1
|
Zhang D, Zhao J, Xu G, Wang Y, Li Y, Ren H, Geng J, Du Y, Zhang C, Yang S, Liu D, Gao J, Xiong Y, Zhang H, Li W, Wang W, Wang D, Li B, He X, Ma C, Jiang Y, Ding Q. Discovery of Imidazo[1,2- b]pyridazine Derivatives as Potent and Highly Selective Irreversible Bruton's Tyrosine Kinase (BTK) Inhibitors. J Med Chem 2025. [PMID: 40369903 DOI: 10.1021/acs.jmedchem.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Bruton's tyrosine kinase (BTK) is a crucial enzyme in the B cell receptor signaling pathway. It plays a central role in B cell development, maturation, and signaling. This role extends to the survival, proliferation, and migration of malignant B cells, making BTK an intriguing target in the search for therapeutics against B cell malignancies. Our research focused on the discovery of a covalent inhibitor of BTK with good selectivity and potency and a favorable safety profile. We identified compound 22, an imidazo[1,2-b]pyridazine derivative, exhibiting potent BTK inhibition (IC50 1.3 nM) with excellent selectivity across 310 kinases. Compound 22 demonstrated favorable pharmacokinetics and a robust safety profile. In a xenograft model, it significantly inhibited tumor growth, achieving complete tumor regression in 7 out of 10 mice at a dose of 15 mg/kg. This promising preclinical data led to the advancement of compound 22, named TM471-1, into Phase I clinical trials (CXHL2300956).
Collapse
Affiliation(s)
- Dandan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guiqing Xu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue Wang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hanxiao Ren
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiajun Geng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu Du
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenchen Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shouning Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dongfang Liu
- Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Jiajing Gao
- Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Yi Xiong
- Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Haoyi Zhang
- Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Wei Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Wang
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Di Wang
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Biao Li
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Bestas B, Estupiñán HY, Wang Q, Kharazi S, He C, K Mohammad D, Gupta D, Wiklander OPB, Lehto T, Lundin KE, Berglöf A, Karlsson MCI, Abendroth F, El Andaloussi S, Gait MJ, Wood MJA, Leumann CJ, Stetsenko DA, Månsson R, Wengel J, Zain R, Smith CIE. Cell-penetrating peptide-conjugated, splice-switching oligonucleotides mitigate the phenotype in BTK/ Tec double deficient X-linked agammaglobulinemia model. RSC Chem Biol 2025; 6:761-771. [PMID: 40171248 PMCID: PMC11955834 DOI: 10.1039/d4cb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Splice-switching oligonucleotides (SSOs) have been developed as a treatment for various disorders, including Duchenne muscular dystrophy and spinal muscular atrophy. Here, the activity of several different SSOs was investigated as potential treatments for B lymphocyte disorders with a focus on X-linked agammaglobulinemia (XLA), caused by defects in the gene encoding Bruton's tyrosine kinase (BTK). In this study, the activity of locked nucleic acid (LNA), tricyclo-DNA (tcDNA), phosphoryl guanidine oligonucleotides (PGO) and phosphorodiamidate morpholino oligomers (PMO) were compared, targeting the pseudoexon region of BTK pre-mRNA. We further investigated the effect of conjugating cell-penetrating peptides, including Pip6a, to the SSOs. The effect was measured as splice-switching in vitro as well as in a further developed, bacterial artificial chromosome transgenic mouse model of XLA. Therapy in the form of intravenous infusions 2 times a week during 3 weeks of PMO oligomers conjugated to Pip6a was sufficient to partly restore the in vivo B lineage phenotype. SSOs treatment also provides a unique opportunity to get insights into a restoration process, when B lymphocytes of different maturation stages are simultaneously splice-corrected.
Collapse
Affiliation(s)
- Burcu Bestas
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - H Yesid Estupiñán
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Departamento de Ciencias Básicas, Universidad Industrial de Santander Bucaramanga Colombia
| | - Qing Wang
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Shabnam Kharazi
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm Sweden
| | - Dara K Mohammad
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Department of Paediatrics, University of Oxford Oxford OX3 7TY UK
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Breast Center, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Stockholm Sweden
| | - Taavi Lehto
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Institute of Techology, University of Tartu, Tartu Estonia
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, Nooruse 1, 50411 Tartu Estonia
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Anna Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm Sweden
| | - Frank Abendroth
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
- Department of Chemistry, University of Marburg Marburg D-35043 Germany
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital SE-171 76 Stockholm Sweden
| | - Michael J Gait
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford Oxford OX3 7TY UK
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3 CH-3012 Bern Switzerland
| | - Dmitry A Stetsenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave. Novosibirsk 630090 Russia
- Department of Physics, Novosibirsk State University, 2 Pirogov Str. Novosibirsk 630090 Russia
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Stockholm Sweden
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark Odense Denmark
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital SE-171 76 Stockholm Sweden
- Centre for Rare Diseases, Department of Clinical Genetics and Genomics, Karolinska University Hospital SE-171 76 Stockholm Sweden
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8 SE-141 52 Huddinge Sweden
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital SE-171 76 Stockholm Sweden
| |
Collapse
|
3
|
Naydovich LR, Orthmann-Murphy JL, Markowitz CE. Beyond relapses: How BTK inhibitors are shaping the future of progressive MS treatment. Neurotherapeutics 2025:e00602. [PMID: 40345950 DOI: 10.1016/j.neurot.2025.e00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025] Open
Abstract
Multiple sclerosis is a biologically and clinically heterogenous inflammatory demyelinating disease, driven by relapsing and progressive mechanisms, all individuals experiencing varying degrees of both. Existing highly effective therapies target peripheral inflammation and reduce relapse rates but have limited efficacy in progressive MS due to poor blood-brain barrier penetration and inability to address neurodegeneration. Bruton's tyrosine kinase (BTK) inhibitors represent an emerging therapeutic class offering a novel mechanism targeting BTK, which is expressed by both B cells and myeloid cells, including microglia within the CNS. Pre-clinical, Phase II, and Phase III clinical trials have demonstrated promising results in modulating progressive disease in both relapsing and non-relapsing MS patients. In contrast, the evidence regarding impact on relapse biology remains mixed and somewhat inconclusive. This review highlights gaps in current therapeutic strategies, examines the latest evidence for the efficacy and safety of BTK inhibitors in MS, and explores the future landscape of MS treatment.
Collapse
Affiliation(s)
- Laura R Naydovich
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | | | - Clyde E Markowitz
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
4
|
Schmitz EG, Griffith M, Griffith OL, Cooper MA. Identifying genetic errors of immunity due to mosaicism. J Exp Med 2025; 222:e20241045. [PMID: 40232243 PMCID: PMC11998702 DOI: 10.1084/jem.20241045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Inborn errors of immunity are monogenic disorders of the immune system that lead to immune deficiency and/or dysregulation in patients. Identification of precise genetic causes of disease aids diagnosis and advances our understanding of the human immune system; however, a significant portion of patients lack a molecular diagnosis. Somatic mosaicism, genetic changes in a subset of cells, is emerging as an important mechanism of immune disease in both young and older patients. Here, we review the current landscape of somatic genetic errors of immunity and methods for the detection and validation of somatic variants.
Collapse
Affiliation(s)
- Elizabeth G. Schmitz
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Obi L. Griffith
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Megan A. Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Nieto-Patlán A, Ross J, Mohan S, Paczosa MK, Soliman R, Sarmento O, Aliu E, Thiyagarajan L, Chandra A, Picard C, Warnatz K, Jolles S, Lesmana H, Maglione PJ, Platt CD, Sediva A, Sullivan KE, Zhang K, Raval F, Tangye SG, Abraham RS. Curation of gene-disease relationships in primary antibody deficiencies using the ClinGen validation framework. J Allergy Clin Immunol 2025; 155:1647-1663. [PMID: 39826876 DOI: 10.1016/j.jaci.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND The Clinical Genome Resource (ClinGen) is an international collaborative effort among scientists and clinicians, diagnostic and research laboratories, and the patient community. Using a standardized framework, ClinGen has established guidelines to classify gene-disease relationships as definitive, strong, moderate, and limited on the basis of available scientific and clinical evidence. When the genetic and functional evidence for a gene-disease relationship has conflicting interpretations or contradictory evidence, they can be disputed or refuted. OBJECTIVE We assessed genes related to primary antibody deficiencies. METHODS The ClinGen Antibody Deficiencies Gene Curation Expert Panel, using the ClinGen framework, classified genes related to primary antibody deficiency that primarily affect B-cell development and/or function, and that account for the largest proportion of inborn errors of immunity or primary immunodeficiencies. RESULTS The expert panel curated a total of 65 genes associated with humoral immune defects to validate 74 gene-disease relationships. Of these, 40 were classified as definitive, 1 as strong, 16 as moderate, 15 as limited, and 2 as disputed. The curation process involved reviewing 490 patient records and 3546 associated human phenotype ontology entries. The 3 most frequently observed terms related to primary antibody deficiency were decreased circulating antibody level, pneumonia, and lymphadenopathy. CONCLUSIONS These curations (publicly available at ClinicalGenome.org) represent the first effort to provide a comprehensive genetic and phenotypic revision of genetic disorders affecting humoral immunity, as reviewed and approved by experts in the field.
Collapse
Affiliation(s)
- Alejandro Nieto-Patlán
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology and Rheumatology, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Departamento de Genética, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Justyne Ross
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Rasha Soliman
- Queen Mary University of London, London, United Kingdom
| | | | - Ermal Aliu
- Milton S. Hershey Medical Center, Hershey, Pa
| | - Lavvina Thiyagarajan
- Sydney Children's Hospitals Network, Sydney, Australia; School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Cité, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Paul J Maglione
- Department of Medicine, Boston University Chobanian, and Avedisian School of Medicine, Boston, Mass
| | | | - Anna Sediva
- Motol University Hospital and the 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Kejian Zhang
- GoBroad Healthcare Group, GoBroad Clinical Research Center, Boren Hospital, Beijing, China
| | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | | |
Collapse
|
6
|
Cai J, Qin X, Zhao X. Design, synthesis and anti-tumor activity of BTK inhibitor Orelabrutinib derivatives. Bioorg Chem 2025; 157:108278. [PMID: 40007347 DOI: 10.1016/j.bioorg.2025.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase (BTK), a non-receptor tyrosine kinase falling within the Tec kinase family, forms an essential part of the B cell receptor (BCR) signaling cascade. It has come to be regarded as a potential drug target for addressing a wide range of diseases, with a particular focus on hematopoietic malignancies and autoimmune disorders related to B lymphocytes. In the present study, by uncovering the binding mechanisms of the inhibitor Orelabrutinib with BTK, we identified four crucial structural elements requisite for the inhibition. Using scaffold hopping strategies, 28 novel derivatives belonging to the tricyclic and pyridine amide series were designed and synthesized from the lead compound Orelabrutinib. The outcomes revealed that 11a and 11k were able to effectively restrain the growth and migration of the tumor cell TMD8 upon comparing their in vitro activities, meriting further examination.
Collapse
Affiliation(s)
- Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Xintong Qin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiaomin Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
7
|
Matsunaga T, Naganuma K, Tanabe N, Mori Y, Nagata M, Momose S, Kubota Y. Immune Thrombocytopenia in an Adult With X-linked Agammaglobulinemia: A Case Report. EJHAEM 2025; 6:e1101. [PMID: 40276328 PMCID: PMC12019708 DOI: 10.1002/jha2.1101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 04/26/2025]
Abstract
In patients with X-linked agammaglobulinemia (XLA), serum immunoglobulins are almost completely lacking. The prevalence of autoimmune diseases is low in XLA compared with other primary immunodeficiency diseases because antibodies are absent in XLA. Immune thrombocytopenia (ITP) is considered an antibody-mediated disease characterized by increased platelet destruction, and adult-onset ITP in XLA has not been reported in detail. The case of a 29-year-old Japanese man with XLA and ITP is described. The patient was treated with prednisolone and intravenous immunoglobulins, resulting in rapid improvement of thrombocytopenia. Clinicians should consider co-existing ITP when progressive thrombocytopenia is observed in a patient with XLA.
Collapse
Affiliation(s)
- Takeaki Matsunaga
- Department of Hematology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Ken Naganuma
- Department of Hematology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Noriko Tanabe
- Department of Clinical Genetics, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Yoshiko Mori
- Department of Clinical Genetics, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Marino Nagata
- Department of Pathology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Shuji Momose
- Department of Pathology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Yasushi Kubota
- Department of Hematology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
- Department of Transfusion Medicine and Cell Therapy, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
- Department of Clinical Laboratory MedicineSaga‐Ken Medical Centre KoseikanSagaJapan
| |
Collapse
|
8
|
Gupta S, Sharma A, Shukla A, Mishra A, Singh A. From development to clinical success: the journey of established and next-generation BTK inhibitors. Invest New Drugs 2025; 43:377-393. [PMID: 40014234 DOI: 10.1007/s10637-025-01513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Over the past decade, Bruton's tyrosine kinase (BTK) has emerged as a pivotal therapeutic target for B-cell malignancies and autoimmune diseases, given its essential role in B-cell development and function. Dysregulation of BTK signalling is implicated in a range of hematologic cancers, including Waldenström's macroglobulinaemia (WM), mantle cell lymphoma (MCL), and chronic lymphocytic leukaemia (CLL). The development of BTK inhibitors (BTKIs), starting with ibrutinib, has revolutionized the treatment of these malignancies by inhibiting B-cell receptor (BCR) signalling and inducing apoptosis in malignant B-cells. Despite the impressive clinical efficacy of ibrutinib, challenges such as resistance mutations and off-target effects remain. To address these issues, next-generation BTKIs, including acalabrutinib, orelabrutinib, zanubrutinib, and pirtobrutinib, have been developed, offering improved specificity and reduced toxicity profiles. This review highlights the therapeutic potential of BTK-targeted therapies in treating B-cell malignancies, discusses recent advancements with FDA-approved BTKIs, and explores the latest clinical outcomes from ongoing trials of novel inhibitors.
Collapse
Affiliation(s)
- Shivani Gupta
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Arpit Sharma
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Alok Shukla
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India
| | - Abha Mishra
- Biomolecular Engineering Laboratory, School of Biochemical Engineering, IIT (BHU), Varanasi, 221005, India.
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
9
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
10
|
Berbers RM, Paganelli FL, van Montfrans JM, Ellerbroek PM, Viveen MC, Rogers MRC, Salomons M, Schuurmans J, van Stigt Thans M, Vanmaris RMM, Brosens LAA, van der Wal MM, Dalm VASH, van Hagen PM, van de Ven AAJM, Uh HW, van Wijk F, Willems RJL, Leavis HL. Gut microbial dysbiosis, IgA, and Enterococcus in common variable immunodeficiency with immune dysregulation. MICROBIOME 2025; 13:12. [PMID: 39819634 PMCID: PMC11740714 DOI: 10.1186/s40168-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/19/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and recurrent infections. Significant morbidity and mortality are caused by immune dysregulation complications (CVIDid), which affect around one-third of CVID patients and have a poorly understood etiology. Here, we investigate the hypothesis that gut microbial dysbiosis contributes to the inflammation underlying CVIDid. RESULTS Bacterial invasion of colonic crypts was observed in CVID (3/15) and X-linked agammaglobulinemia (XLA, 1/3), but not in healthy control (HC, 0/9) biopsies. Fecal gut microbiota was characterized using 16S rRNA-targeted amplicon sequencing. Increased bacterial load, decreased alpha diversity and distinct beta diversity were observed in CVIDid (n = 42) compared to HC (n = 48), and similar results were seen in CVID with IgA deficiency (n = 40) compared to HC. CVIDid and CVID-IgA showed enrichment of the genus Enterococcus, and in vitro studies confirmed the inflammatory potential of Enterococcus gallinarum and Enterococcus hirae in patient monocytes. CONCLUSIONS This study further supports the hypothesis that a dysregulated gut microbiota, with IgA deficiency as an important driving factor, contributes to systemic inflammation in primary antibody deficiency, and introduces enterococci as potential pathobionts in CVIDid. Video Abstract.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Jaap Schuurmans
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Martine van Stigt Thans
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Remi M M Vanmaris
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maria Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Virgil A S H Dalm
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - P Martin van Hagen
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Immunology, Academic Center for Rare Immunological Diseases (RIDC), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Annick A J M van de Ven
- Departments of Internal Medicine and Allergology, Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, the Netherlands
| | - Hae-Won Uh
- Department of Data Science and Biostatistics, Julius Center, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
11
|
Eisen TJ, Ghaffari-Kashani S, Hung CL, Groves JT, Weiss A, Kuriyan J. Conditional requirement for dimerization of the membrane-binding module for BTK signaling in lymphocyte cell lines. Sci Signal 2025; 18:eado1252. [PMID: 39808693 PMCID: PMC11970436 DOI: 10.1126/scisignal.ado1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/28/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro. Here, we investigated whether BTK dimerizes in cells using the PH-TH module and whether this dimerization is necessary for signaling. To address this question, we developed high-throughput mutagenesis assays for BTK function in Ramos B cells and Jurkat T cells. We measured the fitness costs for thousands of point mutations in the PH-TH module and kinase domain to assess whether dimerization of the PH-TH module and BTK kinase activity were necessary for function. In Ramos cells, we found that neither PH-TH dimerization nor kinase activity was required for BTK signaling. Instead, in Ramos cells, BTK signaling was enhanced by PH-TH module mutations that increased membrane adsorption, even at the cost of reduced PH-TH dimerization. In contrast, in Jurkat cells, we found that BTK signaling depended on both PH-TH dimerization and kinase activity. Evolutionary analysis indicated that BTK proteins in organisms that evolved before the divergence of ray-finned fishes lacked PH-TH dimerization but had active kinase domains, similar to other Tec family kinases. Thus, PH-TH dimerization is a distinct feature of BTK that evolved to exert stricter regulatory control on kinase activity as adaptive immune systems gained increased complexity.
Collapse
Affiliation(s)
- Timothy J. Eisen
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
| | - Sam Ghaffari-Kashani
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
| | - Chien-Lun Hung
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville,
TN, USA
| | - Jay T. Groves
- Department of Chemistry, University of California,
Berkeley, CA, United States
- California Institute for Quantitative Biosciences,
University of California, Berkeley, CA, United States
| | - Arthur Weiss
- Department of Microbiology and Immunology, University of
California, San Francisco, CA, United States
- Division of Rheumatology, Department of Medicine,
University of California, San Francisco, CA, United States
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of
Medicine, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville,
TN, USA
| |
Collapse
|
12
|
Xing Y, Zhao K, Zhang Y, Wang Y. BTK inhibition in primary central nervous system lymphoma: mechanisms, clinical efficacy, and future perspectives. Front Oncol 2024; 14:1463505. [PMID: 39777345 PMCID: PMC11703922 DOI: 10.3389/fonc.2024.1463505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
The prognosis of primary central nervous system lymphoma (PCNSL) patients is relatively poor, and there is currently no standard treatment plan. Most patients choose high-dose chemotherapy based on methotrexate. While traditional chemotherapy combined with biological therapy has achieved limited results, some patients still do not respond to treatment or cannot tolerate its toxicity and side effects. Bruton's tyrosine kinase (BTK) is a key enzyme in B-cell receptor signaling, and its activation is critical for B-cell survival and proliferation. In recent years, BTK inhibitors have shown great potential in treating lymphomas derived from various B cells because of their strong targeting ability and relatively few side effects. They may also be a reasonable treatment choice for PCNSL. This article reviews the mechanism of action, clinical research, adverse reactions, and other issues of BTK inhibitors in treating PCNSL to provide a reference for individualized treatment of patients with PCNSL.
Collapse
Affiliation(s)
- Yurou Xing
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Ransmayr B, Bal SK, Thian M, Svaton M, van de Wetering C, Hafemeister C, Segarra-Roca A, Block J, Frohne A, Krolo A, Altunbas MY, Bilgic-Eltan S, Kıykım A, Aydiner O, Kesim S, Inanir S, Karakoc-Aydiner E, Ozen A, Aba Ü, Çomak A, Tuğcu GD, Pazdzior R, Huber B, Farlik M, Kubicek S, von Bernuth H, Simonitsch-Klupp I, Rizzi M, Halbritter F, Tumanov AV, Kraakman MJ, Metin A, Castanon I, Erman B, Baris S, Boztug K. LTβR deficiency causes lymph node aplasia and impaired B cell differentiation. Sci Immunol 2024; 9:eadq8796. [PMID: 39576873 DOI: 10.1126/sciimmunol.adq8796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Secondary lymphoid organs (SLOs) provide the confined microenvironment required for stromal cells to interact with immune cells to initiate adaptive immune responses resulting in B cell differentiation. Here, we studied three patients from two families with functional hyposplenism, absence of tonsils, and complete lymph node aplasia, leading to recurrent bacterial and viral infections. We identified biallelic loss-of-function mutations in LTBR, encoding the lymphotoxin beta receptor (LTβR), primarily expressed on stromal cells. Patients with LTβR deficiency had hypogammaglobulinemia, diminished memory B cells, regulatory and follicular T helper cells, and dysregulated expression of several tumor necrosis factor family members. B cell differentiation in an ex vivo coculture system was intact, implying that the observed B cell defects were not intrinsic in nature and instead resulted from LTβR-dependent stromal cell interaction signaling critical for SLO formation. Collectively, we define a human inborn error of immunity caused primarily by a stromal defect affecting the development and function of SLOs.
