1
|
Ma W, Zhu M, Wan Y, Cai H, Liu S, Sun Y, Jiao P, Ji J, Liu Y. Role of mitochondrial membrane homeostasis in the occurrence of programmed cell death during pollen cryopreservation: Mitochondrial ROS eruption and bioenergetic deficiency as key contributors. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109901. [PMID: 40215737 DOI: 10.1016/j.plaphy.2025.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 05/21/2025]
Abstract
Cryopreservation is an ideal approach for the long-term storage of pollen, but the decline in pollen viability caused by necrosis and programmed cell death (PCD) after cryopreservation remains a challenge. Mitochondrial homeostasis is considered to play a crucial role in plant PCD. However, there is no further explanation on how it specifically alters. To investigate changes in mitochondrial reactive oxygen species (ROS) signaling, membrane homeostasis, and bioenergetics during PCD occurrence triggered by cryopreservation, pollen from three Paeonia lactiflora cultivars with decreased, stable, and increased PCD (i.e., 'Yan Zi Xiang Yang', DEC-PCD, 'Fen Yu Nu', STABLE-PCD, 'Zi Feng Chao Yang', INC-PCD) after cryopreservation was used. The results revealed that: (1) Mitochondrial ROS acts as a signaling molecule induced PCD during pollen cryopreservation, and its content was associated with changes in the activity of mitochondrial respiratory chain (MRC) complex I, II and III. (2) After cryopreservation, the extent of mitochondrial permeability transition pore opening, the reduction in mitochondrial membrane potential, and the oxidation of mitochondrial inner membrane in INC-PCD were 16.57 %,50.91 %, and 615.32 % higher, respectively, than those in STABLE-PCD, indicating more severe mitochondrial membrane damage in INC-PCD. (3) During pollen cryopreservation, mitochondrial bioenergetic supply gradually declined as PCD intensified. These results demonstrated that cryopreservation induces excessive mitochondrial ROS production in certain cultivars, leading to the imbalance in mitochondrial membrane homeostasis and impaired bioenergetic supply, ultimately resulting in the occurrence of PCD during pollen cryopreservation of P. lactiflora.
Collapse
Affiliation(s)
- Wenjie Ma
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China
| | - Mengting Zhu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China
| | - Yingling Wan
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China
| | - Hui Cai
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China
| | - Shangqian Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China
| | - Yue Sun
- Cell Biology Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, 100083, China
| | - Pengcheng Jiao
- Core Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, 100083, China
| | - Jiaojiao Ji
- Core Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, 100083, China
| | - Yan Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China.
| |
Collapse
|
2
|
Chen H, Liu L, Zhou Q, Zhu Y, Gao Z, Zhu T, Huang J, Du M, Song Y, Meng L. Lesion Mimic Mutant: An Ideal Genetic Material for Deciphering the Balance Between Plant Immunity and Growth. RICE (NEW YORK, N.Y.) 2025; 18:34. [PMID: 40355767 PMCID: PMC12069192 DOI: 10.1186/s12284-025-00789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025]
Abstract
Lesion mimic mutants (LMMs) form hypersensitive response (HR)-like lesions, a form of programmed cell death (PCD), in the absence of pathogens, that often confer durable and broad-spectrum disease resistance, representing a potential source for breeding resistance. However, most LMM plants have significant growth retardation including cell death, leaf senescence, damaged chloroplast structure, decreased chlorophyll contents, and undesirable agronomic traits. Therefore, LMMs represent ideal genetic materials to decipher interactions between defense signaling and programmed cell death, and growth. Many LMMs have been identified in rice, and at least 61 genes have been cloned and functionally confirmed. LMM genes are reported to participate in various regulation pathways, including gene transcription and protein translation, ubiquitin-proteasome pathway, protein phosphorylation, vesicle trafficking, metabolic pathways, and phytohormone signaling, highlighting the complexity of regulatory mechanisms. This review discusses recent progress on characteristics of rice LMM and mechanisms of LMM gene regulation, and suggests directions for future theoretical research and the potential use of LMMs in rice breeding.
Collapse
Affiliation(s)
- Huilin Chen
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Letong Liu
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Qiguang Zhou
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Yulin Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Ziwen Gao
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Taotao Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China
| | - Jie Huang
- Liaocheng Academy of Agricultural Sciences, Liaocheng, 252000, China
| | - Mengxue Du
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China.
| | - Yong Song
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China.
| | - Lingzhi Meng
- College of Agriculture and Biology of Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
3
|
Ombale S, Bhatt M, Tiwari AK, Sharma A, Tiwari BS. Cellular nitro-oxidative burden and survival through regulated cell death in the plants. PROTOPLASMA 2025:10.1007/s00709-025-02071-z. [PMID: 40325188 DOI: 10.1007/s00709-025-02071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Throughout the life of a plant, generations of different forms of reactive oxygen (ROS) and nitrogen species (RNS) are derived as a by-product of metabolic events. The quantum of ROS and RNS becomes higher once a plant encounters a perturbed situation either through biotic or abiotic factor. As each of reactive species is harmful to the cells beyond certain optimal level, it requires a mechanism to detoxify RONS induced cellular toxicity. For the purpose cell has instituted highly organized multi-layered defense mechanisms. In the first layer of defense, cell produces different antioxidant enzymes and non-enzyme molecules. Once generated, ROS and RNS become beyond the detoxification capacity of cellular antioxidant pool, another strategy comes into the operation wherein a few targeted cells undergo self-autolysis progression known as programmed cell death (PCD). The process of PCD has been partially dissected in plants emphasizing either under amplified ROS or RNS condition. However, there are evidences for reaction between species of ROS and RNS. It is unequivocally evident that superoxide has tendency to react with nitric oxide giving rise to a very potential oxidant called peroxynitrite that has ability to nitrosylate several biomolecules thus, altering cellular fate. This suggests that cellular damage caused by reactive species of nitrogen and oxygen is not only an outcome of accumulation of individual species of ROS and RNS, but a combinatorial product of ROS and RNS may have a key role to play. In this review, we intend to advocate role of cellular nitro-oxidative condition in PCD in plants.
Collapse
Affiliation(s)
- Swapnil Ombale
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar-382426, Gujrat, India
| | - Mansi Bhatt
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar-382426, Gujrat, India
| | - Anand Krishna Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar-382426, Gujrat, India
| | - Abhishek Sharma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar-382426, Gujrat, India.
| | - Budhi Sagar Tiwari
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar-382426, Gujrat, India.
| |
Collapse
|
4
|
Kan Y, Citovsky V. The roles of movement and coat proteins in the transport of tobamoviruses between plant cells. FRONTIERS IN PLANT SCIENCE 2025; 16:1580554. [PMID: 40336615 PMCID: PMC12057581 DOI: 10.3389/fpls.2025.1580554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Tobamovirus is a large group of positive-sense, single-stranded RNA viruses that cause diseases in a broad range of plant species, including many agronomically important crops. The number of known Tobamovirus species has been on the rise in recent years, and currently, this genus includes 47 viruses. Tobamoviruses are transmitted mainly by mechanical contact, such as physical touching by hands or agricultural tools; and some are also transmitted on seeds, or through pollinator insects. The tobamoviral genome encodes proteins that have evolved to fulfill the main conceptual task of the viral infection cycle - the spread of the invading virus throughout the host plant cells, tissues, and organs. Here, we discuss this aspect of the infection cycle of tobamoviruses, focusing on the advances in our understanding of the local, i.e., cell-to-cell, and systemic, i.e., organ-to-organ, virus movement, and the viral and host plant determinants of these processes. Specifically, we spotlight two viral proteins-the movement protein (MP) and the coat protein (CP), which are directly involved in the local and systemic spread of tobamoviruses-with respect to their phylogeny, activities during viral movement, and interactions with the host determinants of the movement process.
Collapse
Affiliation(s)
- Yumin Kan
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, United States
| | | |
Collapse
|
5
|
Li R, Wu MW, Liu J, Xu X, Bao Y, Liu CM. NAC25 transcription factor regulates the degeneration of cytoplasmic membrane integrity and starch biosynthesis in rice endosperm through interacting with MADS29. FRONTIERS IN PLANT SCIENCE 2025; 16:1563065. [PMID: 40171481 PMCID: PMC11958719 DOI: 10.3389/fpls.2025.1563065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 04/03/2025]
Abstract
Introduction Grain filling is a crucial stage of the rice endosperm development. During this process, the endosperm accumulates abundant storage products such as starch and proteins, which determine both the yield and quality of the grain. Methods Here, we analyzed the expression of NAC25 transcription factor via qRT-PCR and histochemical GUS assays, and obtained its mutants by CRISPR/Cas9-based gene editing in ZH11. Results and discussion The results showed that NAC25 was expressed specifically in developing rice endosperm, and knockout of NAC25 led to delayed degeneration of cytoplasmic membrane integrity, reduced starch accumulation and chalky starchy endosperm. We showed that NAC25 interacted with MADS29, a MADS family transcription factor whose mutant also showed defective grain filling. These results provide novel insight into the transcriptional regulation of rice grain filling.
Collapse
Affiliation(s)
- Rong Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xintong Xu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun-Ming Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Gao S, Liu S, Feng G, Gao J, Wang N, Ai N, Zhou B. Evaluation of resistance to Verticillium wilt in Gossypium hirsutum-Gossypium arboreum introgression lines and identification of putative resistance genes using RNA-seq. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112353. [PMID: 39643248 DOI: 10.1016/j.plantsci.2024.112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Verticillium wilt (VW), a fungal disease caused by Verticillium dahliae (Vd), is one of the most destructive threats to cotton production. Moreover, widely cultivated upland cotton (Gossypium hirsutum, 2n = 4x = AADD = 52) often demonstrates low resistance to Vd. In contrast, G. arboreum (2n = 2x = AA = 26) shows high resistant to VW, making it a valuable source for breeding, despite the challenges posed by hybridization incompatibility between the two species. Here, a population of introgression lines derived from G. hirsutum and G. arboreum was evaluated for resistance to VW through both glasshouse and field tests. Among these lines, DM11039 demonstrated high resistance to VW. Both DM11039 and the recipient TM-1 underwent transcriptome sequencing during Vd infection at 0, 4, 12, 24, 48, and 96 h post inoculation. The analysis identified differentially expressed genes (DEGs), which were predominantly associated with resistance mechanisms. Based on the results from transcriptome sequencing and weighted correlation network analysis, three DEGs from each parent-G. arboreum and G. hirsutum- in DM11039 were subjected to virus-induced gene silencing in cotton seedlings. The findings revealed that silencing of GaPP2A1, GaPDH-E1, or GaLRK10L-1.2, which are located within the introgression segments from G. arboreum, significantly impaired disease resistance in cotton. This suggests that these genes are potentially linked to the disease phenotype. In contrast, silencing of GHA13G1263, GhZIP1 or GHA10G2498 from G. hirsutum did not result in any changes in disease resistance in DM11039. The results indicate G. arboreum harbors resistance genes to VW. Furthermore, the introgression population presents a valuable resource for future cotton breeding.
