1
|
L'Orphelin JM, Lancien U, Nguyen JM, Coronilla FJS, Saiagh S, Cassecuel J, Boussemart L, Dompmartin A, Dréno B. NIVO-TIL: combination anti-PD-1 therapy and adoptive T-cell transfer in untreated metastatic melanoma: an exploratory open-label phase I trial. Acta Oncol 2024; 63:867-877. [PMID: 39508576 PMCID: PMC11565916 DOI: 10.2340/1651-226x.2024.40495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/05/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND PURPOSE In patients with metastatic melanoma who respond to anti-PD-1 therapy, the proliferation of intra-tumour CD8+ T cells is directly correlated with the clinical response, making tumour-infiltrating lymphocytes (TILs) a treatment of interest in combination with a PD-1 inhibitor, which is the undisputed gold standard in the management of metastatic melanoma. The aim of this trial was, therefore, to evaluate the safety and efficacy of sequential combination therapy consisting of nivolumab (a PD-1 inhibitor) and TILs adoptive T cells in patients with metastatic melanoma. MATERIALS AND METHODS We performed an exploratory, prospective, single-centre, open-label, non-randomised, uncontrolled phase I/II study. We enrolled 10 previously untreated patients with advanced melanoma. The treatment regimen was neoadjuvant anti-PD-1 therapy followed by 2 injections of TILs and a second sequence of anti-PD-1 therapy. RESULTS AND INTERPRETATION Among the four patients who received the autologous TILs + nivolumab combination, three (75%) achieved an objective response (two achieved a partial response [PR] at the end of the study, two achieved a complete response [CR]), and one achieved a CR at the end of the study. Among these three patients, one had a PR, and two had stable disease (SD) after the nivolumab course and before any TILs administration, reinforcing the importance of the tumour response after TILs injection. These responses were persistent, ranging from 9 months to 3.4 years.
Collapse
Affiliation(s)
- Jean-Matthieu L'Orphelin
- 1Department of Dermatology, Caen-Normandie University Hospital, Caen, France; Interdisciplinary Research Unit for Cancer Prevention and Treatment, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, Caen, Franc
| | - Ugo Lancien
- Department of Plastic Surgery, Nantes University Hospital, Nantes, France
| | - Jean-Michel Nguyen
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Francisco J S Coronilla
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Soraya Saiagh
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Julie Cassecuel
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Lise Boussemart
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France
| | - Anne Dompmartin
- Department of Dermatology, Caen-Normandie University Hospital, Caen, France
| | - Brigitte Dréno
- Nantes - Angers INSERM, Immunology and New Concepts in ImmunoTherapy, Nantes Université, INCIT, UMR 1302, Nantes, France.
| |
Collapse
|
2
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Wei R, Zheng Z, Li Q, Qian Y, Wu C, Li Y, Wang M, Chen J, He W. Prognostic and predictive value of examined lymph node count in stage III colorectal cancer: a population based study. World J Surg Oncol 2024; 22:155. [PMID: 38872183 PMCID: PMC11170906 DOI: 10.1186/s12957-024-03404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The role of tumor-draining lymph nodes in the progression of malignant tumors, including stage III colorectal cancer (CRC), is critical. However, the prognostic and predictive value of the number of examined lymph nodes (ELNs) are not fully understood. METHODS This population-based study retrospectively analyzed data from 106,843 patients with stage III CRC who underwent surgical treatment and registered in three databases from 2004 to 2021. The Surveillance, Epidemiology, and End Results (SEER) cohort was divided using into training and test cohorts at a ratio of 3:2. We employed restricted cubic spline (RCS) curves to explore nonlinear relationships between overall survival (OS) and ELNs counts and performed Cox regression to evaluate hazard ratios across different ELNs count subtypes. Additional validation cohorts were utilized from the First Affiliated Hospital, Sun Yat-sen University and The Cancer Genome Atlas (TCGA) under the same criteria. Outcomes measured included OS, cancer-specific survival (CSS), and progression-free survival (PFS). Molecular analyses involved differential gene expression using the "limma" package and immune profiling through CIBERSORT. Tissue microarray slides and multiplex immunofluorescence (MIF) were used to assess protein expression and immune cell infiltration. RESULTS Patients with higher ELNs counts (≥ 17) demonstrated significantly better long-term survival outcomes across all cohorts. Enhanced OS, CSS, and PFS were notably evident in the LN-ELN group compared to those with fewer ELNs. Cox regression models underscored the prognostic value of higher ELNs counts across different patient subgroups by age, sex, tumor differentiation, and TNM stages. Subtype analysis based on ELNs count revealed a marked survival benefit in patients treated with adjuvant chemotherapy in the medium and large ELNs counts (≥ 12), whereas those with fewer ELNs showed negligible benefits. RNA sequencing and MIF indicated elevated immune activation in the LN-ELN group, characterized by increased CD3+, CD4+, and CD8 + T cells within the tumor microenvironment. CONCLUSIONS The number of ELNs independently predicts survival and the immunological landscape at the tumor site in stage III CRC, underscoring its dual prognostic and predictive value.
Collapse
Affiliation(s)
- Ran Wei
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zifan Zheng
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Qinghai Li
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yan Qian
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Chong Wu
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yin Li
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Mian Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Jianhui Chen
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China.
| | - Weiling He
- Gastrointestinal Surgery Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
- Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China.
| |
Collapse
|
4
|
Li Q, Zhang C, Xu G, Shang X, Nan X, Li Y, Liu J, Hong Y, Wang Q, Peng G. Astragalus polysaccharide ameliorates CD8 + T cell dysfunction through STAT3/Gal-3/LAG3 pathway in inflammation-induced colorectal cancer. Biomed Pharmacother 2024; 171:116172. [PMID: 38278025 DOI: 10.1016/j.biopha.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024] Open
Abstract
Chronic inflammation can promote cancer development as observed in inflammation-induced colorectal cancer (CRC). However, the poor treatment outcomes emphasize the need for effective treatment. Astragalus polysaccharide (APS), a vital component of the natural drug Astragalus, has anti-tumor effects by inhibiting cancer cell proliferation and enhancing immune function. In this study, we found that APS effectively suppressed CRC development through activating CD8+ T cells and reversing its inhibitory state in the tumor microenvironment (TME) of AOM/DSS inflammation-induced CRC mice. Network pharmacology and clinical databases suggested that the STAT3/ Galectin-3(Gal-3)/LAG3 pathway might be APS's potential target for treating CRC and associated with CD8+ T cell dysfunction. In vivo experiments showed that APS significantly reduced phosphorylated STAT3 and Gal-3 levels in tumor cells, as well as LAG3 in CD8+ T cells. Co-culture experiments with MC38 and CD8+ T cells demonstrated that APS decreased the expression of co-inhibitory receptor LAG3 in CD8+ T cells by targeting STAT3/Gal-3 in MC38 cells. Mechanism investigations revealed that APS specifically improved CD8+ T cell function through modulation of the STAT3/Gal-3/LAG3 pathway to inhibit CRC development, providing insights for future clinical development of natural anti-tumor drugs and immunotherapies as a novel strategy combined with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Chonghao Zhang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Guichuan Xu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xinmei Nan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Qing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
5
|
Cheng J, Yan J, Liu Y, Shi J, Wang H, Zhou H, Zhou Y, Zhang T, Zhao L, Meng X, Gong H, Zhang X, Zhu H, Jiang P. Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8 + T cells in the tumor microenvironment. Cell Metab 2023:S1550-4131(23)00171-7. [PMID: 37178684 DOI: 10.1016/j.cmet.2023.04.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/06/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Metabolic alterations in the microenvironment significantly modulate tumor immunosensitivity, but the underlying mechanisms remain obscure. Here, we report that tumors depleted of fumarate hydratase (FH) exhibit inhibition of functional CD8+ T cell activation, expansion, and efficacy, with enhanced malignant proliferative capacity. Mechanistically, FH depletion in tumor cells accumulates fumarate in the tumor interstitial fluid, and increased fumarate can directly succinate ZAP70 at C96 and C102 and abrogate its activity in infiltrating CD8+ T cells, resulting in suppressed CD8+ T cell activation and anti-tumor immune responses in vitro and in vivo. Additionally, fumarate depletion by increasing FH expression strongly enhances the anti-tumor efficacy of anti-CD19 CAR T cells. Thus, these findings demonstrate a role for fumarate in controlling TCR signaling and suggest that fumarate accumulation in the tumor microenvironment (TME) is a metabolic barrier to CD8+ T cell anti-tumor function. And potentially, fumarate depletion could be an important strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Jie Cheng
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jinxin Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Haoyu Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hanyang Zhou
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Lina Zhao
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xianbin Meng
- National Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- School of Life Sciences, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China.