Collapse
Affiliation(s)
- Bernhard Ransmayr
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sevgi Köstel Bal
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Marini Thian
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Michael Svaton
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cheryl van de Wetering
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | - Jana Block
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | | | - Ana Krolo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Melek Yorgun Altunbas
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Sevgi Bilgic-Eltan
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ayça Kıykım
- Istanbul University-Cerrahpasa, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Omer Aydiner
- Kartal Dr. Lütfi Kırdar City Hospital, Department of Radiology, Istanbul, Turkey
| | - Selin Kesim
- Marmara University, Faculty of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Sabahat Inanir
- Marmara University, Faculty of Medicine, Department of Nuclear Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ahmet Ozen
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Ümran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Aylin Çomak
- Ankara Bilkent City Hospital, Children's Hospital, Department of Nuclear Medicine, Ankara, Turkey
| | - Gökçen Dilşa Tuğcu
- Ankara Bilkent City Hospital, Children's Hospital, Department of Pediatric Pulmonology, Ankara, Turkey
| | - Robert Pazdzior
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bettina Huber
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité University Medicine, Berlin, Corporate Member of Free University and Humboldt University and Berlin Institute of Health, Berlin, Germany
- Labor Berlin Charité-Vivantes, Department of Immunology, Berlin, Germany
- Berlin Institute of International Health Global Health Center Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | | | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology and Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | | | - Alexei V Tumanov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael J Kraakman
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ayşe Metin
- Ankara Bilkent City Hospital, Children's Hospital, Department of Pediatric Immunology and Allergy, Ankara, Turkey
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Baran Erman
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Safa Baris
- Department of Pediatrics, Division of Allergy and Immunology, Marmara University School of Medicine, Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Istanbul, Turkey
- Işıl Berat Barlan Center for Translational Medicine, Marmara University, Istanbul, Turkey
- Marmara University, Immune Deficiency Application and Research Center, Istanbul, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| |
Collapse
|
14
|
Shillitoe B, Duque JSR, Lai SHY, Lau TM, Chan JCH, Bourne H, Stroud C, Flood T, Buckland M, Ip W, Worth A, Hackett S, Herwadkar A, Coulter T, Blaney C, Jolles S, Garcez T, Moya E, Faust S, Pearce MS, Lau YL, Gennery AR. Outcomes of X-Linked Agammaglobulinaemia Patients. J Clin Immunol 2024; 45:40. [PMID: 39541002 DOI: 10.1007/s10875-024-01829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND X-linked agammaglobulinaemia (XLA), caused by mutations in BTK, is characterised by low or absent peripheral CD19 + B lymphocytes and agammaglobulinaemia. The mainstay of treatment consists of immunoglobulin replacement therapy (IgRT). As this cannot fully compensate for the immune defects in XLA, patients may therefore continue to be at risk of complications. OBJECTIVES To describe the clinical outcomes of XLA patients in the United Kingdom and Hong Kong and evaluate current treatment strategies. METHODS Patients with a definitive diagnosis of XLA were included in this cross-sectional and retrospective analysis of clinical health outcomes. Data pertaining to diagnosis, infection incidence, IgG trough levels and lung function were collected and analysed. RESULTS 99 patients with a median age of 29.02 years (IQR 12.83-37.41) and a total follow up of 1922 patient years, were included this study. The median age at diagnosis was 3.30 years (IQR 1.04-8.38) which decreased over time (p = 0.004). 40% of the cohort had radiological evidence of bronchiectasis. Risk of bronchiectasis was not significantly associated with clinical infection incidence (p = 0.880) or IgG trough levels (p = 0.407). Two patients demonstrated novel complications, namely persistent norovirus infection, leading to haemopoietic stem cell transplantation (HSCT). CONCLUSIONS Despite modern therapy, most XLA patients continue to experience complications, most notably bronchiectasis, likely due to absence of IgA/M in current therapies, but lack of B lymphocytes may also lead to additional sequalae. These data strongly support the need for further research, particularly that of curative modalities including HSCT and gene therapy.
Collapse
Affiliation(s)
- Ben Shillitoe
- Sheffield Children's NHS Foundation Trust, Sheffield, UK.
| | - Jaime S Rosa Duque
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Sophie H Y Lai
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Tsun Ming Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Jeffery C H Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Helen Bourne
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Catherine Stroud
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Terry Flood
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Matthew Buckland
- Institute of Child Health, UCL, London, UK
- University College London, London, UK
| | - Winnie Ip
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Austen Worth
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Scott Hackett
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Archana Herwadkar
- Salford Care Organisation, Northern Care Alliance NHS Trust, Manchester, UK
| | | | | | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Tomaz Garcez
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Eduardo Moya
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Saul Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mark S Pearce
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.
| | - Andrew R Gennery
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Smith CIE, Burger JA, Zain R. Estimating the Number of Polygenic Diseases Among Six Mutually Exclusive Entities of Non-Tumors and Cancer. Int J Mol Sci 2024; 25:11968. [PMID: 39596040 PMCID: PMC11593959 DOI: 10.3390/ijms252211968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
In the era of precision medicine with increasing amounts of sequenced cancer and non-cancer genomes of different ancestries, we here enumerate the resulting polygenic disease entities. Based on the cell number status, we first identified six fundamental types of polygenic illnesses, five of which are non-cancerous. Like complex, non-tumor disorders, neoplasms normally carry alterations in multiple genes, including in 'Drivers' and 'Passengers'. However, tumors also lack certain genetic alterations/epigenetic changes, recently named 'Goners', which are toxic for the neoplasm and potentially constitute therapeutic targets. Drivers are considered essential for malignant transformation, whereas environmental influences vary considerably among both types of polygenic diseases. For each form, hyper-rare disorders, defined as affecting <1/108 individuals, likely represent the largest number of disease entities. Loss of redundant tumor-suppressor genes exemplifies such a profoundly rare mutational event. For non-tumor, polygenic diseases, pathway-centered taxonomies seem preferable. This classification is not readily feasible in cancer, but the inclusion of Drivers and possibly also of epigenetic changes to the existing nomenclature might serve as initial steps in this direction. Based on the detailed genetic alterations, the number of polygenic diseases is essentially countless, but different forms of nosologies may be used to restrict the number.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, SE-141 86 Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8 Floor 8, SE-141 52 Huddinge, Sweden;
- Karolinska ATMP Center, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
16
|
Bravo-Gonzalez A, Alasfour M, Soong D, Noy J, Pongas G. Advances in Targeted Therapy: Addressing Resistance to BTK Inhibition in B-Cell Lymphoid Malignancies. Cancers (Basel) 2024; 16:3434. [PMID: 39456530 PMCID: PMC11506569 DOI: 10.3390/cancers16203434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024] Open
Abstract
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton's tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent the downstream signaling. Resistance to covalent BTK inhibitors (BTKi) can occur through mutations at the BTK binding site (C481S) but also other BTK sites and the phospholipase C gamma 2 (PLCγ2) resulting in downstream signaling. To bypass the C481S mutation, non-covalent BTKi, such as Pirtobrutinib, were developed and are active against both wild-type and the C481S mutation. In this review, we discuss the molecular and genetic mechanisms which contribute to acquisition of resistance to covalent and non-covalent BTKi. In addition, we discuss the new emerging class of BTK degraders, which utilize the evolution of proteolysis-targeting chimeras (PROTACs) to degrade the BTK protein and constitute an important avenue of overcoming resistance. The moving landscape of resistance to BTKi and the development of new therapeutic strategies highlight the ongoing advances being made towards the pursuit of a cure for B-cell lymphoid malignancies.
Collapse
Affiliation(s)
| | - Maryam Alasfour
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Deborah Soong
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Jose Noy
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Georgios Pongas
- Division of Hematology, Department of Medicine, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
17
|
Hatashima A, Shadman M. BTK inhibitors: moving the needle on the treatment of chronic lymphocytic leukemia. Expert Rev Hematol 2024; 17:687-703. [PMID: 39163531 DOI: 10.1080/17474086.2024.2391097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
INTRODUCTION Bruton's tyrosine kinaseinhibitors (BTKis) changed the trajectory of upfront and relapsed/refractory chronic lymphocytic leukemia (CLL) treatment. However, BTKis are plagued by a spectrum of toxicities. Zanubrutinib was developed to circumvent challenges with prolonged tolerability by increasing BTK selectivity and maximizing efficacy through pharmacokinetic/pharmacodynamic optimization. However, with the availability of ibrutinib, acalabrutinib, and zanubrutinib, limited data exists to guide sequencing of BTKi therapy in the relapsed/refractory setting. AREAS COVERED We review the first head-to-head trial (ALPINE) of zanubrutinib versus ibrutinib for the treatment of relapsed/refractory CLL and compare zanubrutinib's clinical efficacy and toxicities, including in patients with del(17p) and/or TP53 mutations to ibrutinib and acalabrutinib. EXPERT OPINION Zanubrutinibrepresents one of the new standards of care for relapsed/refractory CLL based on superior progression-free survival and response rates over ibrutinib. Whilezanubrutinib is associated with fewer cardiac toxicities, similar rates of neutropenia and hypertension are noted. Ongoing studies are pushing the envelope, utilizing targeted drug combinations and minimal residual disease markers as well as receptor tyrosine kinase-like orphan receptor 1 inhibitors, chimeric antigen receptor T-cells, and novel BTK degraders. However, zanubrutinibrepresents a strong contender in the arsenal of treatment options for relapsed/refractory CLL.