Collapse
Affiliation(s)
- Shuang Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Susu Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi, Xinjiang 832000, PR China
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi, Xinjiang 832000, PR China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, Xinjiang 832000, PR China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
7
|
Li X, Zhuang Y, Zhao W, Qu X, Wang J, Chang M, Shen J, Chen N, Huang S. Molecular and functional adaption of Arabidopsis villins. THE NEW PHYTOLOGIST 2025; 245:1158-1179. [PMID: 39574358 DOI: 10.1111/nph.20295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Villins are versatile, multifunctional actin regulatory proteins. They promote actin stabilization and remodeling mainly via their actin bundling and Ca2+-dependent severing activities, respectively. Arabidopsis subclass II and III villins normally coexist in cells, but the biological significance of their coexistence remains unknown. Here we demonstrate that subclass II villin binds to Ca2+ with high affinity and exhibits strong severing but weak bundling activity compared to subclass III villin. Subclass II villin plays a dominant role in promoting actin remodeling, which requires its Ca2+-dependent severing activity. Subclass II villin is also strictly required for physiological processes including oriented organ growth and stress tolerance. By comparison, subclass III villin binds to Ca2+ with low affinity and exhibits weak severing but strong bundling activity, and acts as the major player in controlling actin stabilization and organization. Thus, we demonstrate that multifunctional villin isovariants have diverged biochemically to ensure exquisite control of the actin cytoskeleton to meet different cellular needs in plants. This study provides new insights into the role of villins in fine-tuning actin dynamics and plant development.
Collapse
Affiliation(s)
- Xin Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Juan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ming Chang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiangfeng Shen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Naizhi Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Li W, Cheng W, Jiang H, Fang C, Peng L, Tao L, Zhan Y, Huang X, Ma B, Chen X, Wu Y, Liu B, Fu X, Wu K, Ye Y. Mutation of rice EARLY LEAF LESION AND SENESCENCE 1 (ELS1), which encodes an anthranilate synthase α-subunit, induces ROS accumulation and cell death through activating the tryptophan synthesis pathway in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2723-2737. [PMID: 39540877 DOI: 10.1111/tpj.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Lesion-mimic mutants (LMMs) serve as valuable resources for uncovering the molecular mechanisms that govern programmed cell death (PCD) in plants. Despite extensive research, the regulatory mechanisms of PCD and lesion formation in various LMMs remain to be fully elucidated. In this study, we identified a rice LMM named early leaf lesion and senescence 1 (els1), cloned the causal gene through map-based cloning, and confirmed its function through complementation. ELS1 encodes an anthranilate synthase α-subunit involved in anthranilate biosynthesis. It is predominantly localized in chloroplasts and is primarily expressed in light-exposed tissues. Mutation of ELS1 triggers upregulation of its homologous gene, ASA1, via a genetic compensation response, leading to the activation of the tryptophan (Trp) synthesis pathway and amino acid metabolism. The accumulation of abnormal Trp-derived intermediate metabolites results in reactive oxygen species (ROS) production and abnormal PCD in the els1 mutant, ultimately causing the leaf lesion phenotype. The els1 mutant also exhibits reduced chlorophyll content, upregulation of genes related to chloroplast degradation and leaf senescence, and decreased activity of photosynthetic proteins, indicating that ELS1 plays a role in chloroplast development. These factors collectively contribute to the premature leaf senescence observed in the els1 mutant. Our findings shed light on the role of ELS1 in regulating ROS accumulation and PCD in rice, providing further genetic insights into the molecular mechanisms governing leaf lesions and senescence.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Weimin Cheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongrui Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Cheng Fang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingling Peng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liangzhi Tao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yue Zhan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafeng Ye
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
9
|
Singh S, Prakash G, Nanjundappa S, Malipatil R, Kalita P, Satyavathi TC, Thirunavukkarasu N. Novel SNPs Linked to Blast Resistance Genes Identified in Pearl Millet Through Genome-Wide Association Models. Int J Mol Sci 2024; 25:12048. [PMID: 39596115 PMCID: PMC11593765 DOI: 10.3390/ijms252212048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Foliar blast, caused by Pyricularia grisea, poses a major challenge to pearl millet (Pennisetum glaucum (L.) R. Br) production, leading to severe yield losses, particularly in rainfed ecologies. This study aimed to elucidate the genetic basis of blast resistance through a genome-wide association study (GWAS) involving 281 diverse pearl millet inbreds. GWAS panel was phenotyped for blast resistance against three distinct isolates of P. grisea collected from Delhi, Gujarat, and Rajasthan locations, revealing a significant variability with 16.7% of the inbreds showing high resistance. Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK) and Multi-Locus Mixed Model (MLMM) models using transformed means identified 68 significant SNPs linked to resistance, with hotspots for resistance-related genes on chromosomes 1, 2, and 6. These regions harbor genes involved in defense mechanisms, including immune response, stress tolerance, signal transduction, transcription regulation, and pathogen defense. Genes, namely 14-3-3-like proteins RGA2, RGA4, hypersensitive-induced response proteins, NHL3, NBS-LRR, LRR-RLK, LRRNT_2, and various transcription factors such as AP2/ERF and WRKY, played a crucial role in the stress-responsive pathways. Analyses of transporter proteins, redox processes, and structural proteins revealed additional mechanisms contributing to blast resistance. This study offers valuable insights into the complex genetic architecture of blast resistance in pearl millet, offering a solid foundation for marker-assisted breeding programs and gene-editing experiments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sandeep Nanjundappa
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Prerana Kalita
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Tara C. Satyavathi
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| |
Collapse
|
10
|
Teng X, Wang Y, Liu L, Yang H, Wu M, Chen X, Ren Y, Wang Y, Duan E, Dong H, Jiang L, Zhang Y, Zhang W, Chen R, Liu S, Liu X, Tian Y, Chen L, Wang Y, Wan J. Rice floury endosperm26 encoding a mitochondrial single-stranded DNA-binding protein is essential for RNA-splicing of mitochondrial genes and endosperm development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112151. [PMID: 38848768 DOI: 10.1016/j.plantsci.2024.112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Endosperm, the major storage organ in cereal grains, determines the grain yield and quality. Mitochondria provide the energy for dry matter accumulation, in the endosperm development. Although mitochondrial single-stranded DNA-binding proteins (mtSSBs) play a canonical role in the maintenance of single-stranded mitochondrial DNA, their molecular functions in RNA processing and endosperm development remain obscure. Here, we report a defective rice endosperm mutant, floury endosperm26 (flo26), which develops abnormal starch grains in the endosperm. Map-based cloning and complementation experiments showed that FLO26 allele encodes a mitochondrial single-stranded DNA-binding protein, named as mtSSB1.1. Loss of function of mtSSB1.1 affects the transcriptional level of many mitochondrially-encoded genes and RNA splicing of nad1, a core component of respiratory chain complex I in mitochondria. As a result, dysfunctional mature nad1 led to dramatically decreased complex I activity, thereby reducing ATP production. Our results reveal that mtSSB1.1 plays an important role in the maintenance of mitochondrial function and endosperm development by stabilizing the splicing of mitochondrial RNA in rice.
Collapse
Affiliation(s)
- Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yongfei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Liangming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
11
|
Ye T, Ma T, Chen Y, Liu C, Jiao Z, Wang X, Xue H. The role of redox-active small molecules and oxidative protein post-translational modifications in seed aging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108810. [PMID: 38857563 DOI: 10.1016/j.plaphy.2024.108810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Seed vigor is a crucial indicator of seed quality. Variations in seed vigor are closely associated with seed properties and storage conditions. The vigor of mature seeds progressively declines during storage, which is called seed deterioration or aging. Seed aging induces a cascade of cellular damage, including impaired subcellular structures and macromolecules, such as lipids, proteins, and DNA. Reactive oxygen species (ROS) act as signaling molecules during seed aging causing oxidative damage and triggering programmed cell death (PCD). Mitochondria are the main site of ROS production and change morphology and function before other organelles during aging. The roles of other small redox-active molecules in regulating cell and seed vigor, such as nitric oxide (NO) and hydrogen sulfide (H2S), were identified later. ROS, NO, and H2S typically regulate protein function through post-translational modifications (PTMs), including carbonylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. These signaling molecules as well as the PTMs they induce interact to regulate cell fate and seed vigor. This review was conducted to describe the physiological changes and underlying molecular mechanisms that in seed aging and provides a comprehensive view of how ROS, NO, and H2S affect cell death and seed vigor.
