation and higher and more stable gene expression, while genes from the second cluster showed lower methylation, and lower and more variable gene expression. Taken together, the differential methylation results suggest that only a small portion of the C. virginica genome is affected by environmentally induced changes in methylation. At this point, there is little evidence to suggest that environmentally induced methylation states would play a leading role in regulating gene expression responses to new environments.
Collapse
Affiliation(s)
- Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA.,California Sea Grant, University of California San Diego, La Jolla, CA, USA
| | - Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
35
|
Kirov I, Merkulov P, Dudnikov M, Polkhovskaya E, Komakhin RA, Konstantinov Z, Gvaramiya S, Ermolaev A, Kudryavtseva N, Gilyok M, Divashuk MG, Karlov GI, Soloviev A. Transposons Hidden in Arabidopsis thaliana Genome Assembly Gaps and Mobilization of Non-Autonomous LTR Retrotransposons Unravelled by Nanotei Pipeline. PLANTS (BASEL, SWITZERLAND) 2021; 10:2681. [PMID: 34961152 PMCID: PMC8704663 DOI: 10.3390/plants10122681] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 06/12/2023]
Abstract
Long-read data is a great tool to discover new active transposable elements (TEs). However, no ready-to-use tools were available to gather this information from low coverage ONT datasets. Here, we developed a novel pipeline, nanotei, that allows detection of TE-contained structural variants, including individual TE transpositions. We exploited this pipeline to identify TE insertion in the Arabidopsis thaliana genome. Using nanotei, we identified tens of TE copies, including ones for the well-characterized ONSEN retrotransposon family that were hidden in genome assembly gaps. The results demonstrate that some TEs are inaccessible for analysis with the current A. thaliana (TAIR10.1) genome assembly. We further explored the mobilome of the ddm1 mutant with elevated TE activity. Nanotei captured all TEs previously known to be active in ddm1 and also identified transposition of non-autonomous TEs. Of them, one non-autonomous TE derived from (AT5TE33540) belongs to TR-GAG retrotransposons with a single open reading frame (ORF) encoding the GAG protein. These results provide the first direct evidence that TR-GAGs and other non-autonomous LTR retrotransposons can transpose in the plant genome, albeit in the absence of most of the encoded proteins. In summary, nanotei is a useful tool to detect active TEs and their insertions in plant genomes using low-coverage data from Nanopore genome sequencing.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Pavel Merkulov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Maxim Dudnikov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Ekaterina Polkhovskaya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Roman A. Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Zakhar Konstantinov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Sofya Gvaramiya
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Natalya Kudryavtseva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia; (A.E.); (N.K.)
| | - Marina Gilyok
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
- Kurchatov Genomics Center of ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550 Moscow, Russia; (P.M.); (M.D.); (E.P.); (R.A.K.); (Z.K.); (S.G.); (M.G.); (M.G.D.); (G.I.K.); (A.S.)
| |
Collapse
|
36
|
Inagaki S. Silencing and anti-silencing mechanisms that shape the epigenome in plants. Genes Genet Syst 2021; 96:217-228. [PMID: 34719532 DOI: 10.1266/ggs.21-00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epigenome information mediates genome function and maintenance by regulating gene expression and chromatin organization. Because the epigenome pattern can change in response to internal and external environments, it may underlie an adaptive genome response that modulates phenotypes during development and in changing environments. Here I summarize recent progress in our understanding of how epigenome patterns are shaped and modulated by concerted actions of silencing and anti-silencing factors mainly in Arabidopsis thaliana. I discuss the dynamic nature of epigenome regulation, which is realized by cooperation and counteraction among silencing and anti-silencing factors, and how the dynamic epigenome mediates robust and plastic responses of plants to fluctuating environments.
Collapse
Affiliation(s)
- Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
37
|
Nicolau M, Picault N, Moissiard G. The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells 2021; 10:cells10112952. [PMID: 34831175 PMCID: PMC8616336 DOI: 10.3390/cells10112952] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Transposable elements (TEs) are self-replicating DNA elements that constitute major fractions of eukaryote genomes. Their ability to transpose can modify the genome structure with potentially deleterious effects. To repress TE activity, host cells have developed numerous strategies, including epigenetic pathways, such as DNA methylation or histone modifications. Although TE neo-insertions are mostly deleterious or neutral, they can become advantageous for the host under specific circumstances. The phenomenon leading to the appropriation of TE-derived sequences by the host is known as TE exaptation or co-option. TE exaptation can be of different natures, through the production of coding or non-coding DNA sequences with ultimately an adaptive benefit for the host. In this review, we first give new insights into the silencing pathways controlling TE activity. We then discuss a model to explain how, under specific environmental conditions, TEs are unleashed, leading to a TE burst and neo-insertions, with potential benefits for the host. Finally, we review our current knowledge of coding and non-coding TE exaptation by providing several examples in various organisms and describing a method to identify TE co-option events.
