1
|
Ma J, Palmer DJ, Geddes D, Lai CT, Rea A, Prescott SL, D'Vaz N, Stinson LF. Maternal Allergic Disease Phenotype and Infant Birth Season Influence the Human Milk Microbiome. Allergy 2024. [PMID: 39723602 DOI: 10.1111/all.16442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Early infancy is a critical period for immune development. In addition to being the primary food source during early infancy, human milk also provides multiple bioactive components that shape the infant gut microbiome and immune system and provides a constant source of exposure to maternal microbiota. Given the potential interplay between allergic diseases and the human microbiome, this study aimed to characterise the milk microbiome of allergic mothers. Full-length 16S rRNA gene sequencing was performed on milk samples collected at 3 and 6 months postpartum from 196 women with allergic disease. Multivariate linear mixed models were constructed to identify the maternal, infant, and environmental determinants of the milk microbiome. Human milk microbiome composition and beta diversity varied over time (PERMANOVA R2 = 0.011, p = 0.011). The season of infant birth emerged as the strongest determinant of the microbiome community structure (PERMANOVA R2 = 0.014, p = 0.011) with impacts on five of the most abundant taxa. The milk microbiome also varied according to the type of maternal allergic disease (allergic rhinitis, asthma, atopic dermatitis, and food allergy). Additionally, infant formula exposure reduced the relative abundance of several typical oral taxa in milk. In conclusion, the milk microbiome of allergic mothers was strongly shaped by the season of infant birth, maternal allergic disease phenotype, and infant feeding mode. Maternal allergic disease history and infant season of birth should therefore be considered in future studies of infant and maternal microbiota. Trial Registration: ClinicalTrials.gov identifier: ACTRN12606000281594.
Collapse
Affiliation(s)
- Jie Ma
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- ABREAST Network, Perth, WA, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, WA, Australia
| | - Debra J Palmer
- ABREAST Network, Perth, WA, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Donna Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- ABREAST Network, Perth, WA, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, WA, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- ABREAST Network, Perth, WA, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, WA, Australia
| | - Alethea Rea
- Mathematics and Statistics, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Susan L Prescott
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Medicine, The University of Western Australia, Perth, WA, Australia
- Nova Institute for Health, Baltimore, Maryland, USA
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina D'Vaz
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- ABREAST Network, Perth, WA, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, WA, Australia
| |
Collapse
|
2
|
Ma J, Palmer DJ, Geddes D, Lai CT, Prescott SL, D'Vaz N, Vlaskovsky P, Stinson LF. Human Milk Microbiome Is Associated With Allergic Diseases in Early Childhood. Allergy 2024; 79:3509-3511. [PMID: 39545381 DOI: 10.1111/all.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Jie Ma
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- ABREAST Network, Perth, Western Australia, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, Western Australia, Australia
| | - Debra J Palmer
- ABREAST Network, Perth, Western Australia, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Donna Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- ABREAST Network, Perth, Western Australia, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, Western Australia, Australia
| | - Ching Tat Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- ABREAST Network, Perth, Western Australia, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, Western Australia, Australia
| | - Susan L Prescott
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Nova Institute for Health, Baltimore, Maryland, USA
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina D'Vaz
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Philip Vlaskovsky
- School of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- ABREAST Network, Perth, Western Australia, Australia
- UWA Centre for Human Lactation Research and Translation, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
4
|
Ozdemir C, Kucuksezer UC, Ogulur I, Pat Y, Yazici D, Ardicli S, Akdis M, Nadeau K, Akdis CA. Lifestyle Changes and Industrialization in the Development of Allergic Diseases. Curr Allergy Asthma Rep 2024; 24:331-345. [PMID: 38884832 PMCID: PMC11233349 DOI: 10.1007/s11882-024-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW Modernization and Westernization in industrialized and developing nations is associated with a substantial increase in chronic noncommunicable diseases. This transformation has far-reaching effects on lifestyles, impacting areas such as economics, politics, social life, and culture, all of which, in turn, have diverse influences on public health. Loss of contact with nature, alternations in the microbiota, processed food consumption, exposure to environmental pollutants including chemicals, increased stress and decreased physical activity jointly result in increases in the frequency of inflammatory disorders including allergies and many autoimmune and neuropsychiatric diseases. This review aims to investigate the relationship between Western lifestyle and inflammatory disorders. RECENT FINDINGS Several hypotheses have been put forth trying to explain the observed increases in these diseases, such as 'Hygiene Hypothesis', 'Old Friends', and 'Biodiversity and Dysbiosis'. The recently introduced 'Epithelial Barrier Theory' incorporates these former hypotheses and suggests that toxic substances in cleaning agents, laundry and dishwasher detergents, shampoos, toothpastes, as well as microplastic, packaged food and air pollution damage the epithelium of our skin, lungs and gastrointestinal system. Epithelial barrier disruption leads to decreased biodiversity of the microbiome and the development of opportunistic pathogen colonization, which upon interaction with the immune system, initiates local and systemic inflammation. Gaining a deeper comprehension of the interplay between the environment, microbiome and the immune system provides the data to assist with legally regulating the usage of toxic substances, to enable nontoxic alternatives and to mitigate these environmental challenges essential for fostering a harmonious and healthy global environment.
Collapse
Affiliation(s)
- Cevdet Ozdemir
- Institute of Child Health, Department of Pediatric Basic Sciences, Istanbul University, Istanbul, Türkiye
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Türkiye
| | - Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Türkiye
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Studies, Harvard T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.
| |
Collapse
|
5
|
Wang S, Wang X, Liu J, Li Y, Sun M, Zhu G, Zhu X. Helicobacter pylori infection attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in C57/BL6 mice. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:97. [PMID: 37978564 PMCID: PMC10656826 DOI: 10.1186/s13223-023-00851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Although numerous studies have suggested a negative correlation between Helicobacter pylori (H. pylori) infection and allergies, there has been limited research on the relationship between H. pylori infections and atopic dermatitis (AD). The present study aimed to investigate the effects of H. pylori infection in an AD mouse model and identify potential mechanisms related to type 2 immunity, skin barrier defects, and pruritus. METHODS A model of AD-like symptoms was established with 2,4-dinitrochlorobenzene (DNCB) after infection of the gastric cavity with H. pylori. Analysis of the expression of key inflammatory cytokines and serum levels of immunoglobulin E (IgE) was based on enzyme-linked immunosorbent assay (ELISA). The expression of filaggrin (FLG) and loricrin (LOR) were analyzed by immunohistochemistry staining. The evaluation of STAT1, STAT3, phosphorylated STAT1 (phospho-STAT1), and phosphorylated STAT3 (phospho-STAT1) expression levels in skin lesions was performed using western blot. RESULTS The present study showed that the H. pylori-positive AD group (HP+AD+) exhibited milder skin lesions, including erythema, erosion, swelling, and scaling, than the H. pylori-negative AD group (HP-AD+). Additionally, HP+AD+ displayed lower levels of IgE in serum, and downregulated expression of interleukins 4 and 31 (IL-4 and IL-31) in serum. Furthermore, HP+AD+ demonstrated higher expression of filaggrin and loricrin than HP-AD+. Notably, H. pylori significantly reduced the amount of phosphorylated STAT1 and STAT3. CONCLUSION Helicobacter pylori infection negatively regulates the inflammatory response by affecting inflammatory factors in the immune response, and repairs the defective epidermal barrier function. In addition, H. pylori infection may reduce IL-31, thereby alleviating pruritus. These effects may be associated with the inhibition of JAK-STAT signaling activation.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Dermatology, Medical College, Yangzhou University, Yangzhou, China
| | - Xiaokang Wang
- Department of Dermatology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jiaqi Liu
- Veterinary Medical College, Yangzhou University, Yangzhou, China
| | - Yaqian Li
- Veterinary Medical College, Yangzhou University, Yangzhou, China
| | - Minghui Sun
- Department of Dermatology, Medical College, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- Veterinary Medical College, Yangzhou University, Yangzhou, China
| | - Xiaofang Zhu
- Department of Dermatology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Wallen-Russell C, Pearlman N, Wallen-Russell S, Cretoiu D, Thompson DC, Voinea SC. A Catastrophic Biodiversity Loss in the Environment Is Being Replicated on the Skin Microbiome: Is This a Major Contributor to the Chronic Disease Epidemic? Microorganisms 2023; 11:2784. [PMID: 38004795 PMCID: PMC10672968 DOI: 10.3390/microorganisms11112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
There has been a catastrophic loss of biodiversity in ecosystems across the world. A similar crisis has been observed in the human gut microbiome, which has been linked to "all human diseases affecting westernized countries". This is of great importance because chronic diseases are the leading cause of death worldwide and make up 90% of America's healthcare costs. Disease development is complex and multifactorial, but there is one part of the body's interlinked ecosystem that is often overlooked in discussions about whole-body health, and that is the skin microbiome. This is despite it being a crucial part of the immune, endocrine, and nervous systems and being continuously exposed to environmental stressors. Here we show that a parallel biodiversity loss of 30-84% has occurred on the skin of people in the developed world compared to our ancestors. Research has shown that dysbiosis of the skin microbiome has been linked to many common skin diseases and, more recently, that it could even play an active role in the development of a growing number of whole-body health problems, such as food allergies, asthma, cardiovascular diseases, and Parkinson's, traditionally thought unrelated to the skin. Damaged skin is now known to induce systemic inflammation, which is involved in many chronic diseases. We highlight that biodiversity loss is not only a common finding in dysbiotic ecosystems but also a type of dysbiosis. As a result, we make the case that biodiversity loss in the skin microbiome is a major contributor to the chronic disease epidemic. The link between biodiversity loss and dysbiosis forms the basis of this paper's focus on the subject. The key to understanding why biodiversity loss creates an unhealthy system could be highlighted by complex physics. We introduce entropy to help understand why biodiversity has been linked with ecosystem health and stability. Meanwhile, we also introduce ecosystems as being governed by "non-linear physics" principles-including chaos theory-which suggests that every individual part of any system is intrinsically linked and implies any disruption to a small part of the system (skin) could have a significant and unknown effect on overall system health (whole-body health). Recognizing the link between ecosystem health and human health allows us to understand how crucial it could be to maintain biodiversity across systems everywhere, from the macro-environment we inhabit right down to our body's microbiome. Further, in-depth research is needed so we can aid in the treatment of chronic diseases and potentially change how we think about our health. With millions of people currently suffering, research to help mitigate the crisis is of vital importance.