Collapse
Affiliation(s)
- Tiantian Ye
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Tianxiao Ma
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Yang Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Chang Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Zhiyuan Jiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaofeng Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Hua Xue
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
12
|
Joshi H, Tiwari S, Berendzen K, Mishra SK, Prasad V, Harter K, Chauhan PS. Novel nucleus-localized GRAM protein encoding OsGRAM57 gene enhances salt tolerance through ABA-dependent pathway and modulated carbohydrate metabolism. Int J Biol Macromol 2024; 273:132683. [PMID: 38801846 DOI: 10.1016/j.ijbiomac.2024.132683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
GRAM (Glucosyltransferases-like GTPase activators and Myotubularin) domain-encoding proteins play pivotal roles in plant growth and responses to biotic stresses. Yet, their influence on abiotic stress responses has remained enigmatic. This study unveils a novel nucleus-localized OsGRAM57, a GRAM protein-encoding gene and its profound regulatory functions in enhancing salt stress tolerance using Arabidopsis thaliana as a model plant. OsGRAM57-OEX (OsGRAM57-OEX) lines displayed significant enhancement in salt tolerance, modulated physiological, biochemical, K+/Na+ ratios, and enzymatic indices as compared to their wild-type (WT). Furthermore, OsGRAM57-OEX seedlings demonstrate increased levels of endogenous abscisic acid (ABA) and other phytohormones, while metabolic profiling revealed enhanced carbohydrate metabolism. Delving into the ABA signaling pathway, OsGRAM57 emerged as a central regulator, orchestrating the expression of genes crucial for salt stress responses, carbohydrate metabolism, and ABA signaling. The observed interactions with target genes and transactivation assays provided additional support for OsGRAM57's pivotal role. These findings underscore OsGRAM57's positive influence on the ABA pathway and affirm its capacity to enhance salt tolerance through an ABA-dependent pathway and fine-tuned carbohydrate metabolism. In summary, this new study reveals the previously undiscovered regulatory roles of OsGRAM57 in Arabidopsis abiotic stress responses, offering promising ways for strengthening plant resilience in the face of adverse environmental conditions.
Collapse
Affiliation(s)
- Harshita Joshi
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Department of Botany, University of Lucknow, Lucknow 226007, India
| | - Shalini Tiwari
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Department of Agricultural and Biosystems engineering, South Dakota State University, USA
| | | | - Shashank Kumar Mishra
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Vivek Prasad
- Department of Botany, University of Lucknow, Lucknow 226007, India
| | - Klaus Harter
- ZMBP, Plant Physiology, University of Tübingen, Germany
| | - Puneet Singh Chauhan
- Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India.
| |
Collapse
|
13
|
Wang C, Liu WJ, Liao XW, Xu X, Yang S, Zhang XB, Zhou H, Zhuang C, Gong J, Wu JL. The Identification and Gene Mapping of Spotted Leaf Mutant spl43 in Rice. Int J Mol Sci 2024; 25:6637. [PMID: 38928342 PMCID: PMC11203680 DOI: 10.3390/ijms25126637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Our study investigates the genetic mechanisms underlying the spotted leaf phenotype in rice, focusing on the spl43 mutant. This mutant is characterized by persistent reddish-brown leaf spots from the seedling stage to maturity, leading to extensive leaf necrosis. Using map-based cloning, we localized the responsible locus to a 330 Kb region on chromosome 2. We identified LOC_Os02g56000, named OsRPT5A, as the causative gene. A point mutation in OsRPT5A, substituting valine for glutamic acid, was identified as the critical factor for the phenotype. Functional complementation and the generation of CRISPR/Cas9-mediated knockout lines in the IR64 background confirmed the central role of OsRPT5A in controlling this trait. The qPCR results from different parts of the rice plant revealed that OsRPT5A is constitutively expressed across various tissues, with its subcellular localization unaffected by the mutation. Notably, we observed an abnormal accumulation of reactive oxygen species (ROS) in spl43 mutants by examining the physiological indexes of leaves, suggesting a disruption in the ROS system. Complementation studies indicated OsRPT5A's involvement in ROS homeostasis and catalase activity regulation. Moreover, the spl43 mutant exhibited enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo), highlighting OsRPT5A's role in rice pathogen resistance mechanisms. Overall, our results suggest that OsRPT5A plays a critical role in regulating ROS homeostasis and enhancing pathogen resistance in rice.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (C.Z.)
| | - Wen-Jun Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| | - Xin-Wei Liao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| | - Shihua Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| | - Xiao-Bo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (C.Z.)
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.Z.); (C.Z.)
| | - Junyi Gong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (C.W.); (W.-J.L.); (X.-W.L.); (X.X.); (S.Y.); (X.-B.Z.)
| |
Collapse
|
14
|
Kang SM, Adhikari A, Kwon EH, Gam HJ, Jeon JR, Woo JI, Lee IJ. Influence of N-Acetylglucosamine and Melatonin Interaction in Modeling the Photosynthetic Component and Metabolomics of Cucumber under Salinity Stress. Int J Mol Sci 2024; 25:2844. [PMID: 38474090 DOI: 10.3390/ijms25052844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The application of N-acetylglucosamine (GlcNAc) and melatonin (Mel) in agriculture could be a promising avenue for improving crop resilience and productivity, especially under challenging environmental conditions. In the current study, we treated the cucumber plant with GlcNAc and Mel solely and combinedly under salt stress (150 mM) then studied photosynthetic attributes using the transient OJIP fluorescence method. The results showed that the combination of GlcNAc × Mel significantly improved the plant morphological attributes, such as root and shoot biomass, and also improved chlorophyll and photosynthetic components. The mineral elements such as K, Mg, Ca, and P were significantly elevated, whereas a lower influx of Na was observed in GlcNAc × Mel treated cucumber shoots. A significant reduction in abscisic acid was observed, which was validated by the reduction in proline content and the increase in stomatal conductance (Gs), transpiration rate (E), and substomatal CO2 concentration (Ci). Furthermore, the activities of antioxidants such as polyphenol and flavonoid were considerably improved, resulting in a decrease in SOD and CAT with GlcNAc × Mel treatment. In addition, GlcNAc × Mel treatment dropped levels of the toxic radical Malondialdehyde (MDA) and elevated amino acids in cucumber shoots. These findings suggest that the combination of GlcNAc × Mel could be an effective elicitor for modeling plant metabolism to confer stress tolerance in crops.
Collapse
Affiliation(s)
- Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Xu X, Lou Y, Liang K, Liu J, Wang Z, Chen B, Li W. The P2 nucleic acid binding protein of Sugarcane bacilliform virus is a viral pathogenic factor. PeerJ 2024; 12:e16982. [PMID: 38406282 PMCID: PMC10885806 DOI: 10.7717/peerj.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Background Saccharum spp. is the primary source of sugar and plays a significant role in global renewable bioenergy. Sugarcane bacilliform virus (SCBV) is one of the most important viruses infecting sugarcane, causing severe yield losses and quality degradation. It is of great significance to reveal the pathogenesis of SCBV and resistance breeding. However, little is known about the viral virulence factors or RNA silencing suppressors and the molecular mechanism of pathogenesis. Methods To systematically investigate the functions of the unknown protein P2 encoded by SCBV ORF2. Phylogenetic analysis was implemented to infer the evolutionary relationship between the P2 of SCBV and other badnaviruses. The precise subcellular localization of P2 was verified in the transient infiltrated Nicotiana benthamiana epidermal mesophyll cells and protoplasts using the Laser scanning confocal microscope (LSCM). The post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) RNA silencing suppressor activity of P2 was analyzed, respectively. Furthermore, restriction digestion and RT-qPCR assays were conducted to verify the probable mechanism of P2 on repressing DNA methylation. To explore the pathogenicity of P2, a potato virus X-based viral vector was used to heterologously express SCBV P2 and the consequent H2O2 accumulation was detected by the 3,3'-diaminobenzidine (DAB) staining method. Results Phylogenetic analysis shows that SCBV has no obvious sequence similarity and low genetic relatedness to Badnavirus and Tungrovirus representatives. LSCM studies show that P2 is localized in both the cytoplasm and nucleus. Moreover, P2 is shown to be a suppressor of PTGS and TGS, which can not only repress ssRNA-induced gene silencing but also disrupt the host RNA-directed DNA methylation (RdDM) pathway. In addition, P2 can trigger an oxidative burst and cause typical hypersensitive-like response (HLR) necrosis in systemic leaves of N. benthamiana when expressed by PVX. Overall, our results laid a foundation for deciphering the molecular mechanism of SCBV pathogenesis and made progress for resistance breeding.
Collapse
Affiliation(s)
- Xiongbiao Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi key Laboratory of Sugarcane biology, Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yinian Lou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi key Laboratory of Sugarcane biology, Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Kaili Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi key Laboratory of Sugarcane biology, Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jingying Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi key Laboratory of Sugarcane biology, Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Zhiyuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi key Laboratory of Sugarcane biology, Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi key Laboratory of Sugarcane biology, Province and Ministry Co-sponsored Collaborative Innovation Center of Canesugar Industry, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Wenlan Li
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Merchán-Gaitán JB, Mendes JHL, Nunes LEC, Buss DS, Rodrigues SP, Fernandes PMB. The Role of Plant Latex in Virus Biology. Viruses 2023; 16:47. [PMID: 38257746 PMCID: PMC10819414 DOI: 10.3390/v16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
At least 20,000 plant species produce latex, a capacity that appears to have evolved independently on numerous occasions. With a few exceptions, latex is stored under pressure in specialized cells known as laticifers and is exuded upon injury, leading to the assumption that it has a role in securing the plant after mechanical injury. In addition, a defensive effect against insect herbivores and fungal infections has been well established. Latex also appears to have effects on viruses, and laticifers are a hostile environment for virus colonization. Only one example of successful colonization has been reported: papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2) in Carica papaya. In this review, a summary of studies that support both the pro- and anti-viral effects of plant latex compounds is provided. The latex components represent a promising natural source for the discovery of new pro- and anti-viral molecules in the fields of agriculture and medicine.
