1
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Osycka-Salut CE, Waremkraut M, Garaguso R, Piga E, Martínez-León E, Marín-Briggiler CI, Gervasi MG, Navarro M, Visconti PE, Buffone MG, Mutto AA, Krapf D. Treatment of cryopreserved bovine sperm with calcium ionophore A23187 increases in vitro embryo production. Theriogenology 2024; 229:1-7. [PMID: 39133991 DOI: 10.1016/j.theriogenology.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components. In this study, we aimed at establishing a new capacitation protocol for bovine sperm, using calcium ionophore. Similar to our findings using mouse sperm, bovine sperm treated with Ca2+ ionophore A23187 were quickly immobilized. However, these sperm initiated capacitation after ionophore removal in fresh medium without heparin, and independent of the Protein Kinase A. When A23187-treated sperm were used on in vitro fertilization (IVF) procedures without heparin, eggs showed cleavage rates similar to standardized IVF protocols using heparin containg synthetic oviduct fluid (IVF-SOF). However, when A23187 pre-treated sperm were further used for inseminating eggs in complete IVF-SOF-heparin, a significantly higher percentage of embryo development was observed, suggesting a synergism between two different signaling pathways during bovine sperm capacitation. These results have the potential to improve current protocols for bovine IVF that could also be applied in other species of commercial interest.
Collapse
Affiliation(s)
- C E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - M Waremkraut
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - R Garaguso
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - E Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina
| | - E Martínez-León
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín", CABA, 1120, Argentina
| | - C I Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - M G Gervasi
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina
| | - P E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - M G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas (IIBio-UNSAM-CONICET), Buenos Aires C1650, Argentina.
| | - D Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina.
| |
Collapse
|
3
|
Novero AG, Rodríguez PT, De la Vega Beltrán JL, Schiavi-Ehrenhaus LJ, Luque GM, Carruba M, Stival C, Gentile I, Ritagliati C, Santi CM, Nishigaki T, Krapf D, Buffone MG, Darszon A, Treviño CL, Krapf D. The sodium-proton exchangers sNHE and NHE1 control plasma membrane hyperpolarization in mouse sperm. J Biol Chem 2024:107932. [PMID: 39476963 DOI: 10.1016/j.jbc.2024.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Sperm capacitation is a complex process that takes place in the female reproductive tract and empowers mammalian sperm with the competence to fertilize an egg. It consists of an intricate cascade of events that can be mimicked in vitro through incubation in a medium containing essential components such as bicarbonate, albumin, Ca2+ and energy substrates, among others. Genetic and pharmacological studies have underscored the unique significance of the K+ channel SLO3 in membrane potential hyperpolarization, as evidenced by the infertility of mice lacking its expression. Notably, two key molecular events, sperm hyperpolarization and intracellular alkalinization, are central to the capacitation process. SLO3 is activated by alkalinization. However, the molecular mechanisms responsible for intracellular alkalization and activation of SLO3 are not completely understood. In this study, we examined the impact of Na+/H+ exchangers on mouse sperm membrane hyperpolarization during capacitation. Pharmacological inhibition of the NHE1 exchanger blocked membrane hyperpolarization. A similar effect was observed in sperm deficient of the Ca2+ channel CatSper, because of NHE1 not being activated by Ca2+. In addition, the sperm specific NHE (sNHE) KO, did not show membrane hyperpolarization upon capacitation or induction with cAMP analogues. Our results show that sNHE is dually modulated by cAMP and membrane hyperpolarization probably through its cyclic nucleotide binding domain and the voltage-sensor motif respectively. Together, sNHE and NHE1provide the alkalinization need for SLO3 activation during capacitation.
Collapse
Affiliation(s)
- Analia G Novero
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | | | | | - Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Carruba
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Cintia Stival
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Iñaki Gentile
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Carla Ritagliati
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis Missouri 63110, USA
| | | | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80526, USA
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina.
| |
Collapse
|
4
|
Xie Q, Zhang H, Zhuang Y, Liu J, Huang Z, Zhang X, Ma K, Liu W, Xie M, Huang C, Zhong X, Chen F, Zou F, Zhang W, Qiu C, Sun C, Kang X, Chen Z, Zhang G. Cpne1 deficiency preserves sperm motility under Ca 2+ channel blockade. J Reprod Dev 2024; 70:309-319. [PMID: 39010238 PMCID: PMC11461524 DOI: 10.1262/jrd.2024-027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Calcium ions (Ca2+) play crucial roles in sperm motility and fertilization. The copine (CPNE) family comprises several Ca2+-dependent phospholipid-binding proteins. Of these, CPNE1 is extensively expressed in mammalian tissues; however, its precise role in testicular development and spermatogenesis is yet to be fully characterized. In this study, we used proteomics to analyze testicular biopsies and found that levels of CPNE1 were significantly reduced in patients with non-obstructive azoospermia (defective spermatogenesis) compared to those in patients with obstructive azoospermia (physiological spermatogenesis). In mice, CPNE1 is expressed at various stages of germ cell development and is associated with the Golgi apparatus. Ultimately, CPNE1 is expressed in the flagella of mature sperms. To further examine the role of CPNE1, we developed a Cpne1 knockout mouse model. Analysis showed that the loss of Cpne1 did not impair testicular development, spermatogenesis, or sperm morphology and motility in physiological conditions. When treated with gadolinium (III) chloride or 2-aminoethoxydiphenyl borate, known inhibitors of store-operated Ca2+ entry, Ca2+ signals and sperm motility were significantly compromised in wild-type mice; however, both mechanisms were conserved in KO mice. These results suggested that CPNE1 is dispensable for testicular development, spermatogenesis or sperm motility in physiological conditions. In addition, CPNE1 may represent a target of Ca2+ channel inhibitors and may therefore be implicated in the regulation of Ca2+ signaling and sperm motility.
Collapse
Affiliation(s)
- Qiang Xie
- Center for Reproduction, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Guangdong 523018, P. R. China
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, P. R. China
| | - Yuge Zhuang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Guangdong 528244, P. R. China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Jinsheng Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Zicong Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Xiaoyuan Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Ke Ma
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Wenyuan Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Minyu Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, P. R. China
| | - Chuyu Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangdong 510515, P. R. China
| | - Xiaojing Zhong
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangdong 511499, P. R. China
| | - Feilong Chen
- Department of Pathology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangdong 511499, P. R. China
| | - Feng Zou
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Guangdong 528244, P. R. China
| | - Wansong Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Guangdong 528244, P. R. China
| | - Chunming Qiu
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Guangdong 528244, P. R. China
| | - Canbiao Sun
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Guangdong 528244, P. R. China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, P. R. China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangdong 510515, P. R. China
| | - Guofei Zhang
- Department of Urology, The Seventh Affiliated Hospital, Southern Medical University, Guangdong 528244, P. R. China
| |
Collapse
|
5
|
Johnston DS. Pre-clinical and early clinical considerations for the development of non-hormonal contraceptives for men. Andrology 2024; 12:1558-1567. [PMID: 39078256 DOI: 10.1111/andr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION This manuscript presents non-hormonal male contraceptive development in the context of mitigating risk to investigators and investors. OBJECTIVE The manuscript uses examples to illustrate drug development principles to move a project from discovery to development. The content is intended for those with reproductive biology backgrounds without significant exposure to drug development-particularly early-stage targeted drug development-and those with general interest in developing non-hormonal methods of contraception. CONCLUSION The goal of issues addressed in this manuscript is to facilitate the advancement of innovative male contraceptives into late-stage clinical trials, while keeping in mind early recognition of program deficiencies and development of mitigation strategies, or reassignment of limited, valuable resources.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Fertility and Infertility Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Yan W, Amory JK. Emerging approaches to male contraception. Andrology 2024; 12:1568-1573. [PMID: 38716676 PMCID: PMC11461125 DOI: 10.1111/andr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Currently, approximately half of all pregnancies worldwide are unintended. Contraceptive use significantly reduces the risk of unintended pregnancy; however, options for men are particularly limited. Consequently, efforts are underway to develop novel, safe, and effective male contraceptives. RESULTS This review discusses research into emerging male contraceptive methods that either inhibit sperm production or impair sperm function. It focuses on those in the preclinical or early clinical stages of development.
