1
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2024:168690. [PMID: 38936695 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
3
|
Olson SW, Turner AMW, Arney JW, Saleem I, Weidmann CA, Margolis DM, Weeks KM, Mustoe AM. Discovery of a large-scale, cell-state-responsive allosteric switch in the 7SK RNA using DANCE-MaP. Mol Cell 2022; 82:1708-1723.e10. [PMID: 35320755 PMCID: PMC9081252 DOI: 10.1016/j.molcel.2022.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
7SK is a conserved noncoding RNA that regulates transcription by sequestering the transcription factor P-TEFb. 7SK function entails complex changes in RNA structure, but characterizing RNA dynamics in cells remains an unsolved challenge. We developed a single-molecule chemical probing strategy, DANCE-MaP (deconvolution and annotation of ribonucleic conformational ensembles), that defines per-nucleotide reactivity, direct base pairing interactions, tertiary interactions, and thermodynamic populations for each state in RNA structural ensembles from a single experiment. DANCE-MaP reveals that 7SK RNA encodes a large-scale structural switch that couples dissolution of the P-TEFb binding site to structural remodeling at distal release factor binding sites. The 7SK structural equilibrium shifts in response to cell growth and stress and can be targeted to modulate expression of P-TEFbresponsive genes. Our study reveals that RNA structural dynamics underlie 7SK function as an integrator of diverse cellular signals to control transcription and establishes the power of DANCE-MaP to define RNA dynamics in cells.
Collapse
Affiliation(s)
- Samuel W Olson
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Anne-Marie W Turner
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J Winston Arney
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Irfana Saleem
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - David M Margolis
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; UNC HIV Cure Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Tjitro R, Campbell LA, Basova L, Johnson J, Najera JA, Lindsey A, Marcondes MCG. Modeling the Function of TATA Box Binding Protein in Transcriptional Changes Induced by HIV-1 Tat in Innate Immune Cells and the Effect of Methamphetamine Exposure. Front Immunol 2019; 9:3110. [PMID: 30778358 PMCID: PMC6369711 DOI: 10.3389/fimmu.2018.03110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023] Open
Abstract
Innate immune cells are targets of HIV-1 infection in the Central Nervous System (CNS), generating neurological deficits. Infected individuals with substance use disorders as co-morbidities, are more likely to have aggravated neurological disorders, higher CNS viral load and inflammation. Methamphetamine (Meth) is an addictive stimulant drug, commonly among HIV+ individuals. The molecular basis of HIV direct effects and its interactions with Meth in host response, at the gene promoter level, are not well understood. The main HIV-1 peptide acting on transcription is the transactivator of transcription (Tat), which promotes replication by recruiting a Tata-box binding protein (TBP) to the virus long-terminal repeat (LTR). We tested the hypothesis that Tat can stimulate host gene expression through its ability to increase TBP, and thus promoting its binding to promoters that bear Tata-box binding motifs. Genes with Tata-box domains are mainly inducible, early response, and involved in inflammation, regulation and metabolism, relevant in HIV pathogenesis. We also tested whether Tat and Meth interact to trigger the expression of Tata-box bearing genes. The THP1 macrophage cell line is a well characterized innate immune cell system for studying signal transduction in inflammation. These cells are responsive to Tat, as well as to Meth, by recruiting RNA Polymerase (RNA Pol) to inflammatory gene promoters, within 15 min of stimulation (1). THP-1 cells, including their genetically engineered derivatives, represent valuable tools for investigating monocyte structure and function in both health and disease, as a consistent system (2). When differentiated, they mimic several aspects of the response of macrophages, and innate immune cells that are the main HIV-1 targets within the Central Nervous System (CNS). THP1 cells have been used to characterize the impact of Meth and resulting neurotransmitters on HIV entry (1), mimicking the CNS micro-environment. Integrative consensus sequence analysis in genes with enriched RNA Pol, revealed that TBP was a major transcription factor in Tat stimulation, while the co-incubation with Meth shifted usage to a distinct and diversified pattern. For validating these findings, we engineered a THP1 clone to be deficient in the expression of all major TBP splice variants, and tested its response to Tat stimulation, in the presence or absence of Meth. Transcriptional patterns in TBP-sufficient and deficient clones confirmed TBP as a dominant transcription factor in Tat stimulation, capable of inducing genes with no constitutive expression. However, in the presence of Meth, TBP was no longer necessary to activate the same genes, suggesting promoter plasticity. These findings demonstrate TBP as mechanism of host-response activation by HIV-1 Tat, and suggest that promoter plasticity is a challenge imposed by co-morbid factors such as stimulant drug addiction. This may be one mechanism responsible for limited efficacy of therapeutic approaches in HIV+ Meth abusers.
Collapse
Affiliation(s)
- Ryan Tjitro
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Lee A. Campbell
- LAC Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Liana Basova
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - Jessica Johnson
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Julia A. Najera
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - Maria Cecilia Garibaldi Marcondes
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States
- San Diego Biomedical Research Institute, San Diego, CA, United States
| |
Collapse
|
5
|
Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry. J Virol 2018; 92:JVI.00731-18. [PMID: 30111566 DOI: 10.1128/jvi.00731-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Exosomes play various roles in host responses to cancer and infective agents, and semen exosomes (SE) inhibit HIV-1 infection and transmission, although the mechanism(s) by which this occurs is unclear. Here, we show that SE block HIV-1 proviral transcription at multiple transcriptional checkpoints, including transcription factor recruitment to the long terminal repeat (LTR), transcription initiation, and elongation. Biochemical and functional studies show that SE inhibit HIV-1 LTR-driven viral gene expression and virus replication. Through partitioning of the HIV-1 RNA, we found that SE reduced the optimal expression of various viral RNA species. Chromatin immunoprecipitation-real-time quantitative PCR (ChIP-RT-qPCR) and electrophoretic mobility shift assay (EMSA) analysis of infected cells identified the human transcription factors NF-κB and Sp1, as well as RNA polymerase (Pol) II and the viral protein transcriptional activator (Tat), as targets of SE. Of interest, SE inhibited HIV-1 LTR activation mediated by HIV-1 or Tat, but not by the mitogen phorbol myristate acetate (PMA) or tumor necrosis factor alpha (TNF-α). SE inhibited the DNA binding activities of NF-κB and Sp1 and blocked the recruitment of these transcription factors and Pol II to the HIV-1 LTR promoter. Importantly, SE directly blocked NF-κB, Sp1, and Pol II binding to the LTR and inhibited the interactions of Tat/NF-κB and Tat/Sp1, suggesting that SE-mediated inhibition of the functional quadripartite complex NF-κB-Sp1-Pol II-Tat may be a novel mechanism of proviral transcription repression. These data provide a novel molecular basis for SE-mediated inhibition of HIV-1 and identify Tat as a potential target of SE.IMPORTANCE HIV is most commonly transmitted sexually, and semen is the primary vector. Despite progress in studies of HIV pathogenesis and the success of combination antiretroviral therapy in controlling viral replication, current therapy cannot completely control sexual transmission. Thus, there is a need to identify effective methods of controlling HIV replication and transmission. Recently, it was shown that human semen contains exosomes that protect against HIV infection in vitro In this study, we identified a mechanism by which semen exosomes inhibited HIV-1 RNA expression. We found that semen exosomes inhibit recruitment of transcription factors NF-κB and Sp1, as well as RNA Pol II, to the promoter region in the 5' long terminal repeat (LTR) of HIV-1. The HIV-1 early protein transcriptional activator (Tat) was a target of semen exosomes, and semen exosomes inhibited the binding and recruitment of Tat to the HIV-1 LTR.
Collapse
|
6
|
Abstract
Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.
Collapse
|
7
|
Trypsteen W, Mohammadi P, Van Hecke C, Mestdagh P, Lefever S, Saeys Y, De Bleser P, Vandesompele J, Ciuffi A, Vandekerckhove L, De Spiegelaere W. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay. Sci Rep 2016; 6:36111. [PMID: 27782208 PMCID: PMC5080576 DOI: 10.1038/srep36111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell’s molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production). Subsequently, guilt-by-association, transcription factor and co-expression analysis were performed to infer biological roles for the lncRNAs identified in the HIV-host interplay. Many lncRNAs were suggested to play a role in mechanisms relying on proteasomal and ubiquitination pathways, apoptosis, DNA damage responses and cell cycle regulation. Through transcription factor binding analysis, we found that lncRNAs display a distinct transcriptional regulation profile as compared to protein coding mRNAs, suggesting that mRNAs and lncRNAs are independently modulated. In addition, we identified five differentially expressed lncRNA-mRNA pairs with mRNA involvement in HIV pathogenesis with possible cis regulatory lncRNAs that control nearby mRNA expression and function. Altogether, the present study demonstrates that lncRNAs add a new dimension to the HIV-host interplay and should be further investigated as they may represent targets for controlling HIV replication.