Collapse
Affiliation(s)
| | - João H. L. Mendes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - Lucas E. C. Nunes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - David S. Buss
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK;
| | - Silas P. Rodrigues
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | | |
Collapse
|
17
|
Zhao Y, Zheng X, Tabima JF, Zhu S, Søndreli KL, Hundley H, Bauer D, Barry K, Zhang Y, Schmutz J, Wang Y, LeBoldus JM, Xiong Q. Secreted Effector Proteins of Poplar Leaf Spot and Stem Canker Pathogen Sphaerulina musiva Manipulate Plant Immunity and Contribute to Virulence in Diverse Ways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:779-795. [PMID: 37551980 DOI: 10.1094/mpmi-07-23-0091-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Yao Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Xinyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Javier F Tabima
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Sheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Hope Hundley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Diane Bauer
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Kerrie Barry
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Yaxin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Yuanchao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Biology, Clark University, Worcester, MA 01610, U.S.A
| | - Qin Xiong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Yuan S, Ke D, Liu B, Zhang M, Li X, Chen H, Zhang C, Huang Y, Sun S, Shen J, Yang S, Zhou S, Leng P, Guan Y, Zhou X. The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume-rhizobia symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5820-5839. [PMID: 37470327 DOI: 10.1093/jxb/erad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Bo Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Mengke Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xiangyong Li
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiafang Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuqi Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
19
|
Xu S, Tian P, Jiang Z, Chen X, Li B, Sun J, Zhang Z. Transcriptome analysis of two tobacco varieties with contrast resistance to Meloidogyne incognita in response to PVY M SN R infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1213494. [PMID: 37701805 PMCID: PMC10493397 DOI: 10.3389/fpls.2023.1213494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
Root-knot nematode (RKN) disease is a major disease of tobacco worldwide, which seriously hinders the improvement of tobacco yield and quality. Obvious veinal necrosis-hypersensitive responses are observed only in RKN-resistant lines infected by Potyvirus Y (PVY) MSNR, making this an effective approach to screen for RKN-resistant tobacco. RNA-seq analysis, real-time quantitative PCR (qRT-PCR) and functional enrichment analysis were conducted to gain insight into the transcription dynamics difference between G28 (RKN-resistant) and CBH (RKN-susceptible) varieties infected with PVY MSNR. Results showed that a total of 7900, 10576, 9921, 11530 and 12531 differentially expressed genes (DEGs) were identified between the two varieties at 0, 1, 3, 5, and 7 d after infection, respectively. DEGs were associated with plant hormone signal transduction, starch and sucrose metabolism, phenylpropanoid biosynthesis, and photosynthesis-related metabolic pathways. Additional DEGs related to starch and sucrose metabolism, energy production, and the indole-3-acetic acid signaling pathway were induced in CBH plants after infection. DEGs related to phenylpropanoid biosynthesis, abscisic acid, salicylic acid, brassinosteroids, and jasmonic acid signaling pathway were induced in G28 after infection. Our findings reveal DEGs that may contribute to differences in PVY MSNR resistance among tobacco varieties. These results help us to understand the differences in transcriptional dynamics and metabolic processes between RKN-resistant and RKN-susceptible varieties involved in tobacco-PVY MSNR interaction.
Collapse
Affiliation(s)
- Shixiao Xu
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| | - Pei Tian
- China Tobacco Jiangsu Industry Co, Ltd. Xuzhou Cigarette Factory, Xuzhou, China
| | - Zhimin Jiang
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Xiaoxiang Chen
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Bo Li
- China Tobacco Zhejiang Industry Co, Ltd., Hangzhou, China
| | - Jutao Sun
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| | - Zhiqiang Zhang
- College of Tobacco Science, Henan Agricultural University, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Scientific Observation and Experiment Station of Henan, Ministry of Agriculture, Zhengzhou, China
| |
Collapse
|
20
|
Zhang X, Liang S, Luo B, Zhou Z, Bao J, Fang R, Wang F, Song X, Liao Z, Chen G, Wang Y, Xu F, Teng Y, Li W, Xu S, Lin FC. Transcriptomic and Metabolomic Investigation on Leaf Necrosis Induced by ZmWus2 Transient Overexpression in Nicotiana benthamiana. Int J Mol Sci 2023; 24:11190. [PMID: 37446367 DOI: 10.3390/ijms241311190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
WUSCHEL (WUS) is a crucial transcription factor in regulating plant stem cell development, and its expression can also improve genetic transformation. However, the ectopic expression of WUS always causes pleiotropic effects during genetic transformation, making it important to understand the regulatory mechanisms underlying these phenomena. In our study, we found that the transient expression of the maize WUS ortholog ZmWus2 caused severe leaf necrosis in Nicotiana benthamiana. We performed transcriptomic and non-target metabolomic analyses on tobacco leaves during healthy to wilted states after ZmWus2 transient overexpression. Transcriptomic analysis revealed that ZmWus2 transformation caused active metabolism of inositol trisphosphate and glycerol-3-phosphate, while also upregulating plant hormone signaling and downregulating photosystem and protein folding pathways. Metabolomic analysis mainly identified changes in the synthesis of phenylpropanoid compounds and various lipid classes, including steroid synthesis. In addition, transcription factors such as ethylene-responsive factors (ERFs), the basic helix-loop-helix (bHLH) factors, and MYBs were found to be regulated by ZmWus2. By integrating these findings, we developed a WUS regulatory model that includes plant hormone accumulation, stress responses, lipid remodeling, and leaf necrosis. Our study sheds light on the mechanisms underlying WUS ectopic expression causing leaf necrosis and may inform the development of future genetic transformation strategies.
Collapse
Affiliation(s)
- Xianwen Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Biao Luo
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University, Changsha 410128, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiqiu Fang
- Institute of Maize and Featured Upland Crops, Zhejiang Academy of Agricultural Sciences, Dongyang 322100, China
| | - Fang Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xijiao Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhenfeng Liao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fei Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yi Teng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchang Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengchun Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
21
|
Zhang Y, Guo S, Zhang F, Gan P, Li M, Wang C, Li H, Gao G, Wang X, Kang Z, Zhang X. CaREM1.4 interacts with CaRIN4 to regulate Ralstonia solanacearum tolerance by triggering cell death in pepper. HORTICULTURE RESEARCH 2023; 10:uhad053. [PMID: 37213684 PMCID: PMC10199716 DOI: 10.1093/hr/uhad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 05/23/2023]
Abstract
Remorins, plant-specific proteins, have a significant role in conferring on plants the ability to adapt to adverse environments. However, the precise function of remorins in resistance to biological stress remains largely unknown. Eighteen CaREM genes were identified in pepper genome sequences based on the C-terminal conserved domain that is specific to remorin proteins in this research. Phylogenetic relations, chromosomal localization, motif, gene structures, and promoter regions of these remorins were analyzed and a remorin gene, CaREM1.4, was cloned for further study. The transcription of CaREM1.4 in pepper was induced by infection with Ralstonia solanacearum. Knocking down CaREM1.4 in pepper using virus-induced gene silencing (VIGS) technologies reduced the resistance of pepper plants to R. solanacearum and downregulated the expression of immunity-associated genes. Conversely, transient overexpression of CaREM1.4 in pepper and Nicotiana benthamiana plants triggered hypersensitive response-mediated cell death and upregulated expression of defense-related genes. In addition, CaRIN4-12, which interacted with CaREM1.4 at the plasma membrane and cell nucleus, was knocked down with VIGS, decreasing the susceptibility of Capsicum annuum to R. solanacearum. Furthermore, CaREM1.4 reduced ROS production by interacting with CaRIN4-12 upon co-injection in pepper. Taken together, our findings suggest that CaREM1.4 may function as a positive regulator of the hypersensitive response, and it interacts with CaRIN4-12, which negatively regulates plant immune responses of pepper to R. solanacearum. Our study provides new evidence for comprehending the molecular regulatory network of plant cell death.
Collapse
Affiliation(s)
- Yanqin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuangyuan Guo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Feng Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Pengfei Gan
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Min Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Cong Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Huankun Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gang Gao
- College of Life Sciences, Shanxi Normal University, Taiyuan 030000, Shanxi, China
| | - Xiaojie Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | | | | |
Collapse
|
22
|
Zou T, Li G, Liu M, Liu R, Yang S, Wang K, Lu L, Ye Q, Liu J, Liang J, Deng Q, Wang S, Zhu J, Liang Y, Liu H, Yu X, Sun C, Li P, Li S. A ubiquitin-specific protease functions in regulating cell death and immune responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1312-1326. [PMID: 36624579 DOI: 10.1111/pce.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liuhui Lu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiuyu Ye
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changhui Sun
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Bettinelli P, Nicolini D, Costantini L, Stefanini M, Hausmann L, Vezzulli S. Towards Marker-Assisted Breeding for Black Rot Bunch Resistance: Identification of a Major QTL in the Grapevine Cultivar 'Merzling'. Int J Mol Sci 2023; 24:3568. [PMID: 36834979 PMCID: PMC9961920 DOI: 10.3390/ijms24043568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Black rot (BR), caused by Guignardia bidwellii, is an emergent fungal disease threatening viticulture and affecting several mildew-tolerant varieties. However, its genetic bases are not fully dissected yet. For this purpose, a segregating population derived from the cross 'Merzling' (hybrid, resistant) × 'Teroldego' (V. vinifera, susceptible) was evaluated for BR resistance at the shoot and bunch level. The progeny was genotyped with the GrapeReSeq Illumina 20K SNPchip, and 7175 SNPs were combined with 194 SSRs to generate a high-density linkage map of 1677 cM. The QTL analysis based on shoot trials confirmed the previously identified Resistance to Guignardia bidwellii (Rgb)1 locus on chromosome 14, which explained up to 29.2% of the phenotypic variance, reducing the genomic interval from 2.4 to 0.7 Mb. Upstream of Rgb1, this study revealed a new QTL explaining up to 79.9% of the variance for bunch resistance, designated Rgb3. The physical region encompassing the two QTLs does not underlie annotated resistance (R)-genes. The Rgb1 locus resulted enriched in genes belonging to phloem dynamics and mitochondrial proton transfer, while Rgb3 presented a cluster of pathogenesis-related Germin-like protein genes, promoters of the programmed cell death. These outcomes suggest a strong involvement of mitochondrial oxidative burst and phloem occlusion in BR resistance mechanisms and provide new molecular tools for grapevine marker-assisted breeding.