Collapse
Affiliation(s)
- Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - John K Amory
- Department of Medicine, Center for Research in Reproduction and Contraception, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
8
|
Dubey NK, Kumar V, Goswami C. Sperm-Specific CatSper is Not Conserved in All Vertebrates and May Not be the Only Progesterone-Responsive Ion Channel Present in Sperm. J Membr Biol 2024; 257:215-230. [PMID: 38970681 PMCID: PMC11289002 DOI: 10.1007/s00232-024-00316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Progesterone (P4) acts as a key conserved signalling molecule in vertebrate reproduction. P4 is especially important for mature sperm physiology and subsequent reproductive success. "CatSpermasome", a multi-unit molecular complex, has been suggested to be the main if not the only P4-responsive atypical Ca2+-ion channel present in mature sperm. Altogether, here we analyse the protein sequences of CatSper1-4 from more than 500 vertebrates ranging from early fishes to humans. CatSper1 becomes longer in mammals due to sequence gain mainly at the N-terminus. Overall the conservation of full-length CatSper1-4 as well as the individual TM regions remain low. The lipid-water-interface residues (i.e. a 5 amino acid stretch sequence present on both sides of each TM region) also remain highly diverged. No specific patterns of amino acid distributions were observed. The total frequency of positively charged, negatively charged or their ratios do not follow in any specific pattern. Similarly, the frequency of total hydrophobic, total hydrophilic residues or even their ratios remain random and do not follow any specific pattern. We noted that the CatSper1-4 genes are missing in amphibians and the CatSper1 gene is missing in birds. The high variability of CatSper1-4 and gene-loss in certain clades indicate that the "CatSpermasome" is not the only P4-responsive ion channel. Data indicate that the molecular evolution of CatSper is mostly guided by diverse hydrophobic ligands rather than only P4. The comparative data also suggest possibilities of other Ca2+-channel/s in vertebrate sperm that can also respond to P4.
Collapse
Affiliation(s)
- Nishant Kumar Dubey
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, 752050, Odisha, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Vikash Kumar
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, 752050, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, 752050, Odisha, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
9
|
Priego Espinosa D, Espinal-Enríquez J, Aldana A, Aldana M, Martínez-Mekler G, Carneiro J, Darszon A. Reviewing mathematical models of sperm signaling networks. Mol Reprod Dev 2024; 91:e23766. [PMID: 39175359 DOI: 10.1002/mrd.23766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024]
Abstract
Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.
Collapse
Affiliation(s)
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine (INMEGEN), Mexico City, Mexico
| | - Andrés Aldana
- Network Science Institute, Northeastern University, Boston, Massachusetts, USA
| | - Maximino Aldana
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Mexico City, México
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jorge Carneiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| |
Collapse
|
10
|
Kim J, So B, Heo Y, So H, Jo JK. Advances in Male Contraception: When Will the Novel Male Contraception be Available? World J Mens Health 2024; 42:487-501. [PMID: 38164023 PMCID: PMC11216971 DOI: 10.5534/wjmh.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 01/03/2024] Open
Abstract
Many contraceptive methods have been developed over the years due to high demand. However, female contraceptive pills and devices do not work for all females due to health conditions and side effects. Also, the number of males who want to actively participate in family planning is gradually increasing. However, the only contraceptive options currently available to males are condoms and vasectomy. Therefore, many male contraceptive methods, including medication (hormonal and non-hormonal therapy) and mechanical methods, are under development. Reversibility, safety, persistence, degree of invasion, promptness, and the suppression of anti-sperm antibody formation are essential factors in the development of male contraceptive methods. In this paper, male contraceptive methods under development are reviewed according to those essential factors. Furthermore, the timeline for the availability of a new male contraception is discussed.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Yongki Heo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea.
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea.
| |
Collapse
|
11
|
González LN, Giaccagli MM, Herzfeld JD, Cuasnicú PS, Da Ros VG, Cohen DJ. A side-by-side comparison of different capacitation media in developing mouse sperm fertilizing ability. Sci Rep 2024; 14:14287. [PMID: 38907001 PMCID: PMC11192932 DOI: 10.1038/s41598-024-65134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.
Collapse
Affiliation(s)
- Lucas N González
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - María M Giaccagli
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jael D Herzfeld
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia S Cuasnicú
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina
| | - Débora J Cohen
- Instituto de Biología y Medicina Experimental (IBYME), Fundación IBYME, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428ADN, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
12
|
Ribeiro RP, Null RW, Özpolat BD. Sex-biased gene expression precedes sexual dimorphism in the agonadal annelid Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598746. [PMID: 38915681 PMCID: PMC11195272 DOI: 10.1101/2024.06.12.598746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Gametogenesis is the process by which germ cells differentiate into mature sperm and oocytes, cells essential for sexual reproduction. The sex-specific molecular programs that drive spermatogenesis and oogenesis can also serve as sex identification markers. Platynereis dumerilii is a research organism that has been studied in many areas of developmental biology. However investigations often disregard sex, as P. dumerilii juveniles lack sexual dimorphism. The molecular mechanisms of gametogenesis in the segmented worm P. dumerilii are also largely unknown. In this study, we used RNA sequencing to investigate the transcriptomic profiles of gametogenesis in P. dumerilii juveniles. Our analysis revealed that sex-biased gene expression becomes increasingly pronounced during the advanced developmental stages, particularly during the meiotic phases of gametogenesis. We identified conserved genes associated with spermatogenesis, such as dmrt1, and a novel gene psmt, that is associated with oogenesis. Additionally, putative long non-coding RNAs were upregulated in both male and female gametogenic programs. This study provides a foundational resource for germ cell research in P. dumerilii, markers for sex identification, and offers comparative data to enhance our understanding of the evolution of gametogenesis mechanisms across species.
Collapse
Affiliation(s)
- Rannyele P Ribeiro
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Ryan W Null
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
| | - B Duygu Özpolat
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
13
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
14
|
Goto S, Takahashi T, Sato T, Toyama F, Takayama-Watanabe E, Watanabe A. A CatSper-Uninvolved Mechanism to Induce Forward Sperm Motility in the Internal Fertilization. Zoolog Sci 2024; 41:302-313. [PMID: 38809869 DOI: 10.2108/zs230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/04/2024] [Indexed: 05/31/2024]
Abstract
Sperm-specific cation channel (CatSper), sperm-specific Na + /H + exchanger (sNHE), and soluble adenylyl cyclase (sAC) are necessary in the signaling pathways to control sperm motility in many animals, whereas some animals have lost some or all of them. In the present study, we examined CatSper-uninvolved signaling for vigorous undulation of the undulating membrane that is attached to the sperm tail and gives thrust for forward motility in the internally fertilizing newt Cynops pyrrhogaster. Reverse-transcription PCR failed to detect sNHE in the newt sperm. However, the pH of sperm cytoplasm was raised under a high extracellular pH equivalent to that of egg jelly, where sperm motility is initiated by sperm motility-initiating substance (SMIS). Carbonic anhydrase XII/ XVI and SLC4A4/8 were suggested to be present in the sperm, and transported bicarbonates raised the intracellular pH. In egg jelly extract that contained SMIS, the anion transporter inhibitor DIDS weakened the undulation of the undulating membrane, while bicarbonates enhanced it. The cyclic AMP concentration was found to increase in sperm cytoplasm in the egg-jelly extract. An inhibitor of sAC (KH7) weakened the undulation of the undulating membrane, and dibutyryl cyclic AMP blocked the inhibitory effect. Inhibitor of transmembrane AC (DDA) limitedly affected the undulation. The undulation was weakened by an inhibitor of protein kinase A (H89), and by an inhibitor of transient receptor potential (TRP) channels (RN1747). Our results support the conclusions that the high pH of the egg jelly triggers a signaling pathway through sAC, PKA, and TRP channels, and coacts with SMIS to induce forward sperm motility.
Collapse
Affiliation(s)
- Sayuri Goto
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan
| | - Tomoe Takahashi
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan
| | - Tae Sato
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan
| | - Fubito Toyama
- Graduate School of Engineering, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | | | - Akihiko Watanabe
- Faculty of Science, Biological Division, Yamagata University, Yamagata 990-8560, Japan,
| |
Collapse
|
15
|
Chawre S, Khatib MN, Rawekar A, Mahajan S, Jadhav R, More A. A Review of Semen Analysis: Updates From the WHO Sixth Edition Manual and Advances in Male Fertility Assessment. Cureus 2024; 16:e63485. [PMID: 39081428 PMCID: PMC11286598 DOI: 10.7759/cureus.63485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Semen analysis is essentially used to check the fertility of a man, especially when couples are having difficulties conceiving. Studies concerning male fertility, testicular factors, and seminal characteristics have been under investigation for the last few decades. In 1980, the World Health Organization (WHO) started reaching out to scientists in order to set standards for high-quality semen and develop a semen manual. From this point to the present, six editions of this manual have been produced, delineating the characteristics of semen and reporting protocols for semen analysis. Sperm morphology is analyzed as per WHO norms to measure the biological capacity of a male for reproduction. Both national and international manuals have been developed, with the latest, the sixth edition, produced in July 2021. This review paper conveys the current WHO publication's updates and identifies the clinical recommendations for proper evaluations. The publication considers the characteristics of semen in order to discuss the content of the previous editions of the WHO. It is also utilized to assess the method applied to determine the DNA presence of sperm fragmentation.