Collapse
Affiliation(s)
- Melody Nicolau
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Nathalie Picault
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Guillaume Moissiard
- LGDP-UMR5096, CNRS, 66860 Perpignan, France; (M.N.); (N.P.)
- LGDP-UMR5096, Université de Perpignan Via Domitia, 66860 Perpignan, France
- Correspondence:
| |
Collapse
|
38
|
Ali S, Zhang T, Lambing C, Wang W, Zhang P, Xie L, Wang J, Khan N, Zhang Q. Loss of chromatin remodeler DDM1 causes segregation distortion in Arabidopsis thaliana. PLANTA 2021; 254:107. [PMID: 34694462 DOI: 10.1007/s00425-021-03763-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In ddm1 mutants, the DNA methylation is primarily affected in the heterochromatic region of the chromosomes, which is associated with the segregation distortion of SNPs in the F2 progenies. Segregation distortion (SD) is common in most genetic mapping experiments and a valuable resource to determine how gene loci induce deviation. Meiotic DNA crossing over and SD are under the control of several types of epigenetic modifications. DNA methylation is an important regulatory epigenetic modification that is inherited across generations. In the present study, we investigated the relationship between SD and DNA methylation. The ecotypes Col-0/C24 and chromatin remodeler mutants ddm1-10/Col and ddm1-15/C24 were reciprocally crossed to obtain F2 generations. A total of 300 plants for each reciprocally crossed plant in the F2 generations were subjected to next-generation sequencing to detect the single-nucleotide polymorphisms (SNPs) as DNA markers. All SNPs were analyzed using the Chi-square test method to determine their segregation ratio in F2 generations. Through the segregation ratio, whole-genome SNPs were classified into 16 classes. In class 10, the SNPs in the reciprocal crosses of wild type showed the expected Mendelian ratio of 1:2:1, while those in the reciprocal crosses of ddm1 mutants showed distortion. In contrast, all SNPs in class 16 displayed a normal 1:2:1 ratio, and class 1 showed SD, regardless of wild type or mutants, as assessed using CAPS (cleaved amplified polymorphic sequences) marker analysis to confirm the next-generation sequencing. In ddm1 mutants, the DNA methylation is highly reduced throughout the whole genome and more significantly in the heterochromatic regions of chromosomes. Our results showed that the ddm1 mutants exhibit low levels of DNA methylation, which facilitates the SD of SNPs primarily located in the heterochromatic region of chromosomes by reducing the heterozygous ratio. The present study will provide a strong base for future research focusing on the impact of DNA methylation on trait segregation and plant evolution.
Collapse
Affiliation(s)
- Shahid Ali
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Tianxu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | | | - Wanpeng Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Linan Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiang Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
39
|
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation. Int J Mol Sci 2021; 22:ijms222111387. [PMID: 34768817 PMCID: PMC8583499 DOI: 10.3390/ijms222111387] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Plant development processes are regulated by epigenetic alterations that shape nuclear structure, gene expression, and phenotypic plasticity; these alterations can provide the plant with protection from environmental stresses. During plant growth and development, these processes play a significant role in regulating gene expression to remodel chromatin structure. These epigenetic alterations are mainly regulated by transposable elements (TEs) whose abundance in plant genomes results in their interaction with genomes. Thus, TEs are the main source of epigenetic changes and form a substantial part of the plant genome. Furthermore, TEs can be activated under stress conditions, and activated elements cause mutagenic effects and substantial genetic variability. This introduces novel gene functions and structural variation in the insertion sites and primarily contributes to epigenetic modifications. Altogether, these modifications indirectly or directly provide the ability to withstand environmental stresses. In recent years, many studies have shown that TE methylation plays a major role in the evolution of the plant genome through epigenetic process that regulate gene imprinting, thereby upholding genome stability. The induced genetic rearrangements and insertions of mobile genetic elements in regions of active euchromatin contribute to genome alteration, leading to genomic stress. These TE-mediated epigenetic modifications lead to phenotypic diversity, genetic variation, and environmental stress tolerance. Thus, TE methylation is essential for plant evolution and stress adaptation, and TEs hold a relevant military position in the plant genome. High-throughput techniques have greatly advanced the understanding of TE-mediated gene expression and its associations with genome methylation and suggest that controlled mobilization of TEs could be used for crop breeding. However, development application in this area has been limited, and an integrated view of TE function and subsequent processes is lacking. In this review, we explore the enormous diversity and likely functions of the TE repertoire in adaptive evolution and discuss some recent examples of how TEs impact gene expression in plant development and stress adaptation.
Collapse
|
40
|
Roquis D, Robertson M, Yu L, Thieme M, Julkowska M, Bucher E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Res 2021; 49:10431-10447. [PMID: 34551439 PMCID: PMC8501995 DOI: 10.1093/nar/gkab828] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) have long been known to be major contributors to plant evolution, adaptation and crop domestication. Stress-induced TE mobilization is of particular interest because it may result in novel gene regulatory pathways responding to stresses and thereby contribute to stress adaptation. Here, we investigated the genomic impacts of stress induced TE mobilization in wild type Arabidopsis plants. We find that the heat-stress responsive ONSEN TE displays an insertion site preference that is associated with specific chromatin states, especially those rich in H2A.Z histone variant and H3K27me3 histone mark. In order to better understand how novel ONSEN insertions affect the plant's response to heat stress, we carried out an in-depth transcriptomic analysis. We find that in addition to simple gene knockouts, ONSEN can produce a plethora of gene expression changes such as: constitutive activation of gene expression, alternative splicing, acquisition of heat-responsiveness, exonisation and genesis of novel non-coding and antisense RNAs. This report shows how the mobilization of a single TE-family can lead to a rapid rise of its copy number increasing the host's genome size and contribute to a broad range of transcriptomic novelty on which natural selection can then act.
Collapse
Affiliation(s)
- David Roquis
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Marta Robertson
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| | - Liang Yu
- Boyce Thompson Institute, 533 Tower Rd., Ithaca, NY 14853, USA
| | - Michael Thieme
- Institute for Plant and Microbial Biology, University of Zurich, Switzerland
| | | | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland
| |
Collapse
|
41
|
Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le Jan I, Lesage-Descauses MC, Citerne S, Caius J, Brunaud V, Soubigou-Taconnat L, Cochard H, Segura V, Chaparro C, Grunau C, Daviaud C, Tost J, Brignolas F, Strauss SH, Mirouze M, Maury S. RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. THE NEW PHYTOLOGIST 2021; 232:80-97. [PMID: 34128549 DOI: 10.1111/nph.17555] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/08/2021] [Indexed: 05/27/2023]
Abstract
Trees are long-lived organisms that continuously adapt to their environments, a process in which epigenetic mechanisms are likely to play a key role. Via downregulation of the chromatin remodeler DECREASED IN DNA METHYLATION 1 (DDM1) in poplar (Populus tremula × Populus alba) RNAi lines, we examined how DNA methylation coordinates genomic and physiological responses to moderate water deficit. We compared the growth and drought response of two RNAi-ddm1 lines to wild-type (WT) trees under well-watered and water deficit/rewatering conditions, and analyzed their methylomes, transcriptomes, mobilomes and phytohormone contents in the shoot apical meristem. The RNAi-ddm1 lines were more tolerant to drought-induced cavitation but did not differ in height or stem diameter growth. About 5000 differentially methylated regions were consistently detected in both RNAi-ddm1 lines, colocalizing with 910 genes and 89 active transposable elements. Under water deficit conditions, 136 differentially expressed genes were found, including many involved in phytohormone pathways; changes in phytohormone concentrations were also detected. Finally, the combination of hypomethylation and drought led to the mobility of two transposable elements. Our findings suggest major roles for DNA methylation in regulation of genes involved in hormone-related stress responses, and the maintenance of genome integrity through repression of transposable elements.
Collapse
Affiliation(s)
- Mamadou D Sow
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Anne-Laure Le Gac
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Régis Fichot
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Sophie Lanciano
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Alain Delaunay
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Isabelle Le Jan
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | | | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Jose Caius
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Véronique Brunaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, Orsay, 91405, France
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, 63000, France
| | - Vincent Segura
- BioForA, INRAE, ONF, UMR 0588, Orléans, 45075, France
- UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Montpellier SupAgro, UMR 1334, Montpellier, F-34398, France
| | | | - Christoph Grunau
- UMR 5244, IHPE, Université de Perpignan, Perpignan, 66100, France
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment Centre National de Recherche en Génomique Humaine, CEA- Institut de Biologie Francois Jacob, Université Paris-Saclay, Evry, 91057, France
| | - Franck Brignolas
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | - Marie Mirouze
- IRD, UMR 232 DIADE, Université de Montpellier, Montpellier, 34090, France
- Laboratory of Plant Genome and Development, Université de Perpignan, Perpignan, 66860, France
| | - Stéphane Maury
- LBLGC, INRAE, Université d'Orléans, EA 1207 USC 1328, Orléans, 45067, France
| |
Collapse
|
42
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
43
|
Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc Natl Acad Sci U S A 2021; 118:2107320118. [PMID: 34453006 DOI: 10.1073/pnas.2107320118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The CMT2 and RNA-directed DNA methylation (RdDM) pathways have been proposed to separately maintain CHH methylation in specific regions of the Arabidopsis thaliana genome. Here, we show that dysfunction of the chromatin remodeler DDM1 causes hundreds of genomic regions to switch from CMT2 dependency to RdDM dependency in DNA methylation. These converted loci are enriched at the edge regions of long transposable elements (TEs). Furthermore, we found that dysfunction in both DDM1 and RdDM causes strong reactivation of TEs and a burst of TE transposition in the first generation of mutant plants, indicating that the DDM1 and RdDM pathways together are critical to maintaining TE repression and protecting genomic stability. Our findings reveal the existence of a pathway conversion-based backup mechanism to guarantee the maintenance of DNA methylation and genome integrity.
Collapse
|
44
|
Zhang Z, He C, Chen Y, Li B, Tian S. DNA Methyltransferases Regulate Pathogenicity of Botrytis cinerea to Horticultural Crops. J Fungi (Basel) 2021; 7:jof7080659. [PMID: 34436198 PMCID: PMC8399656 DOI: 10.3390/jof7080659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens that cause gray mold rot in horticultural products, including fresh fruits, vegetables, and flowers, leading to serious economic losses. B. cinerea is difficult to control because it has strong stress resistance and complex infection modes. The pathogenic mechanisms of B. cinerea have been revealed at multiple levels, but little is known at the epigenetic level. In this study, we first revealed the important role of DNA methyltransferases in regulating the development and pathogenicity of B. cinerea. We showed that two DNA methyltransferases, BcDIM2 and BcRID2, showed a strong synergistic effect in regulating the pathogenicity of B. cinerea. The double knockout mutant ΔBcdim2rid2 showed slower mycelial growth, lower spore germination, attenuated oxidative tolerance, and complete pathogenicity loss on various hosts, which is related to the reduced expression of virulence-related genes in ΔBcdim2rid2 and the induced resistance of the host. Although B. cinerea has multiple DNA methyltransferases, the global methylation level is very low, and few 5mC sites can be detected by BS-seq. These results first revealed the important role and the action mode of DNA methyltransferases in B. cinerea.
Collapse
Affiliation(s)
- Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (Z.Z.); (C.H.); (Y.C.); (B.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
45
|
Liu R, Long Q, Zou X, Wang Y, Pei Y. DNA methylation occurring in Cre-expressing cells inhibits loxP recombination and silences loxP-sandwiched genes. THE NEW PHYTOLOGIST 2021; 231:210-224. [PMID: 33742463 DOI: 10.1111/nph.17353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The low DNA recombination efficiency of site-specific recombinase systems in plants limits their application; however, the underlying mechanism is unknown. We evaluate the gene deletion performance of four recombinase systems (Cre/loxP, Flp/FRT, KD/KDRT and B3/B3RT) in tobacco where the recombinases are under the control of germline-specific promoters. We find that the expression of these recombinases results mostly in gene silencing rather than gene deletion. Using the Cre/loxP system as a model, we reveal that the region flanked by loxP sites (floxed) is hypermethylated, which prevents floxed genes from deletion while silencing the expression of the genes. We further show CG methylation alone in the recombinase binding element of the loxP site is unable to impede gene deletion; instead, CHH methylation in the crossover region is required to inhibit loxP recombination. Our study illustrates the important role of recombinase-induced DNA methylation in the inhibition of site-specific DNA recombination and uncovers the mechanism underlying recombinase-associated gene silence in plants.
Collapse
Affiliation(s)
- Ruochen Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Qin Long
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiuping Zou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - You Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| |
Collapse
|
46
|
Remodeller-variant tag team slams transposons. Nat Cell Biol 2021; 23:297-298. [PMID: 33833427 DOI: 10.1038/s41556-021-00661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Baduel P, Quadrana L. Jumpstarting evolution: How transposition can facilitate adaptation to rapid environmental changes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102043. [PMID: 33932785 DOI: 10.1016/j.pbi.2021.102043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Because of their ability to replicate across genomes, transposable elements (TEs) represent major generators of large-effect mutations. As a result, chromatin-based mechanisms have evolved to control the mutational potential of TEs at multiple levels, from the epigenetic silencing of TE sequences, through the modulation of their integration space, up to the alleviation of the impact of new insertions. Although most TE insertions are highly deleterious, some can provide key adaptive variation. Together with their remarkable sensitivity to the environment and precise integration preferences, the unique characteristics of TEs place them as potent genomic engines of adaptive innovation. Herein, we review recent works exploring the regulation and impact of transposition in nature and discuss their implications for the evolutionary response of species to drastic environmental changes.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Leandro Quadrana
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
48
|
Casati P, Gomez MS. Chromatin dynamics during DNA damage and repair in plants: new roles for old players. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4119-4131. [PMID: 33206978 DOI: 10.1093/jxb/eraa551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The genome of plants is organized into chromatin. The chromatin structure regulates the rates of DNA metabolic processes such as replication, transcription, DNA recombination, and repair. Different aspects of plant growth and development are regulated by changes in chromatin status by the action of chromatin-remodeling activities. Recent data have also shown that many of these chromatin-associated proteins participate in different aspects of the DNA damage response, regulating DNA damage and repair, cell cycle progression, programmed cell death, and entry into the endocycle. In this review, we present different examples of proteins and chromatin-modifying enzymes with roles during DNA damage responses, demonstrating that rapid changes in chromatin structure are essential to maintain genome stability.
Collapse
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha, Rosario, Argentina
| | - Maria Sol Gomez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera, Cantoblanco, Madrid, Spain
| |
Collapse
|
49
|
Baduel P, Leduque B, Ignace A, Gy I, Gil J, Loudet O, Colot V, Quadrana L. Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biol 2021; 22:138. [PMID: 33957946 PMCID: PMC8101250 DOI: 10.1186/s13059-021-02348-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND How species can adapt to abrupt environmental changes, particularly in the absence of standing genetic variation, is poorly understood and a pressing question in the face of ongoing climate change. Here we leverage publicly available multi-omic and bio-climatic data for more than 1000 wild Arabidopsis thaliana accessions to determine the rate of transposable element (TE) mobilization and its potential to create adaptive variation in natural settings. RESULTS We demonstrate that TE insertions arise at almost the same rate as base substitutions. Mobilization activity of individual TE families varies greatly between accessions, in association with genetic and environmental factors as well as through complex gene-environment interactions. Although the distribution of TE insertions across the genome is ultimately shaped by purifying selection, reflecting their typically strong deleterious effects when located near or within genes, numerous recent TE-containing alleles show signatures of positive selection. Moreover, high rates of transposition appear positively selected at the edge of the species' ecological niche. Based on these findings, we predict through mathematical modeling higher transposition activity in Mediterranean regions within the next decades in response to global warming, which in turn should accelerate the creation of large-effect alleles. CONCLUSIONS Our study reveals that TE mobilization is a major generator of genetic variation in A. thaliana that is finely modulated by genetic and environmental factors. These findings and modeling indicate that TEs may be essential genomic players in the demise or rescue of native populations in times of climate crises.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Basile Leduque
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
| | - Amandine Ignace
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Isabelle Gy
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - José Gil
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France
- Present Address: Institut Curie, 26 rue d'Ulm, 75005, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Vincent Colot
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| | - Leandro Quadrana
- Institut de Biologie de l'École Normale Supérieure, ENS, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
50
|
Stajic D, Jansen LET. Empirical evidence for epigenetic inheritance driving evolutionary adaptation. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200121. [PMID: 33866813 DOI: 10.1098/rstb.2020.0121] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular machinery that regulates gene expression can be self-propagated across cell division cycles and even generations. This renders gene expression states and their associated phenotypes heritable, independently of genetic changes. These phenotypic states, in turn, can be subject to selection and may influence evolutionary adaptation. In this review, we will discuss the molecular basis of epigenetic inheritance, the extent of its transmission and mechanisms of evolutionary adaptation. The current work shows that heritable gene expression can facilitate the process of adaptation through the increase of survival in a novel environment and by enlarging the size of beneficial mutational targets. Moreover, epigenetic control of gene expression enables stochastic switching between different phenotypes in populations that can potentially facilitate adaptation in rapidly fluctuating environments. Ecological studies of the variation of epigenetic markers (e.g. DNA methylation patterns) in wild populations show a potential contribution of this mode of inheritance to local adaptation in nature. However, the extent of the adaptive contribution of the naturally occurring variation in epi-alleles compared to genetic variation remains unclear. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Dragan Stajic
- Department of Zoology, University of Stockholm, 106 91 Stockholm, Sweden
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|