Collapse
Affiliation(s)
- Paola Bettinelli
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, TN, Italy
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Daniela Nicolini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Laura Costantini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Marco Stefanini
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| | - Ludger Hausmann
- JKI Institute for Grapevine Breeding, Geilweilerhof, 76833 Siebeldingen, Germany
| | - Silvia Vezzulli
- Grapevine Genetics and Breeding Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, TN, Italy
| |
Collapse
|
24
|
Extracellular Compounds from Pathogenic Bacterium Pseudoalteromonas piscicida X-8 Cause Bleaching Disease, Triggering Active Defense Responses in Commercially Farmed Saccharina japonica. BIOLOGY 2022; 12:biology12010047. [PMID: 36671739 PMCID: PMC9855529 DOI: 10.3390/biology12010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Pathogenic bacteria can trigger active defense responses in higher plants, leading to hypersensitive programmed cell death (PCD) to against those bacteria. However, related research on seaweeds is very limited. Pseudoalteromonas piscicida X-8 (PpX-8) has been identified as the pathogen that causes bleaching disease in commercially farmed Saccharina japonica. In this study, using an inoculation assay and microscopic observations, we found that the proportion of bleaching tissue pieces inoculated with PpX-8 extracellular compounds was significantly higher (p < 0.05) than that inoculated with heated extracellular compounds, indicating that the virulence factors of PpX-8 exist in extracellular compounds and they are heat-sensitive. Using TEM, we observed typical morphological characteristics of PCD after inoculation with extracellular compounds, including chloroplast shrinkage, cytoplasmic vacuolation, and intact mitochondrial structures. Moreover, we detected biochemical characteristics of PCD, such as 3′-OH ends resulting from DNA cleavage and caspase-3-like enzymatic activity, using a TUNEL assay and fluorescence staining. Therefore, PpX-8 extracellular compounds can induce PCD, thus triggering active defense responses in S. japonica. These results indicate that seaweeds and higher plants are conservative in their active defense responses against pathogenic bacteria. The results of this study lay the foundation for further investigation of the virulence mechanisms of PpX-8.
Collapse
|
25
|
Abstract
Time is an often-neglected variable in biological research. Plants respond to biotic and abiotic stressors with a range of chemical signals, but as plants are non-equilibrium systems, single-point measurements often cannot provide sufficient temporal resolution to capture these time-dependent signals. In this article, we critically review the advances in continuous monitoring of chemical signals in living plants under stress. We discuss methods for sustained measurement of the most important chemical species, including ions, organic molecules, inorganic molecules and radicals. We examine analytical and modelling approaches currently used to identify and predict stress in plants. We also explore how the methods discussed can be used for applications beyond a research laboratory, in agricultural settings. Finally, we present the current challenges and future perspectives for the continuous monitoring of chemical signals in plants.
Collapse
|
26
|
Manz C, Raorane ML, Maisch J, Nick P. Switching cell fate by the actin-auxin oscillator in Taxus: cellular aspects of plant cell fermentation. PLANT CELL REPORTS 2022; 41:2363-2378. [PMID: 36214871 PMCID: PMC9700576 DOI: 10.1007/s00299-022-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst. Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable alternative to the exploitation of natural resources for compounds of pharmaceutical interest. However, the success of this approach has remained limited, because the cellular aspects of metabolic competence are mostly unknown. The production of the anti-cancer alkaloid Paclitaxel has been, so far, the most successful case for this approach. In the current work, we map cellular aspects of alkaloid synthesis in cells of Taxus chinensis using a combination of live-cell imaging, quantitative physiology, and metabolite analysis. We show evidence that metabolic potency correlates with a differentiation event giving rise to cells with large vacuoles with a tonoplast that is of a glossy appearance, agglomerations of lipophilic compounds, and multivesicular bodies that fuse with the plasma membrane. Cellular features of these glossy cells are bundled actin, more numerous peroxisomes, and vermiform mitochondria. The incidence of glossy cells can be increased by aluminium ions, and this increase is significantly reduced by the actin inhibitor Latrunculin B, and by diphenylene iodonium, a specific inhibitor of the NADPH oxidase Respiratory burst oxidase Homologue (RboH). It is also reduced by the artificial auxin Picloram. This cellular fingerprint matches the implications of a model, where the differentiation into the glossy cell type is regulated by the actin-auxin oscillator that in plant cells acts as dynamic switch between growth and defence.
Collapse
Affiliation(s)
- Christina Manz
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Manish L Raorane
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute of Pharmacy, Martin-Luther-University, Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Jan Maisch
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
27
|
Guo B, Lin B, Huang Q, Li Z, Zhuo K, Liao J. A nematode effector inhibits plant immunity by preventing cytosolic free Ca 2+ rise. PLANT, CELL & ENVIRONMENT 2022; 45:3070-3085. [PMID: 35880644 DOI: 10.1111/pce.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The Meloidogyne enterolobii effector MeTCTP is a member of the translationally controlled tumour protein (TCTP) family, involved in M. enterolobii parasitism. In this study, we found that MeTCTP forms homodimers and, in this form, binds calcium ions (Ca2+ ). At the same time, Ca2+ could induce homodimerization of MeTCTP. We further identified that MeTCTP inhibits the increase of cytosolic free Ca2+ concentration ([Ca2+ ]cyt ) in plant cells and suppresses plant immune responses. This includes suppression of reactive oxygen species burst and cell necrosis, further promoting M. enterolobii parasitism. Our results have elucidated that the effector MeTCTP can directly target Ca2+ by its homodimeric form and prevent [Ca2+ ]cyt rise in plant roots, revealing a novel mechanism utilized by plant pathogens to suppress plant immunity.
Collapse
Affiliation(s)
- Bin Guo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhiwen Li
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Jinling Liao
- Laboratory of Plant Nematology, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Vocational College of Ecological Engineering, Guangzhou, China
| |
Collapse
|
28
|
Zhang D, Wang Z, Yamamoto N, Wang M, Yi X, Li P, Lin R, Nasimi Z, Okada K, Mochida K, Noutoshi Y, Zheng A. Secreted Glycosyltransferase RsIA_GT of Rhizoctonia solani AG-1 IA Inhibits Defense Responses in Nicotiana benthamiana. Pathogens 2022; 11:pathogens11091026. [PMID: 36145458 PMCID: PMC9501517 DOI: 10.3390/pathogens11091026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Anastomosis group AG-1 IA of Rhizoctonia solani Khün has a wide host range and threatens crop production. Various glycosyltransferases secreted by phytopathogenic fungi play an essential role in pathogenicity. Previously, we identified a glycosyltransferase RsIA_GT (AG11A_09161) as a secreted protein-encoding gene of R. solani AG-1 IA, whose expression levels increased during infection in rice. In this study, we further characterized the virulence function of RsIA_GT. It is conserved not only in Basidiomycota, including multiple anastomosis groups of R. solani, but also in other primary fungal taxonomic categories. RsIA_GT possesses a signal peptide (SP) for protein secretion, and its functionality was proven using yeast and Nicotiana benthamiana. The SP-truncated form of RsIA_GT (RsIA_GT(ΔS)) expressed in Escherichia coli-induced lesion-like phenotype in rice leaves when applied to punched leaves. However, Agrobacterium-mediated transient expressions of both the full-length RsIA_GT and RsIA_GT(ΔS) did not induce cell death in N. benthamiana leaves. Instead, only RsIA_GT(ΔS) suppressed the cell death induced by two reference cell death factors BAX and INF1 in N.benthamiana. RsIA_GT(ΔS)R154A D168A D170A, a mutant RsIA_GT(ΔS) for the glycosyltransferase catalytic domain, still suppressed the BAX- or INF1-induced cell death, suggesting that the cell death suppression activity of RsIA_GT(ΔS) would be independent from its enzymatic activity. RsIA_GT(ΔS) also suppressed the H2O2 production and callose deposition and showed an effect on the induction of defense genes associated with the expression of BAX and INF1. The transient expression of RsIA_GT(ΔS) in N. benthamiana enhanced the lesion area caused by R. solani AG-1 IA. The secreted glycosyltransferase, RsIA_GT, of R. solani AG-1 IA is likely to have a dual role in virulence inside and outside of host cells.
Collapse
Affiliation(s)
- Danhua Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoyilin Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Naoki Yamamoto
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyue Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoqun Yi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zohreh Nasimi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 2300045, Japan
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama 2300045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 2440813, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Aiping Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
29
|
Transcriptional Analysis on Resistant and Susceptible Kiwifruit Genotypes Activating Different Plant-Immunity Processes against Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2022; 23:ijms23147643. [PMID: 35886990 PMCID: PMC9322148 DOI: 10.3390/ijms23147643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa), a bacterial pathogen, is a severe threat to kiwifruit production. To elucidate the species-specific interaction between Psa and kiwifruit, transcriptomic-profiles analyses were conducted, under Psa-infected treatment and mock-inoculated control, on shoots of resistant Maohua (MH) and susceptible Hongyang (HY) kiwifruit varieties. The plant hormone-signal transduction and plant–pathogen interaction were significantly enriched in HY compared with MH. However, the starch and sucrose metabolism, antigen processing and presentation, phagosome, and galactose metabolism were significantly enriched in MH compared with HY. Interestingly, the MAP2 in the pathogen/microbe-associated molecular patterns (PAMPs)-triggered immunity (PTI) was significantly up-regulated in MH. The genes RAR1, SUGT1, and HSP90A in the effector-triggered immunity (ETI), and the NPR1 and TGA genes involved in the salicylic acid signaling pathway as regulatory roles of ETI, were significantly up-regulated in HY. Other important genes, such as the CCRs involved in phenylpropanoid biosynthesis, were highly expressed in MH, but some genes in the Ca2+ internal flow or involved in the reactive oxygen metabolism were obviously expressed in HY. These results suggested that the PTI and cell walls involved in defense mechanisms were significant in MH against Psa infection, while the ETI was notable in HY against Psa infection. This study will help to understand kiwifruit bacterial canker disease and provide important theoretical support in kiwifruit breeding.
Collapse
|
30
|
iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death. Cells 2022; 11:cells11132018. [PMID: 35805101 PMCID: PMC9265749 DOI: 10.3390/cells11132018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD) is an essential biological process involved in many human pathologies. According to the continuous discovery of new PCD forms, a large number of proteins have been found to regulate PCD. Notably, post-translational modifications play critical roles in PCD process and the rapid advances in proteomics have facilitated the discovery of new PCD proteins. However, an integrative resource has yet to be established for maintaining these regulatory proteins. Here, we briefly summarize the mainstream PCD forms, as well as the current progress in the development of public databases to collect, curate and annotate PCD proteins. Further, we developed a comprehensive database, with integrated annotations for programmed cell death (iPCD), which contained 1,091,014 regulatory proteins involved in 30 PCD forms across 562 eukaryotic species. From the scientific literature, we manually collected 6493 experimentally identified PCD proteins, and an orthologous search was then conducted to computationally identify more potential PCD proteins. Additionally, we provided an in-depth annotation of PCD proteins in eight model organisms, by integrating the knowledge from 102 additional resources that covered 16 aspects, including post-translational modification, protein expression/proteomics, genetic variation and mutation, functional annotation, structural annotation, physicochemical property, functional domain, disease-associated information, protein–protein interaction, drug–target relation, orthologous information, biological pathway, transcriptional regulator, mRNA expression, subcellular localization and DNA and RNA element. With a data volume of 125 GB, we anticipate that iPCD can serve as a highly useful resource for further analysis of PCD in eukaryotes.
