1
|
Ariyasingha NM, Samoilenko A, Chowdhury MRH, Nantogma S, Oladun C, Birchall JR, Bawardi T, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Koptyug IV, Goodson BM, Chekmenev EY. Developing Hyperpolarized Butane Gas for Ventilation Lung Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:698-710. [PMID: 39483636 PMCID: PMC11523004 DOI: 10.1021/cbmi.4c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/03/2024]
Abstract
NMR hyperpolarization dramatically improves the detection sensitivity of magnetic resonance through the increase in nuclear spin polarization. Because of the sensitivity increase by several orders of magnitude, additional applications have been unlocked, including imaging of gases in physiologically relevant conditions. Hyperpolarized 129Xe gas recently received FDA approval as the first inhalable gaseous MRI contrast agent for clinical functional lung imaging of a wide range of pulmonary diseases. However, production and utilization of hyperpolarized 129Xe gas faces a number of translational challenges including the high cost and complexity of contrast agent production and imaging using proton-only (i.e., conventional) clinical MRI scanners, which are typically not suited to scan 129Xe nuclei. As a solution to circumvent the translational challenges of hyperpolarized 129Xe, we have recently demonstrated the feasibility of a simple and cheap process for production of proton-hyperpolarized propane gas contrast agent using ultralow-cost disposable production equipment and demonstrated the feasibility of lung ventilation imaging using hyperpolarized propane gas in excised pig lungs. However, previous pilot studies have concluded that the hyperpolarized state of propane gas decays very fast with an exponential decay T 1 constant of ∼0.8 s at 1 bar (physiologically relevant pressure); moreover, the previously reported production rates were too slow for potential clinical utilization. Here, we investigate the feasibility of high-capacity production of hyperpolarized butane gas via heterogeneous parahydrogen-induced polarization using Rh nanoparticle-based catalyst utilizing butene gas as a precursor for parahydrogen pairwise addition. We demonstrate a remarkable result: the lifetime of the hyperpolarized state can be nearly doubled compared to that of propane (T 1 of ∼1.6 s and long-lived spin-state T S of ∼3.8 s at clinically relevant 1 bar pressure). Moreover, we demonstrate a production speed of up to 0.7 standard liters of hyperpolarized gas per second. These two synergistic developments pave the way to biomedical utilization of proton-hyperpolarized gas media for ventilation imaging. Indeed, here we demonstrate the feasibility of phantom imaging of hyperpolarized butane gas in Tedlar bags and also the feasibility of subsecond 2D ventilation gas imaging in excised rabbit lungs with 1.6 × 1.6 mm2 in-plane resolution using a clinical MRI scanner. The demonstrated results have the potential to revolutionize functional pulmonary imaging with a simple and inexpensive on-demand production of proton-hyperpolarized gas contrast media, followed by visualization on virtually any MRI scanner, including emerging bedside low-field MRI scanner technology.
Collapse
Affiliation(s)
- Nuwandi M. Ariyasingha
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Shiraz Nantogma
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Clementinah Oladun
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R. Birchall
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Tarek Bawardi
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G. Salnikov
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M. Kovtunova
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I. Bukhtiyarov
- Boreskov
Institute of Catalysis SB RAS, 5 Acad, Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehuan Luo
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Sidhartha Tan
- Department
of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Igor V. Koptyug
- International
Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- School
of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences
(Ibio), Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Hall CS. Invisible Insights: Probing Lung Function with 129Xe MRI. Acad Radiol 2024; 31:4217-4220. [PMID: 39266445 DOI: 10.1016/j.acra.2024.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Affiliation(s)
- Chase S Hall
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
| |
Collapse
|
3
|
Adelabu I, Nantogma S, Fleischer S, Abdulmojeed M, de Maissin H, Schmidt AB, Lehmkuhl S, Rosen MS, Appelt S, Theis T, Qian C, Chekmenev EY. Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing. Angew Chem Int Ed Engl 2024; 63:e202406551. [PMID: 38822492 PMCID: PMC11463167 DOI: 10.1002/anie.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
It has recently been shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to maser signals, potentially enabling new ways of sensing hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in a preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of the MR detector (up to 1 million) were also demonstrated.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Simon Fleischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Soeren Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Matthew S Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