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
6
|
Ding JT, Yang KP, Zhou HN, Huang YF, Li H, Zong Z. Landscapes and mechanisms of CD8 + T cell exhaustion in gastrointestinal cancer. Front Immunol 2023; 14:1149622. [PMID: 37180158 PMCID: PMC10166832 DOI: 10.3389/fimmu.2023.1149622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD8+ T cells, a cytotoxic T lymphocyte, are a key component of the tumor immune system, but they enter a hyporeactive T cell state in long-term chronic inflammation, and how to rescue this depleted state is a key direction of research. Current studies on CD8+ T cell exhaustion have found that the mechanisms responsible for their heterogeneity and differential kinetics may be closely related to transcription factors and epigenetic regulation, which may serve as biomarkers and potential immunotherapeutic targets to guide treatment. Although the importance of T cell exhaustion in tumor immunotherapy cannot be overstated, studies have pointed out that gastric cancer tissues have a better anti-tumor T cell composition compared to other cancer tissues, which may indicate that gastrointestinal cancers have more promising prospects for the development of precision-targeted immunotherapy. Therefore, the present study will focus on the mechanisms involved in the development of CD8+ T cell exhaustion, and then review the landscapes and mechanisms of T cell exhaustion in gastrointestinal cancer as well as clinical applications, which will provide a clear vision for the development of future immunotherapies.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hao-Nan Zhou
- Queen Mary School, Nanchang University, Nanchang, China
| | - Ying-Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Zhou G, Zhao Y, Ma Q, Li Q, Wang S, Shi H. Manipulation of host immune defenses by effector proteins delivered from multiple secretion systems of Salmonella and its application in vaccine research. Front Immunol 2023; 14:1152017. [PMID: 37081875 PMCID: PMC10112668 DOI: 10.3389/fimmu.2023.1152017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Salmonella is an important zoonotic bacterial species and hazardous for the health of human beings and livestock globally. Depending on the host, Salmonella can cause diseases ranging from gastroenteritis to life-threatening systemic infection. In this review, we discuss the effector proteins used by Salmonella to evade or manipulate four different levels of host immune defenses: commensal flora, intestinal epithelial-mucosal barrier, innate and adaptive immunity. At present, Salmonella has evolved a variety of strategies against host defense mechanisms, among which various effector proteins delivered by the secretory systems play a key role. During its passage through the digestive system, Salmonella has to face the intact intestinal epithelial barrier as well as competition with commensal flora. After invasion of host cells, Salmonella manipulates inflammatory pathways, ubiquitination and autophagy processes with the help of effector proteins. Finally, Salmonella evades the adaptive immune system by interfering the migration of dendritic cells and interacting with T and B lymphocytes. In conclusion, Salmonella can manipulate multiple aspects of host defense to promote its replication in the host.
Collapse
Affiliation(s)
- Guodong Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yuying Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qifeng Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China
| |
Collapse
|
8
|
Verbeke R, Hogan MJ, Loré K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity 2022; 55:1993-2005. [PMID: 36351374 PMCID: PMC9641982 DOI: 10.1016/j.immuni.2022.10.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
The lipid nanoparticle (LNP)-encapsulated, nucleoside-modified mRNA platform has been used to generate safe and effective vaccines in record time against COVID-19. Here, we review the current understanding of the manner whereby mRNA vaccines induce innate immune activation and how this contributes to protective immunity. We discuss innate immune sensing of mRNA vaccines at the cellular and intracellular levels and consider the contribution of both the mRNA and the LNP components to their immunogenicity. A key message that is emerging from recent observations is that the LNP carrier acts as a powerful adjuvant for this novel vaccine platform. In this context, we highlight important gaps in understanding and discuss how new insight into the mechanisms underlying the effectiveness of mRNA-LNP vaccines may enable tailoring mRNA and carrier molecules to develop vaccines with greater effectiveness and milder adverse events in the future.
Collapse
Affiliation(s)
- Rein Verbeke
- Ghent Research Group on Nanomedicines, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Department of Biochemistry and Molecular Biology, University of British Columbia, BC V6T 1Z4, Vancouver, Canada.
| | - Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Solna, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Andorko JI, Tsai SJ, Gammon JM, Carey ST, Zeng X, Gosselin EA, Edwards C, Shah SA, Hess KL, Jewell CM. Spatial delivery of immune cues to lymph nodes to define therapeutic outcomes in cancer vaccination. Biomater Sci 2022; 10:4612-4626. [PMID: 35796247 PMCID: PMC9392868 DOI: 10.1039/d2bm00403h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently approved cancer immunotherapies - including CAR-T cells and cancer vaccination, - show great promise. However, these technologies are hindered by the complexity and cost of isolating and engineering patient cells ex vivo. Lymph nodes (LNs) are key tissues that integrate immune signals to coordinate adaptive immunity. Directly controlling the signals and local environment in LNs could enable potent and safe immunotherapies without cell isolation, engineering, and reinfusion. Here we employ intra-LN (i.LN.) injection of immune signal-loaded biomaterial depots to directly control cancer vaccine deposition, revealing how the combination and geographic distribution of signals in and between LNs impact anti-tumor response. We show in healthy and diseased mice that relative proximity of antigen and adjuvant in LNs - and to tumors - defines unique local and systemic characteristics of innate and adaptive response. These factors ultimately control survival in mouse models of lymphoma and melanoma. Of note, with appropriate geographic signal distributions, a single i.LN. vaccine treatment confers near-complete survival to tumor challenge and re-challenge 100 days later, without additional treatments. These data inform design criteria for immunotherapies that leverage biomaterials for loco-regional LN therapy to generate responses that are systemic and specific, without systemically exposing patients to potent or immunotoxic drugs.
Collapse
Affiliation(s)
- James I Andorko
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Xiangbin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Krystina L Hess
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Philip M, Schietinger A. CD8 + T cell differentiation and dysfunction in cancer. Nat Rev Immunol 2022; 22:209-223. [PMID: 34253904 PMCID: PMC9792152 DOI: 10.1038/s41577-021-00574-3] [Citation(s) in RCA: 461] [Impact Index Per Article: 230.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cells specific for cancer cells are detected within tumours. However, despite their presence, tumours progress. The clinical success of immune checkpoint blockade and adoptive T cell therapy demonstrates the potential of CD8+ T cells to mediate antitumour responses; however, most patients with cancer fail to achieve long-term responses to immunotherapy. Here we review CD8+ T cell differentiation to dysfunctional states during tumorigenesis. We highlight similarities and differences between T cell dysfunction and other hyporesponsive T cell states and discuss the spatio-temporal factors contributing to T cell state heterogeneity in tumours. An important challenge is predicting which patients will respond to immunotherapeutic interventions and understanding which T cell subsets mediate the clinical response. We explore our current understanding of what determines T cell responsiveness and resistance to immunotherapy and point out the outstanding research questions.