Collapse
|
31
|
Song X, van de Ven SS, Chen S, Kang P, Gao Q, Jia J, Shull PB. Proposal of a Wearable Multimodal Sensing-Based Serious Games Approach for Hand Movement Training After Stroke. Front Physiol 2022; 13:811950. [PMID: 35721546 PMCID: PMC9204487 DOI: 10.3389/fphys.2022.811950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Stroke often leads to hand motor dysfunction, and effective rehabilitation requires keeping patients engaged and motivated. Among the existing automated rehabilitation approaches, data glove-based systems are not easy to wear for patients due to spasticity, and single sensor-based approaches generally provided prohibitively limited information. We thus propose a wearable multimodal serious games approach for hand movement training after stroke. A force myography (FMG), electromyography (EMG), and inertial measurement unit (IMU)-based multi-sensor fusion model was proposed for hand movement classification, which was worn on the user’s affected arm. Two movement recognition-based serious games were developed for hand movement and cognition training. Ten stroke patients with mild to moderate motor impairments (Brunnstrom Stage for Hand II-VI) performed experiments while playing interactive serious games requiring 12 activities-of-daily-living (ADLs) hand movements taken from the Fugl Meyer Assessment. Feasibility was evaluated by movement classification accuracy and qualitative patient questionnaires. The offline classification accuracy using combined FMG-EMG-IMU was 81.0% for the 12 movements, which was significantly higher than any single sensing modality; only EMG, only FMG, and only IMU were 69.6, 63.2, and 47.8%, respectively. Patients reported that they were more enthusiastic about hand movement training while playing the serious games as compared to conventional methods and strongly agreed that they subjectively felt that the proposed training could be beneficial for improving upper limb motor function. These results showed that multimodal-sensor fusion improved hand gesture classification accuracy for stroke patients and demonstrated the potential of this proposed approach to be used as upper limb movement training after stroke.
Collapse
Affiliation(s)
- Xinyu Song
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Shirdi Shankara van de Ven
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Shugeng Chen
- The Department of Rehabilitation Medicine, The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peiqi Kang
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghua Gao
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jia
- The Department of Rehabilitation Medicine, The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Peter B Shull
- The State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Liang J, Guo F, Cao S, Zhao K, Zhao K, Wang H, Shao X, Wei Y, Zhang C, Zheng Y, Xu F. γ-aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:9-16. [PMID: 35366616 DOI: 10.1016/j.plaphy.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The regulation of γ-aminobutyric acid (GABA) on plant anti-oxygenation and programmed cell death (PCD) in fresh-cut pumpkins was investigated. Exogenous GABA positively promoted GABA accumulation and alleviated oxidant damage in pumpkins tissue. Pumpkins treated with GABA showed lower electrolyte leakage, reactive oxygen species (ROS) and MDA content, while higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) as compared to the non-treated tissues. Our results also found that GABA treatment retarded DNA degradation and cytochrome c release and delayed the apoptosis of pumpkin cells. On the other hand, the inhibitor of GABA generation, 3-mercaptopropionic acid (3-MP) treatment not only accelerated oxidant damage, but also induced cell death involving chromatin condensation, DNA ladder and cytochrome c releasing. Taken together, our present research indicated that exogenous GABA could alleviate the wound-induced oxidative stress and PCD occurrence in fresh-cut pumpkins.
Collapse
Affiliation(s)
- Jingyi Liang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Ke Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - KeXin Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Hongfei Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chundan Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
33
|
Rice Lesion Mimic Gene Cloning and Association Analysis for Disease Resistance. Curr Issues Mol Biol 2022; 44:2350-2361. [PMID: 35678689 PMCID: PMC9164038 DOI: 10.3390/cimb44050160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lesion mimic mutants refer to a class of mutants that naturally form necrotic lesions similar to allergic reactions on leaves in the absence of significant stress or damage and without being harmed by pathogens. Mutations in most lesion mimic genes, such as OsACL-A2 and OsSCYL2, can enhance mutants’ resistance to pathogens. Lesion mimic mutants are ideal materials for studying programmed cell death (PCD) and plant defense mechanisms. Studying the genes responsible for the rice disease-like phenotype is of great significance for understanding the disease resistance mechanism of rice. In this paper, the nomenclature, occurrence mechanism, genetic characteristics, regulatory pathways, and the research progress on the cloning and disease resistance of rice lesion mimic mutant genes were reviewed, in order to further analyze the various lesion mimic mutants of rice. The mechanism lays a theoretical foundation and provides a reference for rice breeding.
Collapse
|
34
|
Parrotta L, Tanwar UK, Aloisi I, Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Del Duca S. Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology. Cells 2022; 11:cells11091529. [PMID: 35563835 PMCID: PMC9105555 DOI: 10.3390/cells11091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Transglutaminases (TGases) are calcium-dependent enzymes that catalyse an acyl-transfer reaction between primary amino groups and protein-bound Gln residues. They are widely distributed in nature, being found in vertebrates, invertebrates, microorganisms, and plants. TGases and their functionality have been less studied in plants than humans and animals. TGases are distributed in all plant organs, such as leaves, tubers, roots, flowers, buds, pollen, and various cell compartments, including chloroplasts, the cytoplasm, and the cell wall. Recent molecular, physiological, and biochemical evidence pointing to the role of TGases in plant biology and the mechanisms in which they are involved allows us to consider their role in processes such as photosynthesis, plant fertilisation, responses to biotic and abiotic stresses, and leaf senescence. In the present paper, an in-depth description of the biochemical characteristics and a bioinformatics comparison of plant TGases is provided. We also present the phylogenetic relationship, gene structure, and sequence alignment of TGase proteins in various plant species, not described elsewhere. Currently, our knowledge of these proteins in plants is still insufficient. Further research with the aim of identifying and describing the regulatory components of these enzymes and the processes regulated by them is needed.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
35
|
Neuromotor prosthetic to treat stroke-related paresis: N-of-1 trial. COMMUNICATIONS MEDICINE 2022; 2:37. [PMID: 35603289 PMCID: PMC9053238 DOI: 10.1038/s43856-022-00105-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Background Functional recovery of arm movement typically plateaus following a stroke, leaving chronic motor deficits. Brain-computer interfaces (BCI) may be a potential treatment for post-stroke deficits Methods In this n-of-1 trial (NCT03913286), a person with chronic subcortical stroke with upper-limb motor impairment used a powered elbow-wrist-hand orthosis that opened and closed the affected hand using cortical activity, recorded from a percutaneous BCI comprised of four microelectrode arrays implanted in the ipsilesional precentral gyrus, based on decoding of spiking patterns and high frequency field potentials generated by imagined hand movements. The system was evaluated in a home setting for 12 weeks Results Robust single unit activity, modulating with attempted or imagined movement, was present throughout the precentral gyrus. The participant acquired voluntary control over a hand-orthosis, achieving 10 points on the Action Research Arm Test using the BCI, compared to 0 without any device, and 5 using myoelectric control. Strength, spasticity, the Fugl-Meyer scores improved. Conclusions We demonstrate in a human being that ensembles of individual neurons in the cortex overlying a chronic supratentorial, subcortical stroke remain active and engaged in motor representation and planning and can be used to electrically bypass the stroke and promote limb function. The participant’s ability to rapidly acquire control over otherwise paralyzed hand opening, more than 18 months after a stroke, may justify development of a fully implanted movement restoration system to expand the utility of fully implantable BCI to a clinical population that numbers in the tens of millions worldwide. Stroke is a restriction of blood flow to part of the brain and can lead to chronic issues with a person’s ability to control the limbs. The aim of this study was to see if a new type of device could restore movement in a person with arm weakness due to a stroke that occurred a year earlier. In our trial, a sensor was implanted into the surface of the brain, near the site of the stroke, and was connected to a computer that generated a command to open and close the hand with a motorized brace worn on the hand. This person was able to use their own brain activity to trigger the brace and pick up and move objects. This research could support the development of similar medical devices to restore movement in people who have had strokes. Serruya et al. test in an N-of-1 trial whether a wearable, powered exoskeletal orthosis, driven by a percutaneous, implanted brain–computer interface can restore voluntary upper extremity function following chronic hemiparesis subsequent to a cerebral subcortical stroke. Using this approach, voluntary opening of the paralyzed hand is restored.
Collapse
|
36
|
AL Ubeed HMS, Wills RBH, Chandrapala J. Post-Harvest Operations to Generate High-Quality Medicinal Cannabis Products: A Systemic Review. Molecules 2022; 27:1719. [PMID: 35268820 PMCID: PMC8911901 DOI: 10.3390/molecules27051719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/30/2023] Open
Abstract
The traditional Cannabis plant as a medicinal crop has been explored for many thousands of years. The Cannabis industry is rapidly growing; therefore, optimising drying methods and producing high-quality medical products have been a hot topic in recent years. We systemically analysed the current literature and drew a critical summary of the drying methods implemented thus far to preserve the quality of bioactive compounds from medicinal Cannabis. Different drying techniques have been one of the focal points during the post-harvesting operations, as drying preserves these Cannabis products with increased shelf life. We followed or even highlighted the most popular methods used. Drying methods have advanced from traditional hot air and oven drying methods to microwave-assisted hot air drying or freeze-drying. In this review, traditional and modern drying technologies are reviewed. Each technology will have different pros and cons of its own. Moreover, this review outlines the quality of the Cannabis plant component harvested plays a major role in drying efficiency and preserving the chemical constituents. The emergence of medical Cannabis, and cannabinoid research requires optimal post-harvesting processes for different Cannabis strains. We proposed the most suitable method for drying medicinal Cannabis to produce consistent, reliable and potent medicinal Cannabis. In addition, drying temperature, rate of drying, mode and storage conditions after drying influenced the Cannabis component retention and quality.
Collapse
Affiliation(s)
- Hebah Muhsien Sabiah AL Ubeed
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia;
| | - Ronald B. H. Wills
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia;
| | - Jayani Chandrapala
- School of Science, College of Sciences, Engineering, Computing Technologies and Health and Medical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia;
| |
Collapse
|
37
|
The Stimulation of Superoxide Dismutase Enzyme Activity and Its Relation with the Pyrenophora teres f. teres Infection in Different Barley Genotypes. SUSTAINABILITY 2022. [DOI: 10.3390/su14052597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in superoxide dismutase (SOD) enzyme activity were examined in infected barley seedlings of five cultivars with the goal to study the role of SOD in the defense mechanism induced by Pyrenophora teres f. teres (PTT) infection. Our results showed that although there were differences in the responses of the cultivars, all three PTT isolates (H-618, H-774, H-949) had significantly increased SOD activity in all examined barley varieties at the early stages of the infection. The lowest SOD activity was observed in the case of the most resistant cultivar. Our results did not show a clear connection between seedling resistance of genotypes and SOD enzyme activity; however, we were able to find strong significant correlations between the PTT infection scores on the Tekauz scale and the SOD activity. The measurement of the SOD activity could offer a novel perspective to detect the early stress responses induced by PTT. Our results suggest that the resistance of varieties cannot be estimated based on SOD enzyme activity alone, because many antioxidant enzymes play a role in fine-tuning the defense response, but SOD is an important member of this system.
Collapse
|
38
|
Kumar GNM, Kannangara CG, Knowles NR. Nucleases are upregulated in potato tubers afflicted with zebra chip disease. PLANTA 2022; 255:54. [PMID: 35103848 DOI: 10.1007/s00425-022-03832-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The defense response of potato tubers afflicted with zebra chip disease involves oxidatively mediated upregulation of nucleases that likely modulate localized programmed cell death to restrict the phloem-mobile, CLso bacterial pathogen to the vasculature. Zebra chip (ZC) is a bacterial disease of potato (Solanum tuberosum L.) caused by Candidatus Liberibacter solanacearum (CLso). Tubers from infected plants develop characteristic brown discoloration of the vasculature, a result of localized programmed cell death (PCD). We examined the potential contribution of nucleases in the response of tubers to CLso infection. Specific activities of the major isozymes of dsDNase, ssDNase, and RNase were substantially upregulated in tubers from CLso-infected plants, despite their significantly lower soluble protein content. However, ZC disease had no effect on nuclease isozyme profiles. Activities of the predominant nuclease isoforms from healthy and CLso-infected tubers had similar pH optima, thermotolerance, and responses to metallic co-factors. Nuclease activities were heat stable to 60 °C and resistant to precipitation with 70% (v/v) isopropanol, which constitute effective techniques for partial purification. DNase and RNase isozyme activities were highest at pH 7.2-8.5 and 6.8-7.2, respectively, and profiles were similar for tubers from CLso-infected and non-infected plants. RNase activities were mostly insensitive to inhibition by EDTA, except at pH 8.5 and above. DNase activities were inhibited by EDTA but less sensitive to inhibition at high pH than the RNases. The EDTA-mediated inhibition of DNase (ds/ss) activities was restored with ZnSO4, but not Ca+2 or Mg+2. By contrast, ZnSO4 inhibited the activities of RNases. DTT and CuSO4 inhibited the activities of all three nucleases. These results suggest that activation of tuber nucleases is dependent on the oxidation of sulfhydryl groups to disulfide and/or oxidation of Zn to Zn+2. In light of previous published results that established extensive CLso-induced upregulation of oxidative stress metabolism in tubers, we propose a model to show how increased nuclease activity could result from a glutathione-mediated oxidation of nuclease sulfhydryl groups in diseased tubers. DNases and RNases are likely an integral part of the hypersensitive response and may modulate PCD to isolate the pathogen to the vascular tissues of tubers.
Collapse
Affiliation(s)
- G N Mohan Kumar
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA.
| | - C G Kannangara
- Department of Crop and Soils, Washington State University, Pullman, WA, 99163, USA
- , 335/4A, 2nd Cross Street, Kotte Road, Nugegoda, Sri Lanka
| | - N Richard Knowles
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
39
|
Qi SS, Manoharan B, Dhandapani V, Jegadeesan S, Rutherford S, Wan JSH, Huang P, Dai ZC, Du DL. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 2022; 150:13-26. [PMID: 35031940 DOI: 10.1007/s10709-021-00147-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Bharani Manoharan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sridharan Jegadeesan
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Susan Rutherford
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Justin S H Wan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ping Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Jiangsu Province, Suzhou, 215009, People's Republic of China.
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
40
|
Loreto F, D'Auria S. How do plants sense volatiles sent by other plants? TRENDS IN PLANT SCIENCE 2022; 27:29-38. [PMID: 34544607 DOI: 10.1016/j.tplants.2021.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/07/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Plants communicate via the emission of volatile organic compounds (VOCs) with many animals as well as other plants. We still know little about how VOCs are perceived by receiving (eavesdropping) plants. Here we propose a multiple system of VOC perception, where stress-induced VOCs dock on odorant-binding proteins (OBPs) like in animals and are transported to as-yet-unknown receptors mediating downstream metabolic and/or behavioral changes. Constitutive VOCs that are broadly and lifelong emitted by plants do not bind OBPs but may directly change the metabolism of eavesdropping plants. Deciphering how plants listen to their talking neighbors could empower VOCs as a tool for bioinspired strategies of plant defense when challenged by abiotic and biotic stresses.
Collapse
Affiliation(s)
- Francesco Loreto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (CNR-IPSP), Sesto Fiorentino, Italy.
| | - Sabato D'Auria
- Department of Biology, Agriculture, and Food Sciences, National Research Council of Italy (CNR-DISBA), Piazzale Aldo Moro 7, 00185 Rome, Italy; Institute for Food Science, National Research Council of Italy (CNR-ISA), Avellino, Italy.
| |
Collapse
|
41
|
Cai Z, Wang Z, Yue C, Sun A, Shen Y. Efficient expression and purification of soluble Harpin Ea protein by translation initiation region codon optimization. Protein Expr Purif 2021; 188:105970. [PMID: 34500070 DOI: 10.1016/j.pep.2021.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
HarpinEa protein can stimulate plants to produce defense responses to resist the attack of pathogens, improve plant immune resistance, and promote plant growth. This has extremely high application value in agriculture. To efficiently express soluble HarpinEa protein, in this study, we expressed HarpinEa protein with a 6× His-tag in Escherichia coli BL21 (DE3). Because of the low level of expression of HarpinEa protein in E. coli, three rounds of synonymous codon optimization were performed on the +53 bp of the translation initiation region (TIR) of HarpinEa. Soluble HarpinEa protein after optimization accounted for 50.3% of the total soluble cellular protein expressed. After purification using a Ni Bestarose Fast Flow column, the purity of HarpinEa protein exceeded 95%, and the yield reached 227.5 mg/L of culture medium. The purified HarpinEa protein was sensitive to proteases and exhibited thermal stability. It triggered visible hypersensitive responses after being injected into tobacco leaves for 48 h. Plants treated with HarpinEa showed obvious growth-promoting and resistance-improving performance. Thus, the use of TIR synonymous codon optimization successfully achieved the economical, efficient, and soluble production of HarpinEa protein.
Collapse
Affiliation(s)
- Zengying Cai
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Zhong Wang
- Shandong Shennong Ecological Technology Research Institute Co., Ltd., Shanghai Branch, Shanghai, 201114, China.
| | - Cheng Yue
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
42
|
Ye C, Zheng S, Jiang D, Lu J, Huang Z, Liu Z, Zhou H, Zhuang C, Li J. Initiation and Execution of Programmed Cell Death and Regulation of Reactive Oxygen Species in Plants. Int J Mol Sci 2021; 22:ijms222312942. [PMID: 34884747 PMCID: PMC8657872 DOI: 10.3390/ijms222312942] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.
Collapse
Affiliation(s)
- Chanjuan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongna Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (C.Y.); (S.Z.); (D.J.); (J.L.); (Z.H.); (Z.L.); (H.Z.); (C.Z.)
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
43
|
Sabater B. On the Edge of Dispensability, the Chloroplast ndh Genes. Int J Mol Sci 2021; 22:12505. [PMID: 34830386 PMCID: PMC8621559 DOI: 10.3390/ijms222212505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.
Collapse
Affiliation(s)
- Bartolomé Sabater
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
44
|
Wang R, Deng M, Yang C, Yu Q, Zhang L, Zhu Q, Guo X. A Qa-SNARE complex contributes to soybean cyst nematode resistance via regulation of mitochondria-mediated cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7145-7162. [PMID: 34165531 DOI: 10.1093/jxb/erab301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 05/27/2023]
Abstract
The resistance to Heterodera glycines 1 (Rhg1) locus is widely used by soybean breeders to reduce yield loss caused by soybean cyst nematode (SCN). α-SNAP (α-soluble NSF attachment protein) within Rhg1 locus contributes to SCN resistance by modulation of cell status at the SCN feeding site; however, the underlying mechanism is largely unclear. Here, we identified an α-SNAP-interacting protein, GmSYP31A, a Qa-SNARE (soluble NSF attachment protein receptor) protein from soybean. Expression of GmSYP31A significantly induced cell death in Nicotiana benthamiana leaves, and co-expression of α-SNAP and GmSYP31A could accelerate cell death. Overexpression of GmSYP31A increased SCN resistance, while silencing or overexpression of a dominant-negative form of GmSYP31A increased SCN sensitivity. GmSYP31A expression also disrupted endoplasmic reticulum-Golgi trafficking, and the exocytosis pathway. Moreover, α-SNAP was also found to interact with GmVDAC1D (voltage-dependent anion channel). The cytotoxicity induced by the expression of GmSYP31A could be relieved either with the addition of an inhibitor of VDAC protein, or by silencing the VDAC gene. Taken together, our data not only demonstrate that α-SNAP works together with GmSYP31A to increase SCN resistance through triggering cell death, but also highlight the unexplored link between the mitochondrial apoptosis pathway and vesicle trafficking.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Deng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qianqian Yu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qun Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
45
|
Nie M, Hu C, Shi G, Cai M, Wang X, Zhao X. Selenium restores mitochondrial dysfunction to reduce Cr-induced cell apoptosis in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) root tips. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112564. [PMID: 34340154 DOI: 10.1016/j.ecoenv.2021.112564] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/18/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Chromium (Cr) disrupts the growth and physiology of plants. Selenium (Se) is considered as a promising option to help plants ameliorate Cr toxicity. To investigate the effects of exogenous Se on reactive oxygen species (ROS) burst and programmed cell death (PCD) in root tip cells under Cr stress, hydroponic experiments were carried out with Chinese cabbage seedlings grown in Hoagland solution containing 1 mg L-1 Cr and 0.1 mg L-1 Se. Results showed that Se scavenged the overproduction of H2O2 and O2-·, and alleviated the level of lipid peroxidation in root tips stressed by Cr. Moreover, Se effectively prevented DNA degradation and reduced the number of apoptotic cells in root tips. Compared with Cr treatment, Se supplementation reduced the content of ROS and malondialdehyde in mitochondria by 38.23% and 17.52%, respectively. Se application decreased the opening degree of mitochondrial permeability transition pores by 32.30%, increased mitochondrial membrane potential by 40.91%, alleviated the release of cyt c from mitochondria into cytosol by 18.42% and caused 57.40% decrease of caspase 3-like protease activity, and thus restored mitochondrial dysfunction caused by Cr stress. In addition, the alteration of Se on mitochondrial physiological properties maintained calcium homeostasis between mitochondria and cytosol, which further contributed to reducing the appearance of Cr-induced PCD. Findings suggested that Se restored mitochondrial dysfunction, which further rescued root tip cells from PCD, consequently activating defense strategies to protect plants from Cr toxicity and maintaining plant growth.