Collapse
Affiliation(s)
| | - Nancy Pearlman
- Ecology Center of Southern California, Los Angeles, CA 90035, USA;
| | | | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Dana Claudia Thompson
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Al. Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Conte M, Varraso R, Fournier A, Rothwell JA, Baglietto L, Fornili M, Sbidian E, Severi G. A prospective study of the association between living in a rural environment during childhood and risk of psoriasis. ENVIRONMENTAL RESEARCH 2023; 237:117062. [PMID: 37660877 DOI: 10.1016/j.envres.2023.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Psoriasis is one of the most common immune-mediated inflammatory diseases (IMIDs). Living in a rural environment during childhood is associated with a decreased risk of certain IMIDs, like asthma, in adulthood. However, its role in other IMIDs, such as psoriasis is still unclear. To evaluate the relationships between different factors related to the environment during childhood and the risk of psoriasis in adulthood we conducted a study in E3N, a French prospective cohort composed of 98 995 women. During the 1990-2018 follow-up of 72 154 study participants, we identified 1 967 incident cases of psoriasis from self-reports in self-administered structured questionnaires. During the 2004-2018 follow-up of 67 917 study participants, 188 moderate-to-severe cases of psoriasis were identified through self-reports and from data from a drug reimbursement database. We fitted Cox proportional hazards regression models with age as the time scale from which we estimated hazard ratios adjusted for putative confounders (aHRs). We found inverse associations with risk of psoriasis for rural birthplace [aHR: 0.89 (95%CI: 0.79-0.96)] and for having farming parents [aHR: 0.84 (95%CI: 0.72-0.97)]. For moderate-to-severe psoriasis we found a nominally similar inverse association with rural birthplace but not with having farming parents. Our results suggest that an exposure to a rural environment during childhood may be associated with a reduced risk of psoriasis. These findings may help to improve our understanding of the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Marco Conte
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, Inserm, Integrative Respiratory Epidemiology Team, CESP, Villejuif, 94807, France
| | - Agnès Fournier
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France
| | - Joseph A Rothwell
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Emilie Sbidian
- Hôpital Henri Mondor, Department of Dermatology, Créteil, 94010, France; Université Paris Est Créteil (UPEC), Epidemiology in Dermatology and Evaluation of Therapeutics (Epi-DermE), Créteil, 94010, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Exposome and Heredity team, CESP, Villejuif, 94805, France; Department of Statistics, Computer Science and Applications « G. Parenti », University of Florence, Florence, 50134, Italy.
| |
Collapse
|
8
|
AIZAWA S, UEBANSO T, SHIMOHATA T, MAWATARI K, TAKAHASHI A. Effects of the loss of maternal gut microbiota before pregnancy on gut microbiota, food allergy susceptibility, and epigenetic modification on subsequent generations. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:203-212. [PMID: 37404565 PMCID: PMC10315195 DOI: 10.12938/bmfh.2022-093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 07/06/2023]
Abstract
Maternal environments affect the health of offspring in later life. Changes in epigenetic modifications may partially explain this phenomenon. The gut microbiota is a critical environmental factor that influences epigenetic modifications of host immune cells and the development of food allergies. However, whether changes in the maternal gut microbiota affect the development of food allergies and related epigenetic modifications in subsequent generations remains unclear. Here, we investigated the effects of antibiotic treatment before pregnancy on the development of the gut microbiota, food allergies, and epigenetic modifications in F1 and F2 mice. We found that pre-conception antibiotic treatment affected the gut microbiota composition in F1 but not F2 offspring. F1 mice born to antibiotic-treated mothers had a lower proportion of butyric acid-producing bacteria and, consequently, a lower butyric acid concentration in their cecal contents. The methylation level in the DNA of intestinal lamina propria lymphocytes, food allergy susceptibility, and production of antigen-specific IgE in the F1 and F2 mice were not different between those born to control and antibiotic-treated mothers. In addition, F1 mice born to antibiotic-treated mothers showed increased fecal excretion related to the stress response in a novel environment. These results suggest that the maternal gut microbiota is effectively passed onto F1 offspring but has little effect on food allergy susceptibility or DNA methylation levels in offspring.
Collapse
Affiliation(s)
- Shinta AIZAWA
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
| | - Takashi UEBANSO
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| | - Takaaki SHIMOHATA
- Faculty of Marine Biosciences, Fukui Prefectural University,
1-1 Gakuen-cho, Obama-shi, Fukui 917-0003, Japan
| | - Kazuaki MAWATARI
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| | - Akira TAKAHASHI
- Department of Preventive Environment and Nutrition, Institute
of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho,
Tokushima-shi, Tokushima 770-8503, Japan
- Department of Microbial Control, Institute of Biomedical
Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima-shi,
Tokushima 770-8503, Japan
| |
Collapse
|
9
|
Cooper PJ, Figueiredo CA, Rodriguez A, dos Santos LM, Ribeiro‐Silva RC, Carneiro VL, Costa G, Magalhães T, dos Santos de Jesus T, Rios R, da Silva HBF, Costa R, Chico ME, Vaca M, Alcantara‐Neves N, Rodrigues LC, Cruz AA, Barreto ML. Understanding and controlling asthma in Latin America: A review of recent research informed by the SCAALA programme. Clin Transl Allergy 2023; 13:e12232. [PMID: 36973960 PMCID: PMC10041090 DOI: 10.1002/clt2.12232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Asthma is an important health concern in Latin America (LA) where it is associated with variable prevalence and disease burden between countries. High prevalence and morbidity have been observed in some regions, particularly marginalized urban populations. Research over the past 10 years from LA has shown that childhood disease is primarily non-atopic. The attenuation of atopy may be explained by enhanced immune regulation induced by intense exposures to environmental factors such as childhood infections and poor environmental conditions of the urban poor. Non-atopic symptoms are associated with environmental and lifestyle factors including poor living conditions, respiratory infections, psychosocial stress, obesity, and a diet of highly processed foods. Ancestry (particularly African) and genetic factors increase asthma risk, and some of these factors may be specific to LA settings. Asthma in LA tends to be poorly controlled and depends on access to health care and medications. There is a need to improve management and access to medication through primary health care. Future research should consider the heterogeneity of asthma to identify relevant endotypes and underlying causes. The outcome of such research will need to focus on implementable strategies relevant to populations living in resource-poor settings where the disease burden is greatest.
Collapse
Affiliation(s)
- Philip J. Cooper
- Escuela de MedicinaUniversidad Internacional del EcuadorQuitoEcuador
- Institute of Infection and ImmunitySt George's University of LondonLondonUK
| | | | | | | | | | | | - Gustavo Costa
- Center for Data Knowledge and Integration for Health (CIDACS)Fundação Oswaldo CruzBahiaSalvadorBrazil
- Universidade Salvador (UNIFACS)SalvadorBahiaBrazil
| | - Thiago Magalhães
- Instituto de Saúde ColetivaUniversidade Federal da BahiaSalvadorBrazil
| | | | - Raimon Rios
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | | | - Ryan Costa
- Instituto de Ciências da SaúdeUniversidade Federal da BahiaSalvadorBrazil
| | - Martha E. Chico
- Fundacion Ecuatoriana para la Investigacion en Salud (FEPIS)EsmeraldasEcuador
| | - Maritza Vaca
- Instituto de Saúde ColetivaUniversidade Federal da BahiaSalvadorBrazil
- Fundacion Ecuatoriana para la Investigacion en Salud (FEPIS)EsmeraldasEcuador
| | | | - Laura C Rodrigues
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Alvaro A. Cruz
- Universidade Federal da Bahia and Fundação ProARSalvadorBrazil
| | - Mauricio L. Barreto
- Center for Data Knowledge and Integration for Health (CIDACS)Fundação Oswaldo CruzBahiaSalvadorBrazil
- Instituto de Saúde ColetivaUniversidade Federal da BahiaSalvadorBrazil
| |
Collapse
|
10
|
Okada Y, Sugihara N, Nishii S, Itoh S, Mizoguchi A, Tanemoto R, Horiuchi K, Tomioka A, Nishimura H, Higashiyama M, Narimatsu K, Kurihara C, Tomita K, Miura S, Tsuzuki Y, Hokari R. Transgenerational impacts of oral probiotic administration in pregnant mice on offspring gut immune cells and colitis susceptibility. J Gastroenterol Hepatol 2023; 38:311-320. [PMID: 36349486 DOI: 10.1111/jgh.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND AIM The study of the impact of environmental factors during pregnancy on fetal development has so far been focused primarily on those negatively affecting human health; however, little is known about the effects of probiotic treatment during pregnancy on inflammatory bowel diseases (IBD). In this study, we investigated whether oral administration of heat-killed probiotics isolated from fermented foods decreased the vulnerability of offspring to IBD. METHODS Probiotics were administered to the pregnant mice until the birth of pups, after which the parent mice were maintained with autoclaved water. Partial pups were evaluated for dextran sodium sulfate-induced colitis. The influence of CD11c+ CD103+ dendritic cells (DCs) and regulatory T cells (Tregs) in mesenteric lymph nodes of parent mice and their pups was analyzed. RESULTS Oral administration of heat-killed probiotics to pregnant dams significantly decreased inflammation induced by dextran sodium sulfate in pups. Probiotic treatment increased the number of CD103+ DCs, and the expression of β8-integrin in CD103+ DCs and Tregs in mesenteric lymph nodes, not only in dams themselves but also in their offspring. CONCLUSIONS Oral administration of probiotics during gestation induced transgenerational immunomodulatory effects on the gut-associated immune system and resilience to experimental colitis in the offspring. Our results suggest that consumption of fermented foods during pregnancy can be effective in preventing inflammatory diseases such as IBD beyond generation.
Collapse
Affiliation(s)
- Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Suguru Itoh
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyuki Nishimura
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuyuki Narimatsu
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Soichiro Miura
- Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Yoshikazu Tsuzuki
- Department of Gastroenterology, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
11
|
Abstract
The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.