Collapse
Affiliation(s)
- Mary Philip
- Vanderbilt Center for Immunobiology, Vanderbilt-Ingram Cancer Center, Department of Medicine/Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA.,;
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,;
| |
Collapse
|
11
|
Ram Kumar PS, Rencilin CF, Sundar K. Emerging nanomaterials for cancer immunotherapy. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is a unique approach to treat cancer that targets tumours besides triggering the immune cells. It attempts to harness the supremacy and specificity of immune cells for the regression of malignancy. The key strategy of immunotherapy is that it boosts the natural defence and manipulates the immune system at both cellular and molecular levels. Long-lasting anti-tumour response, reduced metastasis, and recurrence can be achieved with immunotherapy than conventional treatments. For example, targeting cytotoxic T-lymphocyte antigen-4 (CTLA4) by monoclonal antibody is reported as an effective strategy against cancer progression in vivo and chimeric antigen receptor (CAR) modified T-cells are known to express a stronger anti-tumour activity. CTLA4 and CAR are, therefore, beneficial in cancer immunotherapy; however, in clinical settings, both are expensive and cause adverse side effects. Nanomaterials have augmented advantages in cancer immunotherapy, besides their utility in effective delivery and diagnostics. In particular, materials based on lipids, polymers, and metals have been sought-after for delivery technologies. Moreover, the surface of nanomaterials can be engineered using ligands, antigens, and antibodies to target immune cells. In this sense, checkpoint inhibitors, cytokines, agonistic antibodies, surface receptors, and engineered T-cells are promising to regulate the immune system against tumours. Therefore, emerging nanomaterials that can be used for the treatment of cancer is the prime focus of this review. The correlation of mode of administration and biodistribution of various nanomaterials is reviewed here. Besides, the acute and chronic side effects and outcome of clinical trials in the context of cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Pandian Sureshbabu Ram Kumar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Clayton Fernando Rencilin
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| |
Collapse
|
12
|
Inamori K, Togashi Y, Fukuoka S, Akagi K, Ogasawara K, Irie T, Motooka D, Kobayashi Y, Sugiyama D, Kojima M, Shiiya N, Nakamura S, Maruyama S, Suzuki Y, Ito M, Nishikawa H. Importance of lymph node immune responses in MSI-H/dMMR colorectal cancer. JCI Insight 2021; 6:137365. [PMID: 33755600 PMCID: PMC8262295 DOI: 10.1172/jci.insight.137365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/18/2021] [Indexed: 01/21/2023] Open
Abstract
Patients with colorectal cancers (CRCs) generally exhibit improved survival through intensive lymph node (LN) dissection. However, recent progress in cancer immunotherapy revisits the potential importance of regional LNs, where T cells are primed to attack tumor cells. To elucidate the role of regional LN, we investigated the immunological status of nonmetastatic regional LN lymphocytes (LNLs) in comparison with those of the tumor microenvironment (tumor-infiltrating lymphocytes; TILs) using flow cytometry and next-generation sequencing. LNLs comprised an intermediate level of the effector T cell population between peripheral blood lymphocytes (PBLs) and TILs. Significant overlap of the T cell receptor (TCR) repertoire was observed in microsatellite instability–high/mismatch repair–deficient (MSI-H/dMMR) CRCs with high tumor mutation burden (TMB), although limited TCRs were shared between nonmetastatic LNs and primary tumors in microsatellite stable/MMR proficient (MSS/pMMR) CRC patients with low TMB. In line with the overlap of the TCR repertoire, an excessive LN dissection did not provide a positive impact on long-term prognosis in our MSI-H/dMMR CRC cohort (n = 130). We propose that regional LNs play an important role in antitumor immunity, particularly in MSI-H/dMMR CRCs with high TMB, requiring care to be taken regarding excessive nonmetastatic LN dissection in MSI-H/dMMR CRC patients.
Collapse
Affiliation(s)
- Koji Inamori
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.,Department of Colorectal Surgery, National Cancer Center Hospital East (NCCHE), Chiba, Japan.,Surgery 1, Divisions of cardiovascular, Thoracic, General Endoscopic and Breast Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Shota Fukuoka
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center (SCC), Saitama, Japan
| | - Kouetsu Ogasawara
- Department of Immunobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoichi Kobayashi
- Department of Immunology and.,Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Norihiko Shiiya
- Surgery 1, Divisions of cardiovascular, Thoracic, General Endoscopic and Breast Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Masaaki Ito
- Department of Colorectal Surgery, National Cancer Center Hospital East (NCCHE), Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.,Department of Immunology and
| |
Collapse
|
13
|
Blair TC, Alice AF, Zebertavage L, Crittenden MR, Gough MJ. The Dynamic Entropy of Tumor Immune Infiltrates: The Impact of Recirculation, Antigen-Specific Interactions, and Retention on T Cells in Tumors. Front Oncol 2021; 11:653625. [PMID: 33968757 PMCID: PMC8101411 DOI: 10.3389/fonc.2021.653625] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Lauren Zebertavage
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
14
|
Medler TR, Blair TC, Crittenden MR, Gough MJ. Defining Immunogenic and Radioimmunogenic Tumors. Front Oncol 2021; 11:667075. [PMID: 33816320 PMCID: PMC8017281 DOI: 10.3389/fonc.2021.667075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
In the cancer literature tumors are inconsistently labeled as ‘immunogenic’, and experimental results are occasionally dismissed since they are only tested in known ‘responsive’ tumor models. The definition of immunogenicity has moved from its classical definition based on the rejection of secondary tumors to a more nebulous definition based on immune infiltrates and response to immunotherapy interventions. This review discusses the basis behind tumor immunogenicity and the variation between tumor models, then moves to discuss how these principles apply to the response to radiation therapy. In this way we can identify radioimmunogenic tumor models that are particularly responsive to immunotherapy only when combined with radiation, and identify the interventions that can convert unresponsive tumors so that they can also respond to these treatments.
Collapse
Affiliation(s)
- Terry R Medler
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Tiffany C Blair
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,Molecular Microbiology and Immunology, OHSU, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,Molecular Microbiology and Immunology, OHSU, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,Molecular Microbiology and Immunology, OHSU, Portland, OR, United States
| |
Collapse
|
15
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
16
|
McDonnell AM, Currie AJ, Brown M, Kania K, Wylie B, Cleaver A, Lake R, Robinson BWS. Tumor cells, rather than dendritic cells, deliver antigen to the lymph node for cross-presentation. Oncoimmunology 2021; 1:840-846. [PMID: 23162751 PMCID: PMC3489739 DOI: 10.4161/onci.20493] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that generation of tumor specific CD8+ T-cell responses occur via cross-priming; however the source of tumor antigen for this event is unknown. We examined the source and form of tumor antigen required for cross-presentation in the local lymph node (LN) using a syngeneic mouse tumor model expressing a marker antigen. We found that cross-presentation of this model tumor antigen in the LN is dependent on continuous traffic of antigen from the tumor site, but without any detectable migration of tumor resident dendritic cells (DCs). Instead, small numbers of tumor cells metastasize to local LNs where they are exposed to a localized CTL attack, resulting in delivery of tumor antigen into the cross-presentation pathway.
Collapse
Affiliation(s)
- Alison M McDonnell
- School of Medicine and Pharmacology; The University of Western Australia; Crawley, Australia ; National Centre for Asbestos Related Diseases; The University of Western Australia; Crawley, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mahnke YD, Devevre E, Baumgaertner P, Matter M, Rufer N, Romero P, Speiser DE. Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2021; 1:467-530. [PMID: 22754765 PMCID: PMC3382891 DOI: 10.4161/onci.19856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8+ T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8+ T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.
Collapse
Affiliation(s)
- Yolanda D Mahnke
- Ludwig Center for Cancer Research; University of Lausanne; Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
CD27 signaling can either improve T-cell function or lead to T-cell dysfunction, depending on the duration and conditions of receptor ligation. Recent studies have shown that modulating the CD70-CD27 interaction is an attractive strategy to treat solid tumors and also to directly target leukemia stem cells.
Collapse
Affiliation(s)
- Carsten Riether
- Tumor Immunology; Department of Clinical Research; University of Bern; Bern, Switzerland
| | | | | |
Collapse
|
19
|
Donnadieu E, Dupré L, Pinho LG, Cotta-de-Almeida V. Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. J Leukoc Biol 2020; 108:1067-1079. [PMID: 32620049 PMCID: PMC7586996 DOI: 10.1002/jlb.1mr0520-746r] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Innovative immunotherapies based on immune checkpoint targeting antibodies and engineered T cells are transforming the way we approach cancer treatment. However, although these T cell centered strategies result in marked and durable responses in patients across many different tumor types, they provide therapeutic efficacy only in a proportion of patients. A major challenge of immuno‐oncology is thereby to identify mechanisms responsible for resistance to cancer immunotherapy in order to overcome them via adapted strategies that will ultimately improve intrinsic efficacy and response rates. Here, we focus on the barriers that restrain the trafficking of chimeric antigen receptor (CAR)‐expressing T cells to solid tumors. Upon infusion, CAR T cells need to home into malignant sites, navigate within complex tumor environments, form productive interactions with cancer cells, deliver their cytotoxic activities, and finally persist. We review the accumulating evidence that the microenvironment of solid tumors contains multiple obstacles that hinder CAR T cells in the dynamic steps underlying their trafficking. We focus on how these hurdles may in part account for the failure of CAR T cell clinical trials in human carcinomas. Given the engineered nature of CAR T cells and possibilities to modify the tumor environment, there are ample opportunities to augment CAR T cell ability to efficiently find and combat tumors. We present some of these strategies, which represent a dynamic field of research with high potential for clinical applicability.
Collapse
Affiliation(s)
- Emmanuel Donnadieu
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Loïc Dupré
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Lia Gonçalves Pinho
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Bazyka D, Vorobyov M, Kechyn I, Vorobyov O, Shmykova O. RADIOTHERMOMETRIC PERSONALISATION OF CHEMO- AND RADIOTHERAPY FOR PATIENTS WITH ADVANCED (III, IVA AND IVB) STAGES MALIGNANT LESIONS OF ORAL CAVITY, THROAT AND EPIGLOTTIS. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:296-311. [PMID: 31841475 DOI: 10.33145/2304-8336-2019-24-296-311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE optimization of treatment of patients with advanced malignant lesions of oral cavity, throat and epiglot- tis by means of radiothermic control and personalisation of the induction radio sensitizing polychemotherapy prior to radiotherapy or by applying both methods simultaneously. MATERIALS AND METHODS Study is based on the results of treatment 280 patients with morphologically confirmed cancer of mucosae of oral cavity, throat and epigloittis staged III, IVA and IVB without remote metastases were divided into 6 groups depending on a type of a radiotherapy applied. Each group was divided into a treatment and a control subgroup. A choice of treatment for control subgroups was done on the basis of RECIST 1.1. scale; a deci- sion for treatment subgroups was done based on obtained radiothermic (RTM) personalisation data in tumours or metastases.The treatment program included follow-ups according to established guidelines, radiothermic measure- ments, immunology investigations , statistical analysis (cumulative survival by Kaplan-Meier). RESULTS Groups of patients with tumours of oral cavity and epigloittis with intra-arterial polychemotherapy (IA PCT) prior to radiotherapy demonstrated improved mean 3 years survival rate. Groups with malignant tumours of upper laryngeal tract demonstrated opposite results. A comparison of mean survival rates between groups that were treated with systemic radiochemotherapy but using different combinations of different chemotherapy agents has shown that a use of polyplatilen is superior to combinations with cisplatin. A further study showed that all treat- ment groups had demonstrated better survival rates compared to control groups. CONCLUSIONS The obtained results allow us to conclude that the therapy personalisation based on radiothermic per- sonalisation significantly improves quality and outcomes for patients with localized cancer of oral cavity, throat and epiglottis. RTP can be used as a treatment control method of above mentioned lesions together with standard treat- ment pathways. The application of intra-arterial polychemotheray followed by a radiotherapy of tumours of oral cavity and throat shows better outcomes compared to standard treatments only. The use of induction poly- chemotherapy with polyplatilene for patients with tumours of epiglottis is superior to intra-arterial polychemother- apy and a chemotherapy with cisplatin.
Collapse
Affiliation(s)
- D Bazyka
- State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka St., Kyiv, 04050, Ukraine
| | - M Vorobyov
- Municipal Enterprise «Zaporizhzhya Regional Clinical Oncology Center» Zaporizhzhya regional Council, 177а Kulturna St., Zaporizhzhia, 69040, Ukraine
| | - I Kechyn
- Zaporizhzhia State Medical University, 26 Maiakovskyi Ave., Zaporizhzhia, 69035, Ukraine
| | - O Vorobyov
- Municipal Enterprise «Zaporizhzhya Regional Clinical Oncology Center» Zaporizhzhya regional Council, 177а Kulturna St., Zaporizhzhia, 69040, Ukraine
| | - O Shmykova
- Municipal Enterprise «Zaporizhzhya Regional Clinical Oncology Center» Zaporizhzhya regional Council, 177а Kulturna St., Zaporizhzhia, 69040, Ukraine
| |
Collapse
|
21
|
Ma H, Wang M, Zhou Y, Yang JJ, Wang LY, Yang RH, Wen MJ, Kong L. Noncoding RNA 886 alleviates tumor cellular immunological rejection in host C57BL/C mice. Cancer Med 2020; 9:5258-5271. [PMID: 32476259 PMCID: PMC7367629 DOI: 10.1002/cam4.3148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Non‐coding RNA 886 (nc886/VTRNA2‐1) is a Pol III transcript and an atypical imprinted gene. Its exact function as a negative regulator of protein kinase R establishes its connection with innate immunity. Studies have shown that nc886 silencing is closely associated with prostate cancer progression. Previous work has constructed a cell model of stable nc886 overexpression (“mimic” or “nc886+”) in PC‐3M‐1E8 cell lines (1E8), which are highly bone‐metastatic human prostate cancer cells with low expression of nc886, and cells expressing the mimic were validated to have lower invasive and metastatic abilities than cells expressing the scramble transcript in vitro and in vivo. In this study, we directly injected mimic or scramble cells into the left ventricle of C57BL/C mice, an immunocompetent animal model, to elucidate the immune mechanisms of tumor‐host interactions. Interestingly, we found that tumor cells induced the inflammation of many important organs due to xenogeneic antigen rejection; this inflammation was ultimately repaired by tissue fibrosis after 28 days, except for in the spleen. The reason is that mimic cells, as heterogeneous antigens, are mostly directly recognized by macrophages or T cells in blood, and few mimic cells enter the spleen compared with scramble cells. The induction of splenic macrophage polarization to M2 macrophages by scramble cells is a critical factor in maintaining chronic splenic inflammation. In addition, we recognize that nc886 broadly decreases the expression of some human leukocyte antigen molecules and antigen transporters. This evidence reveals the interesting role of nc886 in regulating tumor cell antigens.
Collapse
Affiliation(s)
- Hui Ma
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Miao Wang
- Department of Pathology, Beijing Friendship Hospital, The Second Clinical Medical College of Capital Medical University, Beijing, China
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Jia-Jie Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Li-Yong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, PR China
| | - Rong-Hui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Min-Jie Wen
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
23
|
Kalim M, Iqbal Khan MS, Zhan J. Programmed cell death ligand-1: A dynamic immune checkpoint in cancer therapy. Chem Biol Drug Des 2020; 95:552-566. [PMID: 32166894 DOI: 10.1111/cbdd.13677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 02/29/2020] [Indexed: 12/18/2022]
Abstract
Antibody-based immunotherapies play a pivotal role in cancer research with efficient achievements in tumor suppression. Tumor survival is assisted by modulation of immune checkpoints to create imbalances between immune cells and cancer cell's environment. The modulation results in T-cell signal inhibition ultimately inert its proliferation and activation against various tumor cells. PD-L1, a 40 kDa transmembrane protein of B7 family, binds with PD-1 on the membrane of T cells which results in inhibition of T-cell proliferation and activation. PD-L1/PD-1 pathway has generated novel target sites for antibodies that can block PD-L1/PD-1 interactions. The blockage results in T-cell proliferation and tumor cell suppression. The PD-L1 immune checkpoint strategies' development, expression and regulations, signal inhibitions, and developmental stages of PD-L1/PD-1 antibodies are briefly discussed here in this review. All this information will provide a base for new therapeutic development against PD-L1 and PD-1 immune checkpoint interactions and will make available promising treatment options.
Collapse
Affiliation(s)
- Muhammad Kalim
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Muhammad Saleem Iqbal Khan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinbiao Zhan
- Department of Biochemistry, Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proc Natl Acad Sci U S A 2019; 116:23662-23670. [PMID: 31685621 DOI: 10.1073/pnas.1906026116] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The impact of intratumoral heterogeneity (ITH) and the resultant neoantigen landscape on T cell immunity are poorly understood. ITH is a widely recognized feature of solid tumors and poses distinct challenges related to the development of effective therapeutic strategies, including cancer neoantigen vaccines. Here, we performed deep targeted DNA sequencing of multiple metastases from melanoma patients and observed ubiquitous sharing of clonal and subclonal single nucleotide variants (SNVs) encoding putative HLA class I-restricted neoantigen epitopes. However, spontaneous antitumor CD8+ T cell immunity in peripheral blood and tumors was restricted to a few clonal neoantigens featuring an oligo-/monoclonal T cell-receptor (TCR) repertoire. Moreover, in various tumors of the 4 patients examined, no neoantigen-specific TCR clonotypes were identified despite clonal neoantigen expression. Mature dendritic cell (mDC) vaccination with tumor-encoded amino acid-substituted (AAS) peptides revealed diverse neoantigen-specific CD8+ T responses, each composed of multiple TCR clonotypes. Isolation of T cell clones by limiting dilution from tumor-infiltrating lymphocytes (TILs) permitted functional validation regarding neoantigen specificity. Gene transfer of TCRαβ heterodimers specific for clonal neoantigens confirmed correct TCR clonotype assignments based on high-throughput TCRBV CDR3 sequencing. Our findings implicate immunological ignorance of clonal neoantigens as the basis for ineffective T cell immunity to melanoma and support the concept that therapeutic vaccination, as an adjunct to checkpoint inhibitor treatment, is required to increase the breadth and diversity of neoantigen-specific CD8+ T cells.
Collapse
|
25
|
Bagadia P, Huang X, Liu TT, Murphy KM. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annu Rev Cell Dev Biol 2019; 35:381-406. [PMID: 31283378 PMCID: PMC6886469 DOI: 10.1146/annurev-cellbio-100818-125403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.
Collapse
Affiliation(s)
- Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
26
|
Hameed S, Mo S, Mustafa G, Bajwa SZ, Khan WS, Dai Z. Immunological Consequences of Nanoparticle‐Mediated Antitumor Photoimmunotherapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical EngineeringCollege of EngineeringPeking University Beijing 100871 China
| | - Shanyan Mo
- Department of Biomedical EngineeringCollege of EngineeringPeking University Beijing 100871 China
| | - Ghulam Mustafa
- Department of SciencesBahria University Lahore Lahore 54000 Pakistan
| | - Sadia Z. Bajwa
- Nanobiotech GroupNational Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box No. 577, Jhang Road Faisalabad 44000 Pakistan
| | - Waheed S. Khan
- Nanobiotech GroupNational Institute for Biotechnology and Genetic Engineering (NIBGE) P.O. Box No. 577, Jhang Road Faisalabad 44000 Pakistan
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking University Beijing 100871 China
| |
Collapse
|
27
|
Ladányi A, Tímár J. Immunologic and immunogenomic aspects of tumor progression. Semin Cancer Biol 2019; 60:249-261. [PMID: 31419526 DOI: 10.1016/j.semcancer.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Tumor progression to metastatic disease is characterized by continuous genetic alterations due to instability of the genome. Immune sensitivity was found to be linked to tumor mutational burden (TMB) and the resulting amount of neoantigens. However, APOBEC activity resulting in increase in TMB causes immune evasion. On the other hand, clonal or acquired genetic loss of HLA class I also hampers immune sensitivity of tumors. Rare amplification of the PD-L1 gene in cancers may render them sensitive to immune checkpoint inhibitors but involvement of broader regions of chromosome 9p may ultimately lead again to immune evasion due to inactivation of the IFN-γ signaling pathway. Such genetic changes may occur not only in the primary tumor but at any phase of progression: in lymphatic as well as in visceral metastases. Accordingly, it is rational to monitor these changes continuously during disease progression similar to target therapies. Moreover, beside temporal variability, genomic features of tumors such as mutation profiles, as well as the tumor immune microenvironment also show considerable inter- and intratumoral spatial heterogeneity, suggesting the necessity of multiple sampling in biomarker studies.
Collapse
Affiliation(s)
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
28
|
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019. [PMID: 31186238 DOI: 10.1158/2159-8290.cd-19-0074.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 -/- HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 -/- HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigen-expressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.See related commentary by Berraondo et al., p. 1003.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Puigvehi
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Verónica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - María Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maxime Dhainaut
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aatur D Singhi
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Akshata Moghe
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johann von Felden
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuang Wang
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit and Pathology Department, IDIBAPS, Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
29
|
Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, Lindblad KE, Maier B, Sia D, Puigvehi M, Miguela V, Casanova-Acebes M, Dhainaut M, Villacorta-Martin C, Singhi AD, Moghe A, von Felden J, Tal Grinspan L, Wang S, Kamphorst AO, Monga SP, Brown BD, Villanueva A, Llovet JM, Merad M, Lujambio A. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019; 9:1124-1141. [PMID: 31186238 DOI: 10.1158/2159-8290.cd-19-0074] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PD-1 immune checkpoint inhibitors have produced encouraging results in patients with hepatocellular carcinoma (HCC). However, what determines resistance to anti-PD-1 therapies is unclear. We created a novel genetically engineered mouse model of HCC that enables interrogation of how different genetic alterations affect immune surveillance and response to immunotherapies. Expression of exogenous antigens in MYC;Trp53 -/- HCCs led to T cell-mediated immune surveillance, which was accompanied by decreased tumor formation and increased survival. Some antigen-expressing MYC;Trp53 -/- HCCs escaped the immune system by upregulating the β-catenin (CTNNB1) pathway. Accordingly, expression of exogenous antigens in MYC;CTNNB1 HCCs had no effect, demonstrating that β-catenin promoted immune escape, which involved defective recruitment of dendritic cells and consequently impaired T-cell activity. Expression of chemokine CCL5 in antigen-expressing MYC;CTNNB1 HCCs restored immune surveillance. Finally, β-catenin-driven tumors were resistant to anti-PD-1. In summary, β-catenin activation promotes immune escape and resistance to anti-PD-1 and could represent a novel biomarker for HCC patient exclusion. SIGNIFICANCE: Determinants of response to anti-PD-1 immunotherapies in HCC are poorly understood. Using a novel mouse model of HCC, we show that β-catenin activation promotes immune evasion and resistance to anti-PD-1 therapy and could potentially represent a novel biomarker for HCC patient exclusion.See related commentary by Berraondo et al., p. 1003.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erin Bresnahan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pedro Molina-Sánchez
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katherine E Lindblad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Maier
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Puigvehi
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Hospital del Mar, IMIM, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Verónica Miguela
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - María Casanova-Acebes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maxime Dhainaut
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carlos Villacorta-Martin
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aatur D Singhi
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Akshata Moghe
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Johann von Felden
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lauren Tal Grinspan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuang Wang
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian D Brown
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Liver Cancer Translational Research Laboratory, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit and Pathology Department, IDIBAPS, Hospital Clínic, CIBERehd, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York. .,Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Hammerich L, Marron TU, Upadhyay R, Svensson-Arvelund J, Dhainaut M, Hussein S, Zhan Y, Ostrowski D, Yellin M, Marsh H, Salazar AM, Rahman AH, Brown BD, Merad M, Brody JD. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 2019; 25:814-824. [PMID: 30962585 DOI: 10.1038/s41591-019-0410-x] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023]
Abstract
Indolent non-Hodgkin's lymphomas (iNHLs) are incurable with standard therapy and are poorly responsive to checkpoint blockade. Although lymphoma cells are efficiently killed by primed T cells, in vivo priming of anti-lymphoma T cells has been elusive. Here, we demonstrate that lymphoma cells can directly prime T cells, but in vivo immunity still requires cross-presentation. To address this, we developed an in situ vaccine (ISV), combining Flt3L, radiotherapy, and a TLR3 agonist, which recruited, antigen-loaded and activated intratumoral, cross-presenting dendritic cells (DCs). ISV induced anti-tumor CD8+ T cell responses and systemic (abscopal) cancer remission in patients with advanced stage iNHL in an ongoing trial ( NCT01976585 ). Non-responding patients developed a population of PD1+CD8+ T cells after ISV, and murine tumors became newly responsive to PD1 blockade, prompting a follow-up trial of the combined therapy. Our data substantiate that recruiting and activating intratumoral, cross-priming DCs is achievable and critical to anti-tumor T cell responses and PD1-blockade efficacy.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U Marron
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ranjan Upadhyay
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judit Svensson-Arvelund
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxime Dhainaut
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shafinaz Hussein
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yougen Zhan
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dana Ostrowski
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Henry Marsh
- Celldex Therapeutics, Inc., Needham, MA, USA
| | | | - Adeeb H Rahman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, York, NY, USA
| | - Joshua D Brody
- Department of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Zinkernagel RM. What if protective immunity is antigen-driven and not due to so-called "memory" B and T cells? Immunol Rev 2019; 283:238-246. [PMID: 29664570 DOI: 10.1111/imr.12648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccines or early childhood exposure to infection mediate immunity, that is, improved resistance against disease and death caused by a second infection with the same agent. This has been explained by and equaled to immunological memory, that is, an "altered immune system behavior" that is maintained in a presumably antigen-independent fashion. This review summarizes epidemiological and experimental data, that largely falsify this idea and that show that periodic re-exposure to antigen either, artificially as vaccines or naturally as low-level persisting antigens or infections, or immune complexes on follicular dendritic cells or endemic re-exposure is necessary for protection. Both, the huge success of vaccines in controlling childhood infections, the reduction in clinical disease and the chance of endemically re-exposure, have gradually reduced periodical re-exposure to infections and thereby endangered protective herd immunity. In parallel, vaccine deniers have created susceptibility islands even in an otherwise well vaccinated population, thereby creating a very new situation when compared to the later parts of the 20th century. If protective Immunity is-as emphasized here-antigen driven, then increasingly frequent revaccinations will be necessary (even more so with too much attenuated vaccines) to maintain both herd immunity and individual resistance to acute infections. Of course, this rule also applies to tumor vaccines.
Collapse
|
32
|
Cai J, Wang H, Wang D, Li Y. Improving Cancer Vaccine Efficiency by Nanomedicine. ACTA ACUST UNITED AC 2019; 3:e1800287. [PMID: 32627400 DOI: 10.1002/adbi.201800287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Indexed: 12/21/2022]
Abstract
Cancer vaccines, which have been widely investigated in the past few decades, are one of the most attractive strategies for cancer immunotherapy. Through the precise delivery of antigens and adjuvants to lymphoid organs or lymphocytes via nanotechnology, innate and adaptive immunity can be boosted to prevent the growth and relapse of malignant tumors. Indeed, nanomedicine offers great opportunities to improve the efficiency of vaccines. Various functional platforms are used to deliver small molecules, peptides, nucleic acids, and even whole cell antigens to the target area of interest, achieving enhanced antitumor immunity and durable therapeutic benefits. Herein, the recent progress in cancer vaccines based on nanotechnology is summarized. Novel platforms used for delivering tumor antigens, promoting adjuvant functions, and combining other therapeutic strategies are discussed. Moreover, possible striving directions and major challenges of nanomedicine for vaccination are also reviewed.
Collapse
Affiliation(s)
- Junyu Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China.,China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry, 285 Gebaini Road, 201203, Shanghai, China
| | - Dangge Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, 201203, Shanghai, China
| |
Collapse
|
33
|
Type I Interferon Signaling Prevents Hepatitis B Virus-Specific T Cell Responses by Reducing Antigen Expression. J Virol 2018; 92:JVI.01099-18. [PMID: 30209178 DOI: 10.1128/jvi.01099-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Robust virus-specific CD8+ T cell responses are required for the clearance of hepatitis B virus (HBV). However, the factors that determine the magnitude of HBV-specific CD8+ T cell responses are poorly understood. To examine the impact of genetic variations of HBV on HBV-specific CD8+ T cell responses, we introduced three HBV clones (Aa_IND [Aa], C_JPN22 [C22], and D_IND60 [D60]) that express various amounts of HBV antigens into the livers of C57BL/6 (B6) (H-2b) mice and B10.D2 (H-2d) mice. In B6 mice, clone C22 barely induced HBV-specific CD8+ T cell responses and persisted the longest, while clone D60 elicited strong HBV-specific CD8+ T cell responses and was rapidly cleared. These differences between HBV clones largely diminished in H-2d mice. Interestingly, the magnitude of HBV-specific CD8+ T cell responses in B6 mice was associated with the HB core antigen expression level during the early phase of HBV transduction. Surprisingly, robust HBV-specific CD8+ T cell responses to clone C22 were induced in interferon-α/β receptor-deficient (IFN-αβR-/-) (H-2b) mice. The induction of HBV-specific CD8+ T cell responses to C22 in IFN-αβR-/- mice reflects enhanced HBV antigen expression because the suppression of antigen expression by HBV-specific small interfering RNA (siRNA) attenuated HBV-specific T cell responses in IFN-αβR-/- mice and prolonged HBV expression. Collectively, these results suggest that HBV genetic variation and type I interferon signaling determine the magnitude of HBV-specific CD8+ T cell responses by regulating the initial antigen expression levels.IMPORTANCE Hepatitis B virus (HBV) causes acute and chronic infection, and approximately 240 million people are chronically infected with HBV worldwide. It is generally believed that virus-specific CD8+ T cell responses are required for the clearance of HBV. However, the relative contributions of genetic variation and innate immune responses to the induction of HBV-specific CD8+ T cell responses are not fully understood. In this study, we discovered that different clearance rates between HBV clones after hydrodynamic transduction were associated with the magnitude of HBV-specific CD8+ T cell responses and initial HB core antigen expression. Surprisingly, type I interferon signaling negatively regulated HBV-specific CD8+ T cell responses by reducing early HBV antigen expression. These results show that the magnitude of the HBV-specific CD8+ T cell response is regulated primarily by the initial antigen expression level.
Collapse
|
34
|
Al Sayed MF, Amrein MA, Bührer ED, Huguenin AL, Radpour R, Riether C, Ochsenbein AF. T-cell–Secreted TNFα Induces Emergency Myelopoiesis and Myeloid-Derived Suppressor Cell Differentiation in Cancer. Cancer Res 2018; 79:346-359. [DOI: 10.1158/0008-5472.can-17-3026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/29/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
|
35
|
Terada M. Challenge for identifying the origin of occult breast cancer for optimizing local therapy. Breast Cancer Res Treat 2018; 172:743-744. [PMID: 30324272 DOI: 10.1007/s10549-018-4931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 11/30/2022]
|
36
|
Intrahepatic Cross-Presentation and Hepatocellular Antigen Presentation Play Distinct Roles in the Induction of Hepatitis B Virus-Specific CD8 + T Cell Responses. J Virol 2018; 92:JVI.00920-18. [PMID: 30089700 DOI: 10.1128/jvi.00920-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are the key cellular effectors mediating the clearance of hepatitis B virus (HBV) infections. However, early immunological events surrounding the priming of HBV-specific CD8+ T cell responses remain poorly understood. This study examined the importance of priming location and the relative contribution of endogenous antigen presentation by hepatocytes versus cross-presentation by bone marrow-derived cells to the induction of functional HBV-specific CD8+ T cell responses using the animal models of acute and chronic HBV infection. Functional HBV-specific CD8+ T cell responses could be induced to intrahepatically expressed HBV even when T cell homing to the lymphoid tissues was severely suppressed, suggesting that functional priming could occur in the liver. The expansion of HBV-specific CD8+ T cells was significantly reduced in the mice whose major histocompatibility complex (MHC) class I expression was mostly restricted to nonhematopoietic cells, suggesting the importance of cross-presentation by hematopoietic cells in the induction of HBV-specific CD8+ T cells. Strikingly, the expansion and cytolytic differentiation of HBV-specific CD8+ T cells were reduced even more severely in the mice whose MHC class I expression was restricted to hematopoietic cells. Collectively, these results indicate that cross-presentation is required but relatively inefficient in terms of inducing the cytolytic differentiation of HBV-specific CD8+ T cells by itself. Instead, the expansion and functional differentiation of HBV-specific CD8+ T cells are primarily dependent on hepatocellular antigen presentation.IMPORTANCE Hepatitis B virus (HBV) causes acute and chronic hepatitis. Approximately 260 million people are chronically infected with HBV and under an increased risk of developing cirrhosis and hepatocellular carcinoma. Host immune responses, particularly HBV-specific CD8+ T cell responses, largely determine the outcome of HBV infection. It is widely accepted that antigen inexperienced CD8+ T cells should be initially activated by professional antigen-presenting cells (pAPCs) in lymphoid tissues to differentiate into effector CD8+ T cells. However, this notion has not been tested for HBV-specific CD8+ T cells. In this study, we show that HBV-specific CD8+ T cell responses can be induced in the liver. Surprisingly, antigen presentation by hepatocytes is more important than cross-presentation by hematopoietic cells for the induction of HBV-specific CD8+ T cell responses. These results revealed a previously unappreciated role of antigen presentation by hepatocytes in the induction of HBV-specific CD8+ T cell responses.
Collapse
|
37
|
Medler T, Patel JM, Alice A, Baird JR, Hu HM, Gough MJ. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:173-214. [PMID: 30798988 PMCID: PMC6754183 DOI: 10.1016/bs.ircmb.2018.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways have likely evolved as part of a broad pathogen sensing strategy intended to discriminate infectious agents and initiate appropriate innate and adaptive controls. However, in the absence of infectious agents, nucleic acid sensing pathways have been shown to play positive and negative roles in regulating tumorigenesis, tumor progression and metastatic spread. Understanding the normal biology behind these pathways and how they are regulated in malignant cells and in the tumor immune environment can help us devise strategies to exploit nucleic acid sensing to manipulate anti-cancer immunity.
Collapse
Affiliation(s)
- Terry Medler
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jaina M Patel
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Jason R Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Hong-Ming Hu
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
38
|
Tumor cure by radiation therapy and checkpoint inhibitors depends on pre-existing immunity. Sci Rep 2018; 8:7012. [PMID: 29725089 PMCID: PMC5934473 DOI: 10.1038/s41598-018-25482-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Radiation therapy is a source of tumor antigen release that has the potential to serve as an endogenous tumor vaccination event. In preclinical models radiation therapy synergizes with checkpoint inhibitors to cure tumors via CD8 T cell responses. To evaluate the immune response initiated by radiation therapy, we used a range of approaches to block the pre-existing immune response artifact initiated by tumor implantation. We demonstrate that blocking immune responses at tumor implantation blocks development of a tumor-resident antigen specific T cell population and prevents tumor cure by radiation therapy combined with checkpoint immunotherapy. These data demonstrate that this treatment combination relies on a pre-existing immune response to cure tumors, and may not be a solution for patients without pre-existing immunity.
Collapse
|
39
|
The Two Faces of Adjuvant Glucocorticoid Treatment in Ovarian Cancer. Discov Oncol 2018; 9:95-107. [PMID: 29313170 DOI: 10.1007/s12672-017-0319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Adjuvant glucocorticoid treatment is routinely used in the treatment of ovarian cancer to mitigate the undesirable side effects of chemotherapy, thereby enhancing tolerability to higher cytotoxic drug doses and frequency of treatment cycles. However, in vitro and preclinical in vivo and ex vivo studies indicate that glucocorticoids may spare tumor cells from undergoing cell death through enhanced cell adhesion, promotion of anti-inflammatory signaling, and/or inhibition of apoptotic pathways. The implications of laboratory studies showing potential negative impact on the efficacy of chemotherapy have been long overlooked since clinical investigations have found no apparent survival detriment attributable to adjuvant glucocorticoid use. Importantly, these clinical studies were not randomized and most did not consider glucocorticoid receptor status, a vital determinant of tumor response to glucocorticoid administration. Additionally, the clinically beneficial elements of increased chemotherapy treatment adherence and dosing afforded by adjuvant glucocorticoids may offset and therefore mask their anti-chemotherapy activities. This review summarizes the current evidence on the impact of glucocorticoids in ovarian cancer and discusses the need for further research and development of alternative strategies to ameliorate untoward side effects of chemotherapy.
Collapse
|
40
|
Hilmenyuk T, Ruckstuhl CA, Hayoz M, Berchtold C, Nuoffer JM, Solanki S, Keun HC, Beavis PA, Riether C, Ochsenbein AF. T cell inhibitory mechanisms in a model of aggressive Non-Hodgkin's Lymphoma. Oncoimmunology 2018; 7:e1365997. [PMID: 29296517 DOI: 10.1080/2162402x.2017.1365997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/16/2017] [Accepted: 08/05/2017] [Indexed: 12/30/2022] Open
Abstract
A reduced immune surveillance due to immune deficiency or treatment with immunosuppressive drugs is associated with a higher risk to develop aggressive Non-Hodgkin's lymphoma (NHL). Nevertheless, NHL also develops in immunocompetent patients indicating an escape from the immune system. T cell function in advanced aggressive lymphoma is not well characterized and the molecular mechanisms how malignant B cells influence T cell function are ill-defined. We therefore studied T cell function in Eμ-myc transgenic mice that develop an aggressive B cell lymphoma with some similarities to human Burkitt-lymphoma (BL). In advanced lymphoma, the number of T cells was severely reduced and the remaining CD4+ and CD8+ T cells lost the capacity to produce effector cytokines and expand upon re-stimulation. T cells in lymphoma-bearing mice were characterized by the expression of the immune inhibitory molecules programmed death (PD)-1, 2B4 and lymphocyte activation protein (LAG)-3. The proto-oncogene c-Myc not only drives cell proliferation and disease progression but also induces apoptosis of the malignant cells. We found that apoptotic lymphoma cells release purine metabolites that inhibit T cell function. Taken together, our data document that the characteristic high cell turnover and apoptotic rate in aggressive NHL induce a severe T cell dysfunction mediated by several immune-inhibitory mechanisms including ligation of inhibitory ligands and purine metabolites. Blocking a single mechanism only partially restored T cell function and did not increase survival of lymphoma mice.
Collapse
Affiliation(s)
- Tamara Hilmenyuk
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Carla A Ruckstuhl
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Michael Hayoz
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Christian Berchtold
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, University Hospital and University of Bern, Bern, Switzerland
| | - Shyam Solanki
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, London, UK
| | - Hector C Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, London, UK
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Carsten Riether
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Baruch EN, Berg AL, Besser MJ, Schachter J, Markel G. Adoptive T cell therapy: An overview of obstacles and opportunities. Cancer 2017; 123:2154-2162. [PMID: 28543698 DOI: 10.1002/cncr.30491] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022]
Abstract
The therapeutic potential of adoptive cell therapy (ACT) in cancer patients was first acknowledged 3 decades ago, but it was an esoteric approach at the time. In recent years, technological advancements have transformed ACT into a viable therapeutic option that can be curative in some patients. In fact, current ACT response rates are 80% to 90% for hematological malignancies and 30% for metastatic melanoma refractory to multiple lines of therapy. Although these results are encouraging, there is still much to be done to fulfill ACT's potential, specifically with regard to improving clinical efficacy, expanding clinical indications, reducing toxicity, and increasing production and cost-effectiveness. This review addresses the current major obstacles to ACT and presents potential solutions. Cancer 2017;123:2154-62. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Erez Nissim Baruch
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amy Lauren Berg
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Michal Judith Besser
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gal Markel
- The Ella Lemelbaum Institute of Immuno-oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
42
|
CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies. Blood 2017; 130:297-309. [DOI: 10.1182/blood-2016-12-756585] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/26/2017] [Indexed: 01/04/2023] Open
Abstract
Key Points
CD27 expression on malignant B cells triggers CD70 reverse signaling in NK cells and improves lymphoma immunosurveillance. CD70 reverse signaling in NK cells is mediated via the AKT signaling pathway and enhances survival and effector function.
Collapse
|
43
|
Adler AJ, Mittal P, Ryan JM, Zhou B, Wasser JS, Vella AT. Cytokines and metabolic factors regulate tumoricidal T-cell function during cancer immunotherapy. Immunotherapy 2017; 9:71-82. [PMID: 28000531 DOI: 10.2217/imt-2016-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in cancer biology and genetics have fostered precision therapies targeting tumor-specific attributes. Immune-based therapies that elicit cytolytic T cells (CTL) specific for tumor antigens can provide therapeutic benefit to cancer patients, however, cure rates are typically low. This largely results from immunosuppressive mechanisms operating within the tumor microenvironment, many of which inflict metabolic stresses upon CTL. Conversely, immunotherapies can mitigate specific metabolic stressors. For instance, dual costimulation immunotherapy with CD134 (OX40) plus CD137 (4-1BB) agonists appears to mediate tumor control in part by engaging cytokine networks that enable infiltrating CTL to compete for limiting supplies of glucose. Future efforts combining modalities that endow CTL with complimentary metabolic advantages should improve therapeutic efficacies.
Collapse
Affiliation(s)
- Adam J Adler
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Department of Medicine, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Payal Mittal
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Joseph M Ryan
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Jeffrey S Wasser
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
44
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
45
|
Kogo H, Shimizu M, Negishi Y, Uchida E, Takahashi H. Suppression of murine tumour growth through CD8 + cytotoxic T lymphocytes via activated DEC-205 + dendritic cells by sequential administration of α-galactosylceramide in vivo. Immunology 2017; 151:324-339. [PMID: 28294313 PMCID: PMC5461099 DOI: 10.1111/imm.12733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/01/2022] Open
Abstract
Cancer immunity is mediated through the effective priming and activation of tumour‐specific class I MHC molecule‐restricted CD8+ cytotoxic T lymphocytes (CTLs). DEC‐205+ dendritic cells (DCs) can cross‐present the epitope(s) of captured tumour antigens associated with class I MHC molecules alongside co‐stimulatory molecules to prime and activate tumour‐specific CD8+CTLs. Immunosuppressive tolerogenic DCs with reduced co‐stimulatory molecules may be a cause of impaired CTL induction. Hepa1‐6‐1 cells were established from the mouse hepatoma cell line Hepa1‐6; these cells grow continuously after subcutaneous implantation into syngeneic C57BL/6 (B6) mice and do not prime CD8+CTLs. In this study, we show that the growth of ongoing tumours was suppressed by activated CD8+CTLs with tumour‐specific cytotoxicity through the administration of the glycolipid α‐galactosylceramide (α‐GalCer), which is a compound known to stimulate invariant natural killer T (iNKT) cells and selectively activate DEC‐205+DCs. Moreover, we demonstrated that sequential repetitive intraperitoneal inoculation with α‐GalCer every 48 hr appeared to convert tolerogenic DEC‐205+DCs into immunogenic DCs with a higher expression of co‐stimulatory molecules and a stronger cross‐presentation capacity, which primed CTL precursors and induced tumour‐specific CD8+CTLs within the tumour environment without activating iNKT cells. These findings provide a new basis for cancer immunotherapy to convert tolerogenic DEC‐205+DCs within tumours into immunogenic DCs through the sequential administration of an immuno‐potent lipid/glycolipid, and then activated immunogenic DCs with sufficient expression of co‐stimulatory molecules prime and activate tumour‐specific CD8+CTLs within the tumour to control tumour growth.
Collapse
Affiliation(s)
- Hideki Kogo
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Eiji Uchida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, Tokyo, Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
46
|
Chiaruttini G, Mele S, Opzoomer J, Crescioli S, Ilieva KM, Lacy KE, Karagiannis SN. B cells and the humoral response in melanoma: The overlooked players of the tumor microenvironment. Oncoimmunology 2017; 6:e1294296. [PMID: 28507802 PMCID: PMC5414880 DOI: 10.1080/2162402x.2017.1294296] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
Evidence of tumor-resident mature B cell and antibody compartments and reports of associations with favorable prognosis in malignant melanoma suggest that humoral immunity could participate in antitumor defense. Likely striving to confer immunological protection while being subjected to tumor-promoting immune tolerance, B cells may engender multiple functions, including antigen processing and presentation, cytokine-mediated signaling, antibody class switching, expression and secretion. We review key evidence in support of multifaceted immunological mechanisms by which B cells may counter or contribute to malignant melanoma, and we discuss their potential translational implications. Dissecting the contributions of tumor-associated humoral responses can inform future treatment avenues.
Collapse
Affiliation(s)
- Giulia Chiaruttini
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Silvia Mele
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - James Opzoomer
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, Division of Cancer Studies, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, Division of Genetics and Molecular Medicine, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London, UK.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, UK
| |
Collapse
|
47
|
Kalkavan H, Sharma P, Kasper S, Helfrich I, Pandyra AA, Gassa A, Virchow I, Flatz L, Brandenburg T, Namineni S, Heikenwalder M, Höchst B, Knolle PA, Wollmann G, von Laer D, Drexler I, Rathbun J, Cannon PM, Scheu S, Bauer J, Chauhan J, Häussinger D, Willimsky G, Löhning M, Schadendorf D, Brandau S, Schuler M, Lang PA, Lang KS. Spatiotemporally restricted arenavirus replication induces immune surveillance and type I interferon-dependent tumour regression. Nat Commun 2017; 8:14447. [PMID: 28248314 PMCID: PMC5337983 DOI: 10.1038/ncomms14447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022] Open
Abstract
Immune-mediated effector molecules can limit cancer growth, but lack of sustained immune activation in the tumour microenvironment restricts antitumour immunity. New therapeutic approaches that induce a strong and prolonged immune activation would represent a major immunotherapeutic advance. Here we show that the arenaviruses lymphocytic choriomeningitis virus (LCMV) and the clinically used Junin virus vaccine (Candid#1) preferentially replicate in tumour cells in a variety of murine and human cancer models. Viral replication leads to prolonged local immune activation, rapid regression of localized and metastatic cancers, and long-term disease control. Mechanistically, LCMV induces antitumour immunity, which depends on the recruitment of interferon-producing Ly6C+ monocytes and additionally enhances tumour-specific CD8+ T cells. In comparison with other clinically evaluated oncolytic viruses and to PD-1 blockade, LCMV treatment shows promising antitumoural benefits. In conclusion, therapeutically administered arenavirus replicates in cancer cells and induces tumour regression by enhancing local immune responses.
Collapse
Affiliation(s)
- Halime Kalkavan
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Piyush Sharma
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Aleksandra A. Pandyra
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| | - Asmae Gassa
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
- Department of Cardiothoracic Surgery, Cologne University Heart Center, Kerpener Strasse 62, 50937 Cologne, Germany
| | - Isabel Virchow
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Lukas Flatz
- Department of Dermatology/Allergology, Cantonal Hospital, Rorschacher Strasse 95, St. Gallen 9007, Switzerland
| | - Tim Brandenburg
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| | - Sukumar Namineni
- Department of Virology, Technical University of Munich, Schneckenburgstrasse 8, 81675 Munich, Germany
| | - Mathias Heikenwalder
- Department of Virology, Technical University of Munich, Schneckenburgstrasse 8, 81675 Munich, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology/Experimental Oncology, München Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Percy A. Knolle
- Institute of Molecular Immunology/Experimental Oncology, München Klinikum rechts der Isar, Technical University Munich, 81675 Munich, Germany
| | - Guido Wollmann
- Division for Virology, Medical University Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria
| | - Dorothee von Laer
- Division for Virology, Medical University Innsbruck, Peter-Mayr-Strasse 4b, 6020 Innsbruck, Austria
| | - Ingo Drexler
- Institute of Virology, Düsseldorf University Hospital, Heinrich Heine University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jessica Rathbun
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, 90033 California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, 90033 California, USA
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jens Bauer
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Research Building, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gerald Willimsky
- Institute of Immunology (Charité - University Medicine Berlin), 3125 Berlin, Germany
- German Cancer Research Center (DKFZ), 13125 Heidelberg, Germany
| | - Max Löhning
- Department of Rheumatology and Clinical Immunology, Charité—University Medicine Berlin and German Rheumatism Research Center (DRFZ), Charitéplatz 1, D-10117 Berlin, Germany
| | - Dirk Schadendorf
- Department of Dermatology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
| | - Philipp A. Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Karl S. Lang
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
48
|
Gasteiger G, Ataide M, Kastenmüller W. Lymph node - an organ for T-cell activation and pathogen defense. Immunol Rev 2016; 271:200-20. [PMID: 27088916 DOI: 10.1111/imr.12399] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system is a multicentered organ that is characterized by intimate interactions between its cellular components to efficiently ward off invading pathogens. A key constituent of this organ system is the distinct migratory activity of its cellular elements. The lymph node represents a pivotal meeting point of immune cells where adaptive immunity is induced and regulated. Additionally, besides barrier tissues, the lymph node is a critical organ where invading pathogens need to be eliminated in order to prevent systemic distribution of virulent microbes. Here, we explain how the lymph node is structurally and functionally organized to fulfill these two critical functions - pathogen defense and orchestration of adaptive immunity. We will discuss spatio-temporal aspects of cellular immune responses focusing on CD8 T cells and review how and where these cells are activated in the context of viral infections, as well as how viral antigen expression kinetics and different antigen presentation pathways are involved. Finally, we will describe how such responses are regulated and 'helped', and discuss how this relates to intranodal positioning and cellular migration of the various cellular components that are involved in these processes.
Collapse
Affiliation(s)
- Georg Gasteiger
- Institute of Medical Microbiology and Hygiene & FZI Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Marco Ataide
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
49
|
Malignant melanoma—The cradle of anti-neoplastic immunotherapy. Crit Rev Oncol Hematol 2016; 106:25-54. [DOI: 10.1016/j.critrevonc.2016.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
|
50
|
Leticia PPP, Josemar MFGJ, Elza M, Diego SA, Caroline SCA, Mayara CP, Graciomar CC, Rosane NMG, Luce MBT, Vanessa FO, Flávia RFN, Ana PSAS. Sensitization with babassu mesocarp induces activation of murine splenocytes against tumor cells. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jmpr2016.6194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|