Collapse
Affiliation(s)
- Alycia Hatashima
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Mazyar Shadman
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Division of Hematology and Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Benoit RY, Zagrodnik JL, Carew SJ, Moore CS. Bruton Tyrosine Kinase Inhibition Decreases Inflammation and Differentially Impacts Phagocytosis and Cellular Metabolism in Mouse- and Human-derived Myeloid Cells. Immunohorizons 2024; 8:652-667. [PMID: 39259208 PMCID: PMC11447691 DOI: 10.4049/immunohorizons.2400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Bruton tyrosine kinase (BTK) is a kinase expressed by various immune cells and is often activated under proinflammatory states. Although the majority of BTK-related research has historically focused on B cells, understanding the role of BTK in non-B cell populations is critical given myeloid cells also express BTK at comparable levels. In this study, we investigated and compared how BTK inhibition in human and murine myeloid cells alters cell phenotype and function. All experiments were performed using two BTK inhibitors (evobrutinib and tolebrutinib) that are currently in late-stage clinical trials for the treatment of multiple sclerosis. Assays were performed to assess the impact of BTK inhibition on cytokine and microRNA expression, phagocytic capacity, and cellular metabolism. In all cells, both evobrutinib and tolebrutinib significantly decreased phosphorylated BTK and LPS-induced cytokine release. BTK inhibition also significantly decreased the oxygen consumption rate and extracellular acidification rate in myeloid cells, and significantly decreased phagocytosis in murine-derived cells, but not human macrophages. To further elucidate the mechanism, we also investigated the expression of microRNAs known to impact the function of myeloid cells. BTK inhibition resulted in an altered microRNA expression profile (i.e., decreased miR-155-5p and increased miR-223-3p), which is consistent with a decreased proinflammatory myeloid cell phenotype. In summary, these results provide further insights into the mechanism of action of BTK inhibitors in the context of immune-related diseases, while also highlighting important species-specific and cell-specific differences that should be considered when interpreting and comparing results between preclinical and human studies.
Collapse
Affiliation(s)
- Rochelle Y. Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jennifer L. Zagrodnik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Samantha J. Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Craig S. Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
19
|
Tavakoli GM, Yazdanpanah N, Rezaei N. Targeting Bruton's tyrosine kinase (BTK) as a signaling pathway in immune-mediated diseases: from molecular mechanisms to leading treatments. Adv Rheumatol 2024; 64:61. [PMID: 39169436 DOI: 10.1186/s42358-024-00401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase, plays a remarkable role in the transmission and amplification of extracellular signals to intracellular signaling pathways. Various types of cells use the BTK pathway to communicate, including hematopoietic cells particularly B cells and T cells. The BTK pathway plays a role in controlling the proliferation, survival, and functions of B cells as well as other myeloid cells. First, second, and third-generation BTK inhibitors are currently being evaluated for the treatment of immune-mediated diseases in addition to B cell malignancies. In this article, the available evidence on the action mechanisms of BTK inhibitors is reviewed. Then, the most recent data obtained from preclinical studies and ongoing clinical trials for the treatment of autoimmune diseases, such as pemphigus vulgaris, pemphigus foliaceus, bullous pemphigoid, systemic lupus erythematosus, Sjögren's disease, rheumatoid arthritis, systemic sclerosis, multiple sclerosis, myasthenia gravis, and inflammatory diseases such as psoriasis, chronic spontaneous urticaria, atopic dermatitis, and asthma are discussed. In addition, adverse effects and complications associated with BTK inhibitors as well as factors predisposing patients to BTK inhibitors complications are discussed.
Collapse
Affiliation(s)
- Gita Manzari Tavakoli
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Feng Y, Hu X, Wang X. Targeted protein degradation in hematologic malignancies: clinical progression towards novel therapeutics. Biomark Res 2024; 12:85. [PMID: 39169396 PMCID: PMC11340087 DOI: 10.1186/s40364-024-00638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Targeted therapies, such as small molecule kinase inhibitors, have made significant progress in the treatment of hematologic malignancies by directly modulating protein activity. However, issues such as drug toxicity, drug resistance due to target mutations, and the absence of key active sites limit the therapeutic efficacy of these drugs. Targeted protein degradation (TPD) presents an emergent and rapidly evolving therapeutic approach that selectively targets proteins of interest (POI) based on endogenous degradation processes. With an event-driven pharmacology of action, TPD achieves efficacy with catalytic amounts, avoiding drug-related toxicity. Furthermore, TPD has the unique mode of degrading the entire POI, such that resistance derived from mutations in the targeted protein has less impact on its degradation function. Proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) are the most maturely developed TPD techniques. In this review, we focus on both preclinical experiments and clinical trials to provide a comprehensive summary of the safety and clinical effectiveness of PROTACs and MGDs in hematologic malignancies over the past two decades. In addition, we also delineate the challenges and opportunities associated with these burgeoning degradation techniques. TPD, as an approach to the precise degradation of specific proteins, provides an important impetus for its future application in the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Yupiao Feng
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
21
|
Chowdhury S, Chakraborty MP, Roy S, Dey BP, Gangopadhyay K, Das R. E41K mutation activates Bruton's tyrosine kinase by stabilizing an inositol hexakisphosphate-dependent invisible dimer. J Biol Chem 2024; 300:107535. [PMID: 38971313 PMCID: PMC11338949 DOI: 10.1016/j.jbc.2024.107535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
Bruton's tyrosine kinase (BTK) regulates diverse cellular signaling of the innate and adaptive immune system in response to microbial pathogens. Downregulation or constitutive activation of BTK is reported in patients with autoimmune diseases or various B-cell leukemias. BTK is a multidomain protein tyrosine kinase that adopts an Src-like autoinhibited conformation maintained by the interaction between the kinase and PH-TH domains. The PH-TH domain plays a central role in regulating BTK function. BTK is activated by binding to PIP3 at the plasma membrane upon stimulation by the B-cell receptor (BCR). The PIP3 binding allows dimerization of the PH-TH domain and subsequent transphosphorylation of the activation loop. Alternatively, a recent study shows that the multivalent T-cell-independent (TI) antigen induces BCR response by activating BTK independent of PIP3 binding. It was proposed that a transiently stable IP6-dependent PH-TH dimer may activate BTK during BCR activation by the TI antigens. However, no IP6-dependent PH-TH dimer has been identified yet. Here, we investigated a constitutively active PH-TH mutant (E41K) to determine if the elusive IP6-dependent PH-TH dimer exists. We showed that the constitutively active E41K mutation activates BTK by stabilizing the IP6-dependent PH-TH dimer. We observed that a downregulating mutation in the PH-TH domain (R28H) linked to X-linked agammaglobulinemia impairs BTK activation at the membrane and in the cytosol by preventing PH-TH dimerization. We conclude that the IP6 dynamically remodels the BTK active fraction between the membrane and the cytoplasm. Stimulating with IP6 increases the cytosolic fraction of the activated BTK.
Collapse
Affiliation(s)
- Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Bipra Prasad Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
22
|
Guo HP, Dang XL, Kang L, Liu C, Liu XW. Bruton's Tyrosine Kinase Inhibitors in Refractory or Relapsing Primary Central Nervous System Lymphoma: A Meta-analysis and Systematic Review. World Neurosurg 2024; 188:161-169. [PMID: 38641241 DOI: 10.1016/j.wneu.2024.04.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is an aggressive lymphoma that primarily affects the central nervous system. Current treatments, such as surgery, chemotherapy, and whole-brain radiotherapy, often fail to achieve satisfactory results. The prognosis for patients with refractory or relapsed (R/R) PCNSL is bleak. The optimal treatment for refractory or relapsed PCNSL is poorly defined due to a limited number of studies in this setting. Bruton's tyrosine kinase (BTK) inhibitors, as part of targeted therapy regimens, have undergone testing in several clinical trials against PCNSL and have shown promising results in the treatment of R/R PCNSL. In this meta-analysis, we aim to explore and critically appraise the evidence regarding the efficacy of BTK inhibitors in the treatment of refractory or relapsed PCNSL. METHODS A systematic search was conducted on multiple databases including PubMed, Embase, Cochrane library, Wanfang Data Knowledge Service Platform, and CNKI, covering the period up to November 2023. The inclusion criteria for studies were patients with R/R PCNSL who received BTK inhibitors, and reported data on overall response rate (ORR) and complete remission (CR). The pooled rates were calculated using a random-effects or fixed-effects model with a double arcsine transformation, and 95% CIs were determined for all outcomes. RESULTS In total, 1 studies involving 185 patients were identified and included in the meta-analysis. The pooled complete remission (CR) rate of BTK inhibitors-based treatment for R/R PCNSL was found to be 50%. Subgroup analysis revealed that the CR rates for BTK inhibitor monotherapy, BTK inhibitor combined with chemotherapy, and BTK inhibitor combined with radiotherapy for R/R PCNSL were 7%, 68%, and 80%, respectively. The ORR for BTK inhibitors-based treatment for R/R PCNSL was 70%. Subgroup analysis showed that the ORR rates for BTK inhibitor monotherapy and BTK inhibitor combined with chemotherapy for R/R PCNSL were 55% and 83%, respectively. The most common adverse events (AEs) reported were hematologic AEs, including neutropenia, anemia, and thrombocytopenia. Severe nonhematologic AEs included rash, febrile neutropenia, increased levels of aspartate aminotransferase, and increased blood bilirubin. CONCLUSIONS BTK inhibitors can be regarded as a safe and effective treatment option for R/R PCNSL, thereby providing a potential new avenue for R/R PCNSL treatment. However, it is important to note that further large-sample prospective randomized controlled trials are needed to validate these findings and establish their wider applicability.
Collapse
Affiliation(s)
- Huai-Peng Guo
- Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Xue-Liang Dang
- Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Lei Kang
- Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Cong Liu
- Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Xiao-Wu Liu
- Xi'an Gao Xin Hospital, Xi'an, Shaanxi Province, China.
| |
Collapse
|
23
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
24
|
Bahal S, Zinicola M, Moula SE, Whittaker TE, Schejtman A, Naseem A, Blanco E, Vetharoy W, Hu YT, Rai R, Gomez-Castaneda E, Cunha-Santos C, Burns SO, Morris EC, Booth C, Turchiano G, Cavazza A, Thrasher AJ, Santilli G. Hematopoietic stem cell gene editing rescues B-cell development in X-linked agammaglobulinemia. J Allergy Clin Immunol 2024; 154:195-208.e8. [PMID: 38479630 PMCID: PMC11752842 DOI: 10.1016/j.jaci.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is an inborn error of immunity that renders boys susceptible to life-threatening infections due to loss of mature B cells and circulating immunoglobulins. It is caused by defects in the gene encoding the Bruton tyrosine kinase (BTK) that mediates the maturation of B cells in the bone marrow and their activation in the periphery. This paper reports on a gene editing protocol to achieve "knock-in" of a therapeutic BTK cassette in hematopoietic stem and progenitor cells (HSPCs) as a treatment for XLA. METHODS To rescue BTK expression, this study employed a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system that creates a DNA double-strand break in an early exon of the BTK locus and an adeno-associated virus 6 virus that carries the donor template for homology-directed repair. The investigators evaluated the efficacy of the gene editing approach in HSPCs from patients with XLA that were cultured in vitro under B-cell differentiation conditions or that were transplanted in immunodeficient mice to study B-cell output in vivo. RESULTS A (feeder-free) B-cell differentiation protocol was successfully applied to blood-mobilized HSPCs to reproduce in vitro the defects in B-cell maturation observed in patients with XLA. Using this system, the investigators could show the rescue of B-cell maturation by gene editing. Transplantation of edited XLA HSPCs into immunodeficient mice led to restoration of the human B-cell lineage compartment in the bone marrow and immunoglobulin production in the periphery. CONCLUSIONS Gene editing efficiencies above 30% could be consistently achieved in human HSPCs. Given the potential selective advantage of corrected cells, as suggested by skewed X-linked inactivation in carrier females and by competitive repopulating experiments in mouse models, this work demonstrates the potential of this strategy as a future definitive therapy for XLA.
Collapse
Affiliation(s)
- Sameer Bahal
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marta Zinicola
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Thomas E Whittaker
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Schejtman
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elena Blanco
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Winston Vetharoy
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yi-Ting Hu
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Eduardo Gomez-Castaneda
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Catarina Cunha-Santos
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Emma C Morris
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Claire Booth
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
25
|
de Oliveira CGN, Perez EC, Alvares-Saraiva AM, Lallo MA. CD8 T lymphocytes from B-1 cell-deficient mice down-regulates fungicidal activity of macrophages challenged with E. Cuniculi. Immunobiology 2024; 229:152827. [PMID: 38878483 DOI: 10.1016/j.imbio.2024.152827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Encephalitozoon cuniculi is an opportunistic intracellular pathogen that establishes a balanced relationship with immunocompetent individuals depending on the activity of their CD8+ T cells lymphocytes. However, lower resistance to experimental infection with E. cuniculi was found in B-1 deficient mice (Xid), besides increased the number of CD8 T lymphocytes. Here, we evaluated the profile of CD8+ T lymphocytes from Balb/c wild-type (WT) or Balb/c Xid mice (with B-1 cell deficiency) on the microbicidal activity of macrophages challenged with E. cuniculi. METHODS Naïve CD8 T lymphocytes from WT or Xid mice uninfected and primed CD8 T lymphocytes from WT or Xid mice infected with E cuniculi were co-cultured with macrophages previously challenged with E. cuniculi. We evaluated macrophages viability and microbicidal activity, and CD8 T lymphocytes viability and presence of activating molecules (CD62L, CD69, and CD107a). RESULTS Macrophages co-cultured with naïve CD8 T lymphocytes from WT demonstrated high microbicidal activity. Naïve CD8 T lymphocytes obtained from WT mice had a higher expression of CD69 and LAMP-1-activating molecules compared to Xid CD8+ T lymphocytes. Primed CD8 T lymphocytes from Xid mice proliferated more than those from WT mice, however, when the expression of the activating molecule CD69 associated with the expression of CD62L was kept low. In conclusion, naïve CD8+ T lymphocytes from Xid mice, deficient in B-1 cells, they had reduced expression of activation molecules and cytotoxic activity.
Collapse
Affiliation(s)
| | - Elizabeth Cristina Perez
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil
| | - Anuska Marcelino Alvares-Saraiva
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil
| | - Maria Anete Lallo
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Dr Bacelar 1212, CEP 04026002 São Paulo, SP, Brazil.
| |
Collapse
|
26
|
Nawaratne V, Sondhi AK, Abdel-Wahab O, Taylor J. New Means and Challenges in the Targeting of BTK. Clin Cancer Res 2024; 30:2333-2341. [PMID: 38578606 PMCID: PMC11147694 DOI: 10.1158/1078-0432.ccr-23-0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Bruton's tyrosine kinase (BTK) is central to the survival of malignant and normal B lymphocytes and has been a crucial therapeutic target of several generations of kinase inhibitors and newly developed degraders. These new means for targeting BTK have added additional agents to the armamentarium for battling cancers dependent on B-cell receptor (BCR) signaling, including chronic lymphocytic leukemia and other non-Hodgkin lymphomas. However, the development of acquired resistance mutations to each of these classes of BTK inhibitors has led to new challenges in targeting BTK as well as novel insights into BCR signaling. The first-generation covalent BTK inhibitor ibrutinib is susceptible to mutations affecting the covalent binding site, cysteine 481 (C481). Newer noncovalent BTK inhibitors, such as pirtobrutinib, overcome C481 mutation-mediated resistance but are susceptible to other kinase domain mutations, particularly at residues Threonine 474 and Leucine 528. In addition, these novel BTK inhibitor resistance mutations have been shown biochemically and in patients to cause cross-resistance to some covalent BTK inhibitors. Importantly, newer generation covalent BTK inhibitors zanubrutinib and acalabrutinib are susceptible to the same mutations that confer resistance to noncovalent inhibitors. The BTK L528W mutation is of particular interest as it disrupts the kinase activity of BTK, rendering it kinase dead. This observation suggests that BTK may act independently of its kinase activity as a scaffold. Thus, the timely development of BTK degrading proteolysis targeting drugs has allowed for degradation, rather than just enzymatic inhibition, of BTK in B-cell lymphomas, and early clinical trials to evaluate BTK degraders are underway.
Collapse
Affiliation(s)
- Vindhya Nawaratne
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anya K. Sondhi
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
27
|
Hussain S, Mursal M, Verma G, Hasan SM, Khan MF. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur J Pharmacol 2024; 970:176484. [PMID: 38467235 DOI: 10.1016/j.ejphar.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Protein kinases play pivotal roles in various biological functions, influencing cell differentiation, promoting survival, and regulating the cell cycle. The disruption of protein kinase activity is intricately linked to pathways in tumor development. This manuscript explores the transformative impact of protein kinase inhibitors on cancer therapy, particularly their efficacy in cases driven by targeted mutations. Focusing on key tyrosine kinase inhibitors (TKIs) like Bcr-Abl, Epidermal Growth Factor Receptor (EGFR), and Vascular Endothelial Growth Factor Receptor (VEGFR), it targets critical kinase families in cancer progression. Clinical trial details of these TKIs offer insights into their therapeutic potentials. Learning from FDA-approved kinase inhibitors, the review dissects trends in kinase drug development since imatinib's paradigm-shifting approval in 2001. TKIs have evolved into pivotal drugs, extending beyond oncology. Ongoing clinical trials explore novel kinase targets, revealing the vast potential within the human kinome. The manuscript provides a detailed analysis of advancements until 2022, discussing the roles of specific oncogenic protein kinases in cancer development and carcinogenesis. Our exploration on PubMed for relevant and significant TKIs undergoing pre-FDA approval phase III clinical trials enriches the discussion with valuable findings. While kinase inhibitors exhibit lower toxicity than traditional chemotherapy in cancer treatment, challenges like resistance and side effects emphasize the necessity of understanding resistance mechanisms, prompting the development of novel inhibitors like osimertinib targeting specific mutant proteins. The review advocates thorough research on effective combination therapies, highlighting the future development of more selective RTKIs to optimize patient-specific cancer treatment and reduce adverse events.
Collapse
Affiliation(s)
- Sahil Hussain
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohd Mursal
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Garima Verma
- RWE Specialist, HealthPlix Technologies, Bengaluru, Karnataka 560103, India
| | - Syed Misbahul Hasan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India
| | - Mohemmed Faraz Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
28
|
Desai JV, Zarakas MA, Wishart AL, Roschewski M, Aufiero MA, Donkò A, Wigerblad G, Shlezinger N, Plate M, James MR, Lim JK, Uzel G, Bergerson JR, Fuss I, Cramer RA, Franco LM, Clark ES, Khan WN, Yamanaka D, Chamilos G, El-Benna J, Kaplan MJ, Staudt LM, Leto TL, Holland SM, Wilson WH, Hohl TM, Lionakis MS. BTK drives neutrophil activation for sterilizing antifungal immunity. J Clin Invest 2024; 134:e176142. [PMID: 38696257 PMCID: PMC11178547 DOI: 10.1172/jci176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
We describe a previously unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, patients who were treated with BTKi, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in patients who are susceptible.
Collapse
Affiliation(s)
- Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marissa A. Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrew L. Wishart
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Mariano A. Aufiero
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Agnes Donkò
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Gustaf Wigerblad
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Markus Plate
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gulbu Uzel
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Ivan Fuss
- Mucosal Immunity Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Luis M. Franco
- Functional Immunogenomics Section, NIAMS, NIH, Bethesda, Maryland, USA
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Jamel El-Benna
- Centre de Recherche sur l’Inflammation, Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, Paris, France
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Thomas L. Leto
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
29
|
He D, Jiao Y, Xu J, Luo J, Cui Y, Han X, Zhao H. mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk. J Gene Med 2024; 26:e3687. [PMID: 38690623 DOI: 10.1002/jgm.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.
Collapse
Affiliation(s)
- Dan He
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yueying Jiao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Jian Xu
- Department of Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Junjie Luo
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yaqi Cui
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xiabing Han
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Hongshan Zhao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Hedin W, Bergman P, Akhirunessa M, Söderholm S, Buggert M, Granberg T, Gredmark-Russ S, Smith CIE, Pettke A, Wahren Borgström E. Severe Tick-Borne Encephalitis (TBE) in a Patient with X-Linked Agammaglobulinemia; Treatment with TBE Virus IgG Positive Plasma, Clinical Outcome and T Cell Responses. J Clin Immunol 2024; 44:116. [PMID: 38676861 PMCID: PMC11055791 DOI: 10.1007/s10875-024-01718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE A patient with X-linked agammaglobulinemia (XLA) and severe tick-borne encephalitis (TBE) was treated with TBE virus (TBEV) IgG positive plasma. The patient's clinical response, humoral and cellular immune responses were characterized pre- and post-infection. METHODS ELISA and neutralisation assays were performed on sera and TBEV PCR assay on sera and cerebrospinal fluid. T cell assays were conducted on peripheral blood the patient and five healthy vaccinated controls. RESULTS The patient was admitted to the hospital with headache and fever. He was not vaccinated against TBE but receiving subcutaneous IgG-replacement therapy (IGRT). TBEV IgG antibodies were low-level positive (due to scIGRT), but the TBEV IgM and TBEV neutralisation tests were negative. During hospitalisation his clinical condition deteriorated (Glasgow coma scale 3/15) and he was treated in the ICU with corticosteroids and external ventricular drainage. He was then treated with plasma containing TBEV IgG without apparent side effects. His symptoms improved within a few days and the TBEV neutralisation test converted to positive. Robust CD8+ T cell responses were observed at three and 18-months post-infection, in the absence of B cells. This was confirmed by tetramers specific for TBEV. CONCLUSION TBEV IgG-positive plasma given to an XLA patient with TBE without evident adverse reactions may have contributed to a positive clinical outcome. Similar approaches could offer a promising foundation for researching therapeutic options for patients with humoral immunodeficiencies. Importantly, a robust CD8+ T cell response was observed after infection despite the lack of B cells and indicates that these patients can clear acute viral infections and could benefit from future vaccination programs.
Collapse
Affiliation(s)
- Wilhelm Hedin
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
| | - Mily Akhirunessa
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Söderholm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Pettke
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Emilie Wahren Borgström
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden.
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Estupiñán HY, Bouderlique T, He C, Berglöf A, Cappelleri A, Frengen N, Zain R, Karlsson MCI, Månsson R, Smith CIE. In BTK, phosphorylated Y223 in the SH3 domain mirrors catalytic activity, but does not influence biological function. Blood Adv 2024; 8:1981-1990. [PMID: 38507738 PMCID: PMC11024922 DOI: 10.1182/bloodadvances.2024012706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.
Collapse
Affiliation(s)
- H. Yesid Estupiñán
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Departamento de Ciencias Básicas, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Andrea Cappelleri
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory, UniMi Foundation, Milan, Italy
| | - Nicolai Frengen
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Månsson
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
32
|
Kawata K, Hatano S, Baba A, Imabayashi K, Baba Y. Bruton's tyrosine kinase inhibition limits endotoxic shock by suppressing IL-6 production by marginal zone B cells in mice. Front Immunol 2024; 15:1388947. [PMID: 38638439 PMCID: PMC11024364 DOI: 10.3389/fimmu.2024.1388947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis is a systemic inflammatory response to a severe, life-threatening infection with organ dysfunction. Although there is no effective treatment for this fatal illness, a deeper understanding of the pathophysiological basis of sepsis and its underlying mechanisms could lead to the development of new treatment approaches. Here, we demonstrate that the selective Bruton's tyrosine kinase (Btk) inhibitor acalabrutinib augments survival rates in a lipopolysaccharide (LPS)-induced septic model. Our in vitro and in vivo findings both indicate that acalabrutinib reduces IL-6 production specifically in marginal zone B (MZ B) cells rather than in macrophages. Furthermore, Btk-deficient MZ B cells exhibited suppressed LPS-induced IL-6 production in vitro. Nuclear factor-kappa B (NF-κB) signaling, which is the downstream signaling cascade of Toll-like receptor 4 (TLR4), was also severely attenuated in Btk-deficient MZ B cells. These findings suggest that Btk blockade may prevent sepsis by inhibiting IL-6 production in MZ B cells. In addition, although Btk inhibition may adversely affect B cell maturation and humoral immunity, antibody responses were not impaired when acalabrutinib was administered for a short period after immunization with T-cell-independent (TI) and T-cell-dependent (TD) antigens. In contrast, long-term administration of acalabrutinib slightly impaired humoral immunity. Therefore, these findings suggest that Btk inhibitors may be a potential option for alleviating endotoxic shock without compromising humoral immunity and emphasize the importance of maintaining a delicate balance between immunomodulation and inflammation suppression.
Collapse
Affiliation(s)
| | | | | | | | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Zhang X, Yang J, Ma S, Gao X, Wang G, Sun Y, Yu Y, Wang Z, Tian W, Liao L. Functional diversity of apoptotic vesicle subpopulations from bone marrow mesenchymal stem cells in tissue regeneration. J Extracell Vesicles 2024; 13:e12434. [PMID: 38634538 PMCID: PMC11025359 DOI: 10.1002/jev2.12434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Apoptosis releases numerous apoptotic vesicles that regulate processes such as cell proliferation, immunity, and tissue regeneration and repair. Now, it has also emerged as an attractive candidate for biotherapeutics. However, apoptotic vesicles encompass a diverse range of subtypes, and it remains unclear which specific subtypes play a pivotal role. In this study, we successfully isolated different apoptotic vesicle subtypes based on their sizes and characterized them using NTA and TEM techniques, respectively. We compared the functional variances among the distinct subtypes of apoptotic vesicles in terms of stem cell proliferation, migration, and differentiation, as well as for endothelial cell and macrophage function, effectively identifying subtypes that exhibit discernible functional differences. ApoSEV (with diameter <1000 nm) promoted stem cell proliferation, migration, and multi-potent differentiation, and accelerated skin wound healing of diabetes mouse model, while apoBD (with diameter >1000 nm) played the opposite effect on cell function and tissue regeneration. Lastly, employing protein analysis and gene sequencing techniques, we elucidated the intrinsic mechanisms underlying these differences between different subtypes of apoEVs. Collectively, this study identified that apoptotic vesicle subtypes possessed distinct bio-functions in regulating stem cell function and behaviour and modulating tissue regeneration, which primarily attribute to the distinct profiling of protein and mRNA in different subtypes. This comprehensive analysis of specific subtypes of apoEVs would provide novel insights for potential therapeutic applications in cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Xuanhao Zhang
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduPeople's Republic of China
| | - Jian Yang
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Xin Gao
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Guanyu Wang
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduPeople's Republic of China
| | - Yanping Sun
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduPeople's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduPeople's Republic of China
| | - Li Liao
- State Key Laboratory of Oral Diseases &National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational MedicineMinistry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan UniversityChengduPeople's Republic of China
- Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
34
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Bucciol G, Delafontaine S, Meyts I, Poli C. Inborn errors of immunity: A field without frontiers. Immunol Rev 2024; 322:15-27. [PMID: 38062988 DOI: 10.1111/imr.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The study of primary immunodeficiencies or inborn errors of immunity continues to drive our knowledge of the function of the human immune system. From the outset, the study of inborn errors has focused on unraveling genetic etiologies and molecular mechanisms. Aided by the continuous growth in genetic diagnostics, the field has moved from the study of an infection dominated phenotype to embrace and unravel diverse manifestations of autoinflammation, autoimmunity, malignancy, and severe allergy in all medical disciplines. It has now moved from the study of ultrarare presentations to producing meaningful impact in conditions as diverse as inflammatory bowel disease, neurological conditions, and hematology. Beyond offering immunogenetic diagnosis, the study of underlying inborn errors of immunity in these conditions points to targeted treatment which can be lifesaving.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Cecilia Poli
- Facultad de Medicina Universidad del Desarrollo-Clínica Alemana, Santiago, Chile
- Unidad de Inmunología y Reumatología, Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
36
|
Hall CHT, de Zoeten EF. Understanding very early onset inflammatory bowel disease (VEOIBD) in relation to inborn errors of immunity. Immunol Rev 2024; 322:329-338. [PMID: 38115672 PMCID: PMC11044353 DOI: 10.1111/imr.13302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
Inflammatory bowel diseases (IBD) are multifactorial diseases which are caused by the combination of genetic predisposition, exposure factors (environmental and dietary), immune status, and dysbiosis. IBD is a disease which presents at any age, ranging from newborns to the elderly. The youngest of the pediatric IBD population have a more unique presentation and clinical course and may have a different etiology. Very early onset IBD (VEOIBD) patients, designated as those diagnosed prior the age of 6, have distinct features which are more frequent in this patient population including increased incidence of monogenetic causes for IBD (0%-33% depending on the study). This proportion is increased in the youngest subsets, which is diagnosed prior to the age of 2. To date, there are approximately 80 monogenic causes of VEOIBD that have been identified and published. Many of these monogenic causes are inborn errors of immunity yet the majority of VEOIBD patients do not have an identifiable genetic cause for their disease. In this review, we will focus on the clinical presentation, evaluation, and monogenic categories which have been associated with VEOIBD including (1) Epithelial cell defects (2) Adaptive immune defects, (3) Innate Immune/Bacterial Clearance and Recognition defects, and (4) Hyperinflammatory and autoinflammatory disorders. We will highlight differential diagnosis of VEOIBD presentations, as well as evaluation and treatment, which will be helpful for those who study and care for VEOIBD patients outside of the pediatric gastroenterology field. This is a fast-moving field of research which has grown significantly based on knowledge that we gain from our patients. These scientific findings have identified novel mucosal biology pathways and will continue to inform our understanding of gastrointestinal biology.
Collapse
Affiliation(s)
- Caroline H. T. Hall
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Edwin F. de Zoeten
- Mucosal Inflammation Program University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
37
|
Akalu YT, Bogunovic D. Inborn errors of immunity: an expanding universe of disease and genetic architecture. Nat Rev Genet 2024; 25:184-195. [PMID: 37863939 DOI: 10.1038/s41576-023-00656-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/22/2023]
Abstract
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Collapse
Affiliation(s)
- Yemsratch T Akalu
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dusan Bogunovic
- Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
38
|
Li W, Sano R, Apatira M, DeAnda F, Gururaja T, Yang M, Lundgaard G, Pan C, Liu J, Zhai Y, Yoon WH, Wang L, Tse C, Souers AJ, Lee CH. Bruton's Tyrosine Kinase Inhibitors with Distinct Binding Modes Reveal Differential Functional Impact on B-Cell Receptor Signaling. Mol Cancer Ther 2024; 23:35-46. [PMID: 37735104 PMCID: PMC10762339 DOI: 10.1158/1535-7163.mct-22-0642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Small molecule inhibitors of Bruton's tyrosine kinase (BTK) have been approved for the treatment of multiple B-cell malignancies and are being evaluated for autoimmune and inflammatory diseases. Various BTK inhibitors (BTKi) have distinct potencies, selectivity profiles, and binding modes within the ATP-binding site. On the basis of the latter feature, BTKis can be classified into those that occupy the back-pocket, H3 pocket, and the hinge region only. Hypothesizing that differing binding modes may have differential impact on the B-cell receptor (BCR) signaling pathway, we evaluated the activities of multiple BTKis in B-cell lymphoma models in vitro and in vivo. We demonstrated that, although all three types of BTKis potently inhibited BTK-Y223 autophosphorylation and phospholipase C gamma 2 (PLCγ2)-Y1217 transphosphorylation, hinge-only binders were defective in inhibiting BTK-mediated calcium mobilization upon BCR activation. In addition, PLCγ2 activation was effectively blocked by back-pocket and H3 pocket binders but not by hinge-only binders. Further investigation using TMD8 cells deficient in Rac family small GTPase 2 (RAC2) revealed that RAC2 functioned as a bypass mechanism, allowing for residual BCR signaling and PLCγ2 activation when BTK kinase activity was fully inhibited by the hinge-only binders. These data reveal a kinase activity-independent function of BTK, involving RAC2 in transducing BCR signaling events, and provide mechanistic rationale for the selection of clinical candidates for B-cell lymphoma indications.
Collapse
Affiliation(s)
- Wei Li
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Renata Sano
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Mutiah Apatira
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Felix DeAnda
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | | | - Muhua Yang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Greta Lundgaard
- Drug Discovery Science and Technology, AbbVie Inc., Lake County, Illinois
| | - Chin Pan
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Jing Liu
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Yongjiao Zhai
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Woo Hyun Yoon
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Longcheng Wang
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| | - Chris Tse
- Oncology Discovery, AbbVie Inc., Lake County, Illinois
| | | | - Chih-Hung Lee
- Oncology Discovery, AbbVie Inc., South San Francisco, California
| |
Collapse
|
39
|
Koraboina CP, Maddipati VC, Annadurai N, Gurská S, Džubák P, Hajdúch M, Das V, Gundla R. Synthesis and Biological Evaluation of Oxindole Sulfonamide Derivatives as Bruton's Tyrosine Kinase Inhibitors. ChemMedChem 2024; 19:e202300511. [PMID: 37916435 DOI: 10.1002/cmdc.202300511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/03/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a promising molecular target for several human B-cell-related autoimmune disorders, inflammation, and haematological malignancies. The pathogenic alterations in various cancer tissues depend on mutant BTK for cell proliferation and survival, and BTK is also overexpressed in a range of hematopoietic cells. Due to this, BTK is emerging as a potential drug target to treat various human diseases, and several reversible and irreversible inhibitors have been developed and are being developed. As a result, BTK inhibition, clinically validated as an anticancer treatment, is finding great interest in B-cell malignancies and solid tumours. This study focuses on the design and synthesis of new oxindole sulfonamide derivatives as promising inhibitors of BTK with negligible off-target effects. The most cytotoxic compounds with greater basicity were PID-4 (2.29±0.52 μM), PID-6 (9.37±2.47 μM), and PID-19 (2.64±0.88 μM). These compounds caused a selective inhibition of Burkitt's lymphoma RAMOS cells without significant cytotoxicity in non-BTK cancerous and non-cancerous cell lines. Further, PID-4 showed promising activity in inhibiting BTK and downstream signalling cascades. As a potent inhibitor of Burkitt's lymphoma cells, PID-4 is a promising lead for developing novel chemotherapeutics.
Collapse
Affiliation(s)
- Chandra Prakash Koraboina
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| | | | - Narendran Annadurai
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Hněvotínská 1333/5, 77900, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Křížkovského 511/8, 77900, Olomouc, Czech Republic
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad, Telangana, 502 329, India
| |
Collapse
|
40
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
41
|
Yoshida H. Dissecting the Immune System through Gene Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:219-235. [PMID: 38467983 DOI: 10.1007/978-981-99-9781-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The immune system plays a dual role in human health, functioning both as a protector against pathogens and, at times, as a contributor to disease. This feature emphasizes the importance to uncover the underlying causes of its malfunctions, necessitating an in-depth analysis in both pathological and physiological conditions to better understand the immune system and immune disorders. Recent advances in scientific technology have enabled extensive investigations into gene regulation, a crucial mechanism governing cellular functionality. Studying gene regulatory mechanisms within the immune system is a promising avenue for enhancing our understanding of immune cells and the immune system as a whole. The gene regulatory mechanisms, revealed through various methodologies, and their implications in the field of immunology are discussed in this chapter.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
42
|
Elsanhoury R, Alasmari A, Parupathi P, Jumaa M, Al-Fayoumi S, Kumar A, Khashan R, Nazzal S, Fayyad AA. AI & experimental-based discovery and preclinical IND-enabling studies of selective BMX inhibitors for development of cancer therapeutics. Int J Pharm 2023; 645:123384. [PMID: 37678472 DOI: 10.1016/j.ijpharm.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The current work aims to design and provide a preliminary IND-enabling study of selective BMX inhibitors for cancer therapeutics development. BMX is an emerging target, more notably in oncological and immunological diseases. In this work, we have employed a predictive AI-based platform to design the selective inhibitors considering the novelty, IP prior protection, and drug-likeness properties. Furthermore, selected top candidates from the initial iteration of the design were synthesized and chemically characterized utilizing 1H NMR and LC-MS. Employing a panel of biochemical (enzymatic) and cancer cell lines, the selected molecules were tested against these assays. In addition, we used artificial intelligence to predict and evaluate several critical IND-focused physicochemical and pharmacokinetics values of the selected molecules. A secondary objective of the current work was also to validate the sole role of BMX in animal models known to be mediated by BMX. More than 50 molecules were designed in the present study employing five novel discovered scaffolds. Two molecules were nominated for further IND-focused studies. Compound II showed promising in-vitro activity against BMX in both enzymatic assays compared to other kinases and in cancer cell lines with known BMX overexpression. Interestingly, compound II showed very favorable physicochemical and pharmacokinetics properties as predicted by the used platforms. The animal study further confirmed the sole role of BMX in the disease model. The current work provides promising data on a selective BMX inhibitor as a potential lead for therapeutics development, and the asset is currently in the optimization stage. Notably, the current study shows a framework for a combined approach employing both AI and experimentation that can be used by academic labs in their research programs to more streamline programs into IND-focused to be bridged easily for further clinical development with industrial partners.
Collapse
Affiliation(s)
- Rwan Elsanhoury
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Abdulaziz Alasmari
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Prashanth Parupathi
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | | | | | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Raed Khashan
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sami Nazzal
- College of Pharmacy, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Ahmed Abu Fayyad
- Division of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| |
Collapse
|
43
|
Zhu L, Shi R, Zhao T, Ye Y, Tang J, Hu Y, Peng P, Wang D, Chong C, Xu G, Leung S, Yuan W. A randomized, controlled single, and multiple ascending dose trial of the safety, pharmacokinetics and pharmacodynamics of SN1011 in healthy subjects. Clin Transl Sci 2023; 16:1982-1996. [PMID: 37551782 PMCID: PMC10582678 DOI: 10.1111/cts.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
The purpose of this study was to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of SN1011, a novel Bruton tyrosine kinase (BTK) inhibitor, and food effects in healthy subjects. In this phase I trial, subjects received single ascending doses (SADs) of SN1011 (100 to 800 mg), multiple ascending doses (MADs) of SN1011 (200 to 600 mg), or placebo q.d. Additionally, 12 subjects randomly received a single dose of SN1011 600 mg under fasting states and then fed states, vice versa. Safety was assessed per Common Terminology Criteria for Adverse Events version 5.0. Pharmacokinetic parameters were calculated by noncompartmental analysis and BTK receptor occupancy in peripheral blood monocytes was determined. Seventy-one healthy subjects were dosed in five SAD cohorts, three MAD cohorts, and one food effect cohort, with 57 receiving SN1011 and 14 receiving placebo. No serious adverse events (AEs) were reported. There was no correlation between AE occurrences and SN1011 exposure. The three most frequent AEs with SN1011 were increased blood triglycerides, decreased neutrophil count, and decreased leucocyte count. SN1011 exhibited a dose-proportional increase in maximum plasma concentration and area under the time concentration curve following single and multiple dose administrations, with an accumulation ratio of 1.5 to 2.2 after multiple dose administrations. No difference in SN1011 exposure was observed between fed states. BTK receptor occupancy remained above 83% over 24 h after single administration and remained above 80% for the MAD groups for 10 days of continuous q.d. administration. SN1011 was well-tolerated and safe after single or multiple exposures to healthy subjects, supporting further clinical development of SN1011 for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Leilei Zhu
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Rong Shi
- Surgery Intensive Care UnitShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tongfang Zhao
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yujie Ye
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Tang
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yihui Hu
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Peng Peng
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dong Wang
- SinoMab Bioscience LimitedHong KongChina
- MediNexus Pharma (Suzhou) LimitedSuzhouChina
| | - Clement Chong
- SinoMab Bioscience LimitedHong KongChina
- MediNexus Pharma (Suzhou) LimitedSuzhouChina
| | - Guolin Xu
- SinoMab Bioscience LimitedHong KongChina
- MediNexus Pharma (Suzhou) LimitedSuzhouChina
| | - Shui‐on Leung
- SinoMab Bioscience LimitedHong KongChina
- MediNexus Pharma (Suzhou) LimitedSuzhouChina
| | - Wei’an Yuan
- Clinical Research CenterShuguang Hospital affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
44
|
Chear CT, Ismail IH, Chan KC, Noh LM, Kassim A, Latiff AHA, Gill SS, Ramly NH, Tan KK, Sundaraj C, Choo CM, Mohamed SAS, Baharin MF, Zamri AS, Yahya SNHS, Mohamad SB, Ripen AM. Clinical features and mutational analysis of X-linked agammaglobulinemia patients in Malaysia. Front Immunol 2023; 14:1252765. [PMID: 37809070 PMCID: PMC10560089 DOI: 10.3389/fimmu.2023.1252765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (BTK) is a cytoplasmic protein involved in the B cell development. X-linked agammaglobulinemia (XLA) is caused by mutation in the BTK gene, which results in very low or absent B cells. Affected males have markedly reduced immunoglobulin levels, which render them susceptible to recurrent and severe bacterial infections. Methods: Patients suspected with X-linked agammaglobulinemia were enrolled during the period of 2010-2018. Clinical summary, and immunological profiles of these patients were recorded. Peripheral blood samples were collected for monocyte BTK protein expression detection and BTK genetic analysis. The medical records between January 2020 and June 2023 were reviewed to investigate COVID-19 in XLA. RESULTS Twenty-two patients (from 16 unrelated families) were molecularly diagnosed as XLA. Genetic testing revealed fifteen distinct mutations, including four splicing mutations, four missense mutations, three nonsense mutations, three short deletions, and one large indel mutation. These mutations scattered throughout the BTK gene and mostly affected the kinase domain. All mutations including five novel mutations were predicted to be pathogenic or deleterious by in silico prediction tools. Genetic testing confirmed that eleven mothers and seven sisters were carriers for the disease, while three mutations were de novo. Flow cytometric analysis showed that thirteen patients had minimal BTK expression (0-15%) while eight patients had reduced BTK expression (16-64%). One patient was not tested for monocyte BTK expression due to insufficient sample. Pneumonia (n=13) was the most common manifestation, while Pseudomonas aeruginosa was the most frequently isolated pathogen from the patients (n=4). Mild or asymptomatic COVID-19 was reported in four patients. CONCLUSION This report provides the first overview of demographic, clinical, immunological and genetic data of XLA in Malaysia. The combination of flow cytometric assessment and BTK genetic analysis provides a definitive diagnosis for XLA patients, especially with atypical clinical presentation. In addition, it may also allow carrier detection and assist in genetic counselling and prenatal diagnosis.
Collapse
Affiliation(s)
- Chai Teng Chear
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Intan Hakimah Ismail
- Clinical Immunology Unit, Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Kwai Cheng Chan
- Pediatric Department, Penang General Hospital, Ministry of Health, George Town, Penang, Malaysia
| | - Lokman Mohd Noh
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Asiah Kassim
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | | | - Sandeep Singh Gill
- Pediatric Department, Hospital Wanita Dan Kanak-Kanak Sabah, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Nazatul Haslina Ramly
- Pediatric Department, Tunku Azizah Hospital (Women and Children Hospital Kuala Lumpur), Ministry of Health, Kuala Lumpur, Malaysia
| | - Kah Kee Tan
- Pediatric Department, Perdana University and Royal College of Surgeons in Ireland (PURCSI), School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Charlotte Sundaraj
- Pediatric Department, Hospital Putrajaya, Ministry of Health, Putrajaya, Malaysia
| | - Chong Ming Choo
- Pediatric Department, Hospital Sultan Abdul Halim, Ministry of Health, Sungai Petani, Kedah, Malaysia
| | | | - Mohd Farid Baharin
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Amelia Suhana Zamri
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sharifah Nurul Husna Syed Yahya
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Primary Immunodeficiency Unit, Allergy and Immunology Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
45
|
Zhao M, Li L, Kiernan CH, Castro Eiro MD, Dammeijer F, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Aerts JG, Mueller YM, Katsikis PD. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition. Sci Rep 2023; 13:15678. [PMID: 37735204 PMCID: PMC10514027 DOI: 10.1038/s41598-023-42871-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors. In vivo intermittent treatment of 3 ICB-resistant solid tumor (melanoma, mesothelioma or pancreatic cancer) with ITK inhibitor significantly improved ICB therapy. ITK inhibition directly reinvigorate exhausted CTL in vitro as it enhanced cytokine production, decreased inhibitory receptor expression, and downregulated the transcription factor TOX. Our study demonstrates that intermittent ITK inhibition can be used to directly ameliorate CTL exhaustion and enhance immunotherapies even in solid tumors that are ICB resistant.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Ling Li
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Melisa D Castro Eiro
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Merel E P Wilmsen
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
46
|
Tam CS, Muñoz JL, Seymour JF, Opat S. Zanubrutinib: past, present, and future. Blood Cancer J 2023; 13:141. [PMID: 37696810 PMCID: PMC10495438 DOI: 10.1038/s41408-023-00902-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
In recent years, Bruton tyrosine kinase (BTK) inhibitors have provided significant advances in the treatment of patients with B-cell malignancies. Ibrutinib was the first BTK inhibitor to be approved, and it changed the standard-of-care treatment for diseases such as chronic lymphocytic leukemia, mantle cell lymphoma, marginal zone lymphoma, and Waldenström macroglobulinemia, improving efficacy outcomes and safety compared to chemotherapy. In this article, we review the development of zanubrutinib, a next-generation BTK inhibitor, from molecular design to patient-related outcomes. We start this journey by providing insights into the discovery of BTK and the physiologic, genetic, and molecular characterization of patients lacking this kinase, together with the brief treatment landscape in the era of chemo-immunotherapies. Zanubrutinib was originally developed by applying a structure-activity strategy to enhance the specificity as well as enzymatic and pharmacokinetic properties. Preclinical studies confirmed greater specificity and better bioavailability of zanubrutinib compared with that of ibrutinib, which supported the initiation of clinical trials in humans. Preliminary clinical results indicated activity in B-cell malignancies together with an improved safety profile, in line with less off-target effects described in the preclinical studies. The clinical program of zanubrutinib has since expanded significantly, with ongoing studies in a wide range of hemato-oncological diseases and in combination with many other therapies. Zanubrutinib currently is approved for various B-cell malignancies in multiple countries. This story highlights the importance of multidisciplinary collaborative research, from bench to bedside, and provides an example of how the commitment to finding improved treatment options should always run parallel to patient care.
Collapse
Affiliation(s)
| | | | - John F Seymour
- Peter MacCallum Cancer Centre, Royal Melbourne Hospital & University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Opat
- Monash Health and Monash University, Clayton, VIC, Australia
| |
Collapse
|
47
|
Lin DY, Andreotti AH. Structure of BTK kinase domain with the second-generation inhibitors acalabrutinib and tirabrutinib. PLoS One 2023; 18:e0290872. [PMID: 37651403 PMCID: PMC10470882 DOI: 10.1371/journal.pone.0290872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is the target of the therapeutic agent, Ibrutinib, that treats chronic lymphocyte leukemia (CLL), mantle cell lymphoma (MCL) and other B cell malignancies. Ibrutinib is a first in class, covalent BTK inhibitor that limits B-cell survival and proliferation. Designing new inhibitors of BTK has been an important objective for advancing development of improved therapeutic agents against cancer and autoimmune disorders. Based on the success of Ibrutinib, several second-generation irreversible BTK inhibitors have been developed that exhibit fewer off-target effects. However, the binding-mode and their interaction with Btk have not been experimentally determined and evaluated at atomic resolution. Here we determined the first crystal structure of the BTK kinase domain in complex with acalabrutinib. In addition, we report a structure of the BTK/tirabrutinib complex and compare these structures with previously solved structures. The structures provide insight in the superior selectivity reported for acalabrutinb and guide future BTK inhibitor development.
Collapse
Affiliation(s)
- David Y. Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State, University, Ames, IA, United States of America
| | - Amy H. Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State, University, Ames, IA, United States of America
| |
Collapse
|
48
|
Leonard TA, Loose M, Martens S. The membrane surface as a platform that organizes cellular and biochemical processes. Dev Cell 2023; 58:1315-1332. [PMID: 37419118 DOI: 10.1016/j.devcel.2023.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
Membranes are essential for life. They act as semi-permeable boundaries that define cells and organelles. In addition, their surfaces actively participate in biochemical reaction networks, where they confine proteins, align reaction partners, and directly control enzymatic activities. Membrane-localized reactions shape cellular membranes, define the identity of organelles, compartmentalize biochemical processes, and can even be the source of signaling gradients that originate at the plasma membrane and reach into the cytoplasm and nucleus. The membrane surface is, therefore, an essential platform upon which myriad cellular processes are scaffolded. In this review, we summarize our current understanding of the biophysics and biochemistry of membrane-localized reactions with particular focus on insights derived from reconstituted and cellular systems. We discuss how the interplay of cellular factors results in their self-organization, condensation, assembly, and activity, and the emergent properties derived from them.
Collapse
Affiliation(s)
- Thomas A Leonard
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; Medical University of Vienna, Center for Medical Biochemistry, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| | - Martin Loose
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Sascha Martens
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9, 1030, Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Dr. Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
49
|
Paganelli R. A Tribute to Two Master Teachers of Immunology. Biomedicines 2023; 11:2178. [PMID: 37626675 PMCID: PMC10452448 DOI: 10.3390/biomedicines11082178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
A Special Issue dedicated in memory of Prof. Fernando Aiuti is a special tribute to a clinician who led the field of Clinical Immunology in Italy and introduced the entire Italian medical and academic scene to it. [...].
Collapse
Affiliation(s)
- Roberto Paganelli
- Internal Medicine, Saint Camillus International University of Medical and Health Sciences, 00131 Rome, Italy
| |
Collapse
|
50
|
Schaafsma GCP, Väliaho J, Wang Q, Berglöf A, Zain R, Smith CIE, Vihinen M. BTKbase, Bruton Tyrosine Kinase Variant Database in X-Linked Agammaglobulinemia: Looking Back and Ahead. Hum Mutat 2023; 2023:5797541. [PMID: 40225173 PMCID: PMC11918983 DOI: 10.1155/2023/5797541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/09/2023] [Indexed: 04/15/2025]
Abstract
BTKbase is an international database for disease-causing variants in Bruton tyrosine kinase (BTK) leading to X-linked agammaglobulinemia (XLA), a rare primary immunodeficiency of antibody production. BTKbase was established in 1994 as one of the first publicly available variation databases. The number of cases has more than doubled since the last update; it now contains information for 2310 DNA variants in 2291 individuals. 1025 of the DNA variants are unique. The human genome contains more than 500 protein kinases, among which BTK has the largest number of unique disease-causing variants. The current version of BTKbase has numerous novel features: the database has been reformatted, it has moved to LOVD database management system, it has been internally harmonized, etc. Systematics and standardization have been increased, including Variation Ontology annotations for variation types. There are some regions with lower than expected variation frequency and some hotspots for variations. BTKbase contains, in addition to variant descriptions at DNA, RNA and protein levels, also laboratory parameters and clinical features for many patients. BTKbase has served clinical and research communities in the diagnosis of XLA cases and provides general insight into effects of variations, especially in signalling pathways. Amino acid substitutions and their effects were investigated, predicted, and visualized at 3D level in the protein domains. BTKbase is freely available.
Collapse
Affiliation(s)
- Gerard C. P. Schaafsma
- Protein Structure and Bioinformatics, Department of Experimental Medical Science, Lund University, BMC B13, 221 84 Lund, Sweden
| | - Jouni Väliaho
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Qing Wang
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Anna Berglöf
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, Solna, SE-171 76 Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mauno Vihinen
- Protein Structure and Bioinformatics, Department of Experimental Medical Science, Lund University, BMC B13, 221 84 Lund, Sweden
| |
Collapse
|