Collapse
Affiliation(s)
- Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Comparison of Previous Infectious and Allergic Diseases Between Patients with Kawasaki Disease and Propensity Score-matched Controls: A Nationwide Cohort Study. J Pediatr 2022; 255:207-213.e4. [PMID: 36528056 DOI: 10.1016/j.jpeds.2022.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine whether previous infectious and allergic diseases are associated with the development of Kawasaki disease in children. STUDY DESIGN This nationwide, population-based, case-control study used data from the Korean National Health Insurance claims database. The entire cohort consisted of patients younger than 5 years of age diagnosed with Kawasaki disease and 1:5 propensity score-matched controls from 2013 to 2019. The epidemiologic features and previous infectious or allergic diseases between the 2 groups were compared, and potential factors that could influence the association were identified. RESULTS In total, 32 964 patients diagnosed with Kawasaki disease and 164 820 controls were included. Patients with Kawasaki disease had more frequent diagnoses of previous sepsis or bacteremia (OR 1.41), acute pyelonephritis (OR 1.10), and otitis media (OR 1.24). In addition, Kawasaki disease was associated with previous diagnoses of atopic dermatitis (OR 1.05), urticaria (OR 1.08), and asthma (OR 1.05). The association between previous infectious or allergic diagnoses and Kawasaki disease was more prominent in younger patients (<2 years). However, intravenous immunoglobulin resistance, sex, and region of residence were not significant factors that consistently influenced the association between previous infectious or allergic diseases and Kawasaki disease. CONCLUSIONS Despite the increased rates of previous infectious and allergic diseases in patients with Kawasaki disease compared with controls, the association between allergic diseases and Kawasaki disease was weaker in our cohort than in previous studies.
Collapse
|
13
|
Daramola AK, Akinrinmade OA, Fajemisin EA, Naran K, Mthembu N, Hadebe S, Brombacher F, Huysamen AM, Fadeyi OE, Hunter R, Barth S. A recombinant Der p 1-specific allergen-toxin demonstrates superior killing of allergen-reactive IgG + hybridomas in comparison to its recombinant allergen-drug conjugate. IMMUNOTHERAPY ADVANCES 2022; 3:ltac023. [PMID: 36789295 PMCID: PMC9912260 DOI: 10.1093/immadv/ltac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Current treatments for asthma help to alleviate clinical symptoms but do not cure the disease. In this study, we explored a novel therapeutic approach for the treatment of house dust mite allergen Der p 1induced asthma by aiming to eliminate specific population of B-cells involved in memory IgE response to Der p 1. Materials and Methods To achieve this aim, we developed and evaluated two different proDer p 1-based fusion proteins; an allergen-toxin (proDer p 1-ETA) and an allergen-drug conjugate (ADC) (proDer p 1-SNAP-AURIF) against Der p 1 reactive hybridomas as an in vitro model for Der p 1 reactive human B-cells. The strategy involved the use of proDer p 1 allergen as a cell-specific ligand to selectively deliver the bacterial protein toxin Pseudomonas exotoxin A (ETA) or the synthetic small molecule toxin Auristatin F (AURIF) into the cytosol of Der p 1 reactive cells for highly efficient cell killing. Results As such, we demonstrated recombinant proDer p 1 fusion proteins were selectively bound by Der p 1 reactive hybridomas as well as primary IgG1+ B-cells from HDM-sensitized mice. The therapeutic potential of proDer p 1-ETA' and proDer p 1-SNAP-AURIF was confirmed by their selective cytotoxic activities on Der p 1 reactive hybridoma cells. The allergen-toxin demonstrated superior cytotoxic activity, with IC50 values in the single digit nanomolar value, compared to the ADC. Discussions Altogether, the proof-of-concept experiments in this study provide a promising approach for the treatment of patients with house dust mite-driven allergic asthma.
Collapse
Affiliation(s)
- A K Daramola
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - O A Akinrinmade
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E A Fajemisin
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - K Naran
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - N Mthembu
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - S Hadebe
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - F Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,International Centre for Genetic Engineering and Biotechnology (ICGEB) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, South Africa
| | - A M Huysamen
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - O E Fadeyi
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - R Hunter
- Department of Chemistry, Faculty of Sciences, University of Cape Town, Cape Town, South Africa
| | - S Barth
- Correspondence: Stefan Barth, South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Barnard Fuller Building, Anzio Rd, Observatory, Cape Town, 7935 South Africa.
| |
Collapse
|
14
|
Lu W, Wang LA, Mann J, Jenny A, Romero C, Kuster A, Canuz E, Pillarisetti A, Smith KR, Balmes J, Thompson L. Biomass Smoke Exposure and Atopy among Young Children in the Western Highlands of Guatemala: A Prospective Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14064. [PMID: 36360942 PMCID: PMC9656762 DOI: 10.3390/ijerph192114064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Women and children in rural regions of low-income countries are exposed to high levels of household air pollution (HAP) as they traditionally tend to household chores such as cooking with biomass fuels. Early life exposure to air pollution is associated with aeroallergen sensitization and developing allergic diseases at older ages. This prospective cohort study assigned HAP-reducing chimney stoves to 557 households in rural Guatemala at different ages of the study children. The children's air pollution exposure was measured using personal CO diffusion tubes. Allergic outcomes at 4-5 years old were assessed using skin prick tests and International Study of Asthma and Allergies in Childhood (ISAAC)-based questionnaires. Children assigned to improved stoves before 6 months old had the lowest HAP exposure compared to the other groups. Longer exposure to the unimproved stoves was associated with higher risks of maternal-reported allergic asthma (OR = 2.42, 95% CI: 1.11-5.48) and rhinitis symptoms (OR = 2.01, 95% CI: 1.13-3.58). No significant association was found for sensitization to common allergens such as dust mites and cockroaches based on skin prick tests. Reducing HAP by improving biomass burning conditions might be beneficial in preventing allergic diseases among children in rural low-income populations.
Collapse
Affiliation(s)
- Wenxin Lu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Laura Ann Wang
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Jennifer Mann
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Alisa Jenny
- Institute for Global Health Sciences, University of California, San Francisco, CA 94158, USA
| | - Carolina Romero
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala
| | - Andrea Kuster
- School of Nursing, University of California, San Francisco, CA 94158, USA
| | - Eduardo Canuz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala
| | - Ajay Pillarisetti
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Kirk R. Smith
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - John Balmes
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lisa Thompson
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Kondo T, Uebanso T, Arao N, Shimohata T, Mawatari K, Takahashi A. Effect of T1R3 Taste Receptor Gene Deletion on Dextran Sulfate Sodium-Induced Colitis in Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:204-212. [PMID: 35768251 DOI: 10.3177/jnsv.68.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Taste receptor type 1 member 3 (T1R3) recognize umami or sweet tastes and also contributes type 2 immunity and autophagy in small intestine and muscle cells, respectively. Since imbalance of type 1 and type 2 immunity and autophagy affect intestinal bowel disease (IBD), we hypothesized that T1R3 have a potential role in the incidence and progression of colitis. In the present study, we investigated whether genetic deletion of T1R3 impacted aggravation of DSS-induced colitis in mice. We found that T1R3-KO mice showed reduction in colon damage, including reduced inflammation and colon shrinking relative to those of WT mice following DSS treatment. mRNA expression of tight junction components, particularly claudin1 was significantly lower in T1R3-KO mice with trend to lower inflammation related gene mRNA expression in colon. Other parameters, such as response to microbial stimuli in splenic lymphocytes and peritoneal macrophages, gut microbiota composition, and expression of autophagy-related proteins, were similar between WT and KO mice. Together, these results indicated that deletion of T1R3 has a minor role in intestinal inflammation induced by DSS-induced acute colitis in mice.
Collapse
Affiliation(s)
- Tsubasa Kondo
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Natsuki Arao
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School.,Faculty of Marine Biosciences, Fukui Prefectural University
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
16
|
León ED, Francino MP. Roles of Secretory Immunoglobulin A in Host-Microbiota Interactions in the Gut Ecosystem. Front Microbiol 2022; 13:880484. [PMID: 35722300 PMCID: PMC9203039 DOI: 10.3389/fmicb.2022.880484] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
In the gastrointestinal tract (GIT), the immune system interacts with a variety of microorganisms, including pathogens as well as beneficial symbionts that perform important physiological functions for the host and are crucial to sustain intestinal homeostasis. In normal conditions, secretory immunoglobulin A (SIgA) is the principal antibody produced by B cells in the GIT mucosa. Polyreactivity provides certain SIgA molecules with the ability of binding different antigens in the bacterial surface, such as O-antigens and teichoic acids, while cross-species reactivity allows them to recognize and interact with different types of bacteria. These functions may be crucial in allowing SIgA to modulate the complex gut microbiota in an efficient manner. Several studies suggest that SIgA can help with the retention and proliferation of helpful members of the gut microbiota. Gut microbiota alterations in people with IgA deficiency include the lack of some species that are known to be normally coated by SIgA. Here, we discuss the different ways in which SIgA behaves in relation to pathogens and beneficial bacteria of the gut microbiota and how the immune system might protect and facilitate the establishment and maintenance of certain gut symbionts.
Collapse
Affiliation(s)
- E Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - M Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,CIBER en Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
17
|
Ndika J, Karisola P, Lahti V, Fyhrquist N, Laatikainen T, Haahtela T, Alenius H. Epigenetic Differences in Long Non-coding RNA Expression in Finnish and Russian Karelia Teenagers With Contrasting Risk of Allergy and Asthma. FRONTIERS IN ALLERGY 2022; 3:878862. [PMID: 35769561 PMCID: PMC9234912 DOI: 10.3389/falgy.2022.878862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background Previously, we investigated skin microbiota and blood cell gene expression in Finnish and Russian teenagers with contrasting incidence of allergic conditions. The microbiota and transcriptomic signatures were distinctly different, with high Acinetobacter abundance and suppression of genes regulating innate immune response in healthy subjects. Objective Here, we investigated long non-coding RNA (lncRNA) expression profiles of blood mononuclear cells (PBMC) from healthy and allergic subjects, to identify lncRNAs that act at the interphase of microbiome-mediated immune homeostasis in allergy/asthma. Methods Genome-wide co-expression network analyses of blood cell lncRNA/mRNA expression was integrated with skin microbiota profiles of Finnish (69) and Russian (75) subjects. Selected lncRNAs were validated by stimulation of cohort-derived PBMCs and a macrophage cell model with birch pollen allergen (Betv1) or lipopolysaccharide, respectively. Results Finnish and Russian PBMCs were differentiated by 3,818 lncRNA transcripts. In the Finnish subjects with high prevalence of allergy and asthma, a subset of 37 downregulated lncRNAs (including, FAM155A-IT1 and LOC400958) were identified. They were part of a co-expression network with 20 genes known to be related to asthma and allergic rhinitis (R > 0.95). Incidentally, all these 20 genes were also components of pathways corresponding to cellular response to bacterium. The Finnish and Russian samples were also differentiated by the abundance of 176 bacterial OTU (operational taxonomic units). The subset of 37 lncRNAs, associated with allergy, was most correlated with the abundance of Acinetobacter (R > +0.5), Jeotgalicoccus (R > +0.5), Corynebacterium (R < −0.5) and Micrococcus (R < −0.5). Conclusion In Finnish and Russian teenagers with contrasting allergy and asthma prevalence, epigenetic differences in lncRNA expression appear to be important components of the underlying microbiota-immune interactions. Unraveling the functions of the 37 differing lncRNAs may be the key to understanding microbiome-immune crosstalk, and to develop clinically relevant biomarkers.
Collapse
Affiliation(s)
- Joseph Ndika
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Joseph Ndika
| | - Piia Karisola
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vilma Lahti
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiina Laatikainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Harri Alenius
- Human Microbiome Research (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Deng H, Muthupalani S, Erdman S, Liu H, Niu Z, Wang TC, Fox JG. Translocation of Helicobacter hepaticus synergizes with myeloid-derived suppressor cells and contributes to breast carcinogenesis. Oncoimmunology 2022; 11:2057399. [PMID: 35371619 PMCID: PMC8966989 DOI: 10.1080/2162402x.2022.2057399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial dysbiosis plays an important role in the development of intestinal diseases. Recent studies suggest a link between intestinal bacteria and mammary cancer. Here, we report that female ApcMin/+ mice infected with Helicobacter hepaticus exhibited an increased mammary and small/large intestine tumor burden compared with uninfected littermates. H. hepaticus DNA was detected in small/large intestine, mammary tumors, and adjacent lymph nodes, suggesting a migration pathway. CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) infiltrated and expressed high levels of Wnts, likely enhancing tumorigenesis through activation of Wnt/β-catenin pathway. Our previous studies indicated that histidine decarboxylase (Hdc) marks a population of myeloid-biased hematopoietic stem cells and granulocytic MDSCs. Cytokines/chemokines secreted by IL-17-expressing mast cells and tumor tissues promoted Hdc+ MDSCs expansion and trafficking toward mammary tumors. Adoptive transfer of MDSCs isolated from H. hepaticus-infected mice increased MDSCs frequencies in peripheral blood, mesenteric lymph nodes, mammary gland, and lymph nodes in recipient ApcMin/+ mice. The adoptive transfer of H. hepaticus primed MDSCs also increased the size and number of mammary tumors. Our results demonstrate that H. hepaticus can translocate from the intestine to mammary tissues to promote mammary tumorigenesis with MDSCs. Targeting bacteria and MDSCs may be useful for the prevention and therapy of extraintestinal cancers. Abbreviations: Helicobacter hepaticus, Hh; myeloid-derived suppressor cell, MDSC; histidine decarboxylase, Hdc; Breast cancer, BC; T regulatory, TR; inflammatory bowel disease, IBD; fluorescence in situ hybridization, FISH; myeloid-biased hematopoietic stem cells, MB-HSCs; granulocytic MDSCs, PMN-MDSCs; Lipopolysaccharide, LPS; Toll-like receptors, TLRs; Mast cells, MCs; Granulocyte-macrophage colony-stimulating factor, GM-CSF; epithelial–mesenchymal transition, EMT; Intestinal epithelial cells, IECs.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Susan Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haibo Liu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengchuan Niu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
19
|
Cho SI, Lee H, Yang MS, Cho SJ, Lee DH. Inverse association between Helicobacter pylori infection and atopic, skin, and autoimmune diseases: A nationwide population-based study in South Korea. Allergy 2021; 76:3824-3826. [PMID: 34486760 DOI: 10.1111/all.15081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/28/2023]
Affiliation(s)
- Soo Ick Cho
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hanjae Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Min-Suk Yang
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo-Jeong Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Michailidou D, Schwartz DM, Mustelin T, Hughes GC. Allergic Aspects of IgG4-Related Disease: Implications for Pathogenesis and Therapy. Front Immunol 2021; 12:693192. [PMID: 34305927 PMCID: PMC8292787 DOI: 10.3389/fimmu.2021.693192] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
IgG4-related disease (IgG4-RD) is a rare systemic fibroinflammatory disease frequently associated with allergy. The pathogenesis of IgG4-RD is poorly understood, and effective therapies are limited. However, IgG4-RD appears to involve some of the same pathogenic mechanisms observed in allergic disease, such as T helper 2 (Th2) and regulatory T cell (Treg) activation, IgG4 and IgE hypersecretion, and blood/tissue eosinophilia. In addition, IgG4-RD tissue fibrosis appears to involve activation of basophils and mast cells and their release of alarmins and cytokines. In this article, we review allergy-like features of IgG4-RD and highlight targeted therapies for allergy that have potential in treating patients with IgG4-RD.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Daniella Muallem Schwartz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomas Mustelin
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Grant C. Hughes
- Division of Rheumatology, University of Washington, Seattle, WA, United States
| |
Collapse
|
21
|
Yang C, Lin J, Liang H, Xue L, Kwart A, Jiang M, Zhao J, Ren H, Jiang X, Munshi NC. CD44 v5 domain inhibition represses the polarization of Th2 cells by interfering with the IL-4/IL-4R signaling pathway. Immunol Cell Biol 2021; 100:21-32. [PMID: 34219288 DOI: 10.1111/imcb.12491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022]
Abstract
The balance between Th1 and Th2 cells is critical for both innate and acquired immune reactions. But the precise mechanisms of T helper cells differentiations are still unclear. As an important T cell activation molecular, CD44 participates in the Th1 and Th2 differentiation. We demonstrated that CD44 variant exon-v5 is highly expressed by induced human Th2 cells. In order to investigate the role of CD44v5 domain in Th2 cell differentiation, we treated human CD4+ T cells with CD44v5 antibody and observed that the levels of pSTAT6 and GATA3 and the secretion of IL-4 were significantly decreased after the treatment. We also further found that the inhibition of Th2 differentiation was caused by the IL-4Rα degradation, CD44v5 domain co-localized with IL-4Rα on cell surface, the degradation of IL-4Rα increased after CD44v5 blocking or ablating. Our results indicated that CD44v5 antibody treatment interrupted the interaction between CD44v5 and IL-4Rα, but the CD44v5 domain blockage would not spoil the co-localization between IL4R expression and TCR and the immunological synapse formation, similar results were also found in CD44v5 deficient CD4+ T cells. In conclusion, we revealed the function of CD44v5 domain in Th2 cell differentiation, blocking or ablating CD44v5 domain could accelerate IL-4Rα degradation and then induce the Th2 cell inhibition.
Collapse
Affiliation(s)
- Chun Yang
- Department of Clinical Laboratory, the 4thHospital of Harbin Medical University, Harbin, China.,Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jianhong Lin
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hongyan Liang
- Department of Clinical Laboratory, the 4thHospital of Harbin Medical University, Harbin, China
| | - Li Xue
- Department of Clinical Laboratory, the 4thHospital of Harbin Medical University, Harbin, China.,Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ariel Kwart
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Meng Jiang
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,Department of General surgery, the 4th Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Huan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaofeng Jiang
- Department of Clinical Laboratory, the 4thHospital of Harbin Medical University, Harbin, China
| | - Nikhil C Munshi
- Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.,LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA.,VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
22
|
Montaño KJ, Cuéllar C, Sotillo J. Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Front Cell Infect Microbiol 2021; 11:639573. [PMID: 33968800 PMCID: PMC8100317 DOI: 10.3389/fcimb.2021.639573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Soil-transmitted helminths (STH) affect hundreds of millions worldwide and are some of the most important neglected tropical diseases in terms of morbidity. Due to the difficulty in studying STH human infections, rodent models have become increasingly used, mainly because of their similarities in life cycle. Ascaris suum and Trichuris muris have been proven appropriate and low maintenance models for the study of ascariasis and trichuriasis. In the case of hookworms, despite most of the murine models do not fully reproduce the life cycle of Necator americanus, their proteomic similarity makes them highly suitable for the development of novel vaccine candidates and for the study of hookworm biological features. Furthermore, these models have been helpful in elucidating some basic aspects of our immune system, and are currently being used by numerous researchers to develop novel molecules with immunomodulatory proteins. Herein we review the similarities in the proteomic composition between Nippostrongylus brasiliensis, Heligmosomoides polygyrus bakeri and Trichuris muris and their respective human counterpart with a focus on the vaccine candidates and immunomodulatory proteins being currently studied.
Collapse
Affiliation(s)
- Karen J Montaño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Psallidas I, Backer V, Kuna P, Palmér R, Necander S, Aurell M, Korsback K, Taib Z, Hashemi M, Gustafson P, Asimus S, Delaney S, Pardali K, Jiang F, Almquist J, Jackson S, Coffman RL, Keeling D, Sethi T. A Phase 2a, Double-Blind, Placebo-controlled Randomized Trial of Inhaled TLR9 Agonist AZD1419 in Asthma. Am J Respir Crit Care Med 2021; 203:296-306. [PMID: 32809843 DOI: 10.1164/rccm.202001-0133oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rationale: To examine the potential of TLR9 (Toll-like receptor 9) activation to modulate the type 2 immune response in asthma.Objectives: To evaluate efficacy and safety of AZD1419, an inhaled TLR9 agonist, in a phase 2a, randomized, double-blind trial.Methods: Adult patients with asthma with a history of elevated eosinophils (>250 cells/μl) were randomized 1:1 to receive 13 once-weekly doses of inhaled AZD1419 (1, 4, or 8 mg; n = 40) or placebo (n = 41). Inhaled corticosteroids and long-acting β2-agonist were tapered down and then discontinued. The last four doses of AZD1419 were given without maintenance medication, followed by a 40-week observation period. Primary endpoint was time to loss of asthma control (LOC).Measurements and Main Results: AZD1419 induced a T-helper cell type 1-type IFN response with a sustained reduction in markers of type 2 inflammation. However, there were no statistically significant differences between AZD1419 and placebo for time to LOC, proportion of patients with LOC, changes in Asthma Control Questionnaire-five-item version, exacerbations, reliever use, FEV1, peak expiratory flow, or fractional exhaled nitric oxide (FeNO). LOC was predicted by an early rise in FeNO in 63% of patients. Despite withdrawal of maintenance treatment, 24 patients completed the study without LOC; AZD1419 n = 11, placebo n = 13. Adverse events were balanced across groups, with no deaths or serious adverse events judged as causally related to AZD1419.Conclusions: AZD1419 was safe and well tolerated but did not lead to improved asthma control, despite reducing markers of type 2 inflammation. Results suggest that a novel accelerated step-down approach based on FeNO is possible for patients with well-controlled asthma.
Collapse
Affiliation(s)
- Ioannis Psallidas
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Vibeke Backer
- Center for Physical Activity Research, Rigshospitalet and Copenhagen University, Copenhagen, Denmark
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Łódź, Łódź, Poland
| | - Robert Palmér
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D
| | - Sofia Necander
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D
| | - Malin Aurell
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D
| | - Katarina Korsback
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D
| | - Ziad Taib
- Early Clinical Biostatistics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D
| | - Mahdi Hashemi
- Early Clinical Biostatistics and Statistical Innovation, Data Science & AI, BioPharmaceuticals R&D
| | | | - Sara Asimus
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D
| | - Stephen Delaney
- Bioscience, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D
| | | | - Fanyi Jiang
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; and
| | - Joachim Almquist
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D
| | | | | | - David Keeling
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D
| | - Tariq Sethi
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
24
|
Pandey R, Parkash V, Kant S, Verma AK, Sankhwar SN, Agrawal A, Parmar D, Verma S, Ahmad MK. An update on the diagnostic biomarkers for asthma. J Family Med Prim Care 2021; 10:1139-1148. [PMID: 34041141 PMCID: PMC8140254 DOI: 10.4103/jfmpc.jfmpc_2037_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/02/2020] [Accepted: 01/01/2021] [Indexed: 01/13/2023] Open
Abstract
Asthma is a respiratory disorder accounts for ~339 million cases per annum. The initial diagnosis of asthma relies on the symptomatic identification of characters, such as wheeze, shortness of breath, chest tightness, and cough. The presence of two or more of these symptoms may be considered as indicative of asthma. The asthma-diagnostic also involves spirometry test before and after inhaling a bronchodilator like albuterol. Because asthma pathophysiology involves participation of immune system, the cytokines play an important role. The review discusses various molecules that are or may be used as biomarkers for the asthma diagnosis.
Collapse
Affiliation(s)
- Rashmi Pandey
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ved Parkash
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ajay K. Verma
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - S. N. Sankhwar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Avinash Agrawal
- Department of Critical Care Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Devendra Parmar
- Department of Development Toxicology, CSIR IITR, Lucknow, Uttar Pradesh, India
| | - Sheetal Verma
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Md. Kaleem Ahmad
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Park H, Jung AY, Chang CS, Kim YH. Bacillus clausii, a Foreshore-Derived Probiotic, Attenuates Allergic Airway Inflammation Through Downregulation of Hypoxia Signaling. JOURNAL OF RHINOLOGY 2020. [DOI: 10.18787/jr.2020.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background and Objectives: The immunomodulatory effects and mechanism of probiotics in allergic airway disease are largely unknown. We studied whether <i>Bacillus clausii</i> (BC), a probiotic derived from mudflats, had anti-allergic effects and compared the results with those of <i>Lactobacillus paracasei</i> (LP). We also examined whether the anti-allergic mechanisms of probiotics are associated with hypoxia signaling.Materials and Method: Forty-two BALB/c mice were randomly assigned to six experimental groups: controls, ovalbumin (OVA)-induced mice for inducing asthma, and OVA-induced mice that were orally administered LP or BC, at 1×10<sup>9</sup> or 5×10<sup>9</sup> CFU/mL each. We performed differential cell count testing on bronchoalveolar lavage fluid (BALF), lung histopathology, serum totals and OVA-specific IgE and IgG1 assessments, Th2 cytokine titers (IL-4, IL-5) in BALF and pulmonary parenchyma, quantitative PCR for <i>heme oxygenase (HO)-1</i> and <i>Hif-1α</i>, and immunohistochemistry.Results: Compared to the OVA group mice, OVA-sensitized mice treated with LP or BC showed significantly reduced numbers of eosinophils and neutrophils in the BALF (p<0.05). Both probiotics also significantly reduced pulmonary inflammation and eosinophil infiltration. Mice in the LP or BC group had a substantially lower titer of IL-4 and IL-5 in BALF, and decreased IL-4 and IL-5 expression in the lung parenchyma. Real-time PCR and immunohistochemistry showed that both LP and BC could significantly suppress <i>HO-1</i> and <i>Hif-1α</i> expression in asthmatic mice (p<0.05).Conclusion: BC can attenuate murine allergic asthma by regulating HIF-1α signaling, and its anti-allergic effect is comparable to that of LP.
Collapse
|
26
|
Pedersen CJ, Uddin MJ, Saha SK, Darmstadt GL. Prevalence of atopic dermatitis, asthma and rhinitis from infancy through adulthood in rural Bangladesh: a population-based, cross-sectional survey. BMJ Open 2020; 10:e042380. [PMID: 33148768 PMCID: PMC7643529 DOI: 10.1136/bmjopen-2020-042380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Describe the pattern of atopic disease prevalence from infancy to adulthood. DESIGN Cross-sectional household survey. SETTING Community-based demographic surveillance site, Mirzapur, Bangladesh. PARTICIPANTS 7275 individuals in randomly selected clusters within 156 villages. PRIMARY AND SECONDARY OUTCOME MEASURES The 12-month prevalence of atopic dermatitis (by UK Working Party Criteria (UK criteria) and International Study of Asthma and Allergies in Childhood (ISAAC)), asthma and rhinitis (by ISAAC); disease severity (by ISAAC); history of ever receiving a medical diagnosis. RESULTS Children aged 2 years had the highest prevalence of atopic dermatitis-18.8% (95% CI 15.2% to 22.4%) by UK criteria and 14.9% (95% CI 11.6% to 18.1%) by ISAAC- and asthma (20.1%, 95% CI 16.4% to 23.8%). Prevalence of rhinitis was highest among 25-29 year olds (6.0%, (95% CI% 4.5 to 7.4%). History of a medical diagnosis was lowest for atopic dermatitis (4.0%) and highest for rhinitis (27.3%) and was significantly associated with severe disease compared with those without severe disease for all three conditions (atopic dermatitis: 30.0% vs 11.7%, p=0.015; asthma; 85.0% vs 60.4%, p<0.001; rhinitis: 34.2% vs 7.3%, p<0.001) and having a higher asset-based wealth score for asthma (29.7% (highest quintile) vs 7.5% (lowest quintile), p<0.001) and rhinitis (39.8% vs 12.5%, p=0.003). Prevalence of having >1 condition was highest (36.2%) at 2 years and decreased with age. Having atopic dermatitis (ISAAC) was associated with significantly increased odds ratios (OR) for comorbid asthma (OR 5.56 (95% CI 4.26 to 7.26)] and rhinitis (3.68 (95% CI 2.73 to 4.96)). Asthma and rhinitis were also strongly associated with each other (OR 8.39 (95% CI 6.48 to 10.86)). CONCLUSIONS Atopic disease burden was high in this rural Bangladeshi population. Having one atopic condition was significantly associated with the presence of another. Low incidence of ever obtaining a medical diagnosis highlights an important opportunity to increase availability of affordable diagnosis and treatment options for all age groups.
Collapse
Affiliation(s)
- Courtney J Pedersen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| | - Gary L Darmstadt
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
27
|
A gammaherpesvirus licenses CD8 T cells to protect the host from pneumovirus-induced immunopathologies. Mucosal Immunol 2020; 13:799-813. [PMID: 32424182 PMCID: PMC7116076 DOI: 10.1038/s41385-020-0293-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
Human respiratory syncytial virus (RSV) is a pneumovirus that causes severe infections in infants worldwide. Despite intensive research, safe and effective vaccines against RSV have remained elusive. The main reason is that RSV infection of children previously immunized with formalin-inactivated-RSV vaccines has been associated with exacerbated pathology, a phenomenon called RSV vaccine-enhanced respiratory disease. In parallel, despite the high RSV prevalence, only a minor proportion of children develop severe diseases. Interestingly, variation in the immune responses against RSV or following RSV vaccination could be linked with differences of exposure to microbes during childhood. Gammaherpesviruses (γHVs), such as the Epstein-Barr virus, are persistent viruses that deeply influence the immune system of their host and could therefore affect the development of pneumovirus-induced immunopathologies for the long term. Here, we showed that a previous ɣHV infection protects against both pneumovirus vaccine-enhanced disease and pneumovirus primary infection and that CD8 T cells are essential for this protection. These observations shed a new light on the understanding of pneumovirus-induced diseases and open new perspectives for the development of vaccine strategies.
Collapse
|
28
|
Miller MM, Reinhardt RL. The Heterogeneity, Origins, and Impact of Migratory iILC2 Cells in Anti-helminth Immunity. Front Immunol 2020; 11:1594. [PMID: 32793230 PMCID: PMC7390839 DOI: 10.3389/fimmu.2020.01594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Soil-transmitted helminths represent a major global health burden with infections and infection-related comorbidities causing significant reductions in the quality of life for individuals living in endemic areas. Repeated infections and chronic colonization by these large extracellular worms in mammals led to the evolution of type-2 immunity characterized by the production of the type-2 cytokines interleukin (IL)-4, IL-5, and IL-13. Although a number of adaptive and innate immune cells produce type-2 cytokines, a key cellular source in the context of helminth infection is group 2 innate lymphoid cells (ILC2s). ILC2s promote mucosal barrier homeostasis, integrity, and repair by rapidly responding to epithelial cues in mucosal tissues. Though tissue-resident ILC2s (nILC2s) have been studied in detail over the last decade, considerably less is known with regard to a subset of inflammatory ILC2s (iILC2s) that migrate to the lungs of mice early after Nippostrongylus brasiliensis infection and are potent early producers of type-2 cytokines. This review will discuss the relationship and differences between nILC2s and iILC2s that establish their unique roles in anti-helminth immunity. We have placed particular emphasis on studies investigating iILC2 origin, function, and their potential long-term contribution to tissue-resident ILC2 reservoirs in settings of helminth infection.
Collapse
Affiliation(s)
- Mindy M Miller
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - R Lee Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Immunology and Microbiology, University of Colorado-Anschutz Medical, Aurora, CO, United States
| |
Collapse
|
29
|
Goto T. Airway Microbiota as a Modulator of Lung Cancer. Int J Mol Sci 2020; 21:ijms21093044. [PMID: 32357415 PMCID: PMC7246469 DOI: 10.3390/ijms21093044] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Recent research on cancer-associated microbial communities has elucidated the interplay between bacteria, immune cells, and tumor cells; the bacterial pathways involved in the induction of carcinogenesis; and their clinical significance. Although accumulating evidence shows that a dysbiotic condition is associated with lung carcinogenesis, the underlying mechanisms remain unclear. Microorganisms possibly trigger tumor initiation and progression, presumably via the production of bacterial toxins and other pro-inflammatory factors. The purpose of this review is to discuss the basic role of the airway microbiome in carcinogenesis and the underlying molecular mechanisms, with the aim of developing anticancer strategies involving the airway microbiota. In addition, the mechanisms via which the microbiome acts as a modulator of immunotherapies in lung cancer are summarized.
Collapse
Affiliation(s)
- Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi 4008506, Japan
| |
Collapse
|
30
|
Gong JJ, Margolis DJ, Monos DS. Predictive in silico binding algorithms reveal HLA specificities and autoallergen peptides associated with atopic dermatitis. Arch Dermatol Res 2020; 312:647-656. [PMID: 32152724 DOI: 10.1007/s00403-020-02059-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a skin disease that results from a combination of skin barrier dysfunction and immune dysregulation. The immune dysregulation is often associated with IgE sensitivity. There is also evidence that autoallergens Hom s 1, 2, 3, and 4 play a role in AD; it is possible that patients with specific HLA subtypes are predisposed to autoreactivity due to increased presentation of autoallergen peptides. The goal of our study was to use in silico epitope prediction platforms as an approach to identify HLA subtypes that may preferentially bind autoallergen peptides and are thus candidates for further study. Considering the previously described association of DRB1 alleles with AD and progression of disease, emphasis was placed on DRB1. Certain DRB1 alleles (08:04, 11:01, and 11:04) were identified by both algorithms to bind a significant percent of the generated autoallergen peptides. Conversely, autoallergen core peptide sequences FRQLSHRFH and IRAKLRLQA (Hom s 1), IRKSKNILF (Hom s 2), FKWVPVTDS and MAAIEKVRK (Hom s 3), and FRYFATLKV (Hom s 4) were predicted to bind many DRB1 alleles and, thus, may play a role in the pathogenesis of AD. Our findings provide candidate DRB1 alleles and autoallergen epitopes that will guide future studies exploring the relationship between DRB1 subtype and autoreactivity in AD. A similar approach can be used for any antigen that has been associated with an IgE response and AD.
Collapse
Affiliation(s)
- Jan J Gong
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Margolis
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dimitrios S Monos
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Wyss M, Brown K, Thomson CA, Koegler M, Terra F, Fan V, Ronchi F, Bihan D, Lewis I, Geuking MB, McCoy KD. Using Precisely Defined in vivo Microbiotas to Understand Microbial Regulation of IgE. Front Immunol 2020; 10:3107. [PMID: 32010146 PMCID: PMC6974480 DOI: 10.3389/fimmu.2019.03107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
Early life exposure to microbes plays an important role in immune system development. Germ-free mice, or mice colonized with a low-diversity microbiota, exhibit high serum IgE levels. An increase in microbial richness, providing it occurs in a critical developmental window early in life, leads to inhibition of this hygiene-induced IgE. However, whether this inhibition is dependent solely on certain microbial species, or is an additive effect of microbial richness, remains to be determined. Here we report that mice colonized with a combination of bacterial species with specific characteristics is required to inhibit IgE levels. These defined characteristics include the presence in early life, acetate production and immunogenicity reflected by induction of IgA. Suppression of IgE did not correlate with production of the short chain fatty acids propionate and butyrate, or induction of peripherally induced Tregs in mucosal tissues. Thus, inhibition of IgE induction can be mediated by specific microbes and their associated metabolic pathways and immunogenic properties.
Collapse
Affiliation(s)
- Madeleine Wyss
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kirsty Brown
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Mia Koegler
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Fernanda Terra
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Vina Fan
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Francesca Ronchi
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Dominique Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Markus B Geuking
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Role of early life immune regulation in asthma development. Semin Immunopathol 2019; 42:29-42. [PMID: 31873782 PMCID: PMC7079989 DOI: 10.1007/s00281-019-00774-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
Development of childhood asthma is complex with a strong interaction of genetic, epigenetic, and environmental factors. Ultimately, it is critical how the immune system of a child responds to these influences and whether effective strategies for a balanced and healthy immune maturation can be assured. Pregnancy and early childhood are particularly susceptible for exogenous influences due to the developing nature of a child’s immune system. While endogenous influences such as family history and the genetic background are immutable, epigenetic regulations can be modulated by both heredity and environmental exposures. Prenatal influences such as a mother’s nutrition, smoking, or infections influence the complex interplay of innate and adaptive immune regulation as well as peri- and postnatal influences including mode of delivery. Early in life, induction and continuous training of healthy maturation include balanced innate immunity (e.g., via innate lymphoid cells) and an equilibrium of T-cell subpopulations (e.g., via regulatory T cells) to counter-regulate potential pro-inflammatory or exuberant immune reactions. Later in childhood, rather compensatory immune mechanisms are required to modulate deviant regulation of a child’s already primed immune trajectory. The specific effects of exogenous and endogenous influences on a child’s maturing immune system are summarized in this review, and its importance and potential intervention for early prevention and treatment strategies are delineated.
Collapse
|
33
|
Hadebe S, Brombacher F. Environment and Host-Genetic Determinants in Early Development of Allergic Asthma: Contribution of Fungi. Front Immunol 2019; 10:2696. [PMID: 31824491 PMCID: PMC6879655 DOI: 10.3389/fimmu.2019.02696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is a chronic debilitating airway disease affecting millions of people worldwide. Although largely thought to be a disease of the first world, it is now clear that it is on the rise in many middle- and lower-income countries. The disease is complex, and its etiology is poorly understood, which explains failure of most treatment strategies. We know that in children, asthma is closely linked to poor lung function in the first 3-years of life, when the lung is still undergoing post-natal alveolarization phase. Epidemiological studies also suggest that environmental factors around that age do play a critical part in the establishment of early wheezing which persists until adulthood. Some of the factors that contribute to early development of asthma in children in Western world are clear, however, in low- to middle-income countries this is likely to differ significantly. The contribution of fungal species in the development of allergic diseases is known in adults and in experimental models. However, it is unclear whether early exposure during perinatal or post-natal lung development influences a protective or promotes allergic asthma. Host immune cells and responses will play a crucial part in early development of allergic asthma. How immune cells and their receptors may recognize fungi and promote allergic asthma or protect by tolerance among other immune mechanisms is not fully understood in this early lung development stage. The aim of this review is to discuss what fungal species are present during early exposure as well as their contribution to the development of allergic responses. We also discuss how the host has evolved to promote tolerance to limit hyper-responsiveness to innocuous fungi, and how host evasion by fungi during early development consequentially results in allergic diseases.
Collapse
Affiliation(s)
- Sabelo Hadebe
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Perrone Sibilia MD, Aldirico MDLÄ, Soto AS, Picchio MS, Sánchez VR, Arcón N, Moretta R, Martín V, Vanzulli S, Fenoy IM, Goldman A. Chronic infection with the protozoan Toxoplasma gondii prevents the development of experimental atopic dermatitis in mice. J Dermatol Sci 2019; 96:143-150. [PMID: 31735466 DOI: 10.1016/j.jdermsci.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Supporting the hypothesis thatT. gondii infection protects against allergy in humans we previously demonstrated that this infection can modulate not only the susceptibility to develop respiratory allergies in mice but also suppresses allergic responses at systemic level. This latter finding suggests that T. gondii infection could prevent the onset of other allergic diseases, such as atopic dermatitis. At present, few studies have investigated the modulation of atopic dermatitis by parasite infections. OBJECTIVE Here, we sought to investigate whether chronic infection with T. gondii is capable of modulating the development of atopic dermatitis. METHODS Chronically infected mice were sensitized by repeated epicutaneous ovalbumin administration. Skin histopathology, humoral response, cytokine production and innate type-II lymphoid cells (ILC2) were assessed. RESULTS A marked reduction in epidermal thickness and dermal inflammatory infiltrate along with a reduction in mast cell count was observed in infected mice compared to non-infected mice. These results correlated with a diminished TH2 and TH1 allergen specific response. Reduced type-II IL-4 and IL-5 cytokines were already detected during the first 24 h of allergen sensitization in splenocytes and draining lymph nodes from infected mice. Moreover, this reduced type-II profile in chronically infected animals correlated with diminished ILC2 number in draining lymph nodes. CONCLUSION Chronic infection withT. gondii prevents the development of atopic dermatitis. The diminished susceptibility seems to result from changes in type-II innate immune response that may lead to the induction of a deficient TH2 response and consequently to a lower susceptibility to develop atopic dermatitis.
Collapse
Affiliation(s)
- Matías Damián Perrone Sibilia
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - María de Los Ängeles Aldirico
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Ariadna Soledad Soto
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Mariano Sergio Picchio
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Vanesa Roxana Sánchez
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Nadia Arcón
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Rosalía Moretta
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Valentina Martín
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Silvia Vanzulli
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ignacio Martín Fenoy
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Alejandra Goldman
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina.
| |
Collapse
|
35
|
Rhinoconjunctivitis among Adolescents in Kuwait and Associated Risk Factors: A Cross-Sectional Study. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3981064. [PMID: 31815136 PMCID: PMC6878814 DOI: 10.1155/2019/3981064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Rhinoconjunctivitis is a public health problem that causes major illness and disability worldwide. Epidemiological studies intended to determine the burden of rhinoconjunctivitis in Kuwait are limited. Hence, this study sought to estimate the prevalence of rhinoconjunctivitis among adolescents in Kuwait and explore its association with different risk factors. Schoolchildren aged 11–14 years (n = 3,864) were enrolled in a cross-sectional study. Parents completed questionnaires regarding their children's clinical history and symptoms of rhinoconjunctivitis and relevant exposures. Associations were assessed using Poisson regression with robust variance estimation, and adjusted prevalence ratios (aPRs) and 95% confidence intervals (CIs) were estimated. The 12-month (current) prevalence estimates of rhinitis, rhinoconjunctivitis, and severe rhinoconjunctivitis were 28.6% (1,040/3,643), 13.5% (497/3,689), and 1.2% (44/3,689), respectively. The prevalence of current rhinoconjunctivitis symptoms was higher in boys compared to girls (aPR = 1.19, 95% CI: 1.01–1.41). Parental history of rhinitis and asthma showed positive associations with rhinoconjunctivitis in offspring. Trend analyses showed that rhinoconjunctivitis prevalence decreased with increasing numbers of total siblings (aPR = 0.92, Ptrend < 0.001) and older siblings (aPR = 0.90, Ptrend < 0.001). Rhinoconjunctivitis is common among adolescents in Kuwait and its epidemiology is similar to that found in western countries.