Collapse
Affiliation(s)
- Min Nie
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China.
| |
Collapse
|
46
|
Rojas-Méndez KJ, Sánchez Segura L, Chagolla A, Lino B, González de la Vara LE. Voltage-Dependent Anion-Selective Channels and Other Mitochondrial Membrane Proteins Form Diverse Complexes in Beetroots Subjected to Flood-Induced Programmed Cell Death. FRONTIERS IN PLANT SCIENCE 2021; 12:714847. [PMID: 34567029 PMCID: PMC8457146 DOI: 10.3389/fpls.2021.714847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
In plants, programmed cell death (PCD) is involved in both the development and the response to biotic and abiotic aggressions. In early stages of PCD, mitochondrial membranes are made permeable by the formation of permeability transition pores, whose protein composition is debated. Cytochrome c (cyt c) is then released from mitochondria, inducing the degradation of chromatin characteristic of PCD. Since flooding stress can produce PCD in several plant species, the first goal of this study was to know if flooding stress could be used to induce PCD in Beta vulgaris roots. To do this, 2-month-old beet plants were flood-stressed from 1 to 5 days, and the alterations indicating PCD in stressed beetroot cells were observed with a confocal fluorescence microscope. As expected, nuclei were deformed, and chromatin was condensed and fragmented in flooded beetroots. In addition, cyt c was released from mitochondria. After assessing that flood stress induced PCD in beetroots, the composition of mitochondrial protein complexes was observed in control and flood-stressed beetroots. Protein complexes from isolated mitochondria were separated by native gel electrophoresis, and their proteins were identified by mass spectrometry. The spectra count of three isoforms of voltage-dependent anion-selective channels (VDACs) increased after 1 day of flooding. In addition, the size of the complexes formed by VDAC was higher in flood-stressed beetroots for 1 day (∼200 kDa) compared with non-stressed ones (∼100 kDa). Other proteins, such as chaperonin CPN60-2, also formed complexes with different masses in control and flood-stressed beetroots. Finally, possible interactions of VDAC with other proteins were found performing a cluster analysis. These results indicate that mitochondrial protein complexes formed by VDAC could be involved in the process of PCD in flood-stressed beetroots. Data are available via ProteomeXchange with identifier PXD027781.
Collapse
Affiliation(s)
- Karla J. Rojas-Méndez
- Laboratorio de Bioenergética y Biomembranas, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Lino Sánchez Segura
- Laboratorio de Microscopía, Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Alicia Chagolla
- Laboratorio de Proteómica, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Bárbara Lino
- Laboratorio de Bioenergética y Biomembranas, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Luis E. González de la Vara
- Laboratorio de Bioenergética y Biomembranas, Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
47
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
48
|
Wrzesińska B, Zmienko A, Vu LD, De Smet I, Obrępalska-Stęplowska A. Multiple cellular compartments engagement in Nicotiana benthamiana-peanut stunt virus-satRNA interactions revealed by systems biology approach. PLANT CELL REPORTS 2021; 40:1247-1267. [PMID: 34028582 PMCID: PMC8233301 DOI: 10.1007/s00299-021-02706-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)-Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The 'omic' results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)-seq data were obtained to provide new insights into PSV-P-satRNA-plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, 20 Władysława Węgorka Street, 60-318, Poznan, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego Street, 61-704, Poznan, Poland
- Faculty of Computing Science, Institute of Computing Science, Poznań University of Technology, 2 Piotrowo Street, 60-965, Poznan, Poland
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, 20 Władysława Węgorka Street, 60-318, Poznan, Poland.
| |
Collapse
|
49
|
Kelly LA, Vaghefi N, Bransgrove K, Fechner NA, Stuart K, Pandey AK, Sharma M, Németh MZ, Liu SY, Tang SR, Nair RM, Douglas CA, Kiss L. One Crop Disease, How Many Pathogens? Podosphaera xanthii and Erysiphe vignae sp. nov. Identified as the Two Species that Cause Powdery Mildew of Mungbean ( Vigna radiata) and Black Gram ( V. mungo) in Australia. PHYTOPATHOLOGY 2021; 111:1193-1206. [PMID: 33487024 DOI: 10.1094/phyto-12-20-0554-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Powdery mildew is a significant threat to mungbean (Vigna radiata) and black gram (V. mungo) production across Australia and overseas. Although they have been present in Australia for at least six decades and are easily recognized in the field, the precise identification of the pathogens causing this disease has remained unclear. Our goal was to identify the powdery mildew species infecting mungbean, black gram, and wild mungbean (V. radiata ssp. sublobata) in Australia. The internal transcribed spacer (ITS) and large subunit sequences of the ribosomal DNA and/or morphology of 57 Australian specimens were examined. Mungbean and black gram were infected by two species: Podosphaera xanthii and a newly recognized taxon, Erysiphe vignae sp. nov. Wild mungbean was infected only with P. xanthii. Mungbean and black gram powdery mildew ITS sequences from China, India, and Taiwan revealed the presence of only P. xanthii on these crops despite controversial reports of an Erysiphe species on both crops in India. Sequence analyses indicated that the closest relative of E. vignae is E. diffusa, which infects soybean (Glycine max) and other plants. E. vignae did not infect soybean in cross-inoculation tests. In turn, E. diffusa from soybean infected black gram and provoked hypersensitive response in mungbean. The recognition of a second species, E. vignae, as another causal agent of mungbean and black gram powdery mildew in Australia may complicate plant breeding efforts and control of the disease with fungicide applications.
Collapse
Affiliation(s)
- Lisa A Kelly
- University of Southern Queensland, Centre for Crop Health, QLD 4350 Toowoomba, Australia
- Queensland Government, Department of Agriculture and Fisheries, QLD 4350 Toowoomba, Australia
| | - Niloofar Vaghefi
- University of Southern Queensland, Centre for Crop Health, QLD 4350 Toowoomba, Australia
| | - Kaylene Bransgrove
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, QLD 4102 Dutton Park, Australia
| | - Nigel A Fechner
- Queensland Government, Department of Environment and Science, Queensland Herbarium, Mt. Coot-tha Botanic Gardens, QLD 4066 Toowong, Australia
| | - Kara Stuart
- Biosecurity Queensland, Department of Agriculture and Fisheries, QLD 4102 Dutton Park, Australia
| | - Abhay K Pandey
- World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, Hyderabad 502324, India
| | - Mamta Sharma
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Márk Z Németh
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, H-1525 Budapest, Hungary
| | - Shu-Yan Liu
- Jilin Agricultural University, College of Plant Protection, Changchun 130118, Jilin Province, China
| | - Shu-Rong Tang
- Jilin Agricultural University, College of Plant Protection, Changchun 130118, Jilin Province, China
| | - Ramakrishnan M Nair
- World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, Hyderabad 502324, India
| | - Colin A Douglas
- Queensland Government, Department of Agriculture and Fisheries, QLD 4370 Warwick, Australia
| | - Levente Kiss
- University of Southern Queensland, Centre for Crop Health, QLD 4350 Toowoomba, Australia
| |
Collapse
|
50
|
Xu T, Wang X, Ma H, Su L, Wang W, Meng J, Xu Y. Functional Characterization of VDACs in Grape and Its Putative Role in Response to Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:670505. [PMID: 34220892 PMCID: PMC8242593 DOI: 10.3389/fpls.2021.670505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the most abundant proteins in the mitochondrial outer membranes of all eukaryotic cells. They participate in mitochondrial energy metabolism, mitochondria-mediated apoptosis, and cell growth and reproduction. Here, the chromosomal localizations, gene structure, conserved domains, and phylogenetic relationships were analyzed. The amino acid sequences of VDACs were found to be highly conserved. The tissue-specific transcript analysis from transcriptome data and qRT-PCR demonstrated that grapevine VDACs might play an important role in plant growth and development. It was also speculated that VDAC3 might be a regulator of modulated leaf and berry development as the expression patterns during these developmental stages are up-regulated. Further, we screened the role of all grape VDACs' response to pathogen stress and found that VDAC3 from downy mildew Plasmopara viticola-resistant Chinese wild grapevine species Vitis piasezkii "Liuba-8" had a higher expression than the downy mildew susceptible species Vitis vinifera cv. "Thompson Seedless" after inoculation with P. viticola. Overexpression of VpVDAC3 resulted in increased resistance to pathogens, which was found to prevent VpVDAC3 protein accumulation through protein post-transcriptional regulation. Taken together, these data indicate that VpVDAC3 plays a role in P. viticola defense and provides the evidence with which to understand the mechanism of grape response to pathogen stress.
Collapse
Affiliation(s)
- Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|