4
|
Kooner HK, Sharma M, McIntosh MJ, Dhaliwal I, Nicholson JM, Kirby M, Svenningsen S, Parraga G. 129Xe MRI Ventilation Textures and Longitudinal Quality-of-Life Improvements in Long-COVID. Acad Radiol 2024; 31:3825-3836. [PMID: 38637239 DOI: 10.1016/j.acra.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
RATIONALE AND OBJECTIVES It remains difficult to predict longitudinal outcomes in long-COVID, even with chest CT and functional MRI. 129Xe MRI reflects airway dysfunction, measured using ventilation defect percent (VDP) and in long-COVID patients, MRI VDP was abnormal, suggestive of airways disease. While MRI VDP and quality-of-life improved 15-month post-COVID infection, both remained abnormal. To better understand the relationship of airways disease and quality-of-life improvements in patients with long-COVID, we extracted 129Xe ventilation MRI textures and generated machine-learning models in an effort to predict improved quality-of-life, 15-month post-infection. MATERIALS AND METHODS Long-COVID patients provided written-informed consent to 3-month and 15-month post-infection visits. Pyradiomics was used to extract 129Xe ventilation MRI texture features, which were ranked using a Random-Forest classifier. Top-ranking features were used in classification models to dichotomize patients based on St. George's Respiratory Questionnaire (SGRQ) score improvement greater than the minimal-clinically-important-difference (MCID). Classification performance was evaluated using the area under the receiver-operator-characteristic-curve (AUC), sensitivity, and specificity. RESULTS 120 texture features were extracted from 129Xe ventilation MRI in 44 long-COVID participants (54 ± 14 years), including 30 (52 ± 12 years) with ΔSGRQ≥MCID and 14 (58 ± 18 years) with ΔSGRQ CONCLUSION A machine learning model exclusively trained on 129Xe MRI ventilation textures explained improved SGRQ-scores 12 months later, and outperformed clinical models. Their unique spatial-intensity information helps build our understanding about long-COVID airway dysfunction.
Collapse
Affiliation(s)
- Harkiran K Kooner
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Maksym Sharma
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Marrissa J McIntosh
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - Inderdeep Dhaliwal
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - J Michael Nicholson
- Division of Respirology, Department of Medicine, Western University, London, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, McMaster University and Firestone Institute for Respiratory Health, St. Joseph's Health Care, Hamilton, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Division of Respirology, Department of Medicine, Western University, London, Canada.
| |
Collapse
|
5
|
Taylor Y, Wilson FJ, Kim M, Parker GJM. Sensitivity analysis of models of gas exchange for lung hyperpolarised 129Xe MR. NMR IN BIOMEDICINE 2024:e5239. [PMID: 39183451 DOI: 10.1002/nbm.5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate the current 129Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.
Collapse
Affiliation(s)
- Yohn Taylor
- Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Mina Kim
- Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Bioxydyn Limited, Manchester, UK
| |
Collapse
|
6
|
Li Z, Xiao S, Wang C, Li H, Zhao X, Duan C, Zhou Q, Rao Q, Fang Y, Xie J, Shi L, Guo F, Ye C, Zhou X. Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1828-1840. [PMID: 38194397 DOI: 10.1109/tmi.2024.3351211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Magnetic resonance imaging (MRI) using hyperpolarized noble gases provides a way to visualize the structure and function of human lung, but the long imaging time limits its broad research and clinical applications. Deep learning has demonstrated great potential for accelerating MRI by reconstructing images from undersampled data. However, most existing deep convolutional neural networks (CNN) directly apply square convolution to k-space data without considering the inherent properties of k-space sampling, limiting k-space learning efficiency and image reconstruction quality. In this work, we propose an encoding enhanced (EN2) complex CNN for highly undersampled pulmonary MRI reconstruction. EN2 complex CNN employs convolution along either the frequency or phase-encoding direction, resembling the mechanisms of k-space sampling, to maximize the utilization of the encoding correlation and integrity within a row or column of k-space. We also employ complex convolution to learn rich representations from the complex k-space data. In addition, we develop a feature-strengthened modularized unit to further boost the reconstruction performance. Experiments demonstrate that our approach can accurately reconstruct hyperpolarized 129Xe and 1H lung MRI from 6-fold undersampled k-space data and provide lung function measurements with minimal biases compared with fully sampled images. These results demonstrate the effectiveness of the proposed algorithmic components and indicate that the proposed approach could be used for accelerated pulmonary MRI in research and clinical lung disease patient care.
Collapse
|
7
|
Wild JM, Gleeson FV, Svenningsen S, Grist JT, Saunders LC, Collier GJ, Sharma M, Tcherner S, Mozaffaripour A, Matheson AM, Parraga G. Review of Hyperpolarized Pulmonary Functional 129 Xe MR for Long-COVID. J Magn Reson Imaging 2024; 59:1120-1134. [PMID: 37548112 DOI: 10.1002/jmri.28940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
The respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID. A number of research sites employed 129 Xe magnetic resonance imaging (MRI) during the pandemic and evaluated patients post-infection, months after hospitalization or home-based care as a way to better understand the consequences of infection on 129 Xe MR gas-exchange and ventilation imaging. A systematic review and comprehensive search were employed using MEDLINE via PubMed (April 2023) using the National Library of Medicine's Medical Subject Headings and key words: post-COVID-19, MRI, 129 Xe, long-COVID, COVID pneumonia, and post-acute COVID-19 syndrome. Fifteen peer-reviewed manuscripts were identified including four editorials, a single letter to the editor, one review article, and nine original research manuscripts (2020-2023). MRI and MR spectroscopy results are summarized from these prospective, controlled studies, which involved small sample sizes ranging from 9 to 76 participants. Key findings included: 1) 129 Xe MRI gas-exchange and ventilation abnormalities, 3 months post-COVID-19 infection, and 2) a combination of MRI gas-exchange and ventilation abnormalities alongside persistent symptoms in patients hospitalized and not hospitalized for COVID-19, 1-year post-infection. The persistence of respiratory symptoms and 129 Xe MRI abnormalities in the context of normal or nearly normal pulmonary function test results and chest computed tomography (CT) was consistent. Longitudinal improvements were observed in long-term follow-up of long-COVID patients but mean 129 Xe gas-exchange, ventilation heterogeneity values and symptoms remained abnormal, 1-year post-infection. Pulmonary functional MRI using inhaled hyperpolarized 129 Xe gas has played a role in detecting gas-exchange and ventilation abnormalities providing complementary information that may help develop our understanding of the root causes of long-COVID. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Fergus V Gleeson
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Sarah Svenningsen
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - James T Grist
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Laura C Saunders
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maksym Sharma
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Sam Tcherner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Ali Mozaffaripour
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Alexander M Matheson
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
9
|
Siora A, Vontetsianos A, Chynkiamis N, Anagnostopoulou C, Bartziokas K, Anagnostopoulos N, Rovina N, Bakakos P, Papaioannou AI. Small airways in asthma: From inflammation and pathophysiology to treatment response. Respir Med 2024; 222:107532. [PMID: 38228215 DOI: 10.1016/j.rmed.2024.107532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Small airways are characterized as those with an inner diameter less than 2 mm and constitute a major site of pathology and inflammation in asthma disease. It is estimated that small airways dysfunction may occur before the emergence of noticeable symptoms, spirometric abnormalities and imaging findings, thus characterizing them as "the quiet or silent zone" of the lungs. Despite their importance, measuring and quantifying small airways dysfunction presents a considerable challenge due to their inaccessibility in usual functional measurements, primarily due to their size and peripheral localization. Several pulmonary function tests have been proposed for the assessment of the small airways, including impulse oscillometry, nitrogen washout, body plethysmography, as well as imaging methods. Nevertheless, none of these methods has been established as the definitive "gold standard," thus, a combination of them should be used for an effective assessment of the small airways. Widely used asthma treatments seem to also affect several parameters of the small airways. Emerging biologic treatments show promising results in reducing small airways inflammation and remodelling, providing evidence for potential alterations in the disease's progression and outcomes. These novel therapies have implications not only in the clinical aspects of asthma but also in its inflammatory and functional aspects.
Collapse
Affiliation(s)
- Anastasia Siora
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece.
| | - Angelos Vontetsianos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikolaos Chynkiamis
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Christina Anagnostopoulou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | | | - Nektarios Anagnostopoulos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Petros Bakakos
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| | - Andriana I Papaioannou
- 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, School of Medicine, Sotiria Chest Hospital, Athens, Greece
| |
Collapse
|
10
|
Yuan C, Guo Q, Zeng Q, Yuan Y, Jiang W, Yang Y, Bouchard LS, Ye C, Zhou X. Dual-Signal Chemical Exchange Saturation Transfer (Dusi-CEST): An Efficient Strategy for Visualizing Drug Delivery Monitoring in Living Cells. Anal Chem 2024; 96:1436-1443. [PMID: 38173081 DOI: 10.1021/acs.analchem.3c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We report a dual-signal chemical exchange saturation transfer (Dusi-CEST) strategy for drug delivery and detection in living cells. The two signals can be detected by operators in complex environments. This strategy is demonstrated on a cucurbit[6]uril (CB[6]) nanoparticle probe, as an example. The CB[6] probe is equipped with two kinds of hydrophobic cavities: one is found inside CB[6] itself, whereas the other exists inside the nanoparticle. When the probe is dispersed in aqueous solution as part of a hyperpolarized 129Xe NMR experiment, two signals appear at two different chemical shifts (100 and 200 ppm). These two resonances correspond to the NMR signals of 129Xe in the two different cavities. Upon loading with hydrophobic drugs, such as paclitaxel, for intracellular drug delivery, the two resonances undergo significant changes upon drug loading and cargo release, giving rise to a metric enabling the assessment of drug delivery success. The simultaneous change of Dusi-CEST likes a mobile phone that can receive both LTE and Wi-Fi signals, which can help reduce the occurrence of false positives and false negatives in complex biological environments and help improve the accuracy and sensitivity of single-shot detection.
Collapse
Affiliation(s)
- Chenlu Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Weiping Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Louis-S Bouchard
- Departments of Chemistry and Biochemistry and of Bioengineering, California NanoSystems Institute, Jonsson Comprehensive Cancer Center, The Molecular Biology Institute, University of California, Los Angeles, California 90095, United States
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Wuhan, Hubei 430074, China
- Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
11
|
Ohno Y, Ozawa Y, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Koyama H. Lung Magnetic Resonance Imaging: Technical Advancements and Clinical Applications. Invest Radiol 2024; 59:38-52. [PMID: 37707840 DOI: 10.1097/rli.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno and H.N.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ozawa and T.U.); Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.Y., D.T.); and Department of Radiology, Advanced Diagnostic Medical Imaging, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (H.K.)
| | | | | | | | | | | | | |
Collapse
|
12
|
A R, Han Z, Wang T, Zhu M, Zhou M, Sun X. Pulmonary delivery of nano-particles for lung cancer diagnosis and therapy: Recent advances and future prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1933. [PMID: 37857568 DOI: 10.1002/wnan.1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Although our understanding of lung cancer has significantly improved in the past decade, it is still a disease with a high incidence and mortality rate. The key reason is that the efficacy of the therapeutic drugs is limited, mainly due to insufficient doses of drugs delivered to the lungs. To achieve precise lung cancer diagnosis and treatment, nano-particles (NPs) pulmonary delivery techniques have attracted much attention and facilitate the exploration of the potential of those in inhalable NPs targeting tumor lesions. Since the therapeutic research focusing on pulmonary delivery NPs has rapidly developed and evolved substantially, this review will mainly discuss the current developments of pulmonary delivery NPs for precision lung cancer diagnosis and therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Li Z, Xiao S, Wang C, Li H, Zhao X, Zhou Q, Rao Q, Fang Y, Xie J, Shi L, Ye C, Zhou X. Complementation-reinforced network for integrated reconstruction and segmentation of pulmonary gas MRI with high acceleration. Med Phys 2024; 51:378-393. [PMID: 37401205 DOI: 10.1002/mp.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Hyperpolarized (HP) gas MRI enables the clear visualization of lung structure and function. Clinically relevant biomarkers, such as ventilated defect percentage (VDP) derived from this modality can quantify lung ventilation function. However, long imaging time leads to image quality degradation and causes discomfort to the patients. Although accelerating MRI by undersampling k-space data is available, accurate reconstruction and segmentation of lung images are quite challenging at high acceleration factors. PURPOSE To simultaneously improve the performance of reconstruction and segmentation of pulmonary gas MRI at high acceleration factors by effectively utilizing the complementary information in different tasks. METHODS A complementation-reinforced network is proposed, which takes the undersampled images as input and outputs both the reconstructed images and the segmentation results of lung ventilation defects. The proposed network comprises a reconstruction branch and a segmentation branch. To effectively exploit the complementary information, several strategies are designed in the proposed network. Firstly, both branches adopt the encoder-decoder architecture, and their encoders are designed to share convolutional weights for facilitating knowledge transfer. Secondly, a designed feature-selecting block discriminately feeds shared features into decoders of both branches, which can adaptively pick suitable features for each task. Thirdly, the segmentation branch incorporates the lung mask obtained from the reconstructed images to enhance the accuracy of the segmentation results. Lastly, the proposed network is optimized by a tailored loss function that efficiently combines and balances these two tasks, in order to achieve mutual benefits. RESULTS Experimental results on the pulmonary HP 129 Xe MRI dataset (including 43 healthy subjects and 42 patients) show that the proposed network outperforms state-of-the-art methods at high acceleration factors (4, 5, and 6). The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Dice score of the proposed network are enhanced to 30.89, 0.875, and 0.892, respectively. Additionally, the VDP obtained from the proposed network has good correlations with that obtained from fully sampled images (r = 0.984). At the highest acceleration factor of 6, the proposed network promotes PSNR, SSIM, and Dice score by 7.79%, 5.39%, and 9.52%, respectively, in comparison to the single-task models. CONCLUSION The proposed method effectively enhances the reconstruction and segmentation performance at high acceleration factors up to 6. It facilitates fast and high-quality lung imaging and segmentation, and provides valuable support in the clinical diagnosis of lung diseases.
Collapse
Affiliation(s)
- Zimeng Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qiuchen Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Junshuai Xie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Lei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaohui Ye
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
14
|
Shepelytskyi Y, Grynko V, Batarchuk V, Hasselbrink CL, Kovacs AH, Ruset IC, Rodriguez K, Al Taradeh N, Talwar T, DeBoef B, Albert MS. R3-Noria-methanesulfonate: A Molecular Cage with Superior Hyperpolarized Xenon-129 MRI Contrast. ACS Sens 2023; 8:4707-4715. [PMID: 38064687 DOI: 10.1021/acssensors.3c01791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Viktoriia Batarchuk
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Carson L Hasselbrink
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Antal H Kovacs
- Applied Life Science Program, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Iulian C Ruset
- Xemed LCC, 16 Strafford Avenue, Durham, New Hampshire 03824, United States
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Nedal Al Taradeh
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
- Northern Ontario School of Medicine, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
15
|
Grynko V, Shepelytskyi Y, Batarchuk V, Aalto H, Li T, Ruset IC, DeBoef B, Albert MS. Cucurbit[6]uril Hyperpolarized Chemical Exchange Saturation Transfer Pulse Sequence Parameter Optimization and Detectability Limit Assessment at 3.0T. Chemphyschem 2023; 24:e202300346. [PMID: 37713677 DOI: 10.1002/cphc.202300346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 μM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 μM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.
Collapse
Affiliation(s)
- Vira Grynko
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry and Materials Science Program, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Viktoriia Batarchuk
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Hannah Aalto
- Applied Life Science Program, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| | | | - Brenton DeBoef
- Chemistry Department, University of Rhode Island, 45 Upper College Rd, Kingston, RI, 02881, USA
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, 1040 Oliver Rd, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
- Northern Ontario School of Medicine, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
16
|
Ariyasingha NM, Samoilenko A, Birchall JR, Chowdhury MRH, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Zhu DC, Qian C, Bradley M, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Ultra-Low-Cost Disposable Hand-Held Clinical-Scale Propane Gas Hyperpolarizer for Pulmonary Magnetic Resonance Imaging Sensing. ACS Sens 2023; 8:3845-3854. [PMID: 37772716 PMCID: PMC10902876 DOI: 10.1021/acssensors.3c01369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperpolarized magnetic resonance imaging (MRI) contrast agents are revolutionizing the field of biomedical imaging. Hyperpolarized Xe-129 was recently FDA approved as an inhalable MRI contrast agent for functional lung imaging sensing. Despite success in research settings, modern Xe-129 hyperpolarizers are expensive (up to $1M), large, and complex to site and operate. Moreover, Xe-129 sensing requires specialized MRI hardware that is not commonly available on clinical MRI scanners. Here, we demonstrate that proton-hyperpolarized propane gas can be produced on demand using a disposable, hand-held, clinical-scale hyperpolarizer via parahydrogen-induced polarization, which relies on parahydrogen as a source of hyperpolarization. The device consists of a heterogeneous catalytic reactor connected to a gas mixture storage can containing pressurized hyperpolarization precursors: propylene and parahydrogen (10 bar total pressure). Once the built-in flow valve of the storage can is actuated, the precursors are ejected from the can into a reactor, and a stream of hyperpolarized propane gas is ejected from the reactor. Robust operation of the device is demonstrated for producing proton sensing polarization of 1.2% in a wide range of operational pressures and gas flow rates. We demonstrate that the propylene/parahydrogen gas mixture can retain potency for days in the storage can with a monoexponential decay time constant of 6.0 ± 0.5 days, which is limited by the lifetime of the parahydrogen singlet spin state in the storage container. The utility of the produced sensing agent is demonstrated for phantom imaging on a 3 T clinical MRI scanner located 100 miles from the agent/device preparation site and also for ventilation imaging of excised pig lungs using a 0.35 T clinical MRI scanner. The cost of the device components is less than $35, which we envision can be reduced to less than $5 for mass-scale production. The hyperpolarizer device can be reused, recycled, or disposed.
Collapse
Affiliation(s)
- Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Jonathan R Birchall
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Bradley
- Division of Laboratory Animal Resources, Wayne State University, Detroit, Michigan 48202, United States
| | - Juri G Gelovani
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Siriraj Hospital Mahidol University, 10700, Bangkok, Thailand
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
17
|
Kern AL, Gutberlet M, Rumpel R, Bruesch I, Hohlfeld JM, Wacker F, Hensen B. Compartment-specific 129Xe HyperCEST z spectroscopy and chemical shift imaging of cucurbit[6]uril in spontaneously breathing rats. Z Med Phys 2023:S0939-3889(23)00094-6. [PMID: 37661475 DOI: 10.1016/j.zemedi.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
129Xe hyperpolarized gas chemical exchange saturation transfer (HyperCEST) MRI has been suggested as molecular imaging modality but translation to in vivo imaging has been slow, likely due to difficulties of synthesizing suitable molecules. Cucurbit[6]uril-either in readily available non-functionalized or potentially in functionalized form-may, combined with 129Xe HyperCEST MRI, prove useful as a switchable 129Xe MR contrast agent but the likely differential properties of contrast generation in individual chemical compartments as well as the influence of 129Xe signal drifts encountered in vivo on HyperCEST MRI are unknown. Here, HyperCEST z spectroscopy and chemical shift imaging with compartment-specific analysis are performed in a total of 10 rats using cucurbit[6]uril injected i.v. and under a protocol employing spontaneous respiration. Differences in intensity of the HyperCEST effect between chemical compartments and anatomical regions are investigated. Strategies to mitigate influence of signal instabilities associated with drifts in physiological parameters are developed. It is shown that presence of cucurbit[6]uril can be readily detected under spontaneous 129Xe inhalation mostly in aqueous tissues further away from the lung. Differences of effect intensity in individual regions and compartments must be considered in HyperCEST data interpretation. In particular, there seems to be almost no effect in lipids. 129Xe HyperCEST MR measurements utilizing spontaneous respiration protocols and extended measurement times are feasible. HyperCEST MRI of non-functionalized cucurbit[6]uril may create contrast between anatomical structures in vivo.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
18
|
Vaeggemose M, Schulte RF, Hansen ESS, Miller JJ, Rasmussen CW, Pilgrim-Morris JH, Stewart NJ, Collier GJ, Wild JM, Laustsen C. A Framework for Predicting X-Nuclei Transmitter Gain Using 1H Signal. Tomography 2023; 9:1603-1616. [PMID: 37736981 PMCID: PMC10514872 DOI: 10.3390/tomography9050128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE HealthCare, 2605 Brondby, Denmark;
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | | | - Esben S. S. Hansen
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | - Jack J. Miller
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | - Camilla W. Rasmussen
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| | - Jemima H. Pilgrim-Morris
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Neil J. Stewart
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Guilhem J. Collier
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Jim M. Wild
- POLARIS Group, University of Sheffield, Sheffield S10 2TN, UK; (J.H.P.-M.); (N.J.S.); (G.J.C.); (J.M.W.)
| | - Christoffer Laustsen
- MR Research Centre, Aarhus University, 8200 Aarhus, Denmark; (E.S.S.H.); (J.J.M.)
| |
Collapse
|
19
|
Mikowska L, Grynko V, Shepelytskyi Y, Ruset IC, Deschamps J, Aalto H, Targosz-Korecka M, Balamore D, Harańczyk H, Albert MS. Revealing a Third Dissolved-Phase Xenon-129 Resonance in Blood Caused by Hemoglobin Glycation. Int J Mol Sci 2023; 24:11311. [PMID: 37511071 PMCID: PMC10380088 DOI: 10.3390/ijms241411311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Hyperpolarized (HP) xenon-129 (129Xe), when dissolved in blood, has two NMR resonances: one in red blood cells (RBC) and one in plasma. The impact of numerous blood components on these resonances, however, has not yet been investigated. This study evaluates the effects of elevated glucose levels on the chemical shift (CS) and T2* relaxation times of HP 129Xe dissolved in sterile citrated sheep blood for the first time. HP 129Xe was mixed with sheep blood samples premixed with a stock glucose solution using a liquid-gas exchange module. Magnetic resonance spectroscopy was performed on a 3T clinical MRI scanner using a custom-built quadrature dual-tuned 129Xe/1H coil. We observed an additional resonance for the RBCs (129Xe-RBC1) for the increased glucose levels. The CS of 129Xe-RBC1 and 129Xe-plasma peaks did not change with glucose levels, while the CS of 129Xe-RBC2 (original RBC resonance) increased linearly at a rate of 0.015 ± 0.002 ppm/mM with glucose level. 129Xe-RBC1 T2* values increased nonlinearly from 1.58 ± 0.24 ms to 2.67 ± 0.40 ms. As a result of the increased glucose levels in blood samples, the novel additional HP 129Xe dissolved phase resonance was observed in blood and attributed to the 129Xe bound to glycated hemoglobin (HbA1c).
Collapse
Affiliation(s)
- Lutosława Mikowska
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Vira Grynko
- Chemistry and Material Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 7A5, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | - Joseph Deschamps
- Applied Life Sciences Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Hannah Aalto
- Applied Life Sciences Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marta Targosz-Korecka
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Dilip Balamore
- Department of Engineering, Physics and Technology, Nassau Community College, New York, NY 11530, USA
| | - Hubert Harańczyk
- Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, 30-348 Krakow, Poland
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 7A5, Canada
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine University, Thunder Bay, ON P3E 2C6, Canada
| |
Collapse
|
20
|
Qing K, Altes TA, Mugler JP, Mata JF, Tustison NJ, Ruppert K, Bueno J, Flors L, Shim YM, Zhao L, Cassani J, Teague WG, Kim JS, Wang Z, Ruset IC, Hersman FW, Mehrad B. Hyperpolarized Xenon-129: A New Tool to Assess Pulmonary Physiology in Patients with Pulmonary Fibrosis. Biomedicines 2023; 11:1533. [PMID: 37371626 PMCID: PMC10294784 DOI: 10.3390/biomedicines11061533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE The existing tools to quantify lung function in interstitial lung diseases have significant limitations. Lung MRI imaging using inhaled hyperpolarized xenon-129 gas (129Xe) as a contrast agent is a new technology for measuring regional lung physiology. We sought to assess the utility of the 129Xe MRI in detecting impaired lung physiology in usual interstitial pneumonia (UIP). MATERIALS AND METHODS After institutional review board approval and informed consent and in compliance with HIPAA regulations, we performed chest CT, pulmonary function tests (PFTs), and 129Xe MRI in 10 UIP subjects and 10 healthy controls. RESULTS The 129Xe MRI detected highly heterogeneous abnormalities within individual UIP subjects as compared to controls. Subjects with UIP had markedly impaired ventilation (ventilation defect fraction: UIP: 30 ± 9%; healthy: 21 ± 9%; p = 0.026), a greater amount of 129Xe dissolved in the lung interstitium (tissue-to-gas ratio: UIP: 1.45 ± 0.35%; healthy: 1.10 ± 0.17%; p = 0.014), and impaired 129Xe diffusion into the blood (RBC-to-tissue ratio: UIP: 0.20 ± 0.06; healthy: 0.28 ± 0.05; p = 0.004). Most MRI variables had no correlation with the CT and PFT measurements. The elevated level of 129Xe dissolved in the lung interstitium, in particular, was detectable even in subjects with normal or mildly impaired PFTs, suggesting that this measurement may represent a new method for detecting early fibrosis. CONCLUSION The hyperpolarized 129Xe MRI was highly sensitive to regional functional changes in subjects with UIP and may represent a new tool for understanding the pathophysiology, monitoring the progression, and assessing the effectiveness of treatment in UIP.
Collapse
Affiliation(s)
- Kun Qing
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Talissa A. Altes
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA; (T.A.A.); (J.C.)
| | - John P. Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - Jaime F. Mata
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Cincinnati, PA 19104, USA;
| | - Juliana Bueno
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - Lucia Flors
- Department of Radiology, Keck Medical Center, University of Southern California, Los Angeles, CA 90089, USA;
| | - Yun M. Shim
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - Li Zhao
- Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Joanne Cassani
- Department of Radiology, University of Missouri, Columbia, MO 65211, USA; (T.A.A.); (J.C.)
| | - William G. Teague
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - John S. Kim
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22903, USA; (J.P.M.III); (J.F.M.); (N.J.T.); (J.B.); (Y.M.S.); (W.G.T.); (J.S.K.)
| | - Zhixing Wang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | | | - F. William Hersman
- Xemed LLC, Durham, NH 03824, USA; (I.C.R.); (F.W.H.)
- Department of Physics, University of New Hampshire, Durham, NH 03824, USA
| | - Borna Mehrad
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
21
|
Perron S, Ouriadov A. Hyperpolarized 129Xe MRI at low field: Current status and future directions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107387. [PMID: 36731353 DOI: 10.1016/j.jmr.2023.107387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Magnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration. Moreover, the significantly longer apparent transverse relaxation time T2* of these HP gases at low magnetic field strengths results in fewer necessary radiofrequency (RF) pulses, permitting larger flip angles; this allows for high-sensitivity imaging of in vivo animal and human lungs at conventionally low (<0.5 T) field strengths and suggests that the low field regime is optimal for pulmonary MRI using hyperpolarized gases. In this review, theory on the common spin-exchange optical-pumping method of hyperpolarization and the field dependence of the MR signal of HP gases are presented, in the context of human lung imaging. The current state-of-the-art is explored, with emphasis on both MRI hardware (low field scanners, RF coils, and polarizers) and image acquisition techniques (pulse sequences) advancements. Common challenges surrounding imaging of HP gases and possible solutions are discussed, and the future of low field hyperpolarized gas MRI is posed as being a clinically-accessible and versatile imaging method, circumventing the siting restrictions of conventional high field scanners and bringing point-of-care pulmonary imaging to global facilities.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada.
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Forghani F, Castillo R, Castillo E, PhD BJ, Rusthoven C, Kwak J, Moiseenko V, Grills I, Miften M, Vinogradskiy Y, Guerrero T. Is individual perfusion dose-response different than ventilation dose-response for lung cancer patients treated with radiotherapy? Br J Radiol 2023; 96:20220119. [PMID: 36633096 PMCID: PMC9975372 DOI: 10.1259/bjr.20220119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/18/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Current ventilation and perfusion dose-response studies focus on single-modalities (ventilation or perfusion) and perform pulmonary-toxicity assessment related to radiotherapy on a population-based basis. This study aims at quantitative and clinical evaluation of intrapatient differences between ventilation and perfusion dose-responses among lung cancer patients treated with radiotherapy. METHODS 20 patients enrolled on a prospective functional avoidance protocol underwent single photon emission computed tomography-CT ventilation and perfusion scans pre- and post-radiotherapy. Relative changes in pre- to post-treatment ventilation and perfusion in lung regions receiving ≥20 Gy were calculated. In addition, the slopes of the linear fit to the relative ventilation and perfusion changes in regions receiving 0-60 Gy were calculated. A radiologist read and assigned a functional defect score to pre- and post-treatment ventilation/perfusion scans. RESULTS 25% of patients had a difference >35% between ventilation and perfusion pre- to post-treatment changes and 20-30% of patients had opposite directions for ventilation and perfusion pre- to post-treatment changes. Using a semi-quantitative scale, radiologist assessment showed that 20% of patients had different pre- to post-treatment ventilation changes when compared to pre- to post-treatment perfusion changes. CONCLUSION Our data showed that ventilation dose-response can differ from perfusion dose-response for 20-30% of patients. Therefore, when performing thoracic dose-response in cancer patients, it is insufficient to look at ventilation or perfusion alone; but rather both modes of functional imaging may be needed when predicting for clinical outcomes. ADVANCES IN KNOWLEDGE The significance of this study can be highlighted by the differences between the intrapatient dose-response assessments of this analysis compared to existing population-based dose-response analyses. Elucidating intrapatient ventilation and perfusion dose-response differences may be valuable in predicting pulmonary toxicity in lung cancer patients post-radiotherapy.
Collapse
Affiliation(s)
| | | | - Edward Castillo
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan, United States
| | - Bernard Jones PhD
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - Chad Rusthoven
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | - Jennifer Kwak
- Department of Radiology, University of Colorado School of Medicine, Aurora, CO
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applies Sciences, University of California San Diego, San Diego, CA
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan, United States
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO
| | | | - Thomas Guerrero
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan, United States
| |
Collapse
|
23
|
Kooner HK, McIntosh MJ, Matheson AM, Abdