1
|
Park J, Polizzi KM, Kim J, Kim J. Manipulating subcellular protein localization to enhance target protein accumulation in minicells. J Biol Eng 2025; 19:27. [PMID: 40158151 PMCID: PMC11955136 DOI: 10.1186/s13036-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Minicells are chromosome-free derivatives of bacteria formed through irregular cell division. Unlike simplified structures, minicells retain all cellular components of the parent cell except for the chromosome. This feature reduces immunogenic responses, making them advantageous for various biotechnological applications, including chemical production and drug delivery. To effectively utilize minicells, it is essential to ensure the accumulation of target proteins within them, enhancing their efficiency as delivery vehicles. RESULTS In this study, we engineered Escherichia coli by deleting the minCD genes, generating minicell-producing strains, and investigated strategies to enhance protein accumulation within the minicells. Comparative proteomic analysis revealed that minicells retain most parent-cell proteins but exhibit an asymmetric proteome distribution, leading to selective protein enrichment. We demonstrated that heterologous proteins, such as GFP and RFP, accumulate more abundantly in minicells than in parent cells, regardless of expression levels. To further enhance this accumulation, we manipulated protein localization by fusing target proteins to polar localization signals. While proteins fused with PtsI and Tsr exhibited 2.6-fold and 2.8-fold increases in accumulation, respectively, fusion with the heterologous PopZ protein resulted in a remarkable 15-fold increase in protein concentration under low induction conditions. CONCLUSIONS These findings highlight the critical role of spatial protein organization in enhancing the cargo-loading capabilities of minicells. By leveraging polar localization signals, this work provides a robust framework for optimizing minicells as efficient carriers for diverse applications, from therapeutic delivery to industrial biomanufacturing.
Collapse
Grants
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- 2022R1A2C1006157, 2022R1A4A1025913, RS-2024-00439872 Ministry of Science and ICT, South Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- RS-2023-00304637 Ministry of Health and Welfare, Republic of Korea
- EP/T005297/1, EP/W00979X/1 EPSRC Adventurous Manufacturing
Collapse
Affiliation(s)
- Junhyeon Park
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyun Kim
- School of Life Sciences and Biotechnology, BK21 FOUR KNU Creative Bioresearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Albocher-Kedem N, Heidenreich M, Fadel A, Sirotkin E, Goldberger O, Nussbaum-Shochat A, Levy ED, Schueler-Furman O, Schuldiner M, Amster-Choder O. Uncovering the mechanism for polar sequestration of the major bacterial sugar regulator by high-throughput screens and 3D interaction modeling. Cell Rep 2025; 44:115436. [PMID: 40100851 PMCID: PMC11937232 DOI: 10.1016/j.celrep.2025.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
The poles of rod-shaped bacteria emerge as regulatory hubs. We have shown that enzyme I (EI), the major bacterial sugar metabolism regulator, is sequestered when not needed in TmaR phase-separated condensates in Escherichia coli cell poles. Here, we combined genetic and automated microscopy screens to identify residues in EI and TmaR that are important for their interaction and colocalization. Mutating these residues affects EI-TmaR interaction in bacteria and impairs co-phase separation in yeast. The results were used to generate an EI-TmaR interaction model, which agrees with coevolution data and is supported by conservation of the interacting residues and EI-TmaR colocalization in other species. Mutating residues predicted to interact electrostatically further supports our model. The model explains how TmaR controls EI activity and its interaction with the phosphoprotein HPr and, hence, sugar uptake. Our study highlights the importance of sugar metabolism spatial regulation during evolution and presents a way to unravel protein-protein interactions.
Collapse
Affiliation(s)
- Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Fadel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elizabeta Sirotkin
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
3
|
Maurya AK, Kröninger L, Ehret G, Bäumers M, Marson M, Scheu S, Nowack ECM. A nucleus-encoded dynamin-like protein controls endosymbiont division in the trypanosomatid Angomonas deanei. SCIENCE ADVANCES 2025; 11:eadp8518. [PMID: 40106558 DOI: 10.1126/sciadv.adp8518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Angomonas deanei is a trypanosomatid of the Strigomonadinae. All members of this subfamily contain a single β-proteobacterial endosymbiont. Intriguingly, cell cycles of host and endosymbiont are synchronized. The molecular mechanisms underlying this notable level of integration are unknown. Previously, we identified a nucleus-encoded dynamin-like protein, called ETP9, that localizes at the endosymbiont division site of A. deanei. Here, we found by comparative genomics that endosymbionts throughout the Strigomonadinae lost the capacity to autonomously form a division septum. We describe the cell cycle-dependent subcellular localization of ETP9 that follows accumulation of the bacterium-encoded division protein FtsZ at the endosymbiont division site. Furthermore, we found that ETP9 is essential in symbiotic but dispensable in aposymbiotic A. deanei that lost the endosymbiont. In the symbiotic strain, ETP9 knockdowns resulted in filamentous, division-impaired endosymbionts. Our work unveiled that in A. deanei an endosymbiont division machinery of dual genetic origin evolved in which a neo-functionalized host protein compensates for losses of endosymbiont division genes.
Collapse
Affiliation(s)
- Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Marson
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Wollweber F, Xu J, Ponce-Toledo RI, Marxer F, Rodrigues-Oliveira T, Pössnecker A, Luo ZH, Malit JJL, Kokhanovska A, Wieczorek M, Schleper C, Pilhofer M. Microtubules in Asgard archaea. Cell 2025:S0092-8674(25)00254-5. [PMID: 40120574 DOI: 10.1016/j.cell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Microtubules are a hallmark of eukaryotes. Archaeal and bacterial homologs of tubulins typically form homopolymers and non-tubular superstructures. The origin of heterodimeric tubulins assembling into microtubules remains unclear. Here, we report the discovery of microtubule-forming tubulins in Asgard archaea, the closest known relatives of eukaryotes. These Asgard tubulins (AtubA/B) are closely related to eukaryotic α/β-tubulins and the enigmatic bacterial tubulins BtubA/B. Proteomics of Candidatus Lokiarchaeum ossiferum showed that AtubA/B were highly expressed. Cryoelectron microscopy structures demonstrate that AtubA/B form eukaryote-like heterodimers, which assembled into 5-protofilament bona fide microtubules in vitro. The additional paralog AtubB2 lacks a nucleotide-binding site and competitively displaced AtubB. These AtubA/B2 heterodimers polymerized into 7-protofilament non-canonical microtubules. In a sub-population of Ca. Lokiarchaeum ossiferum cells, cryo-tomography revealed tubular structures, while expansion microscopy identified AtubA/B cytoskeletal assemblies. Our findings suggest a pre-eukaryotic origin of microtubules and provide a framework for understanding the fundamental principles of microtubule assembly.
Collapse
Affiliation(s)
- Florian Wollweber
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Jingwei Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Florina Marxer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Anja Pössnecker
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Zhen-Hao Luo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jessie James Limlingan Malit
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Anastasiia Kokhanovska
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
5
|
Zhao K, Du S, Tian L, Wang S, Shi R, Sun H, Zhou Y, Huang C, Sun Y, Wang S, Chen Y. Bacteriophage P1 protein Icd inhibits bacterial division by targeting FtsZ. Front Microbiol 2025; 16:1533694. [PMID: 40078545 PMCID: PMC11897509 DOI: 10.3389/fmicb.2025.1533694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
The study of bacteriophage (phage) gene products and their effects on the host helps to better understand the phage-host relationship and provides clues for the development of new antimicrobial proteins. In this study, we focused on a small protein named Icd with 73 amino acids from phage P1. It inhibits the growth of Escherichia coli and rapidly blocks the formation of Z-ring. The results of bacterial two-hybrid and pull-down experiments showed that Icd directly targets FtsZ, a key protein in bacterial division. Furthermore, we identified the core region of Icd as amino acids 12-51; this 40-amino acid protein had similar antibacterial activity to the full-length Icd, inhibiting bacterial growth and division.
Collapse
Affiliation(s)
- Kairui Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Shuheng Du
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Linlin Tian
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Shenping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Runqin Shi
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Haiyu Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Yao Zhou
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Chenhao Huang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| |
Collapse
|
6
|
Ibrahim AM, Missiakas D. A novel polysaccharide in the envelope of S. aureus influences the septal secretion of preproteins with a YSIRK/GXXS motif. J Bacteriol 2025; 207:e0047824. [PMID: 39873517 PMCID: PMC11841062 DOI: 10.1128/jb.00478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In Staphylococcus aureus, a small subset of secreted precursors carries a YSIRK/GXXS motif. This motif provides a pre-translocation function by promoting the targeting of precursors to septal membranes, but the trans-acting factors that regulate such spatial distribution are not known. Here, we used immunofluorescence-microscopy to compare the spatial trafficking of Staphylococcal protein A (SpA), an abundant YSIRK/GXXS bearing precursor, between mutants of an arranged transposon library. This genetic search identified a cluster of five genes predicted to encode enzymes responsible for the synthesis of a novel surface polymer referred to as Staphylococcal surface carbohydrate, Ssc. Mutants in the ssc gene cluster no longer restrict the secretion of SpA into the cross-walls of S. aureus. ssc mutants replicate like wild-type bacteria unless grown in phosphate-limited conditions, and do not contribute to virulence when examined in a mouse model of bloodstream infection. Together, our observations suggest that S. aureus may encode a minor, phosphate-free carbohydrate, and propose a possible assembly pathway for this polymer. IMPORTANCE Gram-positive bacteria assemble peptidoglycan-linked polymers known as wall teichoic acids (WTA). Both Staphylococcus aureus and Bacillus subtilis elaborate WTAs made of poly-glycerol or poly-ribitol phosphates. WTAs contribute to cell shape maintenance, cation homeostasis, and resistance to antimicrobial compounds. Yet, B. subtilis replaces its phosphate-rich polymer with minor teichuronic acids whose functions remain elusive. S. aureus also encodes a minor wall polymer that may be required for growth under phosphate-limited condition. Here, we find that this polymer could help define the composition of the septal compartment, the site of cell division also used to recruit preproteins with a YSIRK/GXXS motif. Thus, the envelope of S. aureus may be more complex than previously thought with minor wall polymers contributing some discrete functions.
Collapse
Affiliation(s)
- Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Ganser C, Nishiguchi S, Chan FY, Uchihashi T. A look beyond topography: Transient phenomena of Escherichia coli cell division captured with high-speed in-line force mapping. SCIENCE ADVANCES 2025; 11:eads3010. [PMID: 39879298 PMCID: PMC11777186 DOI: 10.1126/sciadv.ads3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life. Here, we present high-speed in-line force mapping (HS-iFM) to record mechanical properties and topography maps with high spatiotemporal resolution. Using HS-iFM, a comprehensive study of the nanoscale mechanical properties of living Escherichia coli revealed localized stiffening and details during cell division, formation and diffusion of pores in the membrane, and the impact of depressurization of a cell. The frame time was as low as 15 seconds with a spatial resolution of 5.5 nanometers per pixel in topography and 22 nanometers per pixel in force maps, allowing the capture of transient phenomena on bacterial surfaces in striking detail.
Collapse
Affiliation(s)
- Christian Ganser
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Shigetaka Nishiguchi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | | | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physics, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Milferstaedt SWL, Joest M, Bohlender LL, Hoernstein SNW, Özdemir B, Decker EL, van der Does C, Reski R. Differential GTP-dependent in-vitro polymerization of recombinant Physcomitrella FtsZ proteins. Sci Rep 2025; 15:3095. [PMID: 39856123 PMCID: PMC11760385 DOI: 10.1038/s41598-024-85077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms. The underlying mechanism and foundation of the distinct networks is unknown. Here, we investigated the interaction of Physcomitrella FtsZ2-1 with FtsZ1 isoforms via co-immunoprecipitation and mass spectrometry, and found protein-protein interaction in vivo. We tagged FtsZ1-2 and FtsZ2-1 with different fluorophores and expressed both in E. coli, which led to the formation of defined structures within the cells and to an influence on bacterial cell division and morphology. Furthermore, we have optimized the purification protocols for FtsZ1-2 and FtsZ2-1 expressed in E. coli and characterized their GTPase activity and polymerization in vitro. Both FtsZ isoforms showed GTPase activity. Stoichiometric mixing of both proteins led to a significantly increased GTPase activity, indicating a synergistic interaction between them. In light scattering assays, we observed GTP-dependent assembly of FtsZ1-2 and of FtsZ2-1 in a protein concentration dependent manner. Stoichiometric mixing of both proteins resulted in significantly faster polymerization, again indicating a synergistic interaction between them. Under the same conditions used for GTPase and light scattering assays both FtsZ isoforms formed filaments in a GTP-dependent manner as visualized by transmission electron microscopy (TEM). Taken together, our results reveal that Physcomitrella FtsZ1-2 and FtsZ2-1 are functionally different, can synergistically interact in vivo and in vitro, and differ in their properties from FtsZ proteins from bacteria, archaea and vascular plants.
Collapse
Affiliation(s)
- Stella W L Milferstaedt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Marie Joest
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| | - Lennard L Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- , Euro-BioImaging Bio-Hub, EMBL, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
9
|
López-Menéndez H, Luque-Rioja C, Kharbedia M, Herráez-Aguilar D, Santiago JA, Monroy F. Multiscale modelling of active hydrogel elasticity driven by living polymers: softening by bacterial motor protein FtsZ. SOFT MATTER 2025; 21:670-686. [PMID: 39760521 DOI: 10.1039/d4sm00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We present a neo-Hookean elasticity theory for hybrid mechano-active hydrogels, integrating motor proteins into polymer meshes to create composite materials with active softening due to modulable chain overlaps. Focusing on polyacrylamide (PA) hydrogels embedded with FtsZ, a bacterial cytokinetic protein powered by GTP, we develop a multiscale model using microscopic Flory theory of rubbery meshes through mesoscopic De Gennes' scaling concepts for meshwork dynamics and phenomenological Landau's formalism for second-order phase transitions. Our theoretical multiscale model explains the active softening observed in hybrid FtsZ-PA hydrogels by incorporating modulable meshwork dynamics, such as overlapping functionality and reptation dynamics, into an active mean-field of unbinding interactions. The novel FtsZ-based metamaterial and companion multiscale theory offer insights for designing, predicting, and controlling complex active hydrogels, with potential applications in technology and biomedicine.
Collapse
Affiliation(s)
- Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Clara Luque-Rioja
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Unit of Translational Biophysics, IIS Hospital Doce de Octubre (Imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| | - Mikheil Kharbedia
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Diego Herráez-Aguilar
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, Spain
| | - José A Santiago
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, 05348 Ciudad de México, Mexico
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Unit of Translational Biophysics, IIS Hospital Doce de Octubre (Imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| |
Collapse
|
10
|
Naha A, Cameron TA, Margolin W. A Predicted Helix-Turn-Helix Core Is Critical for Bacteriophage Kil Peptide to Disrupt Escherichia coli Cell Division. Antibiotics (Basel) 2025; 14:52. [PMID: 39858338 PMCID: PMC11762379 DOI: 10.3390/antibiotics14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: FtsZ, a eukaryotic tubulin homolog and an essential component of the bacterial divisome, is the target of numerous antimicrobial compounds as well as proteins and peptides, most of which inhibit FtsZ polymerization dynamics. We previously showed that the Kil peptide from bacteriophage λ inhibits Escherichia coli cell division by disrupting FtsZ ring assembly, and this inhibition requires the presence of the essential FtsZ membrane anchor protein ZipA. Methods: To investigate Kil's molecular mechanism further, we employed deletions, truncations, and molecular modeling to identify the minimal residues necessary for its activity. Results: Modeling suggested that Kil's core segment folds into a helix-turn-helix (HTH) structure. Deleting either the C-terminal 11 residues or the N-terminal 5 residues of Kil still allowed the inhibition of E. coli cell division, but removing both termini nearly abolished this activity, indicating that a minimal region within the Kil HTH core is essential for its structure and function. Another Kil-like peptide from a closely related enterobacterial phage also disrupted FtsZ ring assembly and required ZipA for this activity. Consistent with its broader activity against FtsZ, λ Kil was able to efficiently inhibit cell division of a uropathogenic E. coli (UPEC) strain. Conclusions: Understanding the structure and function of Kil and similar peptides can potentially reveal additional ways to target FtsZ for antimicrobial therapies and elucidate how FtsZ functions in bacterial cell division.
Collapse
Affiliation(s)
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA; (A.N.); (T.A.C.)
| |
Collapse
|
11
|
Gulsoy IC, Saaki TNV, Wenzel M, Syvertsson S, Morimoto T, Siersma TK, Hamoen LW. Minimization of the Bacillus subtilis divisome suggests FtsZ and SepF can form an active Z-ring, and reveals the amino acid transporter BraB as a new cell division influencing factor. PLoS Genet 2025; 21:e1011567. [PMID: 39869651 PMCID: PMC11790237 DOI: 10.1371/journal.pgen.1011567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal. Therefore, it is still not fully clear how the different protein components contribute to cell division, and whether there is a minimal set of proteins that can execute cell division. In this study, we tried to find the minimal set of proteins that is required to establish an active Z-ring in the model bacterium Bacillus subtilis. By making use of known suppressor mutations we were able to find a gene deletion route that eventually enabled us the remove eight conserved cell division proteins: ZapA, MinC, MinJ, UgtP, ClpX, Noc, EzrA and FtsA. Only FtsZ and its membrane anchor SepF appeared to be required for Z-ring formation. Interestingly, SepF is also the FtsZ anchor in archaea, and both proteins date back to the Last Universal Common Ancestor (LUCA). Viability of the multiple deletion mutant was not greatly affected, although the frequency of cell division was considerably reduced. Whole genome sequencing suggested that the construction of this minimal divisome strain was also possible due to the accumulation of suppressor mutations. After extensive phenotypic testing of these mutations, we found an unexpected cell division regulation function for the branched chain amino acid transporter BraB, which may be related to a change in fatty acid composition. The implications of these findings for the role of SepF, and the construction of a minimal cell division machinery are discussed.
Collapse
Affiliation(s)
- Ilkay Celik Gulsoy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Terrens N. V. Saaki
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michaela Wenzel
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon Syvertsson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
| | - Taku Morimoto
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tjalling K. Siersma
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
MOGI Y, MATSUO Y, KONDO Y, HIGASHIYAMA T, INADA T, YOSHIDA Y. Genome-wide changes of protein translation levels for cell and organelle proliferation in a simple unicellular alga. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:41-53. [PMID: 39805589 PMCID: PMC11808204 DOI: 10.2183/pjab.101.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025]
Abstract
Cell proliferation is a fundamental characteristic of organisms, driven by the holistic functions of multiple proteins encoded in the genome. However, the individual contributions of thousands of genes and the millions of protein molecules they express to cell proliferation are still not fully understood, even in simple eukaryotes. Here, we present a genome-wide translation map of cells during proliferation in the unicellular alga Cyanidioschyzon merolae, based on the sequencing of ribosome-protected messenger RNA fragments. Ribosome profiling has revealed both qualitative and quantitative changes in protein translation for each gene during cell division, driven by the large-scale reallocation of ribosomes. Comparisons of ribosome footprints from non-dividing and dividing cells allowed the identification of proteins involved in cell proliferation. Given that in vivo experiments on two selected candidate proteins identified a division-phase-specific mitochondrial nucleoid protein and a mitochondrial division protein, further analysis of the candidate proteins may offer key insights into the comprehensive mechanism that facilitate cell and organelle proliferation.
Collapse
Affiliation(s)
- Yuko MOGI
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Co-first author
| | - Yoshitaka MATSUO
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Co-first author
| | - Yuiki KONDO
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya HIGASHIYAMA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshifumi INADA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yamato YOSHIDA
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Wu H, Fujioka Y, Iwai N, Sakaguchi S, Suzuki Y, Nakano T. The relation in MreB and intrabacterial nanotransportation system for VacA in Helicobacter pylori. Med Mol Morphol 2024:10.1007/s00795-024-00416-w. [PMID: 39704844 DOI: 10.1007/s00795-024-00416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Helicobacter pylori possesses an intrabacterial nanotransportation system (ibNoTS) for transporting VacA, CagA, and urease within the bacterial cytoplasm. This system is controlled by the extrabacterial environment. The transport routes of the system for VacA have not yet been studied in detail. In this study, we demonstrated by immunoelectron microscopy that VacA localizes closely with the MreB filament in the bacterium, and the MreB polymerization inhibitor A22 obstructs the transport of VacA by ibNoTS. These findings indicate that the route of ibNoTS for VacA is closely associated with the MreB filament Additionally, it was confirmed that VacA does not closely associate with the bacterial filament FtsZ, which is involved in the transport of the virulence factor urease, as previously suggested. We propose that the route of ibNoTS for VacA is associated with the MreB filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yoshihiko Fujioka
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
14
|
Kifayat S, Almuqdadi HTA, Singh RP, Singh M, Abid M, Sanapalli BKR. An in silico approach for identification of lead compound as FtsZ inhibitor. Mol Divers 2024; 28:3937-3948. [PMID: 38775995 DOI: 10.1007/s11030-023-10787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2024]
Abstract
The remarkable conservation of the FtsZ among Gram-positive and Gram-negative bacteria, a crucial GTPase in bacterial cell division, has emerged as a promising antibacterial drug target to combat antibacterial resistance. There have been several coordinated efforts to develop inhibitors against FtsZ which can also serve as potential candidates for future antibiotics. In the present study, a natural product-like library (≈50,000 compounds) was employed to conduct HTVS against Staphylococcus aureus FtsZ protein (PDB Id: 6KVP). Additionally, molecular docking was carried out in two modes, SP and XP docking, using the Schrödinger suite. The glide scores of ligands obtained by XP docking were further summarized and compared with the control ligands (ZI1- co-crystal and PC190723-a compound undergoing clinical trial). Using the Prime-MM-GBSA approach, BFE calculations were performed on the top XP-scored ligands (≈598 compounds). These hits were also evaluated for ADMET parameters using the Qikprop algorithm, SwissADME, and in silico carcinogenicity testing using Carcinopred-El. Based on the results, ligand 4-FtsZ complex was considered for the 300 ns MDS analysis to get insights into its binding modes within the catalytic pocket of FtsZ protein. The analysis revealed that the amide linkage sandwiched between the triazole and 1-oxa-8-azaspirodecan-8-ium moiety (Val203) as well as the aminoethyl group present at 1st position on the triazole moiety (Leu209, Leu200, Asp210, and Ala202) were responsible for the FtsZ inhibitory activity, owing to their crucial interactions with key amino acid residues. Further, the complex also displayed good protein-ligand stability, ultimately predicting ligand 4 as a potent lead compound for the inhibition of FtsZ. Thus, our in silico findings will serve as a framework for in-depth in-vitro and in-vivo investigations encouraging the development of FtsZ inhibitors as a new generation of antibacterial agents.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | | | - Ravindra Pal Singh
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India.
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-Be-University, Jadcherla, Hyderabad, 509301, India.
| |
Collapse
|
15
|
Wan T, Zhuo L, Pan Z, Chen RY, Ma H, Cao Y, Wang J, Wang JJ, Hu WF, Lai YJ, Hayat M, Li YZ. Dosage constraint of the ribosome-associated molecular chaperone drives the evolution and fates of its duplicates in bacteria. mBio 2024; 15:e0199424. [PMID: 39373534 PMCID: PMC11559001 DOI: 10.1128/mbio.01994-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Rui-yun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Han Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
16
|
Liu X, Boelter G, Vollmer W, Banzhaf M, den Blaauwen T. Peptidoglycan Endopeptidase PBP7 Facilitates the Recruitment of FtsN to the Divisome and Promotes Peptidoglycan Synthesis in Escherichia coli. Mol Microbiol 2024; 122:743-756. [PMID: 39344863 PMCID: PMC11586513 DOI: 10.1111/mmi.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Escherichia coli has many periplasmic hydrolases to degrade and modify peptidoglycan (PG). However, the redundancy of eight PG endopeptidases makes it challenging to define specific roles to individual enzymes. Therefore, the cellular role of PBP7 (encoded by pbpG) is not clearly defined. In this work, we show that PBP7 localizes in the lateral cell envelope and at midcell. The C-terminal α-helix of PBP7 is crucial for midcell localization but not for its activity, which is dispensable for this localization. Additionally, midcell localization of PBP7 relies on the assembly of FtsZ up to FtsN in the divisome, and on the activity of PBP3. PBP7 was found to affect the assembly timing of FtsZ and FtsN in the divisome. The absence of PBP7 slows down the assembly of FtsN at midcell. The ΔpbpG mutant exhibited a weaker incorporation of the fluorescent D-amino acid HADA, reporting on transpeptidase activity, compared to wild-type cells. This could indicate reduced PG synthesis at the septum of the ΔpbpG strain, explaining the slower accumulation of FtsN and suggesting that endopeptidase-mediated PG cleavage may be a rate-limiting step for septal PG synthesis.
Collapse
Affiliation(s)
- Xinwei Liu
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gabriela Boelter
- Institute of Microbiology & Infection and School of BiosciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences InstituteFaculty of Medical Sciences, Newcastle University, Framlington PlaceNewcastle upon TyneUK
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneQueenslandAustralia
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of BiosciencesUniversity of BirminghamEdgbastonBirminghamUK
- Centre for Bacterial Cell Biology, Biosciences InstituteFaculty of Medical Sciences, Newcastle University, Framlington PlaceNewcastle upon TyneUK
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
17
|
Knapp BD, Shi H, Huang KC. Complex state transitions of the bacterial cell division protein FtsZ. Mol Biol Cell 2024; 35:ar130. [PMID: 39083352 PMCID: PMC11481701 DOI: 10.1091/mbc.e23-11-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
The key bacterial cell division protein FtsZ can adopt multiple conformations, and prevailing models suggest that transitions of FtsZ subunits from the closed to open state are necessary for filament formation and stability. Using all-atom molecular dynamics simulations, we analyzed state transitions of Staphylococcus aureus FtsZ as a monomer, dimer, and hexamer. We found that monomers can adopt intermediate states but preferentially adopt a closed state that is robust to forced reopening. Dimer subunits transitioned between open and closed states, and dimers with both subunits in the closed state remained highly stable, suggesting that open-state conformations are not necessary for filament formation. Mg2+ strongly stabilized the conformation of GTP-bound subunits and the dimer filament interface. Our hexamer simulations indicate that the plus end subunit preferentially closes and that other subunits can transition between states without affecting inter-subunit stability. We found that rather than being correlated with subunit opening, inter-subunit stability was strongly correlated with catalytic site interactions. By leveraging deep-learning models, we identified key intrasubunit interactions governing state transitions. Our findings suggest a greater range of possible monomer and filament states than previously considered and offer new insights into the nuanced interplay between subunit states and the critical role of nucleotide hydrolysis and Mg2+ in FtsZ filament dynamics.
Collapse
Affiliation(s)
| | - Handuo Shi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
18
|
Shinde Y, Pathan A, Chinnam S, Rathod G, Patil B, Dhangar M, Mathew B, Kim H, Mundada A, Kukreti N, Ahmad I, Patel H. Mycobacterial FtsZ and inhibitors: a promising target for the anti-tubercular drug development. Mol Divers 2024; 28:3457-3478. [PMID: 38010605 DOI: 10.1007/s11030-023-10759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) strains has rendered many anti-TB drugs ineffective. Consequently, there is an urgent need to identify new drug targets against Mycobacterium tuberculosis (Mtb). Filament Forming Temperature Sensitive Gene Z (FtsZ), a member of the cytoskeletal protein family, plays a vital role in cell division by forming a cytokinetic ring at the cell's center and coordinating the division machinery. When FtsZ is depleted, cells are unable to divide and instead elongate into filamentous structures that eventually undergo lysis. Since the inactivation of FtsZ or alterations in its assembly impede the formation of the Z-ring and septum, FtsZ shows promise as a target for the development of anti-mycobacterial drugs. This review not only discusses the potential role of FtsZ as a promising pharmacological target for anti-tuberculosis therapies but also explores the structural and functional aspects of the mycobacterial protein FtsZ in cell division. Additionally, it reviews various inhibitors of Mtb FtsZ. By understanding the importance of FtsZ in cell division, researchers can explore strategies to disrupt its function, impeding the growth and proliferation of Mtb. Furthermore, the investigation of different inhibitors that target Mtb FtsZ expands the potential for developing effective treatments against tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Asama Pathan
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Bhatu Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Mayur Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 690525, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Anand Mundada
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University-Dehradun, Dehradun, Uttarakhand, 248002, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
19
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Dunn CM, Foust D, Gao Y, Biteen JS, Shaw SL, Kearns DB. Nascent flagellar basal bodies are immobilized by rod assembly in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606393. [PMID: 39211283 PMCID: PMC11360914 DOI: 10.1101/2024.08.02.606393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in Bacillus subtilis using a fluorescent fusion to the C-ring protein FliM. We find that B. subtilis basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan. Rare basal bodies were observed to be mobile however, and the frequency of basal body mobility is elevated both early in basal body assembly and when the rod is mutated. Thus, basal body mobility is a precursor to patterning and we propose that rod polymerization probes the peptidoglycan superstructure for pores of sufficient diameter that permit rod completion. Furthermore, mutation of the rod also disrupts basal body patterning in a way that phenocopies mutation of the cytoplasmic flagellar patterning protein FlhF. We infer that conformational changes in the basal body exchange information between rod synthesis and the cytoplasmic patterning proteins to restrict assembly at certain pores established by a grid-like pattern pre-existent in the peptidoglycan itself. IMPORTANCE Bacteria insert flagella in a species-specific pattern on the cell body, but how patterns are achieved is poorly understood. In bacteria with a single polar flagellum, a marker protein localizes to the cell pole and nucleates the assembly of the flagellum at that site. Bacillus subtilis assembles ∼15 flagella over the length of the cell body in a grid-like pattern and lacks all proteins associated with targeted assembly in polarly flagellated bacteria. Here we show that B. subtilis basal bodies are mobile soon after assembly and become immobilized when the flagellar rod transits the peptidoglycan wall. Moreover, defects in the flagellar rod lead to an asymmetric distribution of flagella with respect to the midcell. We conclude that the patterning of flagella is different in B. subtilis , and we infer that the B. subtilis rod probes the peptidoglycan for holes that can accommodate the machine.
Collapse
|
21
|
Secaira-Morocho H, Chede A, Gonzalez-de-Salceda L, Garcia-Pichel F, Zhu Q. An evolutionary optimum amid moderate heritability in prokaryotic cell size. Cell Rep 2024; 43:114268. [PMID: 38776226 DOI: 10.1016/j.celrep.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
We investigate the distribution and evolution of prokaryotic cell size based on a compilation of 5,380 species. Size spans four orders of magnitude, from 100 nm (Mycoplasma) to more than 1 cm (Thiomargarita); however, most species congregate heavily around the mean. The distribution approximates but is distinct from log normality. Comparative phylogenetics suggests that size is heritable, yet the phylogenetic signal is moderate, and the degree of heritability is independent of taxonomic scale (i.e., fractal). Evolutionary modeling indicates the presence of an optimal cell size to which most species gravitate. The size is equivalent to a coccus of 0.70 μm in diameter. Analyses of 1,361 species with sequenced genomes show that genomic traits contribute to size evolution moderately and synergistically. Given our results, scaling theory, and empirical evidence, we discuss potential drivers that may expand or shrink cells around the optimum and propose a stability landscape model for prokaryotic cell size.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Abhinav Chede
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Luis Gonzalez-de-Salceda
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
22
|
Chakraborty J, Poddar S, Dutta S, Bahulekar V, Harne S, Srinivasan R, Gayathri P. Dynamics of interdomain rotation facilitates FtsZ filament assembly. J Biol Chem 2024; 300:107336. [PMID: 38718863 PMCID: PMC11157280 DOI: 10.1016/j.jbc.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.
Collapse
Affiliation(s)
- Joyeeta Chakraborty
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Sakshi Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | - Soumyajit Dutta
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Vaishnavi Bahulekar
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Shrikant Harne
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
23
|
Hale VL, Hooker J, Russo CJ, Löwe J. Honeycomb gold specimen supports enabling orthogonal focussed ion beam-milling of elongated cells for cryo-ET. J Struct Biol 2024; 216:108097. [PMID: 38772448 PMCID: PMC7616276 DOI: 10.1016/j.jsb.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.
Collapse
Affiliation(s)
| | - James Hooker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
24
|
Hoskisson PA, Barona-Gómez F, Rozen DE. Phenotypic heterogeneity in Streptomyces colonies. Curr Opin Microbiol 2024; 78:102448. [PMID: 38447313 DOI: 10.1016/j.mib.2024.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
Streptomyces are a large genus of multicellular bacteria best known for their prolific production of bioactive natural products. In addition, they play key roles in the mineralisation of insoluble resources, such as chitin and cellulose. Because of their multicellular mode of growth, colonies of interconnected hyphae extend over a large area that may experience different conditions in different parts of the colony. Here, we argue that within-colony phenotypic heterogeneity can allow colonies to simultaneously respond to divergent inputs from resources or competitors that are spatially and temporally dynamic. We discuss causal drivers of heterogeneity, including competitors, precursor availability, metabolic diversity and division of labour, that facilitate divergent phenotypes within Streptomyces colonies. We discuss the adaptive causes and consequences of within-colony heterogeneity, highlight current knowledge (gaps) and outline key questions for future studies.
Collapse
Affiliation(s)
- Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | | | - Daniel E Rozen
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands.
| |
Collapse
|
25
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
26
|
Wang H, Mi Q, Mao Y, Tan Y, Yang M, Liu W, Wang N, Tian X, Huang L. Streptothricin-F Inhibition of FtsZ Function: A Promising Approach for Controlling Pseudomonas syringae pv. actinidiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2624-2633. [PMID: 38277222 DOI: 10.1021/acs.jafc.3c08474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is a significant pathogenic bacterium affecting the kiwifruit industry. This study investigated the target sites of streptothricin-F (ST-F), produced by Streptomyces lavendulae gCLA4. The inhibition of ST-F on Psa was examined by the microscopic structural differences of Psa before and after treatment with ST-F, as well as the interaction between ST-F and cell division-related proteins. The results revealed filamentation of Psa after ST-F treatment, and fluorescence microscopy showed that ST-F inhibited the formation of the Z-ring composed of FtsZ protein. In vitro experiments and molecular docking demonstrated that ST-F can bind to FtsZ with a binding energy of 0.4 μM and inhibit FtsZ's GTP-dependent polymerization reaction. In addition, ST-F does not exert inhibitory effects on cell division in Psa strains overexpressing ftsZ. In conclusion, FtsZ is one of the target sites for ST-F inhibition of Psa, highlighting its potential as a therapeutic target for controlling Psa-induced kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yiru Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Yunxiao Tan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Mingming Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Nana Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Life Science, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Xiangrong Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Forestry, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100 Shaanxi Province, P. R. China
- College of Plant Protection, Northwest A&F University, Yangling Shaanxi Province 712100, P. R. China
| |
Collapse
|
27
|
Cheng T, Boneca IG. The shapeshifting Helicobacter pylori: From a corkscrew to a ball. Mol Microbiol 2024; 121:260-274. [PMID: 38173305 DOI: 10.1111/mmi.15218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
There is growing evidence that bacterial morphology is closely related to their lifestyle. The helical Helicobacter pylori relies on its unique shape for survival and efficient colonization of the human stomach. Yet, they have been observed to transform into another distinctive morphology, the spherical coccoid. Despite being hypothesized to be involved in the persistence and transmission of this species, years of effort in deciphering the roles of the coccoid form remain fruitless since contrasting observations regarding its lifestyle were reported. Here, we discuss the two forms of H. pylori with a focus on the coccoid form, the molecular mechanism behind its morphological transformation, and experimental approaches to further develop our understanding of this phenomenon. We also propose a putative mechanism of the coccoid formation in H. pylori through induction of a type-I toxin-antitoxin (TA) system recently shown to influence the morphology of this species.
Collapse
Affiliation(s)
- Thimoro Cheng
- Institut Pasteur, Université Paris Cité, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| |
Collapse
|
28
|
Reed P, Sorg M, Alwardt D, Serra L, Veiga H, Schäper S, Pinho MG. A CRISPRi-based genetic resource to study essential Staphylococcus aureus genes. mBio 2024; 15:e0277323. [PMID: 38054745 PMCID: PMC10870820 DOI: 10.1128/mbio.02773-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is an important clinical pathogen that causes a high number of antibiotic-resistant infections. The study of S. aureus biology, and particularly of the function of essential proteins, is of particular importance to develop new approaches to combat this pathogen. We have optimized a clustered regularly interspaced short palindromic repeat interference (CRISPRi) system that allows efficient targeting of essential S. aureus genes. Furthermore, we have used that system to construct a library comprising 261 strains, which allows the depletion of essential proteins encoded by 200 genes/operons. This library, which we have named Lisbon CRISPRi Mutant Library, should facilitate the study of S. aureus pathogenesis and biology.
Collapse
Affiliation(s)
- Patricia Reed
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dominik Alwardt
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lúcia Serra
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
29
|
Cramer K, Reinhardt SCM, Auer A, Shin JY, Jungmann R. Comparing divisome organization between vegetative and sporulating Bacillus subtilis at the nanoscale using DNA-PAINT. SCIENCE ADVANCES 2024; 10:eadk5847. [PMID: 38198550 PMCID: PMC10780868 DOI: 10.1126/sciadv.adk5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Spore-forming bacteria have two distinct division modes: sporulation and vegetative division. The placement of the foundational division machinery component (Z-ring) within the division plane is contingent on the division mode. However, investigating if and how division is performed differently between sporulating and vegetative cells remains challenging, particularly at the nanoscale. Here, we use DNA-PAINT super-resolution microscopy to compare the 3D assembly and distribution patterns of key division proteins SepF, ZapA, DivIVA, and FtsZ. We determine that ZapA and SepF placement within the division plane mimics that of the Z-ring in vegetative and sporulating cells. We find that DivIVA assemblies differ between vegetative and sporulating cells. Furthermore, we reveal that SepF assembles into ~50-nm arcs independent of division mode. We propose a nanoscale model in which symmetric or asymmetric placement of the Z-ring and early divisome proteins is a defining characteristic of vegetative or sporulating cells, respectively, and regulation of septal thickness differs between division modes.
Collapse
Affiliation(s)
- Kimberly Cramer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne C. M. Reinhardt
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Auer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jae Yen Shin
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
30
|
Ma Y, Chang X, Zhang S, Zhang P, Guo T, Zhang X, Kong Y, Ma S. New broad-spectrum and potent antibacterial agents with dual-targeting mechanism: Promoting FtsZ polymerization and disrupting bacterial membranes. Eur J Med Chem 2024; 263:115930. [PMID: 37950964 DOI: 10.1016/j.ejmech.2023.115930] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
The emergence of multidrug-resistant bacteria and the slow development of new antibacterial agents have led to a growing global health crisis. Here, we identified an antibacterial agent possessing 1-methyl-2,5-diphenylpyridin-1-ium core, MA220607, with a dual-targeting mechanism of action (MOA), which exhibited effective killing activity against both Gram-positive (MIC = 0.062-2 μg/mL) and Gram-negative bacteria (MIC = 0.5-4 μg/mL). Moreover, our study revealed that MA220607 could block the formation of bacterial biofilm, which might be the reason for low frequency of resistance. MOA studies showed that MA220607 not only promoted FtsZ protein polymerization, but also increased the permeability of bacterial membranes and altered their proton gradients. In addition, MA220607 had low hemolytic toxicity and could significantly inhibit the growth of bacteria in mice. Molecular dynamics simulations demonstrated that MA220607 could block the transition from the tense (T) to relaxed (R) state of FtsZ protein, thereby perturbing the stepping mechanism of FtsZ protein. Overall, our findings suggest that integrating the dual mechanisms targeting FtsZ protein and cell membranes of bacteria into a single scaffold represents a promising direction for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Yangchun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xiaohong Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Shenyan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xianghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yue Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
31
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
32
|
Hu B, Margolin W. Probing Membrane-Associated Cytoskeletal Oligomers of the Bacterial Divisome by Electron Microscopy and Tomography. Methods Mol Biol 2024; 2727:17-25. [PMID: 37815705 PMCID: PMC11295944 DOI: 10.1007/978-1-0716-3491-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The cell division machinery or "divisome" of many bacteria, including Escherichia coli, contains homologs of tubulin (FtsZ) and actin (FtsA) that interact with each other to promote the synthesis of septal peptidoglycan. FtsA oligomers have an essential role as a track for tethering dynamically treadmilling FtsZ protofilaments to the cytoplasmic membrane. Other bacterial cytoskeletal oligomers such as MreB also assemble on and move along the membrane. Structures of these oligomers on membranes in vitro may mimic their behavior in the cell. Here, we describe a protocol to visualize FtsA oligomeric structures on membranes and their interactions with FtsZ protofilaments using negative stain transmission electron microscopy along with tomography.
Collapse
Affiliation(s)
- Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
33
|
Morrison JJ, Camberg JL. Building the Bacterial Divisome at the Septum. Subcell Biochem 2024; 104:49-71. [PMID: 38963483 DOI: 10.1007/978-3-031-58843-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Across living organisms, division is necessary for cell survival and passing heritable information to the next generation. For this reason, cell division is highly conserved among eukaryotes and prokaryotes. Among the most highly conserved cell division proteins in eukaryotes are tubulin and actin. Tubulin polymerizes to form microtubules, which assemble into cytoskeletal structures in eukaryotes, such as the mitotic spindle that pulls chromatids apart during mitosis. Actin polymerizes to form a morphological framework for the eukaryotic cell, or cytoskeleton, that undergoes reorganization during mitosis. In prokaryotes, two of the most highly conserved cell division proteins are the tubulin homolog FtsZ and the actin homolog FtsA. In this chapter, the functions of the essential bacterial cell division proteins FtsZ and FtsA and their roles in assembly of the divisome at the septum, the site of cell division, will be discussed. In most bacteria, including Escherichia coli, the tubulin homolog FtsZ polymerizes at midcell, and this step is crucial for recruitment of many other proteins to the division site. For this reason, both FtsZ abundance and polymerization are tightly regulated by a variety of proteins. The actin-like FtsA protein polymerizes and tethers FtsZ polymers to the cytoplasmic membrane. Additionally, FtsA interacts with later stage cell division proteins, which are essential for division and for building the new cell wall at the septum. Recent studies have investigated how actin-like polymerization of FtsA on the lipid membrane may impact division, and we will discuss this and other ways that division in bacteria is regulated through FtsZ and FtsA.
Collapse
Affiliation(s)
- Josiah J Morrison
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
34
|
Carabajal MPA, Bonacina J, Scarinci N, Albarracín VH, Cantero MDR, Cantiello HF. The bacterial tubulin homolog FtsZ generates electrical oscillations. Biochem Biophys Res Commun 2023; 687:149186. [PMID: 37931420 DOI: 10.1016/j.bbrc.2023.149186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
FtsZ, a major cytoskeletal protein in all bacteria and archaea, forms a ring that directs cytokinesis. Bacterial FtsZ is considered the ancestral homolog of the eukaryotic microtubule (MT)-forming tubulins, sharing GTPase activity and the ability to assemble into protofilaments, rings, and sheets, but not MTs. Previous studies from our laboratory demonstrated that structures of isolated brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. No information about whether the prokaryotic tubulins may share similar properties is available. Here, we obtained by ammonium sulfate precipitation an enriched protein fraction of the endogenous FtsZ from wild-type Escherichia coli ATCC 25922 without any transfection or overexpression of the protein. As revealed by electron microscopy, FtsZ was detected by dot blot analysis and immunofluorescence that assembled into filaments and sheets in a polymerization buffer. We used the patch-clamp technique to explore the electrical properties of sheets of FtsZ and bacterial cells. Electrical recordings at various holding potentials ranging from ±200 mV showed a complex oscillatory behavior, with several peak frequencies between 12 and 110 Hz in the power spectra and a linear mean current response. To confirm the oscillatory electrical behavior of FtsZ we also conducted experiments with commercial recombinant FtsZ, with similar results. We also detected, by local field potentials, similar electrical oscillations in K+-depolarized pellets of E. coli cultures. FtsZ oscillations had a wider range of frequency peaks than MT sheets from eukaryotic origin. The findings indicate that the bacterial cytoskeleton generates electrical oscillators that may play a relevant role in cell division and unknown signaling mechanisms in bacterial populations.
Collapse
Affiliation(s)
- Mónica P A Carabajal
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Julieta Bonacina
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Virginia H Albarracín
- Centro Integral de Microscopía Electrónica (CIME, CONICET-UNT), Yerba Buena, 4107, Tucumán, Argentina
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina.
| |
Collapse
|
35
|
Mortier J, Govers SK, Cambré A, Van Eyken R, Verheul J, den Blaauwen T, Aertsen A. Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis. Cell Mol Life Sci 2023; 80:360. [PMID: 37971522 PMCID: PMC11072981 DOI: 10.1007/s00018-023-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Ronald Van Eyken
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Jolanda Verheul
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
36
|
Goudin A, Ferat JL, Possoz C, Barre FX, Galli E. Recovery of Vibrio cholerae polarized cellular organization after exit from a non-proliferating spheroplast state. PLoS One 2023; 18:e0293276. [PMID: 37883451 PMCID: PMC10602287 DOI: 10.1371/journal.pone.0293276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Vibrio cholerae, the causative agent of cholera epidemics, is a rod-shaped bacterium with a highly polarized cellular organization. It can survive harmful growth conditions by entering a non-proliferating spheroplast state, which involves loss of the cell envelope and polarity. How polarized rod organization cells are formed when the spheroplasts exit the non-proliferating state remains largely uncharacterized. To address this question, we investigated how L-arabinose-induced V. cholerae spheroplasts return to growth. We found that de novo morphogenesis started with the elimination of an excess of periplasm, which was immediately followed by cell elongation and the formation of cell branches with a diameter similar to that of normal V. cholerae cells. Periplasm elimination was driven by bifunctional peptidoglycan synthases involved in cell-wall maintenance, the aPBPs. Elongation and branching relied on the MreB-associated monofunctional peptidoglycan synthase PBP2. The cell division monofunctional peptidoglycan synthase FtsI was not involved in any of these processes. However, the FtsK cell division protein specifically targeted the sites of vesicle extrusion. Genetic material was amplified by synchronous waves of DNA replication as periplasmic elimination began. The HubP polarity factor targeted the tip of the branches as they began to form. However, HubP-mediated polarization was not involved in the efficiency of the recovery process. Finally, our results suggest that the positioning of HubP and the activities of the replication terminus organizer of the two V. cholerae chromosomes, MatP, are independent of cell division. Taken together, these results confirm the interest of L-arabinose-induced V. cholerae spheroplasts to study how cell shape is generated and shed light on the de novo establishment of the intracellular organization and cell polarization in V. cholerae.
Collapse
Affiliation(s)
- Anthony Goudin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Luc Ferat
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Elisa Galli
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
37
|
Bai C, van Wezel GP. CUBIC: A Versatile Cumate-Based Inducible CRISPRi System in Streptomyces. ACS Synth Biol 2023; 12:3143-3147. [PMID: 37801665 PMCID: PMC10594651 DOI: 10.1021/acssynbio.3c00464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/08/2023]
Abstract
Streptomyces, a genus of Gram-positive bacteria, is known as nature's medicine maker, producing a plethora of natural products that have huge benefits for human health, agriculture, and biotechnology. To take full advantage of this treasure trove of bioactive molecules, better genetic tools are required for the genetic engineering and synthetic biology of Streptomyces. We therefore developed CUBIC, a novel CUmate-Based Inducible CRISPR interference (CRISPRi) system that allows highly efficient and inducible gene knockdown in Streptomyces. Its broad application is shown by the specific and nondisruptive knockdown of genes involved in growth, development and antibiotic production in various Streptomyces species. To facilitate hyper-efficient plasmid construction, we adapted the Golden Gate assembly to achieve 100% cloning efficiency of the protospacers. We expect that the versatile plug-and-play CUBIC system will create new opportunities for research and innovation in the field of Streptomyces.
Collapse
Affiliation(s)
- Chaoxian Bai
- Institute of Biology, Leiden University, Sylviusweg 72, 2333
BE, Leiden, Netherlands
| | - Gilles P. van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333
BE, Leiden, Netherlands
| |
Collapse
|
38
|
Cooper A, Makkay AM, Papke RT. Archaeal Tubulin-like Proteins Modify Cell Shape in Haloferax volcanii during Early Biofilm Development. Genes (Basel) 2023; 14:1861. [PMID: 37895209 PMCID: PMC10606840 DOI: 10.3390/genes14101861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Tubulin, an extensively studied self-assembling protein, forms filaments in eukaryotic cells that affect cell shape, among other functions. The model archaeon Haloferax volcanii uses two tubulin-like proteins (FtsZ1/FtsZ2) for cell division, similar to bacteria, but has an additional six related tubulins called CetZ. One of them, CetZ1, was shown to play a role in cell shape. Typically, discoid and rod shapes are observed in planktonic growth, but under biofilm formation conditions (i.e., attached to a substratum), H. volcanii can grow filamentously. Here, we show that the deletion mutants of all eight tubulin-like genes significantly impacted morphology when cells were allowed to form a biofilm. ΔftsZ1, ΔcetZ2, and ΔcetZ4-6 created longer, less round cells than the parental and a higher percentage of filaments. ΔcetZ1 and ΔcetZ3 were significantly rounder than the parental, and ΔftsZ2 generated larger, flat, amorphic cells. The results show all tubulin homologs affect morphology at most timepoints, which therefore suggests these genes indeed have a function.
Collapse
Affiliation(s)
| | | | - R. Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06268, USA; (A.C.); (A.M.M.)
| |
Collapse
|
39
|
Kohiyama M, Herrick J, Norris V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life (Basel) 2023; 13:1890. [PMID: 37763294 PMCID: PMC10532879 DOI: 10.3390/life13091890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The DnaA protein has long been considered to play the key role in the initiation of chromosome replication in modern bacteria. Many questions about this role, however, remain unanswered. Here, we raise these questions within a framework based on the dynamics of hyperstructures, alias large assemblies of molecules and macromolecules that perform a function. In these dynamics, hyperstructures can (1) emit and receive signals or (2) fuse and separate from one another. We ask whether the DnaA-based initiation hyperstructure acts as a logic gate receiving information from the membrane, the chromosome, and metabolism to trigger replication; we try to phrase some of these questions in terms of DNA supercoiling, strand opening, glycolytic enzymes, SeqA, ribonucleotide reductase, the macromolecular synthesis operon, post-translational modifications, and metabolic pools. Finally, we ask whether, underpinning the regulation of the cell cycle, there is a physico-chemical clock inherited from the first protocells, and whether this clock emits a single signal that triggers both chromosome replication and cell division.
Collapse
Affiliation(s)
- Masamichi Kohiyama
- Institut Jacques Monod, Université Paris Cité, CNRS, 75013 Paris, France;
| | - John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- CBSA UR 4312, University of Rouen Normandy, University of Caen Normandy, Normandy University, 76000 Rouen, France
| |
Collapse
|
40
|
Nanninga N. Molecular Cytology of 'Little Animals': Personal Recollections of Escherichia coli (and Bacillus subtilis). Life (Basel) 2023; 13:1782. [PMID: 37629639 PMCID: PMC10455606 DOI: 10.3390/life13081782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This article relates personal recollections and starts with the origin of electron microscopy in the sixties of the previous century at the University of Amsterdam. Novel fixation and embedding techniques marked the discovery of the internal bacterial structures not visible by light microscopy. A special status became reserved for the freeze-fracture technique. By freeze-fracturing chemically fixed cells, it proved possible to examine the morphological effects of fixation. From there on, the focus switched from bacterial structure as such to their cell cycle. This invoked bacterial physiology and steady-state growth combined with electron microscopy. Electron-microscopic autoradiography with pulses of [3H] Dap revealed that segregation of replicating DNA cannot proceed according to a model of zonal growth (with envelope-attached DNA). This stimulated us to further investigate the sacculus, the peptidoglycan macromolecule. In particular, we focused on the involvement of penicillin-binding proteins such as PBP2 and PBP3, and their role in division. Adding aztreonam (an inhibitor of PBP3) blocked ongoing divisions but not the initiation of new ones. A PBP3-independent peptidoglycan synthesis (PIPS) appeared to precede a PBP3-dependent step. The possible chemical nature of PIPS is discussed.
Collapse
Affiliation(s)
- Nanne Nanninga
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
41
|
Britton BM, Yovanno RA, Costa SF, McCausland J, Lau AY, Xiao J, Hensel Z. Conformational changes in the essential E. coli septal cell wall synthesis complex suggest an activation mechanism. Nat Commun 2023; 14:4585. [PMID: 37524712 PMCID: PMC10390529 DOI: 10.1038/s41467-023-39921-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
The bacterial divisome is a macromolecular machine composed of more than 30 proteins that controls cell wall constriction during division. Here, we present a model of the structure and dynamics of the core complex of the E. coli divisome, supported by a combination of structure prediction, molecular dynamics simulation, single-molecule imaging, and mutagenesis. We focus on the septal cell wall synthase complex formed by FtsW and FtsI, and its regulators FtsQ, FtsL, FtsB, and FtsN. The results indicate extensive interactions in four regions in the periplasmic domains of the complex. FtsQ, FtsL, and FtsB support FtsI in an extended conformation, with the FtsI transpeptidase domain lifted away from the membrane through interactions among the C-terminal domains. FtsN binds between FtsI and FtsL in a region rich in residues with superfission (activating) and dominant negative (inhibitory) mutations. Mutagenesis experiments and simulations suggest that the essential domain of FtsN links FtsI and FtsL together, potentially modulating interactions between the anchor-loop of FtsI and the putative catalytic cavity of FtsW, thus suggesting a mechanism of how FtsN activates the cell wall synthesis activities of FtsW and FtsI.
Collapse
Affiliation(s)
- Brooke M Britton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Remy A Yovanno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Sara F Costa
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da República, 2780-157, Oeiras, Portugal
| | - Joshua McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St, Baltimore, MD, 21205, USA.
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, Lisbon, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
42
|
Fujita J, Amesaka H, Yoshizawa T, Hibino K, Kamimura N, Kuroda N, Konishi T, Kato Y, Hara M, Inoue T, Namba K, Tanaka SI, Matsumura H. Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody. Nat Commun 2023; 14:4073. [PMID: 37429870 DOI: 10.1038/s41467-023-39807-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
FtsZ polymerizes into protofilaments to form the Z-ring that acts as a scaffold for accessory proteins during cell division. Structures of FtsZ have been previously solved, but detailed mechanistic insights are lacking. Here, we determine the cryoEM structure of a single protofilament of FtsZ from Klebsiella pneumoniae (KpFtsZ) in a polymerization-preferred conformation. We also develop a monobody (Mb) that binds to KpFtsZ and FtsZ from Escherichia coli without affecting their GTPase activity. Crystal structures of the FtsZ-Mb complexes reveal the Mb binding mode, while addition of Mb in vivo inhibits cell division. A cryoEM structure of a double-helical tube of KpFtsZ-Mb at 2.7 Å resolution shows two parallel protofilaments. Our present study highlights the physiological roles of the conformational changes of FtsZ in treadmilling that regulate cell division.
Collapse
Affiliation(s)
- Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Amesaka
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Kota Hibino
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsuki Kamimura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takamoto Konishi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuki Kato
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Mizuho Hara
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- dotAqua Inc., 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
- RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shun-Ichi Tanaka
- Graduate School of Life and Environmental Science, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan.
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
43
|
Lee J, Cox JV, Ouellette SP. The Unique N-Terminal Domain of Chlamydial Bactofilin Mediates Its Membrane Localization and Ring-Forming Properties. J Bacteriol 2023; 205:e0009223. [PMID: 37191556 PMCID: PMC10294636 DOI: 10.1128/jb.00092-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen. In evolving to the intracellular niche, Chlamydia has reduced its genome size compared to other bacteria and, as a consequence, has a number of unique features. For example, Chlamydia engages the actin-like protein MreB, rather than the tubulin-like protein FtsZ, to direct peptidoglycan (PG) synthesis exclusively at the septum of cells undergoing polarized cell division. Interestingly, Chlamydia possesses another cytoskeletal element-a bactofilin ortholog, BacA. Recently, we reported BacA is a cell size-determining protein that forms dynamic membrane-associated ring structures in Chlamydia that have not been observed in other bacteria with bactofilins. Chlamydial BacA possesses a unique N-terminal domain, and we hypothesized this domain imparts the membrane-binding and ring-forming properties of BacA. We show that different truncations of the N terminus result in distinct phenotypes: removal of the first 50 amino acids (ΔN50) results in large ring structures at the membrane whereas removal of the first 81 amino acids (ΔN81) results in an inability to form filaments and rings and a loss of membrane association. Overexpression of the ΔN50 isoform altered cell size, similar to loss of BacA, suggesting that the dynamic properties of BacA are essential for the regulation of cell size. We further show that the region from amino acid 51 to 81 imparts membrane association as appending it to green fluorescent protein (GFP) resulted in the relocalization of GFP from the cytosol to the membrane. Overall, our findings suggest two important functions for the unique N-terminal domain of BacA and help explain its role as a cell size determinant. IMPORTANCE Bacteria use a variety of filament-forming cytoskeletal proteins to regulate and control various aspects of their physiology. For example, the tubulin-like FtsZ recruits division proteins to the septum whereas the actin-like MreB recruits peptidoglycan (PG) synthases to generate the cell wall in rod-shaped bacteria. Recently, a third class of cytoskeletal protein has been identified in bacteria-bactofilins. These proteins have been primarily linked to spatially localized PG synthesis. Interestingly, Chlamydia, an obligate intracellular bacterium, does not have PG in its cell wall and yet possesses a bactofilin ortholog. In this study, we characterize a unique N-terminal domain of chlamydial bactofilin and show that this domain controls two important functions that affect cell size: its ring-forming and membrane-associating properties.
Collapse
Affiliation(s)
- Junghoon Lee
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
44
|
Donachie WD. The Nordström Question. Life (Basel) 2023; 13:1442. [PMID: 37511817 PMCID: PMC10381616 DOI: 10.3390/life13071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
It is suggested that the absolute dimensions of cells of Escherichia coli may be set by the separation distance between newly completed sister nucleoids.
Collapse
Affiliation(s)
- William D Donachie
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3FD, Scotland, UK
| |
Collapse
|
45
|
Jiang Q, Li B, Zhang L, Li T, Hu Q, Li H, Zou W, Hu Z, Huang Q, Zhou R. DivIVA Interacts with the Cell Wall Hydrolase MltG To Regulate Peptidoglycan Synthesis in Streptococcus suis. Microbiol Spectr 2023; 11:e0475022. [PMID: 37212666 PMCID: PMC10269899 DOI: 10.1128/spectrum.04750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Bacterial morphology is largely determined by the spatial and temporal regulation of peptidoglycan (PG) biosynthesis. Ovococci possess a unique pattern of PG synthesis different from the well studied Bacillus, and the mechanism of the coordination of PG synthesis remains poorly understood. Several regulatory proteins have been identified to be involved in the regulation of ovococcal morphogenesis, among which DivIVA is an important one to regulate PG synthesis in streptococci, while its mechanism is largely unknown. Here, the zoonotic pathogen Streptococcus suis was used to investigate the regulation of DivIVA on PG synthesis. Fluorescent d-amino acid probing and 3D-structured illumination microscopy found that DivIVA deletion caused abortive peripheral PG synthesis, resulting in a decreased aspect ratio. The phosphorylation-depleted mutant (DivIVA3A) cells displayed a longer nascent PG and became longer, whereas the phosphorylation-mimicking mutant (DivIVA3E) cells showed a shorter nascent PG and became shorter, suggesting that DivIVA phosphorylation is involved in regulating peripheral PG synthesis. Several DivIVA-interacting proteins were identified, and the interaction was confirmed between DivIVA and MltG, a cell wall hydrolase essential for cell elongation. DivIVA did not affect the PG hydrolysis activity of MltG, while the phosphorylation state of DivIVA affected its interaction with MltG. MltG was mislocalized in the ΔdivIVA and DivIVA3E cells, and both ΔmltG and DivIVA3E cells formed significantly rounder cells, indicating an important role of DivIVA phosphorylation in regulating PG synthesis through MltG. These findings highlight the regulatory mechanism of PG synthesis and morphogenesis of ovococci. IMPORTANCE The peptidoglycan (PG) biosynthesis pathway provides a rich source of novel antimicrobial drug targets. However, bacterial PG synthesis and its regulation is a very complex process involving dozens of proteins. Moreover, unlike the well studied Bacillus, ovococci undergo unusual PG synthesis with unique mechanisms of coordination. DivIVA is an important regulator of PG synthesis in ovococci, while its exact role in regulating PG synthesis remains poorly understood. In this study, we determined the role of DivIVA in regulating lateral PG synthesis of Streptococcus suis and identified a critical interacting partner, MltG, in which DivIVA influenced the subcellular localizations of MltG through its phosphorylation. Our study characterizes the detailed role of DivIVA in regulating bacterial PG synthesis, which is very helpful for understanding the process of PG synthesis in streptococci.
Collapse
Affiliation(s)
- Qinggen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjin Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| |
Collapse
|
46
|
Mallik S, Dodia H, Ghosh A, Srinivasan R, Good L, Raghav SK, Beuria TK. FtsE, the Nucleotide Binding Domain of the ABC Transporter Homolog FtsEX, Regulates Septal PG Synthesis in E. coli. Microbiol Spectr 2023; 11:e0286322. [PMID: 37014250 PMCID: PMC10269673 DOI: 10.1128/spectrum.02863-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
The peptidoglycan (PG) layer, a crucial component of the tripartite E.coli envelope, is required to maintain cellular integrity, protecting the cells from mechanical stress resulting from intracellular turgor pressure. Thus, coordinating synthesis and hydrolysis of PG during cell division (septal PG) is crucial for bacteria. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, the mechanism and regulation of septal PG synthesis are unclear. In addition, how septal PG synthesis and hydrolysis are coordinated has remained unclear. Here, we have shown that overexpression of FtsE leads to a mid-cell bulging phenotype in E.coli, which is different from the filamentous phenotype observed during overexpression of other cell division proteins. Silencing of the common PG synthesis genes murA and murB reduced bulging, confirming that this phenotype is due to excess PG synthesis. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations and previous results suggest that FtsEX plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Overall, our study findings support a model in which FtsE plays a role in coordinating septal PG synthesis with bacterial cell division. IMPORTANCE The peptidoglycan (PG) layer is an essential component of the E.coli envelope that is required to maintain cellular shape and integrity. Thus, coordinating PG synthesis and hydrolysis at the mid-cell (septal PG) is crucial during bacterial division. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, its role in regulation of septal PG synthesis is unclear. Here, we demonstrate that overexpression of FtsE in E.coli leads to a mid-cell bulging phenotype due to excess PG synthesis. This phenotype was reduced upon silencing of common PG synthesis genes murA and murB. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations suggest that the FtsEX complex plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Our study indicates that FtsE plays a role in coordinating septal PG synthesis with bacterial cell division.
Collapse
Affiliation(s)
- Sunanda Mallik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hiren Dodia
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Ghosh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Ramanujam Srinivasan
- National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Liam Good
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | | |
Collapse
|
47
|
Gu F, Jiang W, Kang F, Su T, Yang X, Qi Q, Liang Q. A synthetic population-level oscillator in non-microfluidic environments. Commun Biol 2023; 6:515. [PMID: 37179427 PMCID: PMC10183009 DOI: 10.1038/s42003-023-04904-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Synthetic oscillators have become a research hotspot because of their complexity and importance. The construction and stable operation of oscillators in large-scale environments are important and challenging. Here, we introduce a synthetic population-level oscillator in Escherichia coli that operates stably during continuous culture in non-microfluidic environments without the addition of inducers or frequent dilution. Specifically, quorum-sensing components and protease regulating elements are employed, which form delayed negative feedback to trigger oscillation and accomplish the reset of signals through transcriptional and post-translational regulation. We test the circuit in devices with 1 mL, 50 mL, 400 mL of medium, and demonstrate that the circuit could maintain stable population-level oscillations. Finally, we explore potential applications of the circuit in regulating cellular morphology and metabolism. Our work contributes to the design and testing of synthetic biological clocks that function in large populations.
Collapse
Affiliation(s)
- Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Wei Jiang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangbing Kang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Xiaoya Yang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, 266237, Qingdao, China.
| |
Collapse
|
48
|
Nguyen HTV, Chen X, Parada C, Luo AC, Shih O, Jeng US, Huang CY, Shih YL, Ma C. Structure of the heterotrimeric membrane protein complex FtsB-FtsL-FtsQ of the bacterial divisome. Nat Commun 2023; 14:1903. [PMID: 37019934 PMCID: PMC10076392 DOI: 10.1038/s41467-023-37543-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
The synthesis of the cell-wall peptidoglycan during bacterial cell division is mediated by a multiprotein machine, called the divisome. The essential membrane protein complex of FtsB, FtsL and FtsQ (FtsBLQ) is at the heart of the divisome assembly cascade in Escherichia coli. This complex regulates the transglycosylation and transpeptidation activities of the FtsW-FtsI complex and PBP1b via coordination with FtsN, the trigger for the onset of constriction. Yet the underlying mechanism of FtsBLQ-mediated regulation is largely unknown. Here, we report the full-length structure of the heterotrimeric FtsBLQ complex, which reveals a V-shaped architecture in a tilted orientation. Such a conformation could be strengthened by the transmembrane and the coiled-coil domains of the FtsBL heterodimer, as well as an extended β-sheet of the C-terminal interaction site involving all three proteins. This trimeric structure may also facilitate interactions with other divisome proteins in an allosteric manner. These results lead us to propose a structure-based model that delineates the mechanism of the regulation of peptidoglycan synthases by the FtsBLQ complex.
Collapse
Affiliation(s)
- Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Claudia Parada
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - An-Chi Luo
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30044, Taiwan
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Yu-Ling Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
49
|
Zhao S, Makarova KS, Zheng W, Liu Y, Zhan L, Wan Q, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread PRC barrel proteins play critical roles in archaeal cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534520. [PMID: 37090588 PMCID: PMC10120694 DOI: 10.1101/2023.03.28.534520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cell division is fundamental to all cellular life. Most of the archaea employ one of two alternative division machineries, one centered around the prokaryotic tubulin homolog FtsZ and the other around the endosomal sorting complex required for transport (ESCRT). However, neither of these mechanisms has been thoroughly characterized in archaea. Here, we show that three of the four PRC (Photosynthetic Reaction Center) barrel domain proteins of Haloferax volcanii (renamed Cell division proteins B1/2/3 (CdpB1/2/3)), play important roles in division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologs of CdpB proteins are also involved in cell division in other haloarchaea. Phylogenetic analysis shows that PRC barrel proteins are widely distributed among archaea, including the highly conserved CdvA protein of the crenarchaeal ESCRT-based division system. Thus, diverse PRC barrel proteins appear to be central to cell division in most if not all archaea. Further study of these proteins is expected to elucidate the division mechanisms in archaea and their evolution.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
50
|
Sallmen JW, Schlimpert S. Cap-tivating findings provide insight into bacterial cell division. Trends Microbiol 2023; 31:219-221. [PMID: 36707350 DOI: 10.1016/j.tim.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
In most bacteria, cell division is orchestrated by the tubulin homolog FtsZ. To ensure the correct placement of the division machinery, FtsZ activity needs to be tightly regulated. Corrales-Guerrero et al. now describe the molecular details of how MipZ, an alphaproteobacterial regulator, interacts with FtsZ to promote proper cell division.
Collapse
Affiliation(s)
- Joseph W Sallmen
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| |
Collapse
|