Collapse
Affiliation(s)
- Wim Trypsteen
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Pejman Mohammadi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarissa Van Hecke
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | | | | | - Yvan Saeys
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Biomedical Molecular Biology Ghent University, Ghent, Belgium
| | - Pieter De Bleser
- Inflammation Research Center, Flanders Institute of Biotechnology (VIB), Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - Angela Ciuffi
- Institute of Microbiology (IMUL), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Linos Vandekerckhove
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Internal Medicine, HIV Cure Research Centre, Ghent University, Ghent, Belgium.,Department of Morphology, Ghent University, Belgium
| |
Collapse
|
8
|
Identification of interaction between HIV-1 glycoprotein 41 and integrase. Virol Sin 2016; 31:415-424. [PMID: 27681265 DOI: 10.1007/s12250-016-3820-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/30/2016] [Indexed: 10/20/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes 15 viral proteins. Protein-protein interactions play a large role in the function of these proteins. In this study, we attempted to identify novel interactions between the HIV-1 proteins to better understand the role played by viral protein-protein interactions in the life cycle of HIV-1. Genes encoding the 15 viral proteins from the HIV-1 strain AD8 were inserted into the plasmids of a yeast two-hybrid system. By screening 120 pairs of proteins, interactions between seven pairs were found. This led to the discovery of an interaction between the HIV-1 proteins integrase (IN) and glycoprotein 41 (gp41), which was confirmed by both co-immunoprecipitation (Co-IP) assays and fluorescence resonance energy transfer (FRET) imaging in live cells. In addition, it was found that the amino acids at positions 76-100 of gp41 are required for it to bind to IN. Deletion of this region from gp41 prevented its interaction with IN and reduced the production of HIV-1 in 293T cells. This study provides new information on HIV-1 protein-protein interactions which improves the understanding of the biological functions of gp41 and IN during the virus life cycle.
Collapse
|
9
|
Chekuri A, Bhaskar C, Bollimpelli VS, Kondapi AK. TopoisomeraseIIβ in HIV-1 transactivation. Arch Biochem Biophys 2016; 593:90-7. [DOI: 10.1016/j.abb.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/15/2022]
|
10
|
Musinova YR, Sheval EV, Dib C, Germini D, Vassetzky YS. Functional roles of HIV-1 Tat protein in the nucleus. Cell Mol Life Sci 2016; 73:589-601. [PMID: 26507246 PMCID: PMC11108392 DOI: 10.1007/s00018-015-2077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.
Collapse
Affiliation(s)
- Yana R Musinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Carla Dib
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Diego Germini
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
11
|
Bagashev A, Mukerjee R, Santerre M, Del Carpio-Cano FE, Shrestha J, Wang Y, He JJ, Sawaya BE. Involvement of miR-196a in HIV-associated neurocognitive disorders. Apoptosis 2015; 19:1202-14. [PMID: 24872081 DOI: 10.1007/s10495-014-1003-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Involvement of the human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) protein in neuronal deregulation and in the development of HIV-1 associated neurocognitive disorders (HAND) has been amply explored; however the mechanisms involved remain unclear. In search for the mechanisms, we demonstrated that Tat deregulates neuronal functions through a pathway that involved p73 and p53 pathway. We showed that Tat uses microRNA-196a (miR-196a) to deregulate the p73 pathway. Further, we found that the Abelson murine leukemia (c-Abl) phosphorylates p73 on tyrosine residue 99 (Tyr-99) in Tat-treated cells. Interestingly, Tat lost its ability to promote accumulation and phosphorylation of p73 in the presence of miR-196a mimic. Interestingly, accumulation of p73 did not lead to neuronal cell death by apoptosis as obtained by cell viability assay. Western blot analysis using antibodies directed against serine residues 807 and 811 of retinoblastoma (Rb) protein was also used to validate our data regarding lack of cell death. Hyperphosphorylation of RB (S807/811) is an indication of cell neuronal viability. These results highlight the key role played by p73 and microRNA in Tat-treated neurons leading to their deregulation and it deciphers mechanistically one of the pathways used by Tat to cause neuronal dysfunction that contributes to the development of HAND.
Collapse
Affiliation(s)
- Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, PHA # 302, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bouwman RD, Palser A, Parry CM, Coulter E, Rasaiyaah J, Kellam P, Jenner RG. Human immunodeficiency virus Tat associates with a specific set of cellular RNAs. Retrovirology 2014; 11:53. [PMID: 24990269 PMCID: PMC4086691 DOI: 10.1186/1742-4690-11-53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/18/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human Immunodeficiency Virus 1 (HIV-1) exhibits a wide range of interactions with the host cell but whether viral proteins interact with cellular RNA is not clear. A candidate interacting factor is the trans-activator of transcription (Tat) protein. Tat is required for expression of virus genes but activates transcription through an unusual mechanism; binding to an RNA stem-loop, the transactivation response element (TAR), with the host elongation factor P-TEFb. HIV-1 Tat has also been shown to alter the expression of host genes during infection, contributing to viral pathogenesis but, whether Tat also interacts with cellular RNAs is unknown. RESULTS Using RNA immunoprecipitation coupled with microarray analysis, we have discovered that HIV-1 Tat is associated with a specific set of human mRNAs in T cells. mRNAs bound by Tat share a stem-loop structural element and encode proteins with common biological roles. In contrast, we do not find evidence that Tat associates with microRNAs or the RNA-induced silencing complex (RISC). The interaction of Tat with cellular RNA requires an intact RNA binding domain and Tat RNA binding is linked to an increase in RNA abundance in cell lines and during infection of primary CD4+ T cells by HIV. CONCLUSIONS We conclude that Tat interacts with a specific set of human mRNAs in T cells, many of which show changes in abundance in response to Tat and HIV infection. This work uncovers a previously unrecognised interaction between HIV and its host that may contribute to viral alteration of the host cellular environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard G Jenner
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Coiras M, Montes M, Montanuy I, López-Huertas MR, Mateos E, Le Sommer C, Garcia-Blanco MA, Hernández-Munain C, Alcamí J, Suñé C. Transcription elongation regulator 1 (TCERG1) regulates competent RNA polymerase II-mediated elongation of HIV-1 transcription and facilitates efficient viral replication. Retrovirology 2013; 10:124. [PMID: 24165037 PMCID: PMC3874760 DOI: 10.1186/1742-4690-10-124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/18/2013] [Indexed: 12/30/2022] Open
Abstract
Background Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo. Results We show that TCERG1 depletion diminishes the basal and viral Tat-activated transcription from the HIV-1 LTR. In support of a role for an elongation mechanism in the transcriptional control of HIV-1, we found that TCERG1 modifies the levels of pre-mRNAs generated at distal regions of HIV-1. Most importantly, TCERG1 directly affects the elongation rate of RNAPII transcription in vivo. Furthermore, our data demonstrate that TCERG1 regulates HIV-1 transcription by increasing the rate of RNAPII elongation through the phosphorylation of serine 2 within the carboxyl-terminal domain (CTD) of RNAPII and suggest a mechanism for the involvement of TCERG1 in relieving pausing. Finally, we show that TCERG1 is required for HIV-1 replication. Conclusions Our study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the CTD. Based on our data, we propose a general mechanism for TCERG1 acting on genes that are regulated at the level of elongation by increasing the rate of RNAPII transcription through the phosphorylation of Ser2. In the case of HIV-1, our evidence provides the basis for further investigation of TCERG1 as a potential therapeutic target for the inhibition of HIV-1 replication
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Carlos Suñé
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina "López Neyra" (IPBLN-CSIC), Armilla, Granada 18016, Spain.
| |
Collapse
|
14
|
Selective recognition of viral promoters by host cell transcription complexes: challenges and opportunities to control latency. Curr Opin Virol 2013; 3:380-6. [PMID: 23827503 DOI: 10.1016/j.coviro.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022]
Abstract
The rate of transcription driven by the HIV promoter defines both the entry into and reactivation from viral latency. The HIV core promoter plays a pivotal role in HIV latency by recruiting host cell RNA polymerase II pre-initiation complexes essential for viral transcription. Pioneering studies on the HIV core promoter revealed that the architecture of the HIV core promoter is specifically required for the amplification of transcription in response to the viral trans-activator Tat, and provided the proof-of-concept that the HIV core promoter represents a tractable drug target. The recent discovery of host cell transcription complexes that selectively recognize the HIV core promoter provides new impetus to investigate their components as novel targets to therapeutically extinguish or eradicate latent HIV.
Collapse
|
15
|
Ihalainen TO, Willman SF, Niskanen EA, Paloheimo O, Smolander H, Laurila JP, Kaikkonen MU, Vihinen-Ranta M. Distribution and dynamics of transcription-associated proteins during parvovirus infection. J Virol 2012; 86:13779-84. [PMID: 23035221 PMCID: PMC3503060 DOI: 10.1128/jvi.01625-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/24/2012] [Indexed: 12/23/2022] Open
Abstract
Canine parvovirus (CPV) infection leads to reorganization of nuclear proteinaceous subcompartments. Our studies showed that virus infection causes a time-dependent increase in the amount of viral nonstructural protein NS1 mRNA. Fluorescence recovery after photobleaching showed that the recovery kinetics of nuclear transcription-associated proteins, TATA binding protein (TBP), transcription factor IIB (TFIIB), and poly(A) binding protein nuclear 1 (PABPN1) were different in infected and noninfected cells, pointing to virus-induced alterations in binding dynamics of these proteins.
Collapse
Affiliation(s)
- Teemu O. Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Health Sciences and Technology, Laboratory for Biologically Oriented Materials, ETH Zurich, Zurich, Switzerland
| | - Sami F. Willman
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Einari A. Niskanen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Biochemistry, Medical Genetics Cluster, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Outi Paloheimo
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| | - Hanna Smolander
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Juha P. Laurila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
- University of Turku, Turku, Finland
| | - Minna U. Kaikkonen
- AI Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Maija Vihinen-Ranta
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, Finland
| |
Collapse
|
16
|
Wilhelm E, Doyle MC, Nzaramba I, Magdzinski A, Dumais N, Bell B. CTGC motifs within the HIV core promoter specify Tat-responsive pre-initiation complexes. Retrovirology 2012; 9:62. [PMID: 22834489 PMCID: PMC3419132 DOI: 10.1186/1742-4690-9-62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022] Open
Abstract
Background HIV latency is an obstacle for the eradication of HIV from infected individuals. Stable post-integration latency is controlled principally at the level of transcription. The HIV trans-activating protein, Tat, plays a key function in enhancing HIV transcriptional elongation. The HIV core promoter is specifically required for Tat-mediated trans-activation of HIV transcription. In addition, the HIV core promoter has been shown to be a potential anti-HIV drug target. Despite the pivotal role of the HIV core promoter in the control of HIV gene expression, the molecular mechanisms that couple Tat function specifically to the HIV core promoter remain unknown. Results Using electrophoretic mobility shift assays (EMSAs), the TATA box and adjacent sequences of HIV essential for Tat trans-activation were shown to form specific complexes with nuclear extracts from peripheral blood mononuclear cells, as well as from HeLa cells. These complexes, termed pre-initiation complexes of HIV (PICH), were distinct in composition and DNA binding specificity from those of prototypical eukaryotic TATA box regions such as Adenovirus major late promoter (AdMLP) or the hsp70 promoter. PICH contained basal transcription factors including TATA-binding protein and TFIIA. A mutational analysis revealed that CTGC motifs flanking the HIV TATA box are required for Tat trans-activation in living cells and correct PICH formation in vitro. The binding of known core promoter binding proteins AP-4 and USF-1 was found to be dispensable for Tat function. TAR RNA prevented stable binding of PICH-2, a complex that contains the general transcription factor TFIIA, to the HIV core promoter. The impact of TAR on PICH-2 specifically required its bulge sequence that is also known to interact with Tat. Conclusion Our data reveal that CTGC DNA motifs flanking the HIV TATA box are required for correct formation of specific pre-initiation complexes in vitro and that these motifs are also required for Tat trans-activation in living cells. The impact of TAR RNA on PICH-2 stability provides a mechanistic link by which pre-initiation complex dynamics could be coupled to the formation of the nascent transcript by the elongating transcription complex. Together, these findings shed new light on the mechanisms by which the HIV core promoter specifically responds to Tat to activate HIV gene expression.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- RNA Group, Département de Microbiologie et d'Infectiologie, Faculté de Médecine et Sciences de la Santé, Université de Sherbrooke, Pavillon de Recherche Appliquée sur le Cancer, 3201 rue Jean-Migneault, Sherbrooke, Québec J1E 4K8, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I. Human immunodeficiency virus-1 Tat activates NF-κB via physical interaction with IκB-α and p65. Nucleic Acids Res 2011; 40:3548-62. [PMID: 22187158 PMCID: PMC3333881 DOI: 10.1093/nar/gkr1224] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor (NF)-κB is a master regulator of pro-inflammatory genes and is upregulated in human immunodeficiency virus 1 (HIV-1) infection. Mechanisms underlying the NF-κB deregulation by HIV-1 are relevant for immune dysfunction in AIDS. We report that in single round HIV-1 infection, or single-pulse PMA stimulation, the HIV-1 Tat transactivator activated NF-κB by hijacking the inhibitor IκB-α and by preventing the repressor binding to the NF-κB complex. Moreover, Tat associated with the p65 subunit of NF-κB and increased the p65 DNA-binding affinity and transcriptional activity. The arginine- and cysteine-rich domains of Tat were required for IκB-α and p65 association, respectively, and for sustaining the NF-κB activity. Among an array of NF-κB-responsive genes, Tat mostly activated the MIP-1α expression in a p65-dependent manner, and bound to the MIP-1α NF-κB enhancer thus promoting the recruitment of p65 with displacement of IκB-α; similar findings were obtained for the NF-κB-responsive genes CSF3, LTA, NFKBIA and TLR2. Our results support a novel mechanism of NF-κB activation via physical interaction of Tat with IκB-α and p65, and may contribute to further insights into the deregulation of the inflammatory response by HIV-1.
Collapse
Affiliation(s)
- Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, Viale Europa-Germaneto, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vitagliano L, Fiume G, Scognamiglio PL, Doti N, Cannavò R, Puca A, Pedone C, Scala G, Quinto I, Marasco D. Structural and functional insights into IκB-α/HIV-1 Tat interaction. Biochimie 2011; 93:1592-600. [PMID: 21664225 DOI: 10.1016/j.biochi.2011.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/24/2011] [Indexed: 01/13/2023]
Abstract
Protein-protein interactions play fundamental roles in physiological and pathological biological processes. The characterization of the structural determinants of protein-protein recognition represents an important step for the development of molecular entities able to modulate these interactions. We have recently found that IκB-α (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) blocks the HIV-1 expression and replication in a NF-κB-independent manner by directly binding to the virus-encoded Tat transactivator. Here, we report the evaluation of the entity of binding of IκB-α to Tat through in vitro Surface Plasmon Resonance assay. Moreover, by designing and characterizing a set of peptides of the C-terminus region of IκB-α, we show that the peptide corresponding to the IκB-α sequence 262-287 was able to bind to Tat with high affinity (300 nM). The characterization of a number of IκB-α-based peptides also provided insights into their intrinsic folding properties. These findings have been corroborated by mutagenesis studies on the full-length IκB-α, which unveil that different IκB-α residues are involved in NF-κB or Tat recognition.
Collapse
Affiliation(s)
- Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The last decade has seen an incredible breakthrough in technologies that allow histones, transcription factors (TFs), and RNA polymerases to be precisely mapped throughout the genome. From this research, it is clear that there is a complex interaction between the chromatin landscape and the general transcriptional machinery and that the dynamic control of this interface is central to gene regulation. However, the chromatin remodeling enzymes and general TFs cannot, on their own, recognize and stably bind to promoter or enhancer regions. Rather, they are recruited to cis regulatory regions through interaction with site-specific DNA binding TFs and/or proteins that recognize epigenetic marks such as methylated cytosines or specifically modified amino acids in histones. These "recruitment" factors are modular in structure, reflecting their ability to interact with the genome via one region of the protein and to simultaneously bind to other regulatory proteins via "effector" domains. In this chapter, we provide examples of common effector domains that can function in transcriptional regulation via their ability to (a) interact with the basal transcriptional machinery and general co-activators, (b) interact with other TFs to allow cooperative binding, and (c) directly or indirectly recruit histone and chromatin modifying enzymes.
Collapse
Affiliation(s)
- Seth Frietze
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, 90033, USA,
| | | |
Collapse
|
20
|
Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Methods 2010; 53:91-6. [PMID: 20615470 DOI: 10.1016/j.ymeth.2010.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 12/25/2022] Open
Abstract
Modification-specific antibodies are important tools to examine the dynamics and functions of posttranslational protein modifications in cells. Here, we describe in detail the generation of polyclonal antibodies specific for mono-, di-, and trimethylated lysine 51 within the HIV transactivator Tat. Lysine 51 is a highly conserved residue located in the RNA-binding region of Tat and the target of lysine methyltransferases KMT1E (SETDB1) and KMT7 (Set7/9). Using affinity-purified methyl-specific antibodies of Tat, we find that cellular Tat is predominantly monomethylated at lysine 51, a modification enhanced by coexpression of KMT7.
Collapse
|
21
|
Boudier C, Storchak R, Sharma KK, Didier P, Follenius-Wund A, Muller S, Darlix JL, Mély Y. The mechanism of HIV-1 Tat-directed nucleic acid annealing supports its role in reverse transcription. J Mol Biol 2010; 400:487-501. [PMID: 20493881 DOI: 10.1016/j.jmb.2010.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
The main function of the HIV-1 trans-activator of transcription (Tat protein) is to promote the transcription of the proviral DNA by the host RNA polymerase which leads to the synthesis of large quantities of the full length viral RNA. Tat is also thought to be involved in the reverse transcription (RTion) reaction by a still unknown mechanism. The recently reported nucleic acid annealing activity of Tat might explain, at least in part, its role in RTion. To further investigate this possibility, we carried out a fluorescence study on the mechanism by which the full length Tat protein (Tat(1-86)) and the basic peptide (44-61) direct the annealing of complementary viral DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, essential for the early steps of RTion. Though both Tat(1-86) and the Tat(44-61) peptide were unable to melt the lower half of the cTAR stem, they strongly promoted cTAR/dTAR annealing through non-specific attraction between the peptide-bound oligonucleotides. Using cTAR and dTAR mutants, this Tat promoted-annealing was found to be nucleated through the thermally frayed 3'/5' termini, resulting in an intermediate with 12 intermolecular base pairs, which then converts into the final extended duplex. Moreover, we found that Tat(1-86) was as efficient as the nucleocapsid protein NCp7, a major nucleic acid chaperone of HIV-1, in promoting cTAR/dTAR annealing, and could act cooperatively with NCp7 during the annealing reaction. Taken together, our data are consistent with a role of Tat in the stimulation of the obligatory strand transfers during viral DNA synthesis by reverse transcriptase.
Collapse
Affiliation(s)
- C Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Van Duyne R, Kehn-Hall K, Carpio L, Kashanchi F. Cell-type-specific proteome and interactome: using HIV-1 Tat as a test case. Expert Rev Proteomics 2010; 6:515-26. [PMID: 19811073 DOI: 10.1586/epr.09.73] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
HIV-1 is a small retrovirus that wreaks havoc on the human immune system. It is a puzzle to the scientific community how a virus that encodes only nine proteins can take complete control of its host and redirect the cell to complete replication or maintain latency when necessary. One way to explain the control elicited by HIV-1 is through numerous protein partners that exist between viral and host proteins, allowing HIV-1 to be intimately involved in virtually every aspect of cellular biology. In addition, we postulate that the complexity exerted by HIV-1 can not merely be explained by the large number of protein-protein interactions documented in the literature but, rather, cell-type-specific interactions and post-translational modifications of viral proteins must be taken into account. We use HIV-1 Tat and its influence on viral transcription as an example of cell-type-specific complexity. The influence of post-translational modifications (acetylation and methylation), as well as subcellular localization on Tat binding partners, is also discussed.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University, Department of Microbiology, Immunology and Tropical Medicine, 2300 I Street, NW, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
23
|
Zhang SM, Sun Y, Fan R, Xu QZ, Liu XD, Zhang X, Wang Y, Zhou PK. HIV-1 Tat regulates cyclin B1 by promoting both expression and degradation. FASEB J 2009; 24:495-503. [PMID: 19825974 DOI: 10.1096/fj.09-143925] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cyclin B1, an important cell cycle regulator, was up-regulated in lymphocytes of human immunodeficiency virus (HIV)-infected patients. However, the mechanism of cyclin B1 up-regulation and the effects of the up-regulation on the host cells remain unclear. Here, we show that HIV-encoded Tat protein regulates cyclin B1 levels in two different ways: first, Tat stimulates the transcription of cyclin B1, which increases cyclin B1 levels and promotes the cells apoptosis; and second, Tat stimulates polyubiquitination-mediated degradation of cyclin B1 through binding to the N-terminal of cyclin B1 (aa 61-129) that is just downstream of the D box, which prevents excessive levels of cyclin B1 in the cells. These results suggest that Tat-regulating cyclin B1 affects the status of HIV: Tat stimulates cyclin B1 expression to slow down the host cell cycle progress and to promote the host cell apoptosis, which might facilitate HIV release; Tat stimulates cyclin B1 degradation to prevent overaccumulation of cyclin B1, which might facilitate HIV replication. Taken together, our results reveal for the first time how HIV-Tat regulates cyclin B1 and keeps its balance in the cells.
Collapse
Affiliation(s)
- Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Charnay N, Ivanyi-Nagy R, Soto-Rifo R, Ohlmann T, López-Lastra M, Darlix JL. Mechanism of HIV-1 Tat RNA translation and its activation by the Tat protein. Retrovirology 2009; 6:74. [PMID: 19671151 PMCID: PMC2739156 DOI: 10.1186/1742-4690-6-74] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 08/11/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) Tat protein is a major viral transactivator required for HIV-1 replication. In the nucleus Tat greatly stimulates the synthesis of full-length transcripts from the HIV-1 promoter by causing efficient transcriptional elongation. Tat induces elongation by directly interacting with the bulge of the transactivation response (TAR) RNA, a hairpin-loop located at the 5'-end of all nascent viral transcripts, and by recruiting cellular transcriptional co-activators. In the cytoplasm, Tat is thought to act as a translational activator of HIV-1 mRNAs. Thus, Tat plays a central role in the regulation of HIV-1 gene expression both at the level of mRNA and protein synthesis. The requirement of Tat in these processes poses an essential question on how sufficient amounts of Tat can be made early on in HIV-1 infected cells to sustain its own synthesis. To address this issue we studied translation of the Tat mRNA in vitro and in human cells using recombinant monocistronic and dicistronic RNAs containing the 5' untranslated region (5'-UTR) of Tat RNA. RESULTS This study shows that the Tat mRNA can be efficiently translated both in vitro and in cells. Furthermore, our data suggest that translation initiation from the Tat mRNA probably occurs by a internal ribosome entry site (IRES) mechanism. Finally, we show that Tat protein can strongly stimulate translation from its cognate mRNA in a TAR dependent fashion. CONCLUSION These results indicate that Tat mRNA translation is efficient and benefits from a feedback stimulation by the Tat protein. This translational control mechanism would ensure that minute amounts of Tat mRNA are sufficient to generate enough Tat protein required to stimulate HIV-1 replication.
Collapse
Affiliation(s)
- Nicolas Charnay
- LaboRetro, Unité de Virologie Humaine INSERM 758, IFR 128, ENS de Lyon, 46 allée d'Italie, 69364 Lyon, France.
| | | | | | | | | | | |
Collapse
|
25
|
Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology 2009; 6:47. [PMID: 19454010 PMCID: PMC2702331 DOI: 10.1186/1742-4690-6-47] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 05/19/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86-101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry. RESULTS Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied in silico analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture. CONCLUSION We have completed the in vitro Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.
Collapse
Affiliation(s)
- Virginie W Gautier
- UCD-Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| | | | | | | | | | | |
Collapse
|
26
|
HIV-1 transactivator protein induction of suppressor of cytokine signaling-2 contributes to dysregulation of IFN{gamma} signaling. Blood 2009; 113:5192-201. [PMID: 19279332 DOI: 10.1182/blood-2008-10-183525] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV infection remains a worldwide threat. HIV-1 transactivator protein Tat is one of the retroviral proteins identified as a key immunomodulator in AIDS pathogenesis. Although the primary function of Tat is to regulate HIV-1 replication in the infected cell, it also dysregulates cytokine production resulting in perturbation of the host immune response and enhancement of the retrovirus survival. Because interferon-gamma (IFNgamma) is a pleiotropic cytokine with potent antiviral and immunoregulatory effects, we investigated whether Tat interferes with the IFNgamma signal transduction in primary monocytes. We demonstrated that Tat impaired the IFNgamma-receptor signaling pathway at the level of STAT1 activation, possibly via Tat-dependent induction of suppressor of cytokine signaling-2 (SOCS-2) activity. We delineated the inhibitory role of SOCS-2 in IFNgamma signaling pathway by overexpression of exogenous SOCS-2 in HEK293 cell. The results showed that SOCS-2 suppressed the IFNgamma-activated STAT1 phosphorylation and consequent IFNgamma-regulated transcription of specific genes. To confirm the role of SOCS2 in the Tat-induced process, we demonstrated that SOCS-2 siRNA in human blood monocytes abrogated the Tat-dependent inhibition of IFNgamma signaling. Our data suggested a possible mechanism implicating the role of SOCS-2 in mediating HIV-1-induced immune evasion and dysregulation of IFNgamma signaling in primary human monocytes.
Collapse
|
27
|
Dyer MD, Murali TM, Sobral BW. The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathog 2008; 4:e32. [PMID: 18282095 PMCID: PMC2242834 DOI: 10.1371/journal.ppat.0040032] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 01/04/2008] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases result in millions of deaths each year. Mechanisms of infection have been studied in detail for many pathogens. However, many questions are relatively unexplored. What are the properties of human proteins that interact with pathogens? Do pathogens interact with certain functional classes of human proteins? Which infection mechanisms and pathways are commonly triggered by multiple pathogens? In this paper, to our knowledge, we provide the first study of the landscape of human proteins interacting with pathogens. We integrate human-pathogen protein-protein interactions (PPIs) for 190 pathogen strains from seven public databases. Nearly all of the 10,477 human-pathogen PPIs are for viral systems (98.3%), with the majority belonging to the human-HIV system (77.9%). We find that both viral and bacterial pathogens tend to interact with hubs (proteins with many interacting partners) and bottlenecks (proteins that are central to many paths in the network) in the human PPI network. We construct separate sets of human proteins interacting with bacterial pathogens, viral pathogens, and those interacting with multiple bacteria and with multiple viruses. Gene Ontology functions enriched in these sets reveal a number of processes, such as cell cycle regulation, nuclear transport, and immune response that participate in interactions with different pathogens. Our results provide the first global view of strategies used by pathogens to subvert human cellular processes and infect human cells. Supplementary data accompanying this paper is available at http://staff.vbi.vt.edu/dyermd/publications/dyer2008a.html.
Collapse
Affiliation(s)
- Matthew D Dyer
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - T. M Murali
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (TMM), (BWS)
| | - Bruno W Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail: (TMM), (BWS)
| |
Collapse
|
28
|
Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology 2008; 5:40. [PMID: 18498648 PMCID: PMC2412914 DOI: 10.1186/1742-4690-5-40] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/22/2008] [Indexed: 12/11/2022] Open
Abstract
Background The rate of transcription of the HIV-1 viral genome is mediated by the interaction of the viral protein Tat with the LTR and other transcriptional machinery. These specific interactions can be affected by the state of post-translational modifications on Tat. Previously, we have shown that Tat can be phosphorylated and acetylated in vivo resulting in an increase in the rate of transcription. In the present study, we investigated whether Tat could be methylated on lysine residues, specifically on lysine 50 and 51, and whether this modification resulted in a decrease of viral transcription from the LTR. Results We analyzed the association of Tat with histone methyltransferases of the SUV39-family of SET domain containing proteins in vitro. Tat was found to associate with both SETDB1 and SETDB2, two enzymes which exhibit methyltransferase activity. siRNA against SETDB1 transfected into cell systems with both transient and integrated LTR reporter genes resulted in an increase in transcription of the HIV-LTR in the presence of suboptimal levels of Tat. In vitro methylation assays with Tat peptides containing point mutations at lysines 50 and 51 showed an increased incorporation of methyl groups on lysine 51, however, both residues indicated susceptibility for methylation. Conclusion The association of Tat with histone methyltransferases and the ability for Tat to be methylated suggests an interesting mechanism of transcriptional regulation through the recruitment of chromatin remodeling proteins to the HIV-1 promoter.
Collapse
|
29
|
Van Duyne R, Cardenas J, Easley R, Wu W, Kehn-Hall K, Klase Z, Mendez S, Zeng C, Chen H, Saifuddin M, Kashanchi F. Effect of transcription peptide inhibitors on HIV-1 replication. Virology 2008; 376:308-22. [PMID: 18455747 DOI: 10.1016/j.virol.2008.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/21/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022]
Abstract
HIV-1 manipulates cellular machineries such as cyclin dependent kinases (cdks) and their cyclin elements, to stimulate virus production and maintain latent infection. Specifically, the HIV-1 viral protein Tat increases viral transcription by binding to the TAR promoter element. This binding event is mediated by the phosphorylation of Pol II by complexes such as cdk9/Cyclin T and cdk2/Cyclin E. Recent studies have shown that a Tat 41/44 peptide derivative prevents the loading of cdk2 onto the HIV-1 promoter, inhibiting gene expression and replication. Here we show that Tat peptide analogs computationally designed to dock at the cyclin binding site of cdk2 have the ability to bind to cdk2 and inhibit the association of cdk2 with the HIV promoter. Specifically, the peptide LAALS dissociated the complex and decreased kinase activity in vitro. We also describe our novel small animal model which utilizes humanized Rag2(-/-)gamma(c)(-/-) mice. This small peptide inhibitor induces a decrease in HIV-1 viral transcription in vitro and minimizes viral loads in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University Medical Center, Department of Microbiology, Immunology, and Tropical Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kuciak M, Gabus C, Ivanyi-Nagy R, Semrad K, Storchak R, Chaloin O, Muller S, Mély Y, Darlix JL. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res 2008; 36:3389-400. [PMID: 18442994 PMCID: PMC2425468 DOI: 10.1093/nar/gkn177] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) is a primate lentivirus that causes the acquired immunodeficiency syndrome (AIDS). In addition to the virion structural proteins and enzyme precursors, that are Gag, Env and Pol, HIV-1 encodes several regulatory proteins, notably a small nuclear transcriptional activator named Tat. The Tat protein is absolutely required for virus replication since it controls proviral DNA transcription to generate the full-length viral mRNA. Tat can also regulate mRNA capping and splicing and was recently found to interfere with the cellular mi- and siRNA machinery. Because of its extensive interplay with nucleic acids, and its basic and disordered nature we speculated that Tat had nucleic acid-chaperoning properties. This prompted us to examine in vitro the nucleic acid-chaperoning activities of Tat and Tat peptides made by chemical synthesis. Here we report that Tat has potent nucleic acid-chaperoning activities according to the standard DNA annealing, DNA and RNA strand exchange, RNA ribozyme cleavage and trans-splicing assays. The active Tat(44–61) peptide identified here corresponds to the smallest known sequence with DNA/RNA chaperoning properties.
Collapse
Affiliation(s)
- Monika Kuciak
- LaboRetro INSERM #758, Ecole Normale Supérieure de Lyon, IFR 128 Biosciences Lyon-Gerland, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ouellet DL, Plante I, Landry P, Barat C, Janelle ME, Flamand L, Tremblay MJ, Provost P. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res 2008; 36:2353-65. [PMID: 18299284 PMCID: PMC2367715 DOI: 10.1093/nar/gkn076] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction between human immunodeficiency virus type 1 (HIV-1) and RNA silencing pathways is complex and multifaceted. Essential for efficient viral transcription and supporting Tat-mediated transactivation of viral gene expression, the trans-activation responsive (TAR) element is a structured RNA located at the 5′ end of all transcripts derived from HIV-1. Here, we report that this element is a source of microRNAs (miRNAs) in cultured HIV-1-infected cell lines and in HIV-1-infected human CD4+ T lymphocytes. Using primer extension and ribonuclease (RNase) protection assays, we delineated both strands of the TAR miRNA duplex deriving from a model HIV-1 transcript, namely miR-TAR-5p and miR-TAR-3p. In vitro RNase assays indicate that the lack of a free 3′ extremity at the base of TAR may contribute to its low processing reactivity in vivo. Both miR-TAR-5p and miR-TAR-3p down-regulated TAR miRNA sensor activity in a process that required an integral miRNA-guided RNA silencing machinery. miR-TAR-3p exerted superior gene downregulatory effects, probably due to its preferential release from HIV-1 TAR RNA by the RNase III Dicer. Our study suggests that the TAR element of HIV-1 transcripts releases functionally competent miRNAs upon asymmetrical processing by Dicer, thereby providing novel insights into viral miRNA biogenesis.