Collapse
Affiliation(s)
- Sunil Chawre
- Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mahalaqua Nazli Khatib
- School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Alka Rawekar
- Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sanket Mahajan
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ritesh Jadhav
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akash More
- Clinical Embryology, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
16
|
Shi W, Zhang Z, Li M, Dong H, Li J. Reproductive toxicity of PFOA, PFOS and their substitutes: A review based on epidemiological and toxicological evidence. ENVIRONMENTAL RESEARCH 2024; 250:118485. [PMID: 38373549 DOI: 10.1016/j.envres.2024.118485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have already drawn a lot of attention for their accumulation and reproductive toxicity in organisms. Perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS), two representative PFAS, are toxic to humans and animals. Due to their widespread use in environmental media with multiple toxicities, PFOA and PFOS have been banned in numerous countries, and many substitutes have been produced to meet market requirements. Unfortunately, most alternatives to PFOA and PFOS have proven to be cumulative and highly toxic. Of the reported multiple organ toxicities, reproductive toxicity deserves special attention. It has been confirmed through epidemiological studies that PFOS and PFOA are not only associated with reduced testosterone levels in humans, but also with an association with damage to the integrity of the blood testicular barrier. In addition, for women, PFOA and PFOS are correlated with abnormal sex hormone levels, and increase the risk of infertility and abnormal menstrual cycle. Nevertheless, there is controversial evidence on the epidemiological relationship that exists between PFOA and PFOS as well as sperm quality and reproductive hormones, while the evidence from animal studies is relatively consistent. Based on the published papers, the potential toxicity mechanisms for PFOA, PFOS and their substitutes were reviewed. For males, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Apoptosis and autophagy in spermatogenic cells; (2) Apoptosis and differentiation disorders of Leydig cells; (3) Oxidative stress in sperm and disturbance of Ca2+ channels in sperm membrane; (4) Degradation of delicate intercellular junctions between Sertoli cells; (5) Activation of brain nuclei and shift of hypothalamic metabolome. For females, PFOA and PFOS may produce reproductive toxicity in the following five ways: (1) Damage to oocytes through oxidative stress; (2) Inhibition of corpus luteum function; (3) Inhibition of steroid hormone synthesis; (4) Damage to follicles by affecting gap junction intercellular communication (GJIC); (5) Inhibition of placental function. Besides, PFAS substitutes show similar reproductive toxicity with PFOA and PFOS, and are even more toxic to the placenta. Finally, based on the existing knowledge, future developments and direction of efforts in this field are suggested.
Collapse
Affiliation(s)
- Wenshan Shi
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
18
|
Zhang G, Sun Y, Guan M, Liu M, Sun S. Single-cell and spatial transcriptomic investigation reveals the spatiotemporal specificity of the beta-defensin gene family during mouse sperm maturation. Cell Commun Signal 2024; 22:267. [PMID: 38745232 PMCID: PMC11092205 DOI: 10.1186/s12964-024-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.
Collapse
Affiliation(s)
| | - Yuanchao Sun
- Qingdao Agricultural University, Qingdao, China
- Qingdao University, Qingdao, China
| | - Minkai Guan
- Qingdao Agricultural University, Qingdao, China
| | | | - Shiduo Sun
- Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Balestrini PA, Sulzyk V, Jabloñski M, Schiavi-Ehrenhaus LJ, González SN, Ferreira JJ, Gómez-Elías MD, Pomata P, Luque GM, Krapf D, Cuasnicu PS, Santi CM, Buffone MG. Membrane potential hyperpolarization: a critical factor in acrosomal exocytosis and fertilization in sperm within the female reproductive tract. Front Cell Dev Biol 2024; 12:1386980. [PMID: 38803392 PMCID: PMC11128623 DOI: 10.3389/fcell.2024.1386980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.
Collapse
Affiliation(s)
- Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Valeria Sulzyk
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Liza J. Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Soledad N. González
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Juan J. Ferreira
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matías D. Gómez-Elías
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Pablo Pomata
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| | - Celia M. Santi
- Department of OB/GYN, Washington University School of Medicine, Saint Louis, MO, United States
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IByME)-Consejo Nacional de Investigaciones Científicas y Tícnicas, Buenos Aires, Argentina
| |
Collapse
|
20
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
21
|
Hwang JY. Sperm hyperactivation and the CatSper channel: current understanding and future contribution of domestic animals. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:443-456. [PMID: 38975583 PMCID: PMC11222122 DOI: 10.5187/jast.2023.e133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 07/09/2024]
Abstract
In female tract, mammalian sperm develop hyperactivated motility which is a key physiological event for sperm to fertilize eggs. This motility change is triggered by Ca2+ influx via the sperm-specific Ca2+ channel, CatSper. Although previous studies in human and mice largely contributed to understanding CatSper and Ca2+ signaling for sperm hyperactivation, the differences on their activation mechanisms are not well understood yet. There are several studies to examine expression and significance of the CatSper channel in non-human and non-mouse models, such as domestic animals. In this review, I summarize key knowledge for the CatSper channel from previous studies and propose future aspects for CatSper study using sperm from domestic animals.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
22
|
Lee KH, Hwang JY. Ca 2+ homeostasis and male fertility: a target for a new male contraceptive system. Anim Cells Syst (Seoul) 2024; 28:171-183. [PMID: 38686363 PMCID: PMC11057403 DOI: 10.1080/19768354.2024.2345647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Ca2+ is a key secondary messenger that determines sperm motility patterns. Mammalian sperm undergo capacitation, a process to acquire fertilizing ability, in the female reproductive tract. Capacitated sperm change their flagellar waveform to develop hyperactivated motility, which is crucial for successful sperm navigation to the eggs and fertilization. The sperm-specific channel, CATSPER, and an ATPase transporter, PMCA4, serve as major paths for Ca2+ influx and efflux, respectively, in sperm. The ionic paths coordinate Ca2+ homeostasis in the sperm, and their loss-of-function impairs sperm motility, to cause male infertility. In this review, we summarize the physiological significance of these two Ca2+ gates and suggest their potential applications in novel male contraceptives.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| | - Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Institute of Systems Biology, Pusan National University, Busan, South Korea
| |
Collapse
|
23
|
Fujikura M, Fujinoki M. Progesterone and estradiol regulate sperm hyperactivation and in vitro fertilization success in mice. J Reprod Dev 2024; 70:96-103. [PMID: 38346725 PMCID: PMC11017098 DOI: 10.1262/jrd.2023-080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/13/2024] [Indexed: 04/05/2024] Open
Abstract
Progesterone (P) and 17β-estradiol (Eβ) form the well-known hormone pair that regulates sperm capacitation. Here, we examined the regulatory effects of P and Eβ on sperm hyperactivation in mice and evaluated the in vitro fertilization (IVF) success. Although P enhanced hyperactivation, Eβ dose-dependently suppressed the P-enhanced hyperactivation. Moreover, P increased IVF success, whereas Eβ suppressed the P-induced increase in IVF success in a dose-dependent manner. Thus, P and Eβ competitively regulate hyperactivation and IVF success in mice. Since P and Eβ concentrations generally change during the estrous cycle, sperm are speculated to capacitate in response to the oviductal environment and fertilize the oocyte.
Collapse
Affiliation(s)
- Miyu Fujikura
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Masakatsu Fujinoki
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
24
|
Martín-Hidalgo D, Solar-Málaga S, González-Fernández L, Zamorano J, García-Marín LJ, Bragado MJ. The compound YK 3-237 promotes pig sperm capacitation-related events. Vet Res Commun 2024; 48:773-786. [PMID: 37906355 PMCID: PMC10998788 DOI: 10.1007/s11259-023-10243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Before fertilization of the oocyte, the spermatozoa must undergo through a series of biochemical changes in the female reproductive tract named sperm capacitation. Spermatozoa regulates its functions by post-translational modifications, being historically the most studied protein phosphorylation. In addition to phosphorylation, recently, protein acetylation has been described as an important molecular mechanism with regulatory roles in several reproductive processes. However, its role on the mammal's sperm capacitation process remains unraveled. Sirtuins are a deacetylase protein family with 7 members that regulate protein acetylation. Here, we investigated the possible role of SIRT1 on pig sperm capacitation-related events by using YK 3-237, a commercial SIRT1 activator drug. SIRT1 is localized in the midpiece of pig spermatozoa. Protein tyrosine phosphorylation (focused at p32) is an event associated to pig sperm capacitation that increases when spermatozoa are in vitro capacitated in presence of YK 3-237. Eventually, YK 3-237 induces acrosome reaction in capacitated spermatozoa: YK 3-237 treatment tripled (3.40 ± 0.40 fold increase) the percentage of acrosome-reacted spermatozoa compared to the control. In addition, YK 3-237 induces sperm intracellular pH alkalinization and raises the intracellular calcium levels through a CatSper independent mechanism. YK 3-237 was not able to bypass sAC inhibition by LRE1. In summary, YK 3-237 promotes pig sperm capacitation by a mechanism upstream of sAC activation and independent of CatSper calcium channel.
Collapse
Affiliation(s)
- David Martín-Hidalgo
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España.
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España.
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain.
| | - Soraya Solar-Málaga
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - Lauro González-Fernández
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - José Zamorano
- Unidad de Investigación, Complejo Hospitalario Universitario de Cáceres, Avenida Pablo Naranjo s/n, Cáceres, 10003, Spain
| | - Luis Jesús García-Marín
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| | - María Julia Bragado
- Departamento de Fisiología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avenida de Elvas s/n, Badajoz, 06006, España
- Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C. Universidad de Extremadura, Cáceres, España
| |
Collapse
|
25
|
Cormier N, Worsham AE, Rich KA, Hardy DM. SMA20/PMIS2 Is a Rapidly Evolving Sperm Membrane Alloantigen with Possible Species-Divergent Function in Fertilization. Int J Mol Sci 2024; 25:3652. [PMID: 38612464 PMCID: PMC11011635 DOI: 10.3390/ijms25073652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Immunodominant alloantigens in pig sperm membranes include 15 known gene products and a previously undiscovered Mr 20,000 sperm membrane-specific protein (SMA20). Here we characterize SMA20 and identify it as the unannotated pig ortholog of PMIS2. A composite SMA20 cDNA encoded a 126 amino acid polypeptide comprising two predicted transmembrane segments and an N-terminal alanine- and proline (AP)-rich region with no apparent signal peptide. The Northern blots showed that the composite SMA20 cDNA was derived from a 1.1 kb testis-specific transcript. A BLASTp search retrieved no SMA20 match from the pig genome, but it did retrieve a 99% match to the Pmis2 gene product in warthog. Sequence identity to predicted PMIS2 orthologs from other placental mammals ranged from no more than 80% overall in Cetartiodactyla to less than 60% in Primates, with the AP-rich region showing the highest divergence, including, in the extreme, its absence in most rodents, including the mouse. SMA20 immunoreactivity localized to the acrosome/apical head of methanol-fixed boar spermatozoa but not live, motile cells. Ultrastructurally, the SMA20 AP-rich domain immunolocalized to the inner leaflet of the plasma membrane, the outer acrosomal membrane, and the acrosomal contents of ejaculated spermatozoa. Gene name search failed to retrieve annotated Pmis2 from most mammalian genomes. Nevertheless, individual pairwise interrogation of loci spanning Atp4a-Haus5 identified Pmis2 in all placental mammals, but not in marsupials or monotremes. We conclude that the gene encoding sperm-specific SMA20/PMIS2 arose de novo in Eutheria after divergence from Metatheria, whereupon rapid molecular evolution likely drove the acquisition of a species-divergent function unique to fertilization in placental mammals.
Collapse
Affiliation(s)
- Nathaly Cormier
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA
| | - Asha E. Worsham
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Kinsey A. Rich
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.E.W.); (K.A.R.)
| |
Collapse
|
26
|
Novero AG, Rodríguez PT, De la Vega Beltrán JL, Schiavi-Ehrenhaus LJ, Luque GM, Carruba M, Stival C, Gentile I, Ritagliati C, Santi CM, Nishigaki T, Krapf D, Buffone MG, Darszon A, Treviño CL, Krapf D. The sodium-proton exchangers sNHE and NHE1 control plasma membrane hyperpolarization in mouse sperm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583310. [PMID: 38496535 PMCID: PMC10942401 DOI: 10.1101/2024.03.04.583310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sperm capacitation, crucial for fertilization, occurs in the female reproductive tract and can be replicated in vitro using a medium rich in bicarbonate, calcium, and albumin. These components trigger the cAMP-PKA signaling cascade, proposed to promote hyperpolarization of the mouse sperm plasma membrane through activation of SLO3 K+ channel. Hyperpolarization is a hallmark of capacitation: proper membrane hyperpolarization renders higher in vitro fertilizing ability, while Slo3 KO mice are infertile. However, the precise regulation of SLO3 opening remains elusive. Our study challenges the involvement of PKA in this event and reveals the role of Na+/H+ exchangers. During capacitation, calcium increase through CatSper channels activates NHE1, while cAMP directly stimulates the sperm-specific NHE, collectively promoting the alkalinization threshold needed for SLO3 opening. Hyperpolarization then feeds back Na+/H+ activity. Our work is supported by pharmacology, and a plethora of KO mouse models, and proposes a novel pathway leading to hyperpolarization.
Collapse
Affiliation(s)
- Analia G Novero
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | | | | | - Liz J Schiavi-Ehrenhaus
- Instituto de Bíologia y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Bíologia y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Carruba
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Cintia Stival
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Iñaki Gentile
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Carla Ritagliati
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis Missouri 63110, USA
| | | | - Diego Krapf
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80526, USA
| | - Mariano G Buffone
- Instituto de Bíologia y Medicina Experimental (IBYME-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, and Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario SF2000, Argentina
| |
Collapse
|
27
|
Guignard S, Guillaume C, Tornero L, Moreau J, Carles M, Isus F, Huyghe É, Ravel C, Vergnolle N, Deraison C, Bonnart C, Gatimel N. Involvement of CATSPER 2 mutation in a familial context of unexplained infertility and fertilization failure associated with hearing loss: a case report. F S Rep 2024; 5:114-122. [PMID: 38524220 PMCID: PMC10958707 DOI: 10.1016/j.xfre.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 03/26/2024] Open
Abstract
Objective To explore the functional implications of a homozygous CATSPER 2 (cation channel for sperm) deletion within the acrosome reaction pathway during fertilization in 2 brothers, who have unexplained infertility and hearing loss. Design Case report. Patients Two twin brothers aged 30 years with hearing loss and unexplained infertility. Exposure or Intervention Molecular genetic diagnosis of deafness. Evaluation of the acrosome reaction and calcium mobilization assays after induction by progesterone and ionomycin on spermatozoa of the CATSPER 2-mutated patient and on fertile controls. Main Outcome Measures Fertilization rate during conventional in vitro fertilization. Molecular genetic test. Percentage of acrosome-reacted spermatozoa with peanut agglutinin lectin staining. Recording of progesterone and ionomycin-induced intracellular calcium signals with a fluorescent probe. Results Mr. S and his brother have normal, conventional sperm parameters. Both brothers have had repeated intrauterine insemination failures and one fertilization failure after conventional in vitro fertilization. Mr. S obtained 2 healthy babies after intracytoplasmic sperm injection. Genetic analysis found a homozygote deletion of the STRC (stereocilin) gene (NM 153700: c.1-? 5328+?del) that removes the CATSPER 2 gene. Mutation of the STRC gene is known to be associated with hearing loss. Sperm functional tests revealed an inability of progesterone to activate intracellular calcium signaling and to induce acrosome reaction. Conclusion We demonstrate the absence of a calcium signal and acrosome reaction after progesterone in our patient with a CATSPER 2 mutation. We emphasize the importance of the male medical interview and of the genetic investigation of hearing loss. We show that in vitro fertilization-intracytoplasmic sperm injection is necessary, even where normal sperm parameters are present.
Collapse
Affiliation(s)
- Simon Guignard
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christina Guillaume
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
| | - Laurie Tornero
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
| | - Jessika Moreau
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
| | - Manon Carles
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité, Environnement - Embryonic Development, Fertility, Environment), UMR1203, INSERM - Universities of Toulouse and Montpellier, Paule de Viguier Hospital, Toulouse, France
| | - François Isus
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
| | - Éric Huyghe
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité, Environnement - Embryonic Development, Fertility, Environment), UMR1203, INSERM - Universities of Toulouse and Montpellier, Paule de Viguier Hospital, Toulouse, France
| | - Célia Ravel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Gatimel
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Department of Reproductive Medicine, Paule de Viguier Hospital, Toulouse Teaching Hospital Group Toulouse, France
- DEFE (Développement Embryonnaire, Fertilité, Environnement - Embryonic Development, Fertility, Environment), UMR1203, INSERM - Universities of Toulouse and Montpellier, Paule de Viguier Hospital, Toulouse, France
| |
Collapse
|
28
|
Antonouli S, Di Nisio V, Messini C, Samara M, Salumets A, Daponte A, Anifandis G. Sperm plasma membrane ion transporters and male fertility potential: A perspective under the prism of cryopreservation. Cryobiology 2024; 114:104845. [PMID: 38184269 DOI: 10.1016/j.cryobiol.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Intracellular calcium homeostasis plays a crucial role in spermatozoa by regulating physiological functions associated with sperm quality and male fertility potential. Intracellular calcium fine balance in the sperm cytoplasm is strictly dependent on sperm surface channels including the CatSper channel. CatSpers' role is to ensure the influx of extracellular calcium, while intracellular pH alkalinization serves as a stimulus for the activation of several channels, including CatSper. Overall, the generation of intracellular calcium spikes through CatSper is essential for fertilization-related processes, such as sperm hyperactivation, acrosome reaction, egg chemotaxis, and zona pellucida penetration. Multiple lines of evidence suggest that disruption in the close interaction among ions, pH, and CatSper could impair male fertility potential. In contemporary times, the growing reliance on Medically Assisted Reproduction procedures underscores the impact of cryopreservation on gametes. In fact, a large body of literature raises concerns about the cryo-damages provoked by the freeze-thawing processes, that can affect the plasma membrane integrity, thus the structure of pivotal ion channels, and the fine regulation of both intracellular calcium and pH. This review aims to provide an overview of the importance of the CatSper channel in sperm quality and further fertilization potential. Additionally, it addresses the emerging issue of cryopreservation's impact on the functionality of this sperm channel.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden.
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden; Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia; Competence Centre on Health Technologies, Tartu, Estonia.
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece.
| |
Collapse
|
29
|
Jalalabadi FN, Cheraghi E, Janatifar R, Momeni HR. The Detection of CatSper1 and CatSper3 Expression in Men with Normozoospermia and Asthenoteratozoospermia and Its Association with Sperm Parameters, Fertilization Rate, Embryo Quality. Reprod Sci 2024; 31:704-713. [PMID: 37957468 DOI: 10.1007/s43032-023-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
CatSper affects sperm function and male fertilization capacity markers, including sperm motility and egg penetration. The study has aimed to evaluate the mRNA expression of CatSper1, and CatSper3 in the spermatozoa of men with normozoospermia and Asthenoteratozoospermia, and to assess the correlation between genes expression and sperm parameters, fertilization rate, and embryo quality in intracytoplasmic sperm injection (ICSI). Reverse transcription-polymerase chain reaction was utilized to evaluate the mRNA expression of CatSper1 and CatSper3 in sperm in two patient groups: Normozoospermia (NOR; n = 32), and Asthenoteratozoospermia (AT; n = 22). In all patients receiving intracytoplasmic sperm injection, the fertilization rate and embryo quality were evaluated. CatSper1, and CatSper3 mRNA expression in sperm was significantly lower in AT males than in NOR (P < 0.05). Levels of these genes demonstrated a significant positive correlation with sperm motility, mitochondrial membrane potential (MMP), capacitation, fertilization rate, cleavage rate, and embryo quality (P < 0.05) following ICSI. However, a negative correlation was found between mRNA expression of CatSper1, 3 and sperm DNA fragmentation (P < 0.05). Findings indicate low levels of CatSper1 and CatSper3 mRNA expression in men with Asthenoteratozoospermia, which resulted in poor sperm quality and impaired embryo development following ICSI therapy.
Collapse
Affiliation(s)
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Science, University of Qom, Qom, Iran
| | - Rahil Janatifar
- Department of Reproductive Biology, Academic Center for Education Culture and Research (ACECR), Qom, Iran
| | - Hamid Reza Momeni
- Biology Department, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
30
|
Relovska S, Wang H, Zhang X, Fernández-Tussy P, Jeong KJ, Choi J, Suárez Y, McDonald JG, Fernández-Hernando C, Chung JJ. DHCR24-mediated sterol homeostasis during spermatogenesis is required for sperm mitochondrial sheath formation and impacts male fertility over time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572851. [PMID: 38187697 PMCID: PMC10769317 DOI: 10.1101/2023.12.21.572851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Desmosterol and cholesterol are essential lipid components of the sperm plasma membrane. Cholesterol efflux is required for capacitation, a process through which sperm acquire fertilizing ability. In this study, using a transgenic mouse model overexpressing 24-dehydrocholesterol reductase (DHCR24), an enzyme in the sterol biosynthesis pathway responsible for the conversion of desmosterol to cholesterol, we show that disruption of sterol homeostasis during spermatogenesis led to defective sperm morphology characterized by incomplete mitochondrial packing in the midpiece, reduced sperm count and motility, and a decline in male fertility with increasing paternal age, without changes in body fat composition. Sperm depleted of desmosterol exhibit inefficiency in the acrosome reaction, metabolic dysfunction, and an inability to fertilize the egg. These findings provide molecular insights into sterol homeostasis for sperm capacitation and its impact on male fertility.
Collapse
Affiliation(s)
- Sona Relovska
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xinbo Zhang
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pablo Fernández-Tussy
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kyung Jo Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey G. McDonald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Gynecology and Obstetrics, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
31
|
Hwang JY. Analysis of Ca 2+-mediated sperm motility to evaluate the functional normality of the sperm-specific Ca 2+ channel, CatSper. Front Cell Dev Biol 2024; 12:1284988. [PMID: 38385023 PMCID: PMC10879342 DOI: 10.3389/fcell.2024.1284988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Ca2+ is a key secondary messenger that modulates sperm motility by tuning flagellar movement in various species. The sperm-specific Ca2+ channel, CatSper, is a primary Ca2+ gate that is essential for male fertility in mammals. CatSper-mediated Ca2+ signaling enables sperm to develop hyperactivated motility and fertilize the eggs in the female tract. Therefore, altered CatSper function compromises the entry of Ca2+ into the sperm, followed by impairing hyperactivation and male fertility. However, methods to evaluate the function of the CatSper channel are limited to patch clamping and functional imaging using Ca2+ dye. Previous studies have revealed that various parameters for sperm motility are highly correlated with intracellular Ca2+ levels in mouse. Here, I cover a step-by-step protocol to analyze the change in Ca2+-mediated sperm motility by using computer-assisted semen analysis (CASA) to evaluate the functional normality of the CatSper channel in sperm. This approach analyzes sperm motility parameters during intracellular Ca2+ chelation followed by in vitro capacitation to recover intracellular Ca2+ via the activated CatSper channel. Thus, this Ca2+-handling method is handy and could be broadly applied in reproductive biology labs and clinics that have CASA equipment to examine the functional normality of the CatSper channel.
Collapse
Affiliation(s)
- Jae Yeon Hwang
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
- Institute of Systems Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
32
|
Lu P, Simas TAM, Delpapa E, ZhuGe R. Bitter taste receptors in the reproductive system: Function and therapeutic implications. J Cell Physiol 2024; 239:e31179. [PMID: 38219077 PMCID: PMC10922893 DOI: 10.1002/jcp.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| |
Collapse
|
33
|
Ports BL, Jensen-Seaman MI. Convergent rates of protein evolution identify novel targets of sexual selection in primates. Evolution 2024; 78:364-377. [PMID: 37864838 PMCID: PMC10834059 DOI: 10.1093/evolut/qpad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/23/2023]
Abstract
Sexual selection is the differential reproductive success of individuals, resulting from competition for mates, mate choice, or success in fertilization. In primates, this selective pressure often leads to the development of exaggerated traits which play a role in sexual competition and successful reproduction. In order to gain insight into the mechanisms driving the development of sexually selected traits, we used an unbiased genome-wide approach across 21 primate species to correlate individual rates of protein evolution to relative testes size and sexual dimorphism in body size, 2 anatomical hallmarks of sexual selection in mammals. Among species with presumed high levels of sperm competition, we detected strong conservation of testes-specific proteins responsible for spermatogenesis and ciliary form and function. In contrast, we identified accelerated evolution of female reproductive proteins expressed in the vagina, cervix, and fallopian tubes in these same species. Additionally, we found accelerated protein evolution in lymphoid tissue, indicating that adaptive immune functions may also be influenced by sexual selection. This study demonstrates the distinct complexity of sexual selection in primates revealing contrasting patterns of protein evolution between male and female reproductive tissues.
Collapse
Affiliation(s)
- Bri L Ports
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, United States
| | | |
Collapse
|
34
|
Young S, Schiffer C, Wagner A, Patz J, Potapenko A, Herrmann L, Nordhoff V, Pock T, Krallmann C, Stallmeyer B, Röpke A, Kierzek M, Biagioni C, Wang T, Haalck L, Deuster D, Hansen JN, Wachten D, Risse B, Behre HM, Schlatt S, Kliesch S, Tüttelmann F, Brenker C, Strünker T. Human fertilization in vivo and in vitro requires the CatSper channel to initiate sperm hyperactivation. J Clin Invest 2024; 134:e173564. [PMID: 38165034 PMCID: PMC10760960 DOI: 10.1172/jci173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024] Open
Abstract
The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.
Collapse
Affiliation(s)
- Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Alice Wagner
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Institute of Reproductive Genetics
| | - Jannika Patz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Anton Potapenko
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Leonie Herrmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Verena Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tim Pock
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | | | - Michelina Kierzek
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- CiM-IMPRS Graduate School
| | - Cristina Biagioni
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Lars Haalck
- Institute of Geoinformatics, Computer Vision and Machine Learning Systems, University of Münster, Münster, Germany
| | - Dirk Deuster
- Department of Phoniatrics and Pedaudiology, University Hospital Münster, University of Münster, Münster, Germany
| | - Jan N. Hansen
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Risse
- Institute of Geoinformatics, Computer Vision and Machine Learning Systems, University of Münster, Münster, Germany
- Computer Science Department, University of Münster, Münster, Germany
| | - Hermann M. Behre
- UKM Fertility Centre, University Hospital Münster, Münster, Germany
| | - Stefan Schlatt
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
35
|
Arrais AM, Burla Dias AJ, de Souza CLM, Curcio AG, Mello MRBD. Inhibition of phospholipase C reduces the capacitation of cryopreserved ovine sperm. Theriogenology 2024; 213:19-23. [PMID: 37793221 DOI: 10.1016/j.theriogenology.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
This study aimed to evaluate the effect of phospholipase C (PLC) on the capacitation of cryopreserved ovine semen. Sixteen semen samples were cryopreserved with diluent added by 0, 10, or 20 μM of U73122, a PLC inhibitor. The sperm kinetics of the thawed samples were evaluated using the "Computer-assisted Sperm Analysis" system, and the integrity of the plasma and mitochondrial membranes was evaluated using fluorescent probes. Additionally, sperm capacitation and the acrosome reaction with chlortetracycline hydrochloride were evaluated before and after capacitation induction. The results were analysed using analysis of variance and Tukey's test with a 95% probability. Concentrations of 10 or 20 μM of U73122 did not affect the kinetics or number of sperm with intact plasma and mitochondrial membranes. However, after thawing, 10 and 20 μM of the inhibitor reduced the percentage of capacitated and acrosome-reacted sperm. After induction of capacitation, there was a reduction in the number of non-capacitated sperm in all treatment groups, suggesting a reversible effect of U73122. In conclusion, U73122 at concentrations of 10 or 20 μM prevents premature capacitation and acrosome reaction induced by the freezing procedure, without affecting the kinetics and integrity of the sperm membranes.
Collapse
Affiliation(s)
- Aline Matos Arrais
- Departamento de Reprodução e Avaliação Animal, Universidade Federal Rural Do Rio de Janeiro, Rodovia BR 465, Km 7, S/n, Seropédica, RJ, CEP 23890-000, Brazil
| | - Angelo José Burla Dias
- Laboratório de Reprodução e Melhoramento Genético Animal, Universidade Estadual Do Norte Fluminense, 2000 Alberto Lamego Avenue, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Cláudio Luiz Melo de Souza
- Laboratório de Ciências Agrícolas, Universidade Estadual Do Norte Fluminense, 2000 Alberto Lamego Avenue, Campos Dos Goytacazes, RJ, CEP 28013-602, Brazil
| | - Alinne Glória Curcio
- Laboratório de Reprodução e Melhoramento Genético Animal, Universidade Estadual Do Norte Fluminense, 2000 Alberto Lamego Avenue, Campos Dos Goytacazes, RJ, 28013-602, Brazil
| | - Marco Roberto Bourg de Mello
- Departamento de Reprodução e Avaliação Animal, Universidade Federal Rural Do Rio de Janeiro, Rodovia BR 465, Km 7, S/n, Seropédica, RJ, CEP 23890-000, Brazil.
| |
Collapse
|
36
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
37
|
Hanley PJ. Elusive physiological role of prostatic acid phosphatase (PAP): generation of choline for sperm motility via auto-and paracrine cholinergic signaling. Front Physiol 2023; 14:1327769. [PMID: 38187135 PMCID: PMC10766772 DOI: 10.3389/fphys.2023.1327769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Prostatic acid phosphatase (PAP) exists as two splice variants, secreted PAP and transmembrane PAP, the latter of which is implicated in antinociceptive signaling in dorsal root ganglia. However, PAP is predominantly expressed in the prostate gland and the physiological role of seminal PAP, first identified in 1938, is largely unknown. Here, the author proposes that PAP, following ejaculation, functions to hydrolyze phosphocholine (PC) in seminal fluid and generate choline, which is imported by sperm via a choline transporter and converted to acetylcholine (ACh) by choline acetyltransferase. Auto- and paracrine cholinergic signaling, or choline directly, may subsequently stimulate sperm motility via α7 nicotinic ACh receptors (nAChRs) and contractility of the female reproductive tract through muscarinic ACh receptors (mAChRs). Consistent with a role of PAP in cholinergic signaling, 1) seminal vesicles secrete PC, 2) the prostate gland secretes PAP, 3) PAP specifically catalyzes the hydrolysis of PC into inorganic phosphate and choline, 4) seminal choline levels increase post-ejaculation, 5) pharmacological inhibition of choline acetyltransferase inhibits sperm motility, 6) inhibition or genetic deletion of α7 nAChRs impairs sperm motility, and 7) mAChRs are expressed in the uterus and oviduct (fallopian tube). Notably, PAP does not degrade glycerophosphocholine (GPC), the predominant choline source in the semen of rats and other mammals. Instead, uterine GPC phosphodiesterases may liberate choline from seminal GPC. In summary, the author deduces that PAP in humans, and uterine GPC phosphodiesterases in other mammals, function to generate choline for sperm cholinergic signaling, which promotes sperm motility and possibly contractility of the female reproductive tract.
Collapse
Affiliation(s)
- Peter J. Hanley
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
38
|
Jahan N, Wasim M, Rubaya R, Radeen KR, Alim MA, Hossain MMK, Zohora FT, Das KC, Salimullah M, Bhuyan AA, Alam J. Sequence variability of CatSper1 and TNP2 gene in indigenous and crossbred cattle in Bangladesh. Anim Biotechnol 2023; 34:2007-2016. [PMID: 35446730 DOI: 10.1080/10495398.2022.2063729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CatSper1 and TNP2 genes are known to affect semen quality and fertility parameters, including sperm motility and maturation. However, studies are yet to examine the genes in indigenous and crossbred cattle in Bangladesh. Therefore, this study was conducted to determine the genetic variants of CatSper1 and TNP2 in indigenous and crossbred cattle in Bangladesh. Blood samples were collected from 130 indigenous and 70 crossbred (Holstein Friesian × indigenous) cattle. Nucleotide variation was evaluated by PCR-RFLP and sequencing. The results of the study showed that the indigenous cattle possessed only TT genotype (1.0), whereas the crossbreds possessed both TT (0.91) and CT (0.09) genotypes, which was validated by gene sequencing. Additionally, the CatSper1 was conserved in both the indigenous and crossbred cattle, suggesting good semen quality and fertility. However, the TNP2 was conserved in the indigenous breeds and mostly conserved in the crossbreds. The findings of this study reveal the diversity of CatSper1 and TNP2 genes in indigenous and crossbred cattle.
Collapse
Affiliation(s)
- Nusrat Jahan
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Muhammad Wasim
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Rubaya Rubaya
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Kazi Rafsan Radeen
- Environmental Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Md Abdul Alim
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - M M Kamal Hossain
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Fatama Tous Zohora
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Anjuman Ara Bhuyan
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Jahangir Alam
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
39
|
Spafford JD. A governance of ion selectivity based on the occupancy of the "beacon" in one- and four-domain calcium and sodium channels. Channels (Austin) 2023; 17:2191773. [PMID: 37075164 PMCID: PMC10120453 DOI: 10.1080/19336950.2023.2191773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
One of nature's exceptions was discovered when a Cav3 T-type channel was observed to switch phenotype from a calcium channel into a sodium channel by neutralizing an aspartate residue in the high field strength (HFS) +1 position within the ion selectivity filter. The HFS+1 site is dubbed a "beacon" for its location at the entryway just above the constricted, minimum radius of the HFS site's electronegative ring. A classification is proposed based on the occupancy of the HFS+1 "beacon" which correlates with the calcium- or sodium-selectivity phenotype. If the beacon is a glycine, or neutral, non-glycine residue, then the cation channel is calcium-selective or sodium-permeable, respectively (Class I). Occupancy of a beacon aspartate are calcium-selective channels (Class II) or possessing a strong calcium block (Class III). A residue lacking in position of the sequence alignment for the beacon are sodium channels (Class IV). The extent to which animal channels are sodium-selective is dictated in the occupancy of the HFS site with a lysine residue (Class III/IV). Governance involving the beacon solves the quandary the HFS site as a basis for ion selectivity, where an electronegative ring of glutamates at the HFS site generates a sodium-selective channel in one-domain channels but generates a calcium-selective channel in four-domain channels. Discovery of a splice variant in an exceptional channel revealed nature's exploits, highlighting the "beacon" as a principal determinant for calcium and sodium selectivity, encompassing known ion channels composed of one and four domains, from bacteria to animals.
Collapse
Affiliation(s)
- J David Spafford
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
40
|
Arcos-Hernández C, Nishigaki T. Ion currents through the voltage sensor domain of distinct families of proteins. J Biol Phys 2023; 49:393-413. [PMID: 37851173 PMCID: PMC10651576 DOI: 10.1007/s10867-023-09645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
The membrane potential of a cell (Vm) regulates several physiological processes. The voltage sensor domain (VSD) is a region that confers voltage sensitivity to different types of transmembrane proteins such as the following: voltage-gated ion channels, the voltage-sensing phosphatase (Ci-VSP), and the sperm-specific Na+/H+ exchanger (sNHE). VSDs contain four transmembrane segments (S1-S4) and several positively charged amino acids in S4, which are essential for the voltage sensitivity of the protein. Generally, in response to changes of the Vm, the positive residues of S4 displace along the plasma membrane without generating ionic currents through this domain. However, some native (e.g., Hv1 channel) and mutants of VSDs produce ionic currents. These gating pore currents are usually observed in VSDs that lack one or more of the conserved positively charged amino acids in S4. The gating pore currents can also be induced by the isolation of a VSD from the rest of the protein domains. In this review, we summarize gating pore currents from all families of proteins with VSDs with classification into three cases: (1) pathological, (2) physiological, and (3) artificial currents. We reinforce the model in which the position of S4 that lacks the positively charged amino acid determines the voltage dependency of the gating pore current of all VSDs independent of protein families.
Collapse
Affiliation(s)
- César Arcos-Hernández
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
41
|
Kijima T, Kurokawa D, Sasakura Y, Ogasawara M, Aratake S, Yoshida K, Yoshida M. CatSper mediates not only chemotactic behavior but also the motility of ascidian sperm. Front Cell Dev Biol 2023; 11:1136537. [PMID: 38020915 PMCID: PMC10652287 DOI: 10.3389/fcell.2023.1136537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Sperm motility, including chemotactic behavior, is regulated by changes in the intracellular Ca2+ concentration, and the sperm-specific Ca2+ channel CatSper has been shown to play an important role in the regulation of intracellular Ca2+. In particular, in mammals, CatSper is the only functional Ca2+ channel in the sperm, and mice deficient in the genes comprising the pore region of the Ca2+ channel are infertile due to the inhibition of sperm hyperactivation. CatSper is also thought to be involved in sea urchin chemotaxis. In contrast, in ascidian Ciona intestinalis, SAAF, a sperm attractant, interacts with Ca2+/ATPase, a Ca2+ pump. Although the existence of CatSper genes has been reported, it is not clear whether CatSper is a functional Ca2+ channel in sperm. Results: We showed that CatSper is present in the sperm flagella of C. intestinalis as in mammalian species, although a small level of gene expression was found in other tissues. The spermatozoa of CatSper3 KO animals were significantly less motile, and some motile sperms did not show any chemotactic behavior. These results suggest that CatSper plays an important role in ascidians and mammals, and is involved in spermatogenesis and basic motility mechanisms.
Collapse
Affiliation(s)
- Taiga Kijima
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Michio Ogasawara
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoe Aratake
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| | - Kaoru Yoshida
- Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Kanagawa, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
42
|
Nand KN, Jordan TB, Yuan X, Basore DA, Zagorevski D, Clarke C, Werner G, Hwang JY, Wang H, Chung JJ, McKenna A, Jarvis MD, Singh G, Bystroff C. Bacterial production of recombinant contraceptive vaccine antigen from CatSper displayed on a human papilloma virus-like particle. Vaccine 2023; 41:6791-6801. [PMID: 37833124 DOI: 10.1016/j.vaccine.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
CatSper is a voltage dependent calcium ion channel present in the principal piece of sperm tail. It plays a crucial role in sperm hyperactivated motility and so in fertilization. Extracellular loops of mouse sperm CatSper were used to develop a vaccine to achieve protection from pregnancy. These loops were inserted at one of the three hypervariable regions of Human Papilloma Virus (HPV) capsid protein (L1). Recombinant vaccines were expressed in E.coli as inclusion body (IB), purified, refolded and assembled into virus-like particles (VLP) in vitro, and adsorbed on alum. Four vaccine candidates were tested in Balb/C mice. All the constructs proved immunogenic, one showed contraceptive efficacy. This recombinant contraceptive vaccine is a non-hormonal intervention and is expected to give long-acting protection from undesired pregnancies.
Collapse
Affiliation(s)
- K N Nand
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - T B Jordan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - X Yuan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - D A Basore
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States; Department of Health and Natural Science, Mercy University, Dobbs Ferry, NY, United States
| | - D Zagorevski
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - C Clarke
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - G Werner
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - J Y Hwang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - H Wang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - J-J Chung
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States; Department of Gynecology and Obstetrics, Yale University School of Medicine, New Haven, CT, United States
| | - A McKenna
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - M D Jarvis
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - G Singh
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - C Bystroff
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States.
| |
Collapse
|
43
|
Orlowski J. An ion transporter in sperm that has features of a channel. Nature 2023; 623:38-40. [PMID: 37880527 DOI: 10.1038/d41586-023-03154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
|
44
|
Amory JK. Male Contraception. Semin Reprod Med 2023; 41:279-286. [PMID: 38113922 DOI: 10.1055/s-0043-1777757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Approximately 40 to 50% of pregnancies are unintended. Contraceptive use significantly reduces the risk of unintended pregnancy. Approximately 70% of couples' contraceptive use is female and 30% is male, attributable to the reliance on condoms and vasectomies. Unfortunately, many women cannot use currently available contraceptives due to medical contraindications or side effects. At the same time, men want additional safe and effective contraceptive methods. Because of this, work to develop novel, safe, and effective male contraceptives is underway. This review will briefly discuss the pros and cons of condoms and vasectomies, and then describe research into the development of novel methods of male contraception, by the mechanism of action of the contraceptive. First, we will discuss male contraceptives that block sperm transmission. Next, we will discuss male contraceptives that impair sperm production. Lastly, we will discuss male contraceptives that impair sperm function.
Collapse
Affiliation(s)
- John K Amory
- Department of Medicine, The Center for Research in Reproduction and Contraception, University of Washington, Seattle, Washington
| |
Collapse
|
45
|
Miyazawa Y, Fujinoki M. Enhancement of rat spermatozoal hyperactivation by progesterone. J Reprod Dev 2023; 69:279-290. [PMID: 37690839 PMCID: PMC10602764 DOI: 10.1262/jrd.2023-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023] Open
Abstract
Progesterone (P) is a well-known enhancer of hyperactivation which is associated with the success of in vitro fertilization (IVF). In this study, we examined whether P-enhanced hyperactivation affected IVF success in rats. When rat spermatozoa were exposed to 10, 20, and 40 ng/ml P, 20 ng/ml P enhanced hyperactivation via the membrane progesterone receptor. In addition, the enhancement of hyperactivation by 20 ng/ml P was regulated by phospholipase C, transmembrane adenylate cyclase, and protein kinase A. However, 20 ng/ml P did not affect IVF success. These results suggest that 20 ng/ml P enhances rat spermatozoal hyperactivation through non-genomic pathways. Because the concentration of P changes during the estrous cycle, it seems that rat spermatozoa are hyperactivated in response to the oviductal environment. However, the effect of 20 ng/ml P does not seem to fully capacitate spermatozoa.
Collapse
Affiliation(s)
- Yuki Miyazawa
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Masakatsu Fujinoki
- Research Laboratory of Laboratory Animals, Research Center for Laboratory Animals, Comprehensive Research Facilities for Advanced Medical Science, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
46
|
Chowdhury S, Pal K. Architecture and rearrangements of a sperm-specific Na +/H + exchanger. RESEARCH SQUARE 2023:rs.3.rs-3396005. [PMID: 37886505 PMCID: PMC10602139 DOI: 10.21203/rs.3.rs-3396005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The sperm-specific sodium hydrogen exchanger, SLC9C1, underlies hyperpolarization and cyclic nucleotide stimulated proton fluxes across sperm membranes and regulates their hyperactivated motility. SLC9C1 is the first known instance of an ion transporter that uses a canonical voltage-sensing domain (VSD) and an evolutionarily conserved cyclic nucleotide binding domain (CNBD) to influence the dynamics of its ion-exchange domain (ED). The structural organization of this 'tripartite transporter' and the mechanisms whereby it integrates physical (membrane voltage) and chemical (cyclic nucleotide) cues are unknown. In this study, we use single particle cryo-electron microscopy to determine structures of a metazoan SLC9C1 in different conformational states. We find that the three structural domains are uniquely organized around a distinct ring-shaped scaffold that we call the 'allosteric ring domain' or ARD. The ARD undergoes coupled proton-dependent rearrangements with the ED and acts as a 'signaling hub' enabling allosteric communication between the key functional modules of sp9C1. We demonstrate that binding of cAMP causes large conformational changes in the cytoplasmic domains and disrupts key ARD-linked interfaces. We propose that these structural changes rescue the transmembrane domains from an auto-inhibited state and facilitate their functional dynamics. Our study provides a structural framework to understand and further probe electrochemical linkage in SLC9C1.
Collapse
|
47
|
Huang X, Miyata H, Wang H, Mori G, Iida-Norita R, Ikawa M, Percudani R, Chung JJ. A CUG-initiated CATSPERθ functions in the CatSper channel assembly and serves as a checkpoint for flagellar trafficking. Proc Natl Acad Sci U S A 2023; 120:e2304409120. [PMID: 37725640 PMCID: PMC10523455 DOI: 10.1073/pnas.2304409120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
Calcium signaling is critical for successful fertilization. In spermatozoa, calcium influx into the sperm flagella mediated by the sperm-specific CatSper calcium channel is necessary for hyperactivated motility and male fertility. CatSper is a macromolecular complex and is repeatedly arranged in zigzag rows within four linear nanodomains along the sperm flagella. Here, we report that the Tmem249-encoded transmembrane (TM) domain-containing protein, CATSPERθ is essential for the CatSper channel assembly during sperm tail formation. CATSPERθ facilitates the channel assembly by serving as a scaffold for a pore-forming subunit CATSPER4. CATSPERθ is specifically localized at the interface of a CatSper dimer and can self-interact, suggesting its potential role in CatSper dimer formation. Male mice lacking CATSPERθ are infertile because the sperm lack the entire CatSper channel from sperm flagella, rendering sperm unable to hyperactivate, regardless of their normal expression in the testis. In contrast, genetic abrogation of any of the other CatSper TM subunits results in loss of CATSPERθ protein in the spermatid cells during spermatogenesis. CATSPERθ might act as a checkpoint for the properly assembled CatSper channel complex to traffic to sperm flagella. This study provides insights into the CatSper channel assembly and elucidates the physiological role of CATSPERθ in sperm motility and male fertility.
Collapse
Affiliation(s)
- Xiaofang Huang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Huafeng Wang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
| | - Giulia Mori
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Rie Iida-Norita
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita565-0871, Japan
| | - Riccardo Percudani
- Department of Chemistry, Life sciences, and Environmental Sustainability, University of Parma, Parma43124, Italy
| | - Jean-Ju Chung
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT06510
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT06510
| |
Collapse
|
48
|
Vicente-Carrillo A, Álvarez-Rodríguez M, Rodriguez-Martinez H. The Cation/Calcium Channel of Sperm (CatSper): A Common Role Played Despite Inter-Species Variation? Int J Mol Sci 2023; 24:13750. [PMID: 37762052 PMCID: PMC10531172 DOI: 10.3390/ijms241813750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The main cation/calcium channel of spermatozoa (CatSper), first identified in 2001, has been thoroughly studied to elucidate its composition and function, while its distribution among species and sperm sources is yet incomplete. CatSper is composed of several subunits that build a pore-forming calcium channel, mainly activated in vivo in ejaculated sperm cells by intracellular alkalinization and progesterone, as suggested by the in vitro examinations. The CatSper channel relevance is dual: to maintain sperm homeostasis (alongside the plethora of membrane channels present) as well as being involved in pre-fertilization events, such as sperm capacitation, hyperactivation of sperm motility and the acrosome reaction, with remarkable species differences. Interestingly, the observed variations in CatSper localization in the plasma membrane seem to depend on the source of the sperm cells explored (i.e., epididymal or ejaculated, immature or mature, processed or not), the method used for examination and, particularly, on the specificity of the antibodies employed. In addition, despite multiple findings showing the relevance of CatSper in fertilization, few studies have studied CatSper as a biomarker to fine-tune diagnosis of sub-fertility in livestock or even consider its potential to control fertilization in plague animals, a more ethically defensible strategy than implicating CatSper to pharmacologically modify male-related fertility control in humans, pets or wild animals. This review describes inter- and intra-species differences in the localization, structure and function of the CatSper channel, calling for caution when considering its potential manipulation for fertility control or improvement.
Collapse
Affiliation(s)
- Alejandro Vicente-Carrillo
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Álvarez-Rodríguez
- Department Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | | |
Collapse
|
49
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
50
|
Ke S, Luo T. The Chemosensing Role of CatSper in Mammalian Sperm: An Updated Review. Curr Issues Mol Biol 2023; 45:6995-7010. [PMID: 37754226 PMCID: PMC10528052 DOI: 10.3390/cimb45090442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
After sperm enter the female reproductive tract, the physicochemical and biochemical microenvironment undergoes significant changes. In particular, the large changes in various ions encountered by sperm may alter the physiology of sperm, ultimately compromising capacitation and fertilization. Thus, the rapid response to environmental variations is vital for sperm functions. For example, Calcium, the most crucial ion for sperm functions, enters into sperm via Ca2+ permeable ion channels. The cation channel of sperm (CatSper) is a sperm-specific, pH-sensitive, and Ca2+-permeable ion channel. It is responsible for the predominant Ca2+ entry in mammalian sperm and is involved in nearly every event of sperm to acquire fertilizing capability. In addition, CatSper also serves as a pivotal polymodal chemosensor in mammalian sperm by responding to multiple chemical cues. Physiological chemicals (such as progesterone, prostaglandins, β-defensins, and odorants) provoke Ca2+ entry into sperm by activating CatSper and thus triggering sperm functions. Additionally, synthetic and natural chemicals (such as medicines, endocrine disrupting chemicals, drugs of abuse, and antioxidants) affect sperm functions by regulating CatSper-dependent Ca2+ signaling. Therefore, understanding the interactions between CatSper and extracellular ligands sheds light on the mechanisms underlying male infertility and offers innovative diagnostic and treatment approaches. This underscores the importance of CatSper as a crucial regulatory target in male reproduction, linking sperm function with the extracellular environment. In conclusion, this review comprehensively summarizes the relevant studies describing the environmental factors that affect CatSper in humans and rodents.
Collapse
Affiliation(s)
- Sulun Ke
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Queen Mary School, Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Life Science, Nanchang University, Nanchang 330031, China;
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang University, Nanchang 330006, China
| |
Collapse
|