Collapse
|
36
|
Saltykova IV, Ittiprasert W, Nevskaya KV, Dorofeeva YB, Kirillova NA, Kulikov ES, Ivanov VV, Mann VH, Pershina AG, Brindley PJ. Hemozoin From the Liver Fluke, Opisthorchis felineus, Modulates Dendritic Cell Responses in Bronchial Asthma Patients. Front Vet Sci 2019; 6:332. [PMID: 31750318 PMCID: PMC6843058 DOI: 10.3389/fvets.2019.00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
Abstract
Aims: There is a general, inverse relationship between helminth infection and allergic diseases including bronchial asthma (BA). Proteins and other mediators released from parasitic worms exert cogent downmodulation of atopic and other allergic reactivity. We investigated the immune activities of an immortalized murine dendritic cell (mDC) line (JAWSII) and of primary human dendritic cells (hDCs) collected from study participants with and without BA after Opisthorchis felineus hemozoin (OfHz) treatment. Methods and Results:in vitro, expression of lymphocyte-activating factors—T helper 1 (Th1) induction and anti-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1β), IL-10, and IL-12β–increased significantly in mDCs pulsed with OfHz. In parallel, primary dendritic cells (hDC) from cases clinically diagnosed with BA along with healthy controls were exposed ex vivo to OfHz in combination with lipopolysaccharide (LPS). Whereas no significant change in the cellular maturation markers, CD83, CD86, and CD40, was apparent in BA vs. healthy hDC, pulsing hDC from BA with OfHz with LPS induced significant increases in expression of IL-10 and IL-12β, although not of TNF-α or tumor growth factor-beta (TGF-β). Conclusions: Liver fluke hemozoin OfHz stimulated production of Th1 inducer and anti-inflammatory cytokines IL-10 and IL-12β from BA-hDC pulsed with OfHz, an outcome that enhances our understanding of the mechanisms whereby opisthorchiasis contributes to protection against the atopic disease in liver fluke infection-endemic regions.
Collapse
Affiliation(s)
- Irina V Saltykova
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia.,Department of General Practice and Polyclinic Therapy, Siberian State Medical University, Tomsk, Russia.,Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| | - Kseniya V Nevskaya
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Yulia B Dorofeeva
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Natalia A Kirillova
- Department of General Practice and Polyclinic Therapy, Siberian State Medical University, Tomsk, Russia
| | - Evgeniy S Kulikov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Vladimir V Ivanov
- Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| | | | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
37
|
Stephen-Victor E, Chatila TA. Regulation of oral immune tolerance by the microbiome in food allergy. Curr Opin Immunol 2019; 60:141-147. [PMID: 31302570 PMCID: PMC6800633 DOI: 10.1016/j.coi.2019.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The steep rise in the incidence and prevalence of food allergy (FA) in the last few decades have focused attention of environmental mechanisms which act to promote disease, chief among which is the microbiome. Recent studies have now established the presence of pathogenic dysbiosis in FA that could be precipitated by a variety of environmental insults, including among others antibiotic usage and mode of delivery, that act to subvert the immune regulatory response that enforce tolerance to dietary antigens. A key attribute of this dysbiosis is the loss of Clostridial bacterial species that act to promote the formation of food allergen-specific nascent regulatory T cells in the gut. Significantly, different immunoprotective commensal bacteria, including members of the Clostridiales and Bacteroidales orders act to induce the transcription factor RORγt in nascent Treg cells via an upstream MyD88-dependent mechanism to promote tolerance to dietary antigens. Activation of this axis is disrupted by the dysbiosis, and can be restored by treatment with therapeutic microbiota. These findings highlight the potential for novel microbiota-based approaches to the prevention and treatment of the FA epidemic.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Division of Immunology, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, United States
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, United States.
| |
Collapse
|
38
|
Eosinophils Mediate Basophil-Dependent Allergic Skin Inflammation in Mice. J Invest Dermatol 2019; 139:1957-1965.e2. [DOI: 10.1016/j.jid.2019.03.1129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 01/22/2023]
|
39
|
Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat Med 2019; 25:1164-1174. [PMID: 31235962 PMCID: PMC6677395 DOI: 10.1038/s41591-019-0461-z] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/18/2019] [Indexed: 12/28/2022]
Abstract
The role of dysbiosis in food allergy (FA) remains unclear. We found that dysbiotic fecal microbiota in FA infants evolved compositionally over time and failed to protect against FA in mice. Infants and mice with FA had decreased IgA and increased IgE binding to fecal bacteria, indicative of a broader breakdown of oral tolerance than hitherto appreciated. Therapy with Clostridiales species impacted by dysbiosis, either as a consortium or as monotherapy with Subdoligranulum variabile, suppressed FA in mice, as did a separate immunomodulatory Bacteroidales consortium. Bacteriotherapy induced regulatory T (Treg) cells expressing the transcription factor ROR-γt in a MyD88-dependent manner, which were deficient in FA infants and mice and ineffectively induced by their microbiota. Deletion of Myd88 or Rorc in Treg cells abrogated protection by bacteriotherapy. Thus, commensals activate a MyD88/ROR-γt pathway in nascent Treg cells to protect against FA, while dysbiosis impairs this regulatory response to promote disease.
Collapse
|
40
|
Byrne AL, Marais BJ, Mitnick CD, Garden FL, Lecca L, Contreras C, Yauri Y, Garcia F, Marks GB. Asthma and atopy prevalence are not reduced among former tuberculosis patients compared with controls in Lima, Peru. BMC Pulm Med 2019; 19:40. [PMID: 30760258 PMCID: PMC6373156 DOI: 10.1186/s12890-019-0804-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/05/2019] [Indexed: 01/25/2023] Open
Abstract
Background Although there are theoretical reasons for believing that asthma and atopy may be negatively correlated with tuberculosis, epidemiological studies have had conflicting findings. Objective To determine if people with confirmed tuberculosis were less likely to be atopic and less likely to have atopic disease including asthma compared to those with no previous tuberculosis. Methods Patients in Lima, Peru with a prior history of tuberculosis were identified from clinic records in this cohort study. A representative sample of individuals without a prior tuberculosis diagnosis was recruited from the same community. Allergen skin prick testing was performed to classify atopic status. Allergic rhinitis was identified by history. Asthma was defined by symptoms and spirometry. Eosinophilic airway inflammation was measured using exhaled nitric oxide levels. Results We evaluated 177 patients with, and 161 individuals without, previous tuberculosis. There was a lower prevalence of atopy among people with prior tuberculosis on univariate analysis (odds ratio 0.57; 95% confidence interval 0.37–0.88) but, after adjustment for potential confounders, this was no longer statistically significant (aOR 0.64, 95% CI 0.41–1.01). The prevalence of allergic rhinitis (aOR 0.76, 95% CI 0.47 to 1.24 and asthma (aOR 1.18, 95% CI 0.69 to 2.00) did not differ significantly between the two groups. We also found no significant difference in the prevalence of elevated exhaled nitric oxide (aOR 1.30, 95% CI 0.78 to 2.17) or a combined index of atopic disease (aOR 0.86, 95% CI 0.54 to 1.36). Conclusion In this urban environment in a middle-income country, prior tuberculosis may be associated with a reduced risk of atopy but does not protect against asthma and atopic disease.
Collapse
Affiliation(s)
- Anthony L Byrne
- The University of Sydney, St. Vincent's Hospital Sydney, Heart Lung Clinic, Xavier Building. 390, Victoria Street, 2010, Australia. .,Socios En Salud Sucursal Perú, Partners In Health, Lima, Peru. .,Centre for Research Excellence in Tuberculosis (TB-CRE), Sydney, Australia. .,Blacktown Hospital Clinical School, University of Western Sydney, Sydney, Australia.
| | - Ben J Marais
- The University of Sydney, St. Vincent's Hospital Sydney, Heart Lung Clinic, Xavier Building. 390, Victoria Street, 2010, Australia.,Centre for Research Excellence in Tuberculosis (TB-CRE), Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), University of Sydney, Sydney, Australia
| | - Carole D Mitnick
- Socios En Salud Sucursal Perú, Partners In Health, Lima, Peru.,Harvard Medical School, Boston, MA, USA
| | - Frances L Garden
- The Woolcock Institute of Medical Research, Sydney, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia
| | - Leonid Lecca
- Socios En Salud Sucursal Perú, Partners In Health, Lima, Peru.,Harvard Medical School, Boston, MA, USA
| | | | - Yaninna Yauri
- Ministry of Health, Red de Salud Lima Ciudad, Lima, Peru
| | - Fanny Garcia
- Socios En Salud Sucursal Perú, Partners In Health, Lima, Peru
| | - Guy B Marks
- The University of Sydney, St. Vincent's Hospital Sydney, Heart Lung Clinic, Xavier Building. 390, Victoria Street, 2010, Australia.,Centre for Research Excellence in Tuberculosis (TB-CRE), Sydney, Australia.,The Woolcock Institute of Medical Research, Sydney, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, Australia.,Ingham Institute of Applied Medical Research, Sydney, Australia
| |
Collapse
|
41
|
Brasier AR. Mechanisms how mucosal innate immunity affects progression of allergic airway disease. Expert Rev Respir Med 2019; 13:349-356. [PMID: 30712413 DOI: 10.1080/17476348.2019.1578211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Activation of antigen-independent inflammation (a.k.a. the 'innate' immune response (IIR)) plays a complex role in allergic asthma (AA). Although activation of the pulmonary IIR by aerosolized bacterial lipopolysaccharide early in life may be protective of AA, respiratory viral infections promote AA. The mechanisms how the mucosal IIR promotes allergic sensitization, remodeling, and altered epithelial signaling are not understood. Areas covered: This manuscript overviews: 1. Mechanistic studies identifying how allergens and viral patterns activate the mucosal IIR; 2. Research that reveals a major role played by specialized epithelial cells in the bronchiolar-alveolar junction in triggering inflammation and remodeling; 3. Reports linking the mucosal IIR with epithelial cell-state change and barrier disruption; and, 4. Observations relating mesenchymal transition with the expansion of the myofibroblast population. Expert commentary: Luminal allergens and viruses activate TLR signaling in key sentinel cells producing epithelial cell state transition, disrupting epithelial barrier function, and expanding the pulmonary myofibroblast population. These signals are transduced through a common NFκB/RelA -bromodomain containing four (BRD4) pathway, an epigenetic remodeling complex reprogramming the genome. Through this pathway, the mucosal IIR is a major modifier of adaptive immunity, AA and acute exacerbation-induced remodeling.
Collapse
Affiliation(s)
- Allan R Brasier
- a Institute for Clinical and Translational Research , University of Wisconsin-Madison School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
42
|
Mendez R, Banerjee S, Bhattacharya SK, Banerjee S. Lung inflammation and disease: A perspective on microbial homeostasis and metabolism. IUBMB Life 2019; 71:152-165. [PMID: 30466159 PMCID: PMC6352907 DOI: 10.1002/iub.1969] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022]
Abstract
It is now well appreciated that the human microbiome plays a significant role in a number of processes in the body, significantly affecting its metabolic, inflammatory, and immune homeostasis. Recent research has revealed that almost every mucosal surface in the human body is associated with a resident commensal microbiome of its own. While the gut microbiome and its role in regulation of host metabolism along with its alteration in a disease state has been well studied, there is a lacuna in understanding the resident microbiota of other mucosal surfaces. Among these, the scientific information on the role of lung microbiota in pulmonary diseases is currently severely limited. Historically, lungs have been considered to be sterile and lung diseases have only been studied in the context of bacterial pathogenesis. Recently however, studies have revealed a resilient microbiome in the upper and lower respiratory tracts and there is increased evidence on its central role in respiratory diseases. Knowledge of lung microbiome and its metabolic fallout (local and systemic) is still in its nascent stages and attracting immense interest in recent times. In this review, we will provide a perspective on lung-associated metabolic disorders defined for lung diseases (e.g., chronic obstructive pulmonary disease, asthma, and respiratory depression due to infection) and correlate it with lung microbial perturbation. Such perturbations may be due to altered biochemical or metabolic stress as well. Finally, we will draw evidence from microbiome and classical microbiology literature to demonstrate how specific lung morbidities associate with specific metabolic characteristics of the disease, and with the role of microbiome in this context. © 2018 IUBMB Life, 71(1):152-165, 2019.
Collapse
Affiliation(s)
- Roberto Mendez
- Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Sulagna Banerjee
- Surgery, Miller School of Medicine, University of Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Florida, USA
| | - Sanjoy K. Bhattacharya
- Bascom Palmer Eye Institute, University of Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Florida, USA
| | - Santanu Banerjee
- Surgery, Miller School of Medicine, University of Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, University of Miami, Florida, USA
| |
Collapse
|
43
|
Abstract
Asthma is a chronic disease of airway inflammation due to excessive T helper cell type 2 (Th2) response. Present treatment based on inhalation of synthetic glucocorticoids can only control Th2-driven chronic eosinophilic inflammation, but cannot change the immune tolerance of the body to external allergens. Regulatory T cells (Tregs) are the main negative regulatory cells of the immune response. Tregs play a great role in regulating allergic, autoimmune, graft-versus-host responses, and other immune responses. In this review, we will discuss the classification and biological characteristics, the established immunomodulatory mechanisms, and the characteristics of induced differentiation of Tregs. We will also discuss the progress of Tregs in the field of asthma. We believe that further studies on the regulatory mechanisms of Tregs will provide better treatments and control strategies for asthma.
Collapse
Affiliation(s)
- Sheng-Tao Zhao
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.,Department of Respiratory Medcine, Kunming General Hospital of Chengdu Military Region, Kunming 650032, China
| | - Chang-Zheng Wang
- Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW We review how an altered microbiome in early life impacts on immune, metabolic, and neurological development, focusing on some of the most widespread diseases related to each of these processes, namely atopic disease, obesity, and autism. RECENT FINDINGS The early development of the microbial communities that inhabit the human body is currently challenged by factors that range from reduced exposure to microbes, antibiotic use, and poor dietary choices to widespread environmental pollution. Recent work has highlighted some of the long-term consequences that early alterations in the establishment of these microbiotas can have for different aspects of human development and health. The long-term consequences of early microbiome alterations for human development and health are only beginning to be understood and will require in-depth investigation in the years to come. A solid understanding of how present day environmental conditions alter microbiome development, and of how an altered microbiome in early life impacts on life-long health, should inform both public health policies and the development of dietary and medical strategies to counteract early microbiota imbalances.
Collapse
Affiliation(s)
- Yvonne Vallès
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill campus, Cave Hill, Barbados
| | - M Pilar Francino
- Unitat Mixta d'Investigació en Genòmica i Salut, Fundació per al Foment de la Investigació Sanitària i Biomèdica de la Comunitat Valenciana (FISABIO-Salut Pública)/Institut de Biologia Integrativa de Sistemes (Universitat de València), Avda. Catalunya 21, 46020, València, Spain.
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
45
|
Abstract
In this Review, I present evidence supporting a multifactorial causation of childhood acute lymphoblastic leukaemia (ALL), a major subtype of paediatric cancer. ALL evolves in two discrete steps. First, in utero initiation by fusion gene formation or hyperdiploidy generates a covert, pre-leukaemic clone. Second, in a small fraction of these cases, the postnatal acquisition of secondary genetic changes (primarily V(D)J recombination-activating protein (RAG) and activation-induced cytidine deaminase (AID)-driven copy number alterations in the case of ETS translocation variant 6 (ETV6)-runt-related transcription factor 1 (RUNX1)+ ALL) drives conversion to overt leukaemia. Epidemiological and modelling studies endorse a dual role for common infections. Microbial exposures earlier in life are protective but, in their absence, later infections trigger the critical secondary mutations. Risk is further modified by inherited genetics, chance and, probably, diet. Childhood ALL can be viewed as a paradoxical consequence of progress in modern societies, where behavioural changes have restrained early microbial exposure. This engenders an evolutionary mismatch between historical adaptations of the immune system and contemporary lifestyles. Childhood ALL may be a preventable cancer.
Collapse
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
46
|
Feng P, Chai J, Yi H, Redding K, Margolskee RF, Huang L, Wang H. Aggravated gut inflammation in mice lacking the taste signaling protein α-gustducin. Brain Behav Immun 2018; 71:23-27. [PMID: 29678794 PMCID: PMC6003866 DOI: 10.1016/j.bbi.2018.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating immune-related condition that affects over 1.4 million Americans. Recent studies indicate that taste receptor signaling is involved in much more than sensing food flavor, and taste receptors have been localized in a variety of extra-oral tissues. One of the newly revealed functions of taste receptors and downstream signaling proteins is modulation of immune responses to microbes and parasites. We previously found that components of the taste receptor signaling pathway are expressed in subsets of the intestinal epithelial cells. α-Gustducin, a key G-protein α subunit involved in sweet, umami, and bitter taste receptor signaling, is expressed in the intestinal mucosa. In this study, we investigated the role of α-gustducin in regulation of gut mucosal immunity and inflammation using α-gustducin knockout mice in the dextran sulfate sodium (DSS)-induced IBD model. DSS is a chemical colitogen that can cause intestinal epithelial damage and inflammation. We analyzed DSS-induced colitis in α-gustducin knockout versus wild-type control mice after administration of DSS in drinking water. Our results show that the knockout mice had aggravated weight loss, diarrhea, intestinal bleeding, and inflammation over the experimental period compared to wild-type mice, concurrent with augmented immune cell infiltration and increased expression of TNF and IFN-γ but decreased expression of IL-13 and IL-5 in the colon. These results suggest that the taste receptor signaling pathway may play critical roles in regulating gut immune balance and inflammation.
Collapse
Affiliation(s)
- Pu Feng
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Jinghua Chai
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyun, Shanxi 030006, China
| | - Kevin Redding
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | | | - Liquan Huang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA; Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hong Wang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Li P, Rios Coronado PE, Longstaff XRR, Tarashansky AJ, Wang B. Nanomedicine Approaches Against Parasitic Worm Infections. Adv Healthc Mater 2018; 7:e1701494. [PMID: 29602254 DOI: 10.1002/adhm.201701494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Indexed: 01/10/2023]
Abstract
Nanomedicine approaches have the potential to transform the battle against parasitic worm (helminth) infections, a major global health scourge from which billions are currently suffering. It is anticipated that the intersection of two currently disparate fields, nanomedicine and helminth biology, will constitute a new frontier in science and technology. This progress report surveys current innovations in these research fields and discusses research opportunities. In particular, the focus is on: (1) major challenges that helminth infections impose on mankind; (2) key aspects of helminth biology that inform future research directions; (3) efforts to construct nanodelivery platforms to target drugs and genes to helminths hidden in their hosts; (4) attempts in applying nanotechnology to enable vaccination against helminth infections; (5) outlooks in utilizing nanoparticles to enhance immunomodulatory activities of worm-derived factors to cure allergy and autoimmune diseases. In each section, achievements are summarized, limitations are explored, and future directions are assessed.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| | | | | | | | - Bo Wang
- Department of Bioengineering; Stanford University; Stanford CA 94305 USA
| |
Collapse
|
48
|
Karagiannis F, Wilhelm C. Innate lymphoid cells—key immune integrators of overall body homeostasis. Semin Immunopathol 2018; 40:319-330. [DOI: 10.1007/s00281-018-0684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
|
49
|
Terhune TD, Deth RC. Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E901. [PMID: 29751492 PMCID: PMC5981940 DOI: 10.3390/ijerph15050901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
There are similarities between the immune response following immunization with aluminum adjuvants and the immune response elicited by some helminthic parasites, including stimulation of immunoglobulin E (IgE) and eosinophilia. Immunization with aluminum adjuvants, as with helminth infection, induces a Th2 type cell mediated immune response, including eosinophilia, but does not induce an environment conducive to the induction of regulatory mechanisms. Helminths play a role in what is known as the hygiene hypothesis, which proposes that decreased exposure to microbes during a critical time in early life has resulted in the increased prevalence and morbidity of asthma and atopic disorders over the past few decades, especially in Western countries. In addition, gut and lung microbiome composition and their interaction with the immune system plays an important role in a properly regulated immune system. Disturbances in microbiome composition are a risk factor for asthma and allergies. We propose that immunization with aluminum adjuvants in general is not favorable for induction of regulatory mechanisms and, in the context of the hygiene hypothesis and microbiome theory, can be viewed as an amplifying factor and significant contributing risk factor for allergic diseases, especially in a genetically susceptible subpopulation.
Collapse
Affiliation(s)
- Todd D Terhune
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | - Richard C Deth
- College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, 1382 Terry Bldg, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
50
|
Wypych TP, Marsland BJ. Antibiotics as Instigators of Microbial Dysbiosis: Implications for Asthma and Allergy. Trends Immunol 2018; 39:697-711. [PMID: 29655522 DOI: 10.1016/j.it.2018.02.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
The human body and its resident microbiota form a complex ecosystem, shaped by both inherited and environmental factors. The use of antibiotics represents an extreme example of environmental pressure and can broadly disrupt the microbial landscape. The benefits that antibiotics have brought to modern medicine are unquestionable; however, their overuse comes with consequences, including the potential for secondary infections by opportunistic pathogens and the spread of antibiotic resistance. Here, we discuss the implications of microbial dysbiosis driven by antibiotics, with a focus on potential links with allergy and asthma. We review epidemiological data on humans, as well as mechanistic studies performed in animal models, and highlight gaps in current knowledge, which if addressed, could drive the design of novel therapeutic strategies and improved clinical care.
Collapse
Affiliation(s)
- Tomasz P Wypych
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland.
| | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|