Collapse
Affiliation(s)
- Dominique L Ouellet
- Centre de Recherche en Rhumatologie et Immunologie, Quebec, QC, G1V 4G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Klase ZA, Van Duyne R, Kashanchi F. Identification of potential drug targets using genomics and proteomics: a systems approach. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:327-68. [PMID: 18086417 DOI: 10.1016/s1054-3589(07)56011-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zachary A Klase
- Department of Biochemistry, Medical Center, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
33
|
Puca A, Fiume G, Palmieri C, Trimboli F, Olimpico F, Scala G, Quinto I. IκB-α Represses the Transcriptional Activity of the HIV-1 Tat Transactivator by Promoting Its Nuclear Export. J Biol Chem 2007; 282:37146-57. [DOI: 10.1074/jbc.m705815200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Gruber A, Chalmers AS, Rasmussen RA, Ong H, Popov S, Andersen J, Hu SL, Ruprecht RM. Dendritic cell-based vaccine strategy against human immunodeficiency virus clade C: skewing the immune response toward a helper T cell type 2 profile. Viral Immunol 2007; 20:160-9. [PMID: 17425430 DOI: 10.1089/vim.2006.0052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Given the continued spread of human immunodeficiency virus (HIV)-1 worldwide, developing efficient vaccine strategies against HIV-1 is a key task. We tested the safety and immunogenicity of a multicomponent, cell-based vaccine that consisted of antigen-expressing apoptotic bodies with or without autologous dendritic cells (DCs). The vaccine strategy involved transfection of human 293T cells with codon-optimized DNA vectors expressing env of HIV1084i, a newly transmitted pediatric HIV-1 clade C strain; SHIV89.6P tat; and SIVmac239 gag-protease. Apoptotic bodies were generated by heat shock and ultraviolet irradiation and mixed either with mouse DCs (DC-cell vaccine) or given directly (cell-only vaccine) to BALB/c mice for initial priming; boosts consisted of apoptotic bodies only. The immunogens were well tolerated with or without DCs. Compared with the cell-only vaccine, the DC-cell vaccine induced higher antibody titers against all three antigens, whereas virus-specific cytotoxic T lymphocyte responses were equally strong in both groups. Iso-type analysis of viral antigen-specific antibodies revealed a skewing toward helper T type 2 responses induced by the DC-cell vaccine but not by the cell-only vaccine. In summary, both vaccine strategies were safe and induced cellular as well as humoral antiviral immunity; the DC-based approach had the advantage of significantly stronger antibody responses.
Collapse
Affiliation(s)
- Andreas Gruber
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gatignol A. Transcription of HIV: Tat and cellular chromatin. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:137-59. [PMID: 17586314 DOI: 10.1016/s1054-3589(07)55004-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research,, Department of Microbiology & Immunology and Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
36
|
Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, Klase Z, Southerland W, Gordeuk VR, Kashanchi F, Nekhai S. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 2006; 3:78. [PMID: 17083724 PMCID: PMC1636661 DOI: 10.1186/1742-4690-3-78] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/03/2006] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. RESULTS We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. CONCLUSION Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription.
Collapse
Affiliation(s)
- Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Reem Berro
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - Marina Jerebtsova
- Children's National Medical Center, CRI Center III, 111 Michigan Ave., N.W. Washington, D.C. 20010-2970, USA
| | - Angela Jackson
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sharroya Charles
- Program in Genetics, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Zachary Klase
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - William Southerland
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Victor R Gordeuk
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| |
Collapse
|
37
|
Kaniowska D, Kaminski R, Amini S, Radhakrishnan S, Rappaport J, Johnson E, Khalili K, Del Valle L, Darbinyan A. Cross-interaction between JC virus agnoprotein and human immunodeficiency virus type 1 (HIV-1) Tat modulates transcription of the HIV-1 long terminal repeat in glial cells. J Virol 2006; 80:9288-99. [PMID: 16940540 PMCID: PMC1563897 DOI: 10.1128/jvi.02138-05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human polyomavirus JC virus (JCV) is the causative agent of the fatal demyelinating disease progressive multifocal leukoencephalopathy (PML), which is commonly seen in AIDS patients. The bicistronic viral RNA, which is transcribed at the late phase of infection, is responsible for expressing the viral capsid proteins and a small regulatory protein, agnoprotein. Immunohistochemical analysis of brain tissue from subjects with AIDS/PML revealed colocalization of the human immunodeficiency virus type 1 (HIV-1) transactivator, Tat, and JCV agnoprotein in nucleus and cytoplasm of "bizarre" astrocytes. In accord with this observation, we detected the copresence of agnoprotein and Tat in human astrocytes upon infection with JCV and HIV-1 or in astrocytic cells expressing these proteins after transfection. Interestingly, results from infection of human astrocytes with HIV-1 and JCV showed a decrease in the level of HIV-1 replication in cells that are coinfected with JCV. Conversely, a slight increase in the level of JCV replication was observed in the presence of HIV-1. The copresence of JCV and HIV-1 in astrocytes prompted us to investigate the possible cross-interaction of agnoprotein with Tat and its impact on HIV-1 gene transcription. Our results demonstrate that agnoprotein through its N-terminal domain associates with Tat and the interaction causes the suppression of Tat-mediated enhancement of HIV-1 promoter activity in these cells. Results from RNA and protein binding assays showed that agnoprotein can inhibit the association of Tat with its target RNA sequence, TAR, and with cyclin T1. Furthermore, agnoprotein is able to interfere with cross-interaction of Tat with the p65 subunit of NF-kappaB and Sp1, whose functions are critical for Tat activation of the long terminal repeat. These observations unravel a new pathway for the molecular interaction of these two viruses in biologically relevant cells in the brains of AIDS/PML patients.
Collapse
Affiliation(s)
- Dorota Kaniowska
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rossi A, Mukerjee R, Ferrante P, Khalili K, Amini S, Sawaya BE. Human immunodeficiency virus type 1 Tat prevents dephosphorylation of Sp1 by TCF-4 in astrocytes. J Gen Virol 2006; 87:1613-1623. [PMID: 16690926 DOI: 10.1099/vir.0.81691-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt -80 to nt -68). Here, the physical interaction and a functional consequence of TCF4-Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using in vitro protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266-350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.
Collapse
Affiliation(s)
- Andrea Rossi
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Ruma Mukerjee
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Pasquale Ferrante
- Laboratory of Biology, Don C. Gnocchi Foundation, IRCCS, 20148 Milan, Italy
| | - Kamel Khalili
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Shohreh Amini
- Department of Biology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| | - Bassel E Sawaya
- Department of Neuroscience & Center for Neurovirology, Temple University School of Medicine, 1900 N 12th Street (015-96), Philadelphia, PA 19122, USA
| |
Collapse
|
39
|
Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F. Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J Virol 2006; 80:3189-204. [PMID: 16537587 PMCID: PMC1440361 DOI: 10.1128/jvi.80.7.3189-3204.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) potent transactivator Tat protein mediates pleiotropic effects on various cell functions. Posttranslational modification of Tat affects its activity during viral transcription. Tat binds to TAR and subsequently becomes acetylated on lysine residues by histone acetyltransferases. Novel protein-protein interaction domains on acetylated Tat are then established, which are necessary for both sustained transcriptional activation of the HIV-1 promoter and viral transcription elongation. In this study, we investigated the identity of proteins that preferentially bound acetylated Tat. Using a proteomic approach, we identified a number of proteins that preferentially bound AcTat, among which p32, a cofactor of splicing factor ASF/SF-2, was identified. We found that p32 was recruited to the HIV-1 genome, suggesting a mechanism by which acetylation of Tat may inhibit HIV-1 splicing needed for the production of full-length transcripts. Using Tat from different clades, harboring a different number of acetylation sites, as well as Tat mutated at lysine residues, we demonstrated that Tat acetylation affected splicing in vivo. Finally, using confocal microscopy, we found that p32 and Tat colocalize in vivo in HIV-1-infected cells.
Collapse
Affiliation(s)
- Reem Berro
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Kylene Kehn
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Cynthia de la Fuente
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Anne Pumfery
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Richard Adair
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - John Wade
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Anamaris M. Colberg-Poley
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - John Hiscott
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
| | - Fatah Kashanchi
- Genetics Program, The George Washington University, Washington, D.C. 20037, Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington, D.C. 20037, Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, D.C. 20010, Howard Florey Institute, University of Melbourne, Victoria 3010, Australia, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada, The Institute for Genomic Research, Rockville, Maryland 20850
- Corresponding author. Mailing address: The George Washington University, 2300 I St., NW, Ross Hall, Room 551, Washington, DC 20037. Phone: (202) 994-1781. Fax: (202) 994-1780. E-mail:
| |
Collapse
|
40
|
Brady J, Kashanchi F. Tat gets the "green" light on transcription initiation. Retrovirology 2005; 2:69. [PMID: 16280076 PMCID: PMC1308864 DOI: 10.1186/1742-4690-2-69] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 11/09/2005] [Indexed: 11/10/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Tat transactivation is an essential step in the viral life cycle. Over the past several years, it has become widely accepted that Tat exerts its transcriptional effect by binding the transactivation-responsive region (TAR) and enhancing transcriptional elongation. Consistent with this hypothesis, it has been shown that Tat promotes the binding of P-TEFb, a transcription elongation factor composed of cyclin T1 and cdk9, and the interaction of Tat with P-TEFb and TAR leads to hyperphosphorylation of the C-terminal domain (CTD) of RNA Pol II and increased processivity of RNA Pol II. A recent report, however, has generated renewed interest that Tat may also play a critical role in transcription complex (TC) assembly at the preinitiation step. Using in vivo chromatin immunoprecipitation assays, the authors reported that the HIV TC contains TBP but not TBP-associated factors. The stimulatory effect involved the direct interaction of Tat and P-TEFb and was evident at the earliest step of TC assembly, the TBP-TATA box interaction. In this article, we will review this data in context of earlier data which also support Tat's involvement in transcriptional complex assembly. Specifically, we will discuss experiments which demonstrated that Tat interacted with TBP and increased transcription initiation complex stability in cell free assays. We will also discuss studies which demonstrated that over expression of TBP alone was sufficient to obtain Tat activated transcription in vitro and in vivo. Finally, studies using self-cleaving ribozymes which suggested that Tat transactivation was not compatible with pausing of the RNA Pol II at the TAR site will be discussed.
Collapse
Affiliation(s)
- John Brady
- National Cancer Institute, Laboratory of Cellular Oncology, Bethesda, MD 20892, USA
| | - Fatah Kashanchi
- The George Washington University School of Medicine, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
| |
Collapse
|
41
|
Ammosova T, Jerebtsova M, Beullens M, Lesage B, Jackson A, Kashanchi F, Southerland W, Gordeuk VR, Bollen M, Nekhai S. Nuclear Targeting of Protein Phosphatase-1 by HIV-1 Tat Protein. J Biol Chem 2005; 280:36364-71. [PMID: 16131488 DOI: 10.1074/jbc.m503673200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of human immunodeficiency virus (HIV)-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of the C-terminal domain of RNA polymerase-II by CDK9/cyclin T1. We previously showed that Tat-induced HIV-1 transcription is regulated by protein phosphatase-1 (PP1). In the present study we demonstrate that Tat interacts with PP1 and that disruption of this interaction prevents induction of HIV-1 transcription. We show that PP1 interacts with Tat in part through the binding of Val36 and Phe38 of Tat to PP1 and that Tat is involved in the nuclear and subnuclear targeting of PP1. The PP1 binding mutant Tat-V36A/F38A displayed a decreased affinity for PP1 and was a poor activator of HIV-1 transcription. Surprisingly, Tat-Q35R mutant that had a higher affinity for PP1 was also a poor activator of HIV-1 transcription, because strong PP1 binding competed out binding of Tat to CDK9/cyclin T1. Our results suggest that Tat might function as a nuclear regulator of PP1 and that interaction of Tat with PP1 is critical for activation of HIV-1 transcription by Tat.
Collapse
Affiliation(s)
- Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University, Washington, DC 20059, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Apoil PA, Puissant B, Roubinet F, Abbal M, Massip P, Blancher A. FOXP3 mRNA levels are decreased in peripheral blood CD4+ lymphocytes from HIV-positive patients. J Acquir Immune Defic Syndr 2005; 39:381-5. [PMID: 16010156 DOI: 10.1097/01.qai.0000169662.30783.2d] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The impact of HIV infection on regulatory CD4(+)CD25(high) (Treg) lymphocyte subpopulations was evaluated by FOXP3 quantitative reverse transcriptase polymerase chain reaction and by flow cytometry. FOXP3 mRNA was quantified in peripheral blood mononuclear cells or purified CD4(+) lymphocytes from HIV(+) lymphopenic patients. Patients were distributed among clinical stages A, B, and C and received highly active antiretroviral therapy. The frequency of CD4(+)CD25(high) lymphocytes, measured by flow cytometry, was decreased in HIV patients (n = 38) compared with the group of uninfected subjects (n = 39). FOXP3 mRNA levels were found decreased in HIV patients (n = 25) compared with controls (n = 17) when expression of CD3gamma or beta-actin but not that of TATA box binding protein 1 was used for data normalization. Our results are compatible with a decrease of the Treg lymphocytes during HIV infection. The consequences of a Treg decrease are discussed in the context of immunologic anomalies observed during HIV infection.
Collapse
Affiliation(s)
- Pol André Apoil
- Laboratoire d'Immunogénétique Moléculaire, Faculté de Médecine de Rangueil, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
43
|
Ammosova T, Washington K, Debebe Z, Brady J, Nekhai S. Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription. Retrovirology 2005; 2:47. [PMID: 16048649 PMCID: PMC1187922 DOI: 10.1186/1742-4690-2-47] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 07/27/2005] [Indexed: 11/14/2022] Open
Abstract
Background HIV-1 Tat protein recruits human positive transcription elongation factor P-TEFb, consisting of CDK9 and cyclin T1, to HIV-1 transactivation response (TAR) RNA. CDK9 is maintained in dephosphorylated state by TFIIH and undergo phosphorylation upon the dissociation of TFIIH. Thus, dephosphorylation of CDK9 prior to its association with HIV-1 preinitiation complex might be important for HIV-1 transcription. Others and we previously showed that protein phosphatase-2A and protein phosphatase-1 regulates HIV-1 transcription. In the present study we analyze relative contribution of PP2A and PP1 to dephosphorylation of CDK9 and to HIV-1 transcription in vitro and in vivo. Results In vitro, PP2A but not PP1 dephosphorylated autophosphorylated CDK9 and reduced complex formation between P-TEFb, Tat and TAR RNA. Inhibition of PP2A by okadaic acid inhibited basal as well as Tat-induced HIV-1 transcription whereas inhibition of PP1 by recombinant nuclear inhibitor of PP1 (NIPP1) inhibited only Tat-induced transcription in vitro. In cultured cells, low concentration of okadaic acid, inhibitory for PP2A, only mildly inhibited Tat-induced HIV-1 transcription. In contrast Tat-mediated HIV-1 transcription was strongly inhibited by expression of NIPP1. Okadaic acid induced phosphorylation of endogenous as well transiently expressed CDK9, but this induction was not seen in the cells expressing NIPP1. Also the okadaic acid did not induce phosphorylation of CDK9 with mutation of Thr 186 or with mutations in Ser-329, Thr-330, Thr-333, Ser-334, Ser-347, Thr-350, Ser-353, and Thr-354 residues involved in autophosphorylation of CDK9. Conclusion Our results indicate that although PP2A dephosphorylates autophosphorylated CDK9 in vitro, in cultured cells PP1 is likely to dephosphorylate CDK9 and contribute to the regulation of activated HIV-1 transcription.
Collapse
Affiliation(s)
- Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University, 2121 Georgia Ave., N.W. Washington DC 20059, USA
| | - Kareem Washington
- Center for Sickle Cell Disease, Howard University, 2121 Georgia Ave., N.W. Washington DC 20059, USA
| | - Zufan Debebe
- Center for Sickle Cell Disease, Howard University, 2121 Georgia Ave., N.W. Washington DC 20059, USA
| | - John Brady
- Virus Tumor Biology Section, LRBGE, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 2121 Georgia Ave., N.W. Washington DC 20059, USA
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| |
Collapse
|
44
|
Marsili G, Remoli AL, Sgarbanti M, Battistini A. Role of acetylases and deacetylase inhibitors in IRF-1-mediated HIV-1 long terminal repeat transcription. Ann N Y Acad Sci 2005; 1030:636-43. [PMID: 15659847 DOI: 10.1196/annals.1329.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is strong evidence that both transcriptional activation and silencing are mediated through the recruitment of enzymes that control reversible protein acetylation: histone acetylase (HAT) and histone deacetylase proteins. Acetylation is also a critical post-translational modification of general and tissue-specific transcription factors. In HIV-1-infected cells, the long terminal repeat (LTR) promoter, once organized into chromatin, is transcriptionally inactive in the absence of stimulation. LTR transcription is regulated by protein acetylation, since treatment with deacetylase inhibitors markedly induces transcriptional activity of the LTR. Besides cellular transcription factors involved in LTR activation, early in infection, and during reactivation from latency, we have previously shown that proteins of the IRF family play an important role. In particular, IRF-1 is able per se to stimulate HIV-1 LTR transcription even in the absence of Tat. IRF-1 is also acetylated and associates with HATs such as p300/CBP and PCAF to form a multiprotein complex that assembles on the promoter of target genes. Here we show that CBP can be recruited by IRF-1 to the HIV-1 LTR promoter even in the absence of Tat and that treatment with deacetylase inhibitors, such as trichostatin A (TSA), increases LTR transactivation in response to both IRF-1 and Tat. These results help to define the architecture of interactions between transcription factors binding HIV-1 LTR and confirm the possibility that deacetylase inhibitors, such as TSA, combined with antiviral therapy may represent a valuable approach to control HIV-1 infection.
Collapse
Affiliation(s)
- Giulia Marsili
- Department of Infectious, Parasitic, and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
45
|
Marcello A, Lusic M, Pegoraro G, Pellegrini V, Beltram F, Giacca M. Nuclear organization and the control of HIV-1 transcription. Gene 2004; 326:1-11. [PMID: 14729258 DOI: 10.1016/j.gene.2003.10.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event of significant pathological relevance, which recapitulates general concepts of cellular transcription with some peculiarities. The viral promoter is embedded in a chromatin structure that exerts powerful repression on transcription; activation of gene expression relies on the combined activity of a series of cellular factors that respond to different external stimuli, and on the function of a single viral regulatory protein, the Tat transactivator. Transcriptional activation is consequent to both chromatin remodeling and to the recruitment of elongation-competent RNA polymerase II complexes onto the integrated promoter, two events that require the coordinate, but transient, assembly of different protein complexes. Application of optical imaging techniques now allows us to appreciate the spatial and temporal evolvement of these reactions in vivo. The picture that is emerging is not only descriptive, but also relevant to the understanding of the regulation of the process. In particular, it appears that the confinement of biomolecules within specific subcellular compartments represents a way to control and coordinate the assembly of functional complexes that regulate viral gene expression.
Collapse
Affiliation(s)
- Alessandro Marcello
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Roisin A, Robin JP, Dereuddre-Bosquet N, Vitte AL, Dormont D, Clayette P, Jalinot P. Inhibition of HIV-1 Replication by Cell-penetrating Peptides Binding Rev. J Biol Chem 2004; 279:9208-14. [PMID: 14668323 DOI: 10.1074/jbc.m311594200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New therapeutic agents able to block HIV-1 replication are eagerly sought after to increase the possibilities of treatment of resistant viral strains. In this report, we describe a rational strategy to identify small peptide sequences owning the dual property of penetrating within lymphocytes and of binding to a protein target. Such sequences were identified for two important HIV-1 regulatory proteins, Tat and Rev. Their association to a stabilizing domain consisting of human small ubiquitin-related modifier-1 (SUMO-1) allowed the generation of small proteins named SUMO-1 heptapeptide protein transduction domain for binding Tat (SHPT) and SUMO-1 heptapeptide protein transduction domain for binding Rev (SHPR), which are stable and efficiently penetrate within primary lymphocytes. Analysis of the antiviral activity of these proteins showed that one SHPR is active in both primary lymphocytes and macrophages, whereas one SHPT is active only in the latter cells. These proteins may represent prototypes of new therapeutic agents targeting the crucial functions exerted by both viral regulatory factors.
Collapse
Affiliation(s)
- Armelle Roisin
- Laboratoire de Biologie Moléculaire de la Cellule, UMR5161, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Truong MJ, Delsart V, Bahr GM. Differentially expressed genes in HIV-1-infected macrophages following treatment with the virus-suppressive immunomodulator murabutide. Virus Res 2004; 99:25-33. [PMID: 14687943 DOI: 10.1016/j.virusres.2003.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synthetic immunomodulator murabutide has been found to suppress human immunodeficiency virus type-1 (HIV-1) replication, in macrophages, through a regulated expression of cellular factors needed at different steps in the virus replication cycle. To identify cellular genes implicated in the murabutide-induced virus inhibition, we have carried out a differential display analysis on HIV-1-infected macrophages that were treated, or not, with murabutide. Sequencing of the differentially regulated cDNA bands and verification of the reproducibility of the murabutide effects, by reverse transcription-polymerase chain reaction or by Northern blotting, revealed an up-regulated expression of 21 genes and a down-regulation of seven others. The murabutide-regulated genes encoded proteins implicated in DNA binding, regulation of transcription, oxidative stress, metal binding, and other physiological functions. Six of the genes corresponded to unassigned/expressed sequence tags with yet unknown function. Among the genes which were up-regulated by murabutide and with established effects on inhibiting virus transcription, was the octamer binding factor 1 (Oct-1). We demonstrate the ability of murabutide to induce enhanced Oct-1 protein expression and DNA-binding activity in macrophages. Furthermore, our findings suggest the potential implication of additional transcription factors and metal-binding proteins in mediating the inhibitory effect of murabutide on virus transcription.
Collapse
Affiliation(s)
- Marie José Truong
- Laboratory of Molecular Immunology of Infection and Inflammation, Pasteur Institute in Lille, 1 Rue du Pr Calmette, BP 245, Lille Cedex 59019, France
| | | | | |
Collapse
|
48
|
Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 2003. [DOI: 10.1007/bf02256316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Battisti PL, Daher A, Bannwarth S, Voortman J, Peden KWC, Hiscott J, Mouland AJ, Benarous R, Gatignol A. Additive activity between the trans-activation response RNA-binding protein, TRBP2, and cyclin T1 on HIV type 1 expression and viral production in murine cells. AIDS Res Hum Retroviruses 2003; 19:767-78. [PMID: 14585207 DOI: 10.1089/088922203769232566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tat-mediated trans-activation of the HIV-1 long terminal repeat (LTR) occurs through the phosphorylation of the carboxy-terminal domain of the RNA polymerase II. The kinase complex, pTEFb, composed of cyclin T1 (CycT1) and CDK9, mediates this process. The trans-activation response (TAR) RNA-binding protein 2 (TRBP2) increases HIV-1 LTR expression through TAR and protein kinase R (PKR) binding, but not through interactions with the Tat-CycT1-CDK9 complex. TRBP2 and the Tat-CycT1-CDK9 complex have overlapping binding sites on TAR RNA. TRBP2 and CycT1 increased Tat trans-activation in NIH 3T3 cells with additive effects. Upon transfection of HIV-1 pLAI, pNL4-3, pMAL, and pAD molecular clones, reverse transcriptase (RT) activity and p24 concentration were decreased 200- to 900-fold in NIH 3T3 cells compared with HeLa cells in both cells and supernatants. In murine cells, cotransfection of the HIV clones with CycT1 or TRBP2 increased modestly the expression of RT activity in cell extracts. The analysis of Gag expression in murine cells transfected with CycT1 compared with human cells showed a 20-fold decrease in expression and a strong processing defect. The expression of both CycT1 and TRBP2 had a more than additive activity on RT function in cell extracts and on viral particle production in supernatant of murine cells. These results suggest an activity of CycT1 and TRBP2 at different steps in HIV-1 expression and indicate the requirement for another posttranscriptional factor in murine cells for full HIV replication.
Collapse
Affiliation(s)
- Pier-Luigi Battisti
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Loregian A, Bortolozzo K, Boso S, Sapino B, Betti M, Biasolo MA, Caputo A, Palú G. The Sp1 transcription factor does not directly interact with the HIV-1 Tat protein. J Cell Physiol 2003; 196:251-7. [PMID: 12811817 DOI: 10.1002/jcp.10271] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of Sp1 in regulating the trans-activating activity of the human immunodeficiency virus type 1 (HIV-1) Tat protein has not yet been clearly defined. In fact, studies on the physical and functional interaction between Sp1 and Tat have yielded contradictory results. Here we investigated whether a physical interaction between Sp1 and Tat indeed occurs, exploiting both biochemical and genetic techniques that allow detection of direct protein-protein interactions. Studies performed with the yeast two-hybrid system indicate that Sp1 does not directly interact with the HIV-1 Tat protein. Control experiments demonstrated that both proteins are functionally expressed in the yeast cells. In vitro binding assays further confirmed that Sp1 does not physically bind Tat. These data suggest that in vivo Tat and Sp1 most likely take part of a multicomponent complex and thus encourage the search of the molecule(s) which mediate Tat-Sp1 interaction.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|