1
|
Abstract
Disruption of plasma membranes is a widespread, common and normal event that occurs in many mechanically challenged tissues (McNeil & Steinhardt, 1997). After injury to the plasma membrane, rapid resealing of the membrane occurs with little loss of intracellular contents.Analysis of plasma membrane repair in the sea urchin egg and early embryos revealed a new model of the mechanism for plasma membrane repair. Resealing of disrupted plasma membranes required external Ca2+ that could be antagonised by Mg2+. Block of Ca2+/calmodulin kinase II, which regulates exocytotic vesicle availability at synapses (Llinás et al., 1991), inhibited membrane resealing. Resealing was also inhibited by botulinum neurotoxins A, B, C1, and tetanus toxin, which disrupt SNARE vesicle docking/fusion proteins. Confocal microscopic observations of exocytotic events in sea urchin eggs and embryos during membrane resealing showed that inhibition of kinesin or myosin motor activity, which are believed to be required for vesicle transport (Goodson et al., 1997), also inhibited membrane resealing and delivery of vesicles to sites of membrane disruption. This pattern of inhibition indicates that membrane repair of micrometre-sized lesions requires vesicle delivery, docking and fusion, similar to the exocytosis of neurotransmitter (Steinhardt et al., 1994; Bi et al., 1995, 1997).The mechanism of resealing in eggs and embyros was found to be a general property of all cells (Steinhardt et al., 1994; Togo et al., 1999). It is now known that elevated intracellular Ca2+ triggers exocytosis in various types of cells (Dan & Poo, 1992; Coorssen et al., 1996), and that endosomal compartments such as lysosomes can behave as Ca2+-regulated exocytotic vesicles (Rodríguez et al., 1997).
Collapse
|
2
|
Lee YI, Thompson WJ, Harlow ML. Schwann cells participate in synapse elimination at the developing neuromuscular junction. Curr Opin Neurobiol 2017; 47:176-181. [PMID: 29121585 PMCID: PMC5732880 DOI: 10.1016/j.conb.2017.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
During the initial stages of innervation of developing skeletal muscles, the terminal branches of axons from multiple motor neurons form neuromuscular junctions (NMJs) on a small region of each muscle fiber, the motor endplate. Subsequently, the number of axonal inputs at the endplate region is reduced so that, at maturity, each muscle fiber is innervated by the terminals of a single motor neuron. The Schwann cells associated with the axon terminals are involved in the removal of these synapses but do not select the axon that is ultimately retained on each fiber. Schwann cells perform this function by disconnecting terminal branches from the myofiber surface and by attacking them phagocytically. Here we discuss how this behavior is regulated and argue that such regulation is not unique to development of neuromuscular innervation but is also expressed in the response of the mature NMJ to various manipulations and pathologies.
Collapse
Affiliation(s)
- Young Il Lee
- Department of Biology and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States.
| | - Wesley J Thompson
- Department of Biology and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States; University of Texas (adjunct), Department of Neuroscience, Austin, TX 78712, United States
| | - Mark L Harlow
- Department of Biology and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
3
|
Astrocyte-Mediated Neuronal Synchronization Properties Revealed by False Gliotransmitter Release. J Neurosci 2017; 37:9859-9870. [PMID: 28899919 PMCID: PMC5637115 DOI: 10.1523/jneurosci.2761-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Astrocytes spontaneously release glutamate (Glut) as a gliotransmitter (GT), resulting in the generation of extrasynaptic NMDAR-mediated slow inward currents (SICs) in neighboring neurons, which can increase local neuronal excitability. However, there is a deficit in our knowledge of the factors that control spontaneous astrocyte GT release and the extent of its influence. We found that, in rat brain slices, increasing the supply of the physiological transmitter Glut increased the frequency and signaling charge of SICs over an extended period. This phenomenon was replicated by exogenous preexposure to the amino acid D-aspartate (D-Asp). Using D-Asp as a “false” GT, we determined the extent of local neuron excitation by GT release in ventrobasal thalamus, CA1 hippocampus, and somatosensory cortex. By analyzing synchronized neuronal NMDAR-mediated excitation, we found that the properties of the excitation were conserved in different brain areas. In the three areas, astrocyte-derived GT release synchronized groups of neurons at distances of >;200 μm. Individual neurons participated in more than one synchronized population, indicating that individual neurons can be excited by more than one astrocyte and that individual astrocytes may determine a neuron's synchronized network. The results confirm that astrocytes can act as excitatory nodes that can influence neurons over a significant range in a number of brain regions. Our findings further suggest that chronic elevation of ambient Glut levels can lead to increased GT Glut release, which may be relevant in some pathological states. SIGNIFICANCE STATEMENT Astrocytes spontaneously release glutamate (Glut) and other gliotransmitters (GTs) that can modify neuronal activity. Exposing brain slices to Glut and D-aspartate (D-Asp) before recording resulted in an increase in frequency of GT-mediated astrocyte–neuron signaling. Using D-Asp, it was possible to investigate the effects of specific GT release at neuronal NMDARs. Calcium imaging showed synchronized activity in groups of neurons in cortex, hippocampus, and thalamus. The size of these populations was similar in all areas and some neurons were involved in more than one synchronous group. The findings show that GT release is supply dependent and that the properties of the signaling and activated networks are largely conserved between different brain areas.
Collapse
|
4
|
Activity-dependent BDNF release via endocytic pathways is regulated by synaptotagmin-6 and complexin. Proc Natl Acad Sci U S A 2015. [PMID: 26216953 DOI: 10.1073/pnas.1511830112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is known to modulate synapse development and plasticity, but the source of synaptic BDNF and molecular mechanisms regulating BDNF release remain unclear. Using exogenous BDNF tagged with quantum dots (BDNF-QDs), we found that endocytosed BDNF-QDs were preferentially localized to postsynaptic sites in the dendrite of cultured hippocampal neurons. Repetitive neuronal spiking induced the release of BDNF-QDs at these sites, and this process required activation of glutamate receptors. Down-regulating complexin 1/2 (Cpx1/2) expression eliminated activity-induced BDNF-QD secretion, although the overall activity-independent secretion was elevated. Among eight synaptotagmin (Syt) isoforms examined, down-regulation of only Syt6 impaired activity-induced BDNF-QD secretion. In contrast, activity-induced release of endogenously synthesized BDNF did not depend on Syt6. Thus, neuronal activity could trigger the release of endosomal BDNF from postsynaptic dendrites in a Cpx- and Syt6-dependent manner, and endosomes containing BDNF may serve as a source of BDNF for activity-dependent synaptic modulation.
Collapse
|
5
|
Lu H, Park H, Poo MM. Spike-timing-dependent BDNF secretion and synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130132. [PMID: 24298135 DOI: 10.1098/rstb.2013.0132] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)-the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.
Collapse
Affiliation(s)
- Hui Lu
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, , Berkeley, CA 94720, USA
| | | | | |
Collapse
|
6
|
Abstract
Brain-derived neurotrophic factor (BDNF)--a member of a small family of secreted proteins that includes nerve growth factor, neurotrophin 3 and neurotrophin 4--has emerged as a key regulator of neural circuit development and function. The expression, secretion and actions of BDNF are directly controlled by neural activity, and secreted BDNF is capable of mediating many activity-dependent processes in the mammalian brain, including neuronal differentiation and growth, synapse formation and plasticity, and higher cognitive functions. This Review summarizes some of the recent progress in understanding the cellular and molecular mechanisms underlying neurotrophin regulation of neural circuits. The focus of the article is on BDNF, as this is the most widely expressed and studied neurotrophin in the mammalian brain.
Collapse
|
7
|
|
8
|
Kasai H, Hatakeyama H, Ohno M, Takahashi N. Exocytosis in islet beta-cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:305-38. [PMID: 20217504 DOI: 10.1007/978-90-481-3271-3_14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of technologies that allow for live optical imaging of exocytosis from beta-cells has greatly improved our understanding of insulin secretion. Two-photon imaging, in particular, has enabled researchers to visualize the exocytosis of large dense-core vesicles (LDCVs) containing insulin from beta-cells in intact islets of Langerhans. These studies have revealed that high glucose levels induce two phases of insulin secretion and that this release is dependent upon cytosolic Ca(2+) and cAMP. This technology has also made it possible to examine the spatial profile of insulin exocytosis in these tissues and compare that profile with those of other secretory glands. Such studies have led to the discovery of the massive exocytosis of synaptic-like microvesicles (SLMVs) in beta-cells. These imaging studies have also helped clarify facets of insulin exocytosis that cannot be properly addressed using the currently available electrophysiological techniques. This chapter provides a concise introduction to the field of optical imaging for those researchers who wish to characterize exocytosis from beta-cells in the islets of Langerhans.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | |
Collapse
|
9
|
The vesicular acetylcholine transporter is required for neuromuscular development and function. Mol Cell Biol 2009; 29:5238-50. [PMID: 19635813 DOI: 10.1128/mcb.00245-09] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vesicular acetylcholine (ACh) transporter (VAChT) mediates ACh storage by synaptic vesicles. However, the VAChT-independent release of ACh is believed to be important during development. Here we generated VAChT knockout mice and tested the physiological relevance of the VAChT-independent release of ACh. Homozygous VAChT knockout mice died shortly after birth, indicating that VAChT-mediated storage of ACh is essential for life. Indeed, synaptosomes obtained from brains of homozygous knockouts were incapable of releasing ACh in response to depolarization. Surprisingly, electrophysiological recordings at the skeletal-neuromuscular junction show that VAChT knockout mice present spontaneous miniature end-plate potentials with reduced amplitude and frequency, which are likely the result of a passive transport of ACh into synaptic vesicles. Interestingly, VAChT knockouts exhibit substantial increases in amounts of choline acetyltransferase, high-affinity choline transporter, and ACh. However, the development of the neuromuscular junction in these mice is severely affected. Mutant VAChT mice show increases in motoneuron and nerve terminal numbers. End plates are large, nerves exhibit abnormal sprouting, and muscle is necrotic. The abnormalities are similar to those of mice that cannot synthesize ACh due to a lack of choline acetyltransferase. Our results indicate that VAChT is essential to the normal development of motor neurons and the release of ACh.
Collapse
|
10
|
Furber KL, Churchward MA, Rogasevskaia TP, Coorssen JR. Identifying critical components of native Ca2+-triggered membrane fusion. Integrating studies of proteins and lipids. Ann N Y Acad Sci 2009; 1152:121-34. [PMID: 19161383 DOI: 10.1111/j.1749-6632.2008.03993.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ca(2+)-triggered membrane fusion is the defining step of exocytosis. Despite realization that the fusion machinery must include lipids and proteins working in concert, only of late has work in the field focused more equally on both these components. Here we use isolated sea urchin egg cortical vesicles (CV), a stage-specific preparation of Ca(2+)-sensitive release-ready vesicles that enables the tight coupling of molecular and functional analyses necessary to dissect molecular mechanisms. The stalk-pore hypothesis proposes that bilayer merger proceeds rapidly via transient, high-negative curvature, intermediate membrane structures. Consistent with this, cholesterol, a major component of the CV membrane, contributes to a critical local negative curvature that supports formation of lipidic fusion intermediates. Following cholesterol depletion, structurally dissimilar lipids having intrinsic negative curvature greater than or equal to cholesterol recover the ability of CV to fuse but do not recover fusion efficiency (Ca(2+) sensitivity and kinetics). Conversely, cholesterol- and sphingomyelin-enriched microdomains regulate the efficiency of the fusion mechanism, presumably by contributing spatial and functional organization of other critical lipids and proteins at the fusion site. Critical proteins are thought to participate in Ca(2+) sensing, initiating membrane deformations, and facilitating fusion pore expansion. Capitalizing on a novel effect of the thiol-reactive reagent iodoacetamide (IA), potentiation of the Ca(2+) sensitivity and kinetics, a fluorescently tagged IA has been used to enhance fusion efficiency and simultaneously label the proteins involved. Isolation of cholesterol-enriched CV membrane fractions, using density gradient centrifugation, is being used to narrow the list of protein candidates potentially critical to the mechanism of fast Ca(2+)-triggered membrane fusion.
Collapse
Affiliation(s)
- Kendra L Furber
- Department of Physiology and Biophysics, University of Calgary, Faculty of Medicine, Calgary, Canada
| | | | | | | |
Collapse
|
11
|
Feng X, Castracane J, Tokranova N, Gracias A, Lnenicka G, Szaro BG. A living cell-based biosensor utilizing G-protein coupled receptors: principles and detection methods. Biosens Bioelectron 2007; 22:3230-7. [PMID: 17408945 DOI: 10.1016/j.bios.2007.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 02/21/2007] [Accepted: 03/02/2007] [Indexed: 11/17/2022]
Abstract
This study explores the feasibility of using a bullfrog fibroblast cell line (FT cells) expressing G protein coupled receptors (GPCRs) as the basis for a living cell-based biosensor. We have fabricated gold microelectrode arrays on a silicon dioxide substrate that supports long term, robust growth of the cells at room temperature and under ambient atmospheric conditions. Activation of an endogenous GPCR to ATP was monitored with an optical method that detects rises in intracellular calcium and with an electrochemical method that monitors the increased secretion of pre-loaded norepinephrine on a MEMS device. FT cells were also transfected to express reporter genes driven by several different promoters, raising the possibility that they could be modified genetically to express novel GPCRs as well. The ability to harness GPCRs for BioMEMS applications by using cells that are easy to grow on MEMS devices and to modify genetically opens the way for a new generation of devices based on these naturally selective and highly sensitive chemoreceptors.
Collapse
Affiliation(s)
- Xiaojun Feng
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 255 Fuller Road, Albany, NY 12203, United States
| | | | | | | | | | | |
Collapse
|
12
|
Bonanomi D, Benfenati F, Valtorta F. Protein sorting in the synaptic vesicle life cycle. Prog Neurobiol 2006; 80:177-217. [PMID: 17074429 DOI: 10.1016/j.pneurobio.2006.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/06/2023]
Abstract
At early stages of differentiation neurons already contain many of the components necessary for synaptic transmission. However, in order to establish fully functional synapses, both the pre- and postsynaptic partners must undergo a process of maturation. At the presynaptic level, synaptic vesicles (SVs) must acquire the highly specialized complement of proteins, which make them competent for efficient neurotransmitter release. Although several of these proteins have been characterized and linked to precise functions in the regulation of the SV life cycle, a systematic and unifying view of the mechanisms underlying selective protein sorting during SV biogenesis remains elusive. Since SV components do not share common sorting motifs, their targeting to SVs likely relies on a complex network of protein-protein and protein-lipid interactions, as well as on post-translational modifications. Pleiomorphic carriers containing SV proteins travel and recycle along the axon in developing neurons. Nevertheless, SV components appear to eventually undertake separate trafficking routes including recycling through the neuronal endomembrane system and the plasmalemma. Importantly, SV biogenesis does not appear to be limited to a precise stage during neuronal differentiation, but it rather continues throughout the entire neuronal lifespan and within synapses. At nerve terminals, remodeling of the SV membrane results from the use of alternative exocytotic pathways and possible passage through as yet poorly characterized vacuolar/endosomal compartments. As a result of both processes, SVs with heterogeneous molecular make-up, and hence displaying variable competence for exocytosis, may be generated and coexist within the same nerve terminal.
Collapse
Affiliation(s)
- Dario Bonanomi
- Department of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | |
Collapse
|
13
|
Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N. Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 2006; 58:850-77. [PMID: 16996640 DOI: 10.1016/j.addr.2006.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 07/13/2006] [Indexed: 12/17/2022]
Abstract
Two-photon excitation imaging is the least invasive optical approach to study living tissues. We have established two-photon extracellular polar-tracer (TEP) imaging with which it is possible to visualize and quantify all exocytic events in the plane of focus within secretory tissues. This technology also enables estimate of the precise diameters of vesicles independently of the spatial resolution of the optical microscope, and determination of the fusion pore dynamics at nanometer resolution using TEP-imaging based quantification (TEPIQ). TEP imaging has been applied to representative secretory glands, e.g., exocrine pancreas, endocrine pancreas, adrenal medulla and a pheochromocytoma cell line (PC12), and has revealed unexpected diversity in the spatial organization of exocytosis and endocytosis crucial for the physiology and pathology of secretory tissues and neurons. TEP imaging and TEPIQ analysis are powerful tools for elucidating the molecular and cellular mechanisms of exocytosis and certain related diseases, such as diabetes mellitus, and the development of new therapeutic agents and diagnostic tools.
Collapse
Affiliation(s)
- Haruo Kasai
- Division of Biophysics, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Chieregatti E, Chicka MC, Chapman ER, Baldini G. SNAP-23 functions in docking/fusion of granules at low Ca2+. Mol Biol Cell 2004; 15:1918-30. [PMID: 14742706 PMCID: PMC379287 DOI: 10.1091/mbc.e03-09-0684] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2003] [Revised: 01/07/2004] [Accepted: 01/08/2004] [Indexed: 12/12/2022] Open
Abstract
Ca(2+)-triggered exocytosis of secretory granules mediates the release of hormones from endocrine cells and neurons. The plasma membrane protein synaptosome-associated protein of 25 kDa (SNAP-25) is thought to be a key component of the membrane fusion apparatus that mediates exocytosis in neurons. Recently, homologues of SNAP-25 have been identified, including SNAP-23, which is expressed in many tissues, albeit at different levels. At present, little is known concerning functional differences among members of this family of proteins. Using an in vitro assay, we show here that SNAP-25 and SNAP-23 mediate the docking of secretory granules with the plasma membrane at high (1 microM) and low (100 nM) Ca(2+) levels, respectively, by interacting with different members of the synaptotagmin family. In intact endocrine cells, expression of exogenous SNAP-23 leads to high levels of hormone secretion under basal conditions. Thus, the relative expression levels of SNAP-25 and SNAP-23 might control the mode (regulated vs. basal) of granule release by forming docking complexes at different Ca(2+) thresholds.
Collapse
Affiliation(s)
- Evelina Chieregatti
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
15
|
Bauerfeind R, Huttner WB, Almers W, Augustine GJ. Quantal neurotransmitter release from early endosomes? Trends Cell Biol 2004; 4:155-6. [PMID: 14731642 DOI: 10.1016/0962-8924(94)90191-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Boulland JL, Qureshi T, Seal RP, Rafiki A, Gundersen V, Bergersen LH, Fremeau RT, Edwards RH, Storm-Mathisen J, Chaudhry FA. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J Comp Neurol 2004; 480:264-80. [PMID: 15515175 DOI: 10.1002/cne.20354] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three closely related proteins transport glutamate into synaptic vesicles for release by exocytosis. Complementary patterns of expression in glutamatergic terminals have been reported for VGLUT1 and VGLUT2. VGLUT3 shows expression by many cells not considered to be glutamatergic. Here we describe the changes in VGLUT expression that occur during development. VGLUT1 expression increases gradually after birth and eventually predominates over the other isoforms in telencephalic regions. Expressed at high levels shortly after birth, VGLUT2 declines with age in multiple regions, in the cerebellum by 14-fold. In contrast, Coexpression of the two isoforms occurs transiently during development as well as permanently in a restricted subset of glutamatergic terminals in the adult. VGLUT3 is transiently expressed at high levels by select neuronal populations, including terminals in the cerebellar nuclei, scattered neurons in the cortex, and progenitor-like cells, implicating exocytotic glutamate release in morphogenesis and development. VGLUT3 also colocalizes extensively during development with the neuronal vesicular monoamine transporter VMAT2, with the vesicular acetylcholine transporter VAChT, and with the vesicular gamma-aminobutyric acid transporter VGAT. Such coexpression occurs particularly at some specific developmental stages and is restricted to certain sets of cells. In skeletal muscle, VGLUT3 localizes to granular organelles in the axon terminal as well as in the muscle sarcoplasm. The results suggest novel mechanisms and roles for regulated transmitter release.
Collapse
Affiliation(s)
- Jean-Luc Boulland
- Institute of Basic Medical Sciences and the Centre for Molecular Biology and Neuroscience, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.
Collapse
Affiliation(s)
- Paul L McNeil
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | |
Collapse
|
18
|
Szule JA, Coorssen JR. Revisiting the role of SNAREs in exocytosis and membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:121-35. [PMID: 12914953 DOI: 10.1016/s0167-4889(03)00095-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For over a decade SNARE hypotheses have been proposed to explain the mechanism of membrane fusion, yet the field still lacks sufficient evidence to conclusively identify the minimal components of native fusion. Consequently, debate concerning the postulated role(s) of SNAREs in membrane fusion continues. The focus of this review is to revisit original literature with a current perspective. Our analysis begins with the earliest studies of clostridial toxins, leading to various cellular and molecular approaches that have been used to test for the roles of SNAREs in exocytosis. We place much emphasis on distinguishing between specific effects on membrane fusion and effects on other critical steps in exocytosis. Although many systems can be used to study exocytosis, few permit selective access to specific steps in the pathway, such as membrane fusion. Thus, while SNARE proteins are essential to the physiology of exocytosis, assay limitations often prevent definitive conclusions concerning the molecular mechanism of membrane fusion. In all, the SNAREs are more likely to function upstream as modulators or priming factors of fusion.
Collapse
Affiliation(s)
- Joseph A Szule
- Cellular and Molecular Neurobiology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
19
|
Szule JA, Jarvis SE, Hibbert JE, Spafford JD, Braun JEA, Zamponi GW, Wessel GM, Coorssen JR. Calcium-triggered membrane fusion proceeds independently of specific presynaptic proteins. J Biol Chem 2003; 278:24251-4. [PMID: 12764142 DOI: 10.1074/jbc.c300197200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Complexes of specific presynaptic proteins have been hypothesized to drive or catalyze the membrane fusion steps of exocytosis. Here we use a stage-specific preparation to test the roles of SNAREs, synaptotagmin, and SNARE-binding proteins in the mechanism of Ca2+-triggered membrane fusion. Excess exogenous proteins, sufficient to block SNARE interactions, did not inhibit either the Ca2+ sensitivity, extent, or kinetics of fusion. In contrast, despite a limited effect on SNARE and synaptotagmin densities, treatments with high doses of chymotrypsin markedly inhibited fusion. Conversely, low doses of chymotrypsin had no effect on the Ca2+ sensitivity or extent of fusion but did alter the kinetic profile, indicating a more direct involvement of other proteins in the triggered fusion pathway. SNAREs, synaptotagmin, and their immediate binding partners are critical to exocytosis at a stage other than membrane fusion, although they may still influence the triggered steps.
Collapse
Affiliation(s)
- Joseph A Szule
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, Health Sciences Centre, Faculty of Medicine, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Togo T, Alderton JM, Steinhardt RA. Long-term potentiation of exocytosis and cell membrane repair in fibroblasts. Mol Biol Cell 2003; 14:93-106. [PMID: 12529429 PMCID: PMC140230 DOI: 10.1091/mbc.e02-01-0056] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously found that a microdisruption of the plasma membrane evokes Ca(2+)-regulated exocytosis near the wound site, which is essential for membrane resealing. We demonstrate herein that repeated membrane disruption reveals long-term potentiation of Ca(2+)-regulated exocytosis in 3T3 fibroblasts, which is closely correlated with faster membrane resealing rates. This potentiation of exocytosis is cAMP-dependent protein kinase A dependent in the early stages (minutes), in the intermediate term (hours) requires protein synthesis, and for long term (24 h) depends on the activation of cAMP response element-binding protein (CREB). We were able to demonstrate that wounding cells activated CREB within 3.5 h. In all three phases, the increase in the amount of exocytosis was correlated with an increase in the rate of membrane resealing. However, a brief treatment with forskolin, which is effective for short-term potentiation and which could also activate CREB, was not sufficient to induce long-term potentiation of resealing. These results imply that long-term potentiation by CREB required activation by another, cAMP-independent pathway.
Collapse
Affiliation(s)
- Tatsuru Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
21
|
Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 2001; 77:664-75. [PMID: 11299329 DOI: 10.1046/j.1471-4159.2001.00272.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ATP caused a dose-dependent, receptor-mediated increase in the release of glutamate and aspartate from cultured astrocytes. Using calcium imaging in combination HPLC we found that the increase in intracellular calcium coincided with an increase in glutamate and aspartate release. Competitive antagonists of P(2) receptors blocked the response to ATP. The increase in intracellular calcium and release of glutamate evoked by ATP were not abolished in low Ca(2+)-EGTA saline, suggesting the involvement of intracellular calcium stores. Pre-treatment of glial cultures with an intracellular Ca(2+) chelator abolished the stimulatory effects of ATP. Thapsigargin (1 microM), an inhibitor of Ca(2+)-ATPase from the Ca(2+) pump of internal stores, significantly reduced the calcium transients and the release of aspartate and glutamate evoked by ATP. U73122 (10 microM, a phospholipase C inhibitor, attenuated the ATP-stimulatory effect on calcium transients and blocked ATP-evoked glutamate release in astrocytes. Replacement of extracellular sodium with choline failed to influence ATP-induced glutamate release. Furthermore, inhibition of the glutamate transporters p-chloromercuri-phenylsulfonic acid and Ltrans-pyrolidine-2,4-dicarboxylate failed to impair the ability of ATP to stimulate glutamate release from astrocytes. However, an anion transport inhibitor, furosemide, and a potent Cl(-) channel blocker, 5-nitro-2(3-phenylpropylamino)-benzoate, reduced ATP-induced glutamate release. These results suggest that ATP stimulates excitatory amino acid release from astrocytes via a calcium-dependent anion-transport sensitive mechanism.
Collapse
Affiliation(s)
- A Jeremic
- Department of Biomedical Sciences, Neuroscience Program, Iowa State University, Ames, USA
| | | | | | | | | |
Collapse
|
22
|
Bennett MR, Farnell L, Gibson WG, Lin YQ, Blair DH. Quantal and non-quantal current and potential fields around individual sympathetic varicosities on release of ATP. Biophys J 2001; 80:1311-28. [PMID: 11222293 PMCID: PMC1301324 DOI: 10.1016/s0006-3495(01)76105-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The electrical phenomena that occur at sympathetic varicosities due to the release of ATP include spontaneous and evoked excitatory junction potentials (SEJPs and EJPs; recorded with an intracellular electrode) as well as fast and slow excitatory junctional currents (EJCs; recorded with a loose-patch electrode placed over varicosities). The electrical analysis of these transients is hampered by lack of a detailed theory describing how current and potential fields are generated upon the release of a quantum of ATP. Here, we supply such a theory and develop a computational model for the electrical properties of a smooth muscle syncytium placed within a volume conductor, using a distributed representation for the individual muscle cells. The amplitudes and temporal characteristics of both SEJPs and fast EJCs are predicted by the theory, but those of the slow EJCs are not. It is shown that these slow components cannot arise as a consequence of propagation of fast quantal components from their site of origin in the muscle syncytium to the point of recording. The possibility that slow components arise by a mechanism of transmitter secretion that is different from quantal release is examined. Experiments that involve inserting peptide fragments of soluble N-ethylmaleimide-sensitive fusion attachment protein (alpha-SNAP) into varicosities, a procedure that is known to block quantal release, left the slow component of release unaffected. This work provides an internally consistent description of quantal potential and current fields about the varicosities of sympathetic nerve terminals and provides evidence for a non-quantal form of transmitter release.
Collapse
Affiliation(s)
- M R Bennett
- The Neurobiology Laboratory, Institute for Biomedical Research, and Department of Physiology, Sydney, New South Wales 2006, Australia.
| | | | | | | | | |
Collapse
|
23
|
Malo M, Vurpillot C, Tomasi M, Bruner J, Stinnakre J, Israël M. Effect of brefeldin A on acetylcholine release from glioma C6BU-1 cells. Neuropharmacology 2000; 39:2214-21. [PMID: 10963765 DOI: 10.1016/s0028-3908(00)00042-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The glial C6BU-1 cell line, loaded with acetylcholine can release this neurotransmitter. This study was aimed at determining whether disruption of the Golgi-vesicular traffic by brefeldin A would change the acetylcholine release from these cells and affect proteins involved in transmitter release like the 15 kDa proteolipid, common to V-ATPase and mediatophore. Cells were treated for 24 or 36 h with brefeldin A (35.7 microM). The observed changes in cell morphology were typical for brefeldin A treated cells in which protein membrane supply has been stopped. Inhibition of membrane protein supply was confirmed in the present work. Moreover, the 15 kDa proteolipid also decayed to a very low level in the cell membrane fraction. The release of acetylcholine evoked by a calcium challenge and a calcium ionophore, or by electrical pulses decreased markedly. The life time of the release mechanism was of the order of 36 h and half decayed in 24 h. In addition, the electrically evoked release became much shorter. Considering that C6BU-1 cells are able to release large amounts of ACh and their membranes contain a sizeable amount of the 15 kDa proteolipid, these results suggest that this proteolipid may be one of the proteins forming the membrane complex responsible for transmitter release, at least in these cells.
Collapse
Affiliation(s)
- M Malo
- Laboratoire de Neurobiologie Cellulaire et Moléculaire C.N.R.S., 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
24
|
Bloc A, Bancila V, Israël M, Dunant Y. Reconstitution of mediatophore-supported quantal acetylcholine release. Metab Brain Dis 2000; 15:1-16. [PMID: 10885537 DOI: 10.1007/bf02680010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Synaptic transmission of a nerve impulse is an extremely rapid event relying on transfer of brief chemical impulses from one cell to another. This transmission is dependent upon Ca2+ and known to be quantal, which led to the widely accepted vesicular hypothesis of neurotransmitter release. However, at least in the case of rapid synaptic transmission the hypothesis has been found difficult to reconcile with a number of observations. In this article, we shall review data from experiments dealing with reconstitution of quantal and Ca2+-dependent acetylcholine release in: i) proteoliposomes, ii) Xenopus oocytes, and iii) release-deficient cell lines. In these three experimental models, release is dependent on the expression of the mediatophore, a protein isolated from the plasma membrane of cholinergic nerve terminals of the Torpedo electric organ. We shall discuss the role of mediatophore in quantal acetylcholine release, its possible involvement in morphological changes affecting presynaptic membrane during the release, and its interactions with others proteins of the cholinergic nerve terminal.
Collapse
Affiliation(s)
- A Bloc
- Department of Pharmacology, Centre Médical Universitaire, Genève, Switzerland.
| | | | | | | |
Collapse
|
25
|
González-Aguilar F. Electrical and chemical synaptic transmission as an interacting system. Med Hypotheses 2000; 54:40-6. [PMID: 10790722 DOI: 10.1054/mehy.1999.0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is proposed that presynaptic potassium efflux triggered by the nerve impulse may generate either excitatory or inhibitory responses depending on the neurotransmitter which more or less steadily impregnates the postsynaptic membrane. The jelly intersynaptic matrix may potentiate the efficiency of inoic intersynaptic signals. The synaptic vesicles are proposed to shuttle mitochondrial ATP towards the presynaptic membrane, thereby supplying the energy necessary to restore the membrane polarity after synaptic transmission. Plain structural data and currently accepted functional antecedents appear to justify the proposal.
Collapse
Affiliation(s)
- F González-Aguilar
- Departamento de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Spain
| |
Collapse
|
26
|
Malo M, Diebler MF, Prado de Carvalho L, Meunier FM, Dunant Y, Bloc A, Stinnakre J, Tomasi M, Tchélingérian J, Couraud PO, Israël M. Evoked acetylcholine release by immortalized brain endothelial cells genetically modified to express choline acetyltransferase and/or the vesicular acetylcholine transporter. J Neurochem 1999; 73:1483-91. [PMID: 10501193 DOI: 10.1046/j.1471-4159.1999.0731483.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immortalized rat brain endothelial RBE4 cells do not express choline acetyltransferase (ChAT), but they do express an endogenous machinery that enables them to release specifically acetylcholine (ACh) on calcium entry when they have been passively loaded with the neurotransmitter. Indeed, we have previously reported that these cells do not release glutamate or GABA after loading with these transmitters. The present study was set up to engineer stable cell lines producing ACh by transfecting them with an expression vector construct containing the rat ChAT. ChAT transfectants expressed a high level of ChAT activity and accumulated endogenous ACh. We examined evoked ACh release from RBE4 cells using two parallel approaches. First, Ca2+-dependent ACh release induced by a calcium ionophore was followed with a chemiluminescent procedure. We showed that ChAT-transfected cells released the transmitter they had synthesized and accumulated in the presence of an esterase inhibitor. Second, ACh released on an electrical depolarization was detected in real time by a whole-cell voltage-clamped Xenopus myocyte in contact with the cell. Whether cells synthesized ACh or whether they were passively loaded with ACh, electrical stimulation elicited the release of ACh quanta detected as inward synaptic-like currents in the myocyte. Repetitive stimulation elicited a continuous train of responses of decreasing amplitudes, with rare failures. Amplitude analysis showed that the currents peaked at preferential levels, as if they were multiples of an elementary component. Furthermore, we selected an RBE4 transgenic clone exhibiting a high level of ChAT activity to introduce the Torpedo vesicular ACh transporter (VAChT) gene. However, as the expression of ChAT was inactivated in stable VAChT transfectants, the potential influence of VAChT on evoked ACh release could only be studied on cells passively loaded with ACh. VAChT expression modified the pattern of ACh delivery on repetitive electrical stimulation. Stimulation trains evoked several groups of responses interrupted by many failures. The total amount of released ACh and the mean quantal size were not modified. As brain endothelial cells are known as suitable cellular vectors for delivering gene products to the brain, the present results suggest that RBE4 cells genetically modified to produce ACh and intrinsically able to support evoked ACh release may provide a useful tool for improving altered cholinergic function in the CNS.
Collapse
Affiliation(s)
- M Malo
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bloc A, Bugnard E, Dunant Y, Falk-Vairant J, Israël M, Loctin F, Roulet E. Acetylcholine synthesis and quantal release reconstituted by transfection of mediatophore and choline acetyltranferase cDNAs. Eur J Neurosci 1999; 11:1523-34. [PMID: 10215905 DOI: 10.1046/j.1460-9568.1999.00571.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroblastoma N18TG-2 cells cannot synthesize or release acetylcholine (ACh), and do not express proteins involved in transmitter storage and vesicle fusion. We restored some of these functions by transfecting N18TG-2 cells with cDNAs of either rat choline acetyltransferase (ChAT), or Torpedo mediatophore 16-kDa subunit, or both. Cells transfected only with ChAT synthesized but did not release ACh. Cells transfected only with mediatophore expressed Ca2+-dependent ACh release provided they were previously filled with the transmitter. Cell lines produced after cotransfection of ChAT and mediatophore cDNAs released the ACh that was endogenously synthesized. Synaptic-like vesicles were found neither in native N18TG-2 cells nor in ChAT-mediatophore cotransfected clones, where all the ACh content was apparently cytosolic. Furthermore, restoration of release did not result from enhanced ACh accumulation in intracellular organelles consecutive to enhanced acidification by V-ATPase, as Torpedo 16 kDa transfection did not increase, but decreased the V-ATPase-driven proton transport. Using ACh-sensitive Xenopus myocytes for real-time recording of evoked release, we found that cotransfected cells released ACh in a quantal manner. We compared the quanta produced by ChAT-mediatophore cotransfected clones to those produced by clones transfected with mediatophore alone (artificially filled with ACh). The time characteristics and quantal size of currents generated in the myocyte were the same in both conditions. However, cotransfected cells released a larger proportion of their initial ACh store. Hence, expression of mediatophore at the plasma membrane seems to be necessary for quantal ACh release; the process works more efficiently when ChAT is operating as well, suggesting a functional coupling between ACh synthesis and release.
Collapse
Affiliation(s)
- A Bloc
- Pharmacologie, Centre Médical Universitaire, Genève, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Togo T, Alderton JM, Bi GQ, Steinhardt RA. The mechanism of facilitated cell membrane resealing. J Cell Sci 1999; 112 ( Pt 5):719-31. [PMID: 9973606 DOI: 10.1242/jcs.112.5.719] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide I (BIS) and Go-6976. In addition, activation of PKC by phorbol ester facilitated the resealing of a first wound. BIS and Go-6976 suppressed the effect of phorbol ester on resealing rate. Fluorescent dye loss from a FM1-43 pre-labeled endocytotic compartment was used to investigate the relationship between exocytosis, resealing and the facilitation of resealing. Exocytosis of endocytotic compartments near the wounding site was correlated with successful resealing. The destaining did not occur when exocytosis and resealing were inhibited by low external Ca2+ concentration or by injected tetanus toxin. When the dye loaded cells were wounded twice, FM1-43 destaining at the second wound was less than at the first wound. Less destaining was also observed in cells pre-treated with phorbol ester, suggesting newly formed vesicles, which were FM1-43 unlabeled, were exocytosed in the resealing at repeated woundings. Facilitation was also blocked by brefeldin A (BFA), a fungal metabolite that inhibits vesicle formation at the Golgi apparatus. Lowering the temperature below 20 degrees C also blocked facilitation as expected from a block of Golgi function. BFA had no effect on the resealing rate of an initial wound. The facilitation of the resealing by phorbol ester was blocked by pre-treatment with BFA. These results suggest that at first wounding the cell used the endocytotic compartment to add membrane necessary for resealing. At a second wounding, PKC, activated by Ca2+ entry at the first wound, stimulated vesicle formation from the Golgi apparatus, resulting in more rapid resealing of the second membrane disruption. Since vesicle pools were implicated in both membrane resealing and facilitation of membrane resealing, we reasoned that artificial decreases in membrane surface tension would have the same result. Decreases in surface tension induced by the addition of a surfactant (Pluronic F68 NF) or cytochalasin D facilitated resealing at first wounding. Furthermore, Pluronic F68 NF restored resealing when exocytosis was blocked by tetanus toxin. These results suggest that membrane resealing requires a decrease in surface tension and under natural conditions this is provided by Ca2+-dependent exocytosis of new membrane near the site of disruption.
Collapse
Affiliation(s)
- T Togo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | |
Collapse
|
29
|
Zakharenko S, Chang S, O'Donoghue M, Popov SV. Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J Cell Biol 1999; 144:507-18. [PMID: 9971745 PMCID: PMC2132923 DOI: 10.1083/jcb.144.3.507] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1998] [Revised: 01/07/1999] [Indexed: 01/09/2023] Open
Abstract
In mature neurons, synaptic vesicles continuously recycle within the presynaptic nerve terminal. In developing axons which are free of contact with a postsynaptic target, constitutive membrane recycling is not localized to the nerve terminal; instead, plasma membrane components undergo cycles of exoendocytosis throughout the whole axonal surface (Matteoli et al., 1992; Kraszewski et al., 1995). Moreover, in growing Xenopus spinal cord neurons in culture, acetylcholine (ACh) is spontaneously secreted in the quantal fashion along the axonal shaft (Evers et al., 1989; Antonov et al., 1998). Here we demonstrate that in Xenopus neurons ACh secretion is mediated by vesicles which recycle locally within the axon. Similar to neurotransmitter release at the presynaptic nerve terminal, ACh secretion along the axon could be elicited by the action potential or by hypertonic solutions. We found that the parameters of neurotransmitter secretion at the nerve terminal and at the middle axon were strikingly similar. These results lead us to conclude that, as in the case of the presynaptic nerve terminal, synaptic vesicles involved in neurotransmitter release along the axon contain a complement of proteins for vesicle docking and Ca2+-dependent fusion. Taken together, our results support the idea that, in developing axons, the rudimentary machinery for quantal neurotransmitter secretion is distributed throughout the whole axonal surface. Maturation of this machinery in the process of synaptic development would improve the fidelity of synaptic transmission during high-frequency stimulation of the presynaptic cell.
Collapse
Affiliation(s)
- S Zakharenko
- Department of Physiology and Biophysics M/C 901, University of Illinois, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
30
|
Coorssen JR, Blank PS, Tahara M, Zimmerberg J. Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J Cell Biol 1998; 143:1845-57. [PMID: 9864359 PMCID: PMC2175215 DOI: 10.1083/jcb.143.7.1845] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cortical vesicles (CV) possess components critical to the mechanism of exocytosis. The homotypic fusion of CV centrifuged or settled into contact has a sigmoidal Ca2+ activity curve comparable to exocytosis (CV-PM fusion). Here we show that Sr2+ and Ba2+ also trigger CV-CV fusion, and agents affecting different steps of exocytotic fusion block Ca2+, Sr2+, and Ba2+-triggered CV-CV fusion. The maximal number of active fusion complexes per vesicle, <n\>Max, was quantified by NEM inhibition of fusion, showing that CV-CV fusion satisfies many criteria of a mathematical analysis developed for exocytosis. Both <n\>Max and the Ca2+ sensitivity of fusion complex activation were comparable to that determined for CV-PM fusion. Using Ca2+-induced SNARE complex disruption, we have analyzed the relationship between membrane fusion (CV-CV and CV-PM) and the SNARE complex. Fusion and complex disruption have different sensitivities to Ca2+, Sr2+, and Ba2+, the complex remains Ca2+- sensitive on fusion-incompetent CV, and disruption does not correlate with the quantified activation of fusion complexes. Under conditions which disrupt the SNARE complex, CV on the PM remain docked and fusion competent, and isolated CV still dock and fuse, but with a markedly reduced Ca2+ sensitivity. Thus, in this system, neither the formation, presence, nor disruption of the SNARE complex is essential to the Ca2+-triggered fusion of exocytotic membranes. Therefore the SNARE complex alone cannot be the universal minimal fusion machine for intracellular fusion. We suggest that this complex modulates the Ca2+ sensitivity of fusion.
Collapse
Affiliation(s)
- J R Coorssen
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
31
|
Chang S, Girod R, Morimoto T, O'Donoghue M, Popov S. Constitutive secretion of exogenous neurotransmitter by nonneuronal cells: implications for neuronal secretion. Biophys J 1998; 75:1354-64. [PMID: 9726936 PMCID: PMC1299809 DOI: 10.1016/s0006-3495(98)74053-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fibroblasts in cell culture were loaded with exogenous neurotransmitter acetylcholine (ACh). ACh secretion from loaded cells was detected by whole-cell patch clamp recordings from Xenopus myocytes manipulated into contact with ACh-loaded cells. Two different approaches were used for ACh loading. In the first approach, fibroblasts were incubated in the culture medium containing ACh. Recordings from myocytes revealed fast inward currents that resemble miniature endplate currents found at neuromuscular synapses. The currents observed in recordings from myocytes were due to exocytosis of ACh-containing vesicles. Although exogenous ACh penetrated through the plasma membrane of fibroblasts during incubation and was present in the cytoplasm at detectable levels, cytoplasmic ACh did not contribute to the quantal ACh secretion. In the second approach, exogenous ACh was loaded into the cytoplasm of fibroblasts by microinjection. Under these experimental conditions, fibroblasts also exhibited spontaneous quantal ACh secretion. Analysis of the exocytotic events in fibroblasts following two different protocols of ACh loading revealed that the vesicular compartments responsible for uptake of exogenous ACh are associated with the endocytic recycling pathway. Extrapolation of our results to neuronal cells suggest that in cholinergic neurons, in addition to genuine synaptic vesicles, ACh can be secreted by the vesicles participating in endosomal membrane recycling.
Collapse
Affiliation(s)
- S Chang
- Department of Physiology and Biophysics, University of Illinois at Chicago 60612, USA
| | | | | | | | | |
Collapse
|
32
|
Fu WM, Liou HC, Chen YH, Wang SM. Release of acetylcholine from embryonic myocytes in Xenopus cell cultures. J Physiol 1998; 509 ( Pt 2):497-506. [PMID: 9575298 PMCID: PMC2230958 DOI: 10.1111/j.1469-7793.1998.497bn.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Acetylcholine (ACh) is important as the transmitter responsible for neuromuscular transmission. Here we report the non-quantal release of ACh from embryonic myocytes. 2. Co-cultures of spinal neurons and myotomal muscle cells were prepared from 1-day-old Xenopus embryos. Single channel currents were recorded in the non-innervated myocytes. When the patch pipette was filled with Ringer solution alone, spontaneous single channel currents occurred, which were inhibited by d-tubocurarine (d-Tc). 3. The channel conductance appearing in Ringer solution (37.3 pS) was similar to that of an embryonic-type ACh channel (36.9 pS), indicating that ACh is probably released from myocytes in normal Ringer solution. 4. When the patch pipette was filled with anticholinesterase alone to prevent hydrolysis of ACh released from myocytes, both physostigmine and neostigmine in a concentration-dependent manner increased channel open probability; it was reduced by d-Tc or alpha-bungarotoxin. 5. Vesamicol and quinacrine, vesicular transporter inhibitors, reduced the channel open probability caused by ACh released from myocytes in the presence of neostigmine or physostigmine. 6. Intracellular alkalinization with NH4Cl inhibited the ACh release from myocytes, whereas, extracellular alkalinization, brought about by replacing normal Ringer solution, with pH 8.6 Ringer solution enhanced ACh release. 7. The immunocytochemistry of choline acetyltransferase (ChAT) showed that ChAT exists in both myocytes and neuronal cells but not in fibroblasts. 8. These results suggest that embryonic myocytes are capable of synthesizing and releasing ACh in a non-quantal manner. Extracellular alkalinization enhanced and intracellular alkalinization inhibited ACh release from myocytes.
Collapse
Affiliation(s)
- W M Fu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|
33
|
Israël M, Dunant Y. Acetylcholine release. Reconstitution of the elementary quantal mechanism. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:123-8. [PMID: 9782455 DOI: 10.1016/s0928-4257(98)80149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Choline acetyltransferase and vesicular acetylcholine transporter genes are the products of two adjacent genes defining a cholinergic locus. The release mechanism is expressed independently of this locus in some cell lines. A cholinergic neuron will therefore have to coordinate the expression of release with that of the cholinergic locus. Transfection of a plasmid encoding Torpedo mediatophore in cells that are unable to release this transmitter endows them with a Ca2(+)-dependent and quantal release mechanism. The synchronization of mediatophore activation results from a control of calcium microdomains by the synaptic vesicles. It is therefore dependent on the proteins that dock vesicles close to calcium channels.
Collapse
Affiliation(s)
- M Israël
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
34
|
Abstract
Retrograde signaling from the postsynaptic cell to the presynaptic neuron is essential for the development, maintenance, and activity-dependent modification of synaptic connections. This review covers various forms of retrograde interactions at developing and mature synapses. First, we discuss evidence for early retrograde inductive events during synaptogenesis and how maturation of presynaptic structure and function is affected by signals from the postsynaptic cell. Second, we review the evidence that retrograde interactions are involved in activity-dependent synapse competition and elimination in developing nervous systems and in long-term potentiation and depression at mature synapses. Third, we review evidence for various forms of retrograde signaling via membrane-permeant factors, secreted factors, and membrane-bound factors. Finally, we discuss the evidence and physiological implications of the long-range propagation of retrograde signals to the cell body and other parts of the presynaptic neuron.
Collapse
Affiliation(s)
- R M Fitzsimonds
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | |
Collapse
|
35
|
Israël M, Lesbats B, Tomasi M, Couraud PO, Vignais L, Quinonéro J, Tchélingérian JL. Calcium-dependent release specificities of various cell lines loaded with different transmitters. Neuropharmacology 1997; 36:1789-93. [PMID: 9517453 DOI: 10.1016/s0028-3908(97)00149-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By loading cells in culture with acetylcholine (ACh) we have characterized a calcium-dependent release mechanism and shown that it was expressed independently of synthesis or storage of ACh. (Israël et al., 1994, Neurochemistry International 37, 1475-1483; Falk-Vairant et al., 1996a, Proc. Natl. Acad. Sci. U.S.A. 93, 5203-5207; Falk-Vairant et al., 1996b, Neuroscience 75, 353-360; Falk-Vairant et al., 1996c, Journal of Neuroscience Research 45, 195-201). The transmitter loading procedure was applied to two other transmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu). We could then study the specificity of the release mechanism for the three transmitters in a variety of cell lines, including neural-derived cells. Four different calcium-dependent release phenotypes were identified: two were specific for ACh or GABA, and two co-released two transmitters ACh and GABA but not Glu, or ACh and Glu but not GABA. We conclude that release mechanisms having different specificities are expressed by the cell lines studied, they become functional after loading the cells with the relevant transmitters. These observations will help the identification of proteins controlling the specificity of release, and provide an interesting model for pharmacological studies.
Collapse
Affiliation(s)
- M Israël
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The rate of exocytic events from both neurons and non-neuronal cells exhibits fluctuations consistent with fractal (self-similar) behavior in time, as evidenced by a number of statistical measures. We explicitly demonstrate this for neurotransmitter secretion at Xenopus neuromuscular junctions and for rat hippocampal synapses in culture; the exocytosis of exogenously supplied neurotransmitter from cultured Xenopus myocytes and from rat fibroblasts behaves similarly. The magnitude of the fluctuations of the rate of exocytic events about the mean decreases slowly as the rate is computed over longer and longer time periods, the periodogram decreases in power-law manner with frequency, and the Allan factor (relative variance of the number of exocytic events) increases as a power-law function of the counting time. These features are hallmarks of self-similar behavior. Their description requires models that exhibit long-range correlation (memory) in event occurrences. We have developed a physiologically plausible model that accords with all of the statistical measures that we have examined. The appearance of fractal behavior at synapses, as well as in systems comprising collections of synapses, indicates that such behavior is ubiquitous in neural signaling.
Collapse
|
37
|
Abstract
The hypothesis that synaptic functions can be regulated by neurotrophins secreted from the postsynaptic cell was examined in Xenopus nerve-muscle cultures. Neuromuscular synapses formed on myocytes overexpressing neurotrophin-4 (M+ synapses) exhibited a higher level of spontaneous synaptic activity and enhanced evoked synaptic transmission as compared to those formed on normal control myocytes (M- synapses). The NT-4 effects involve a potentiation of presynaptic transmitter secretion as well as a lengthening of the mean burst duration of postsynaptic low conductance acetylcholine channels. Repetitive stimulation of either the presynaptic neuron or the postsynaptic myocyte led to a potentiation of synaptic transmission at M+ synapses. All potentiation effects of NT-4 overexpression were abolished by the extracellular presence of TrkB-IgG but not by the presence of TrkA-IgG, indicating that postsynaptic secretion of NT-4 was responsible for the synaptic modification.
Collapse
Affiliation(s)
- X H Wang
- Department of Biology, University of California at San Diego, La Jolla 92093-0357, USA
| | | |
Collapse
|
38
|
Bi GQ, Morris RL, Liao G, Alderton JM, Scholey JM, Steinhardt RA. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Biophys Biochem Cytol 1997; 138:999-1008. [PMID: 9281579 PMCID: PMC2136755 DOI: 10.1083/jcb.138.5.999] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Kinesin and myosin have been proposed to transport intracellular organelles and vesicles to the cell periphery in several cell systems. However, there has been little direct observation of the role of these motor proteins in the delivery of vesicles during regulated exocytosis in intact cells. Using a confocal microscope, we triggered local bursts of Ca2+-regulated exocytosis by wounding the cell membrane and visualized the resulting individual exocytotic events in real time. Different temporal phases of the exocytosis burst were distinguished by their sensitivities to reagents targeting different motor proteins. The function blocking antikinesin antibody SUK4 as well as the stalk-tail fragment of kinesin heavy chain specifically inhibited a slow phase, while butanedione monoxime, a myosin ATPase inhibitor, inhibited both the slow and fast phases. The blockage of Ca2+/calmodulin-dependent protein kinase II with autoinhibitory peptide also inhibited the slow and fast phases, consistent with disruption of a myosin-actin- dependent step of vesicle recruitment. Membrane resealing after wounding was also inhibited by these reagents. Our direct observations provide evidence that in intact living cells, kinesin and myosin motors may mediate two sequential transport steps that recruit vesicles to the release sites of Ca2+-regulated exocytosis, although the identity of the responsible myosin isoform is not yet known. They also indicate the existence of three semistable vesicular pools along this regulated membrane trafficking pathway. In addition, our results provide in vivo evidence for the cargo-binding function of the kinesin heavy chain tail domain.
Collapse
Affiliation(s)
- G Q Bi
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
39
|
Tauc L. Quantal neurotransmitter release: Vesicular or not vesicular? NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf02461232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Jeftinija SD, Jeftinija KV, Stefanovic G. Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res 1997; 750:41-7. [PMID: 9098527 DOI: 10.1016/s0006-8993(96)00610-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bradykinin induces receptor-mediated calcium-dependent release of glutamate from cultured astrocytes through a mechanism that is neither due to cell-swelling mechanism nor due to the reversal of the glutamate transporter. Astrocytes may thus release glutamate using a mechanism resembling the neuronal vesicular release of neurotransmitters. Synaptobrevin is a vesicular protein that together with plasma membrane proteins syntaxin and SNAP-25 participate in formation of the anchoring core complex required for initiation of exocytosis. Here, we demonstrate that synaptobrevin II is present in cultured astrocytes. Furthermore, we demonstrate that botulinus toxin type B and tetanus toxin cause a decrease in synaptobrevin II immunoreactivity and abolish bradykinin-induced release of glutamate from cultured astrocytes. While we were not able to demonstrate the presence of SNAP-25 or syntaxin immunoreactivity in cultured astrocytes, pretreatment with BoTx-A (which cleaves SNAP-25) and BoTx-C (which cleaves syntaxins) result in a decrease in the baseline release of glutamate and diminish the bradykinin-evoked release of glutamate from cultured astrocytes. These findings strongly support the notion that astrocytes may release neurotransmitters using a mechanism similar to the neuronal secretory process.
Collapse
Affiliation(s)
- S D Jeftinija
- Department of Veterinary Anatomy, Iowa State University, Ames 50011, USA.
| | | | | |
Collapse
|
41
|
Lohof AM, Bailly Y, Delhaye-Bouchaud N, Mariani J. A Model of Developmental Synapse Elimination in the Central Nervous System: Possible Mechanisms and Functional Consequences. THE SYNAPSE: IN DEVELOPMENT, HEALTH, AND DISEASE 1997. [DOI: 10.1016/s1569-2590(08)60181-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Buznikov GA, Shmukler YB, Lauder JM. From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol 1996; 16:537-59. [PMID: 8956008 PMCID: PMC11563088 DOI: 10.1007/bf02152056] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1995] [Accepted: 05/05/1995] [Indexed: 02/03/2023]
Abstract
1. Classical neurotransmitters (such as acetylcholine, biogenic amines, and GABA) are functionally active throughout ontogenesis. 2. Based on accumulated evidence, reviewed herein, we present an hypothetical scheme describing developmental changes in this functional activity, from the stage of maturing oocytes through neuronal differentiation. This scheme reflects not only the spatio-temporal sequence of these changes, but also the genesis of neurotransmitter functions, from "protosynapses" in oocytes and cleaving embryos to the development of functional neuronal synapses. 3. Thus, it appears that neurotransmitters participate in various forms of intra- and intercellular signalling throughout all stages of ontogenesis.
Collapse
Affiliation(s)
- G A Buznikov
- N.N. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
43
|
Falk-Vairant J, Meunier FM, Lesbats B, Corrèges P, Eder-Colli L, Salem N, Synguelakis M, Dunant Y, Israël M. Cell lines expressing an acetylcholine release mechanism; correction of a release-deficient cell by mediatophore transfection. J Neurosci Res 1996; 45:195-201. [PMID: 8841980 DOI: 10.1002/(sici)1097-4547(19960801)45:3<195::aid-jnr1>3.0.co;2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several neuronal and non-neuronal cell lines express a Ca(2+)-dependent mechanism of transmitter release that can be demonstrated after loading the cells with acetylcholine during culture. In contrast, a particular cell line, the neuroblastoma N18TG-2, was found to be deficient for release. We transfected N18TG-2 cells with a plasmid encoding Torpedo mediatophore, a protein able to translocate acetylcholine in response to calcium. The N18TG-2 cells expressed the Torpedo protein which reached their plasma membrane. At the same time, these cells acquired a Ca(2+)-dependent quantal release mechanism similar to the one naturally expressed by other cell lines. Hence, the presence of mediatophore in the plasma membrane seems essential for quantal release.
Collapse
Affiliation(s)
- J Falk-Vairant
- Départment de Pharmacologie, C.M.U., Genève, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ninomiya Y, Kishimoto T, Miyashita Y, Kasai H. Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound. J Biol Chem 1996; 271:17751-4. [PMID: 8663485 DOI: 10.1074/jbc.271.30.17751] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ca2+-dependent exocytosis and endocytosis of Chinese hamster ovary (CHO) fibroblasts were investigated using capacitance measurement and rapid photolysis of a caged-Ca2+ compound, dimethoxynitrophenamine tetrasodium salt. CHO cells exhibited large and fast increases in membrane capacitance (1.9 +/- 1 picofarads, or 13 +/- 7% of total membrane area, mean +/- S.D., n = 37) upon Ca2+ jumps to [Ca2+]i larger than 20 microM. The fast exocytosis occurred with a delay (20-80 ms), and exhibited a rate constant that was strongly dependent on [Ca2+]i. The maximal rate constant of exocytosis was 2.8/s, and a half-maximal rate was achieved at 30 microM. The fast exocytosis was followed by rapid endocytosis in 28% of the cells. The endocytosis often began after a delay of 0.5-2 s. Ca2+ jumps also induced stepwise increases in membrane capacitance of 10-134 femtofarads in 40% of the cells, indicating fusion of large vesicles with diameters of 0.4-1.5 micron. The exocytosis of the large vesicles could selectively be induced with smaller Ca2+ jumps (6-20 microM), and occurred slowly with a rate constant of 0. 3/s. These data indicate that CHO fibroblasts possess Ca2+-dependent exocytotic mechanisms. Moreover, two parallel exocytotic pathways may exist reminiscent of those of neurons and endocrine cells. A kinetic model was constructed to account for the fast exocytosis of CHO cells.
Collapse
Affiliation(s)
- Y Ninomiya
- Department of Physiology, Faculty of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|
45
|
Chavez RA, Miller SG, Moore HP. A biosynthetic regulated secretory pathway in constitutive secretory cells. J Biophys Biochem Cytol 1996; 133:1177-91. [PMID: 8682857 PMCID: PMC2120905 DOI: 10.1083/jcb.133.6.1177] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has frequently been proposed that while the constitutive secretory pathway is present in all cells, the regulated secretory pathway is found only in specialized cells such as neuronal, endocrine, or exocrine types. In this study we provide evidence that suggests that this distinction is not as restrictive as proposed. We have identified a population of post-Golgi storage vesicles in several constitutive secretory cells using [35S]SO4-labeled glycosaminoglycan (GAG) chains as a marker. A fraction of this pool of vesicles can undergo exocytosis in response to stimuli such as cytoplasmic Ca2+ and phorbol esters. The effect of Ca2+ was demonstrated both in intact cells in the presence of the ionophore A23187 and in streptolysin-O-permeabilized semi-intact cells. N-ethylmaleiimide, under conditions known to block regulated and constitutive secretion, inhibited the stimulated secretion from these cells, suggesting that the observed release of labeled GAG chains was not due to a leakage artefact. Subcellular fractionation revealed that the stored GAG chains were in low-density membrane granules (d approximately 1.12 g/ml), whose size was greater than that of synaptic-like vesicles found in PC12 cells. In addition, in CHO cells that express epitope-tagged rab 3D, the labeled GAG chains were found to cofractionate with the exogenous rab protein. When expressed in the regulated cell line AtT-20, this tagged rab protein was found to colocalize with ACTH-containing dense-core granules by indirect immunofluorescence. Taken together, these results provide evidence for the presence of a cryptic regulated secretory pathway in "constitutive" cells and suggest that the regulated secretory pathway is more widespread amongst different cell types than previously believed.
Collapse
Affiliation(s)
- R A Chavez
- University of California at Berkeley, Department of Molecular & Cell Biology 94720-3200, USA
| | | | | |
Collapse
|
46
|
Kuffler DP. Chemoattraction of sensory neuron growth cones by diffusible concentration gradients of acetylcholine. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 28:199-208. [PMID: 8871960 DOI: 10.1007/bf02815223] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Axon guidance cues are critical for the development and repair of both the central and peripheral nervous systems. These cues serve to help select the pathways taken by axon growth cones, by attracting or repulsing them. During development and following injury to the adult peripheral nervous system, neurons must extend processes, often over long distances, through a variety of cellular environments composed of innervated and uninnervated cells, to find, recognize, and synapse on their appropriate targets. The responsibility for recognizing and responding to the extensive number of cues that are encountered as axons elongate falls on the growth cones at the tip of the elongating axons. Cajal (1928) proposed that denervated target cells release diffusible factors that assist in orienting the direction of out-growth of peripheral axons. However, it is only relatively recently that experiments to identify the molecules responsible for serving this function, and the molecular mechanisms by which they function, have begun to bear fruit. Gradients of both substrate-bound and diffusible factors have now been shown to play critical roles in directing axon outgrowth. The present experiments were aimed at determining whether the neurotransmitter acetylcholine (ACh) can act as a chemoattractant for adult sensory neuron growth cones.
Collapse
Affiliation(s)
- D P Kuffler
- Institute of Neurobiology, University of Puerto Rico, San Juan 00901, USA
| |
Collapse
|
47
|
Canals JM, Ruiz-Avila L, Cantí C, Solsona C, Marsal J. Functional reconstitution of KCl-evoked, Ca(2+)-dependent acetylcholine release system in Xenopus oocytes microinjected with presynaptic plasma membranes and synaptic vesicles. J Neurosci Res 1996; 44:106-14. [PMID: 8723218 DOI: 10.1002/(sici)1097-4547(19960415)44:2<106::aid-jnr2>3.0.co;2-h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have developed a new method for the generation of functionally active presynaptic chimeras in Xenopus laevis oocytes. Frog oocytes injected with presynaptic subcellular fractions extracted from the electric organ of Torpedo marmorata release acetylcholine in a calcium-dependent manner upon chemical stimulation. Neither oocytes injected without presynaptic plasma membranes nor oocytes injected with ghost erythrocyte plasma membrane instead of presynaptic plasma membrane release acetylcholine. This suggests that specific presynaptic components necessary for KCl-evoked, Ca(2+)-dependent acetylcholine release become functionally integrated in the Xenopus laevis oocytes. Moreover, rhodaminated presynaptic plasma membranes and the synaptic vesicle protein synaptophysin are detected on the oocyte surface by fluorescence or immunofluorescence, respectively, showing that the injected presynaptic components are incorporated into the membrane of the frog oocyte. Furthermore, Botulinum neurotoxin type A, a specific blocker of acetylcholine release in the neuromuscular junction, inhibits the neurotransmitter release from the chimerical oocytes. This suggests that targets for toxin action are also functionally incorporated in the oocyte upon injection of membranous presynaptic components. Our results show that oocytes injected with presynaptic components behave as cholinergic nerve ending chimeras, at least in terms of neurotransmitter release and toxin targets. The system bypasses some problems associated with messenger RNA expression because not only proteins, but native presynaptic components are incorporated. This new technique may provide a useful approach for electrophysiological and pharmacological studies in order to characterize the synaptic transmission.
Collapse
Affiliation(s)
- J M Canals
- Departament de Biología Cellular i Anatomia Patológica, Facultat de Medicina, Hospital de Bellvitge, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
48
|
Lohof AM, Delhaye-Bouchaud N, Mariani J. Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev Neurosci 1996; 7:85-101. [PMID: 8819204 DOI: 10.1515/revneuro.1996.7.2.85] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent research into the developmental elimination of supernumerary synapses has increased understanding of this process. In this review we discuss synapse elimination both at the neuromuscular junction and in the central nervous system, considering some possible underlying mechanisms suggested by recent studies. In addition a well-described example of central nervous system synapse elimination, the climbing fiber-Purkinje cell synapse of the cerebellum, is used to explore the functional significance of synaptic regression during brain development.
Collapse
Affiliation(s)
- A M Lohof
- Laboratoire de Neurobiologie du Développement, Institut des Neurosciences (C.N.R.S. U.R.A. 1488), Université P. et M. Curie, Paris, France
| | | | | |
Collapse
|
49
|
Cash S, Dan Y, Poo MM, Zucker R. Postsynaptic elevation of calcium induces persistent depression of developing neuromuscular synapses. Neuron 1996; 16:745-54. [PMID: 8607993 DOI: 10.1016/s0896-6273(00)80095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synaptic activity is known to modulate neuronal connectivity in the nervous system. At developing Xenopus neuromuscular synapses in culture, repetitive postsynaptic application of ACh near the synapse leads to immediate and persistent synaptic depression, which was shown to be caused by reduction of presynaptic evoked transmitter release. However, little depression was found when ACh was applied to the muscle 20 microns or further from the synapse. Fluorescence imaging of cytosolic Ca2+ ([Ca2+]i) showed that each ACh pulse induced a transient elevation of myocyte [Ca2+]i that spread approximately 20 microns. Local photoactivated release of Ca2+ from the caged Ca2+ chelators nitr-5 or nitrophen in the postsynaptic cell was sufficient to induce persistent synaptic depression. These results support a model in which localized Ca2+ influx into the postsynaptic myocyte initiates transsynaptic retrograde modulation of presynaptic secretion mechanisms.
Collapse
Affiliation(s)
- S Cash
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
50
|
Sellin LC, Molgó J, Törnquist K, Hansson B, Thesleff S. On the possible origin of giant or slow-rising miniature end-plate potentials at the neuromuscular junction. Pflugers Arch 1996; 431:325-34. [PMID: 8584425 DOI: 10.1007/bf02207269] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Giant or slow-rising miniature end-plate potentials (GMEPPs) caused by vesicular release of acetylcholine (ACh) occur at any time in about 50% of mouse diaphragm neuro muscular junctions, but generally at frequencies less than 0.03 s-1. Their frequency is, unlike that of miniature end-plate potentials (MEPPs), not affected by nerve terminal depolarization. Unlike MEPPs and stimulus-evoked end-plate potentials, GMEPPs have a prolonged time-to-peak and show an increase in time-to-peak with amplitude. By using these differences in amplitude and time course, GMEPPs can be separated from MEPPs. In contrast to MEPPs, GMEPPs are not blocked by botulinum neurotoxin type A. GMEPPs have a greater temperature sensitivity than MEPPs, disappearing at temperatures below 15 degrees C. Long-term paralysis by botulinum toxin and certain drugs which inhibit protein kinase C or affect actin filament polymerization (cytochalasins) enhance the frequency of GMEPPs. End-plate current recordings show that similar postsynaptic ACh receptors are activated by MEPPs and GMEPPs. It is suggested that GMEPPs are not caused by mechanisms involved in regulated neurotransmitter release but are generated by constitutive secretion.
Collapse
Affiliation(s)
- L C Sellin
- Division of Biophysics, Department of Physical Sciences, University of Oulu, FIN-90570 Oulu, Finland
| | | | | | | | | |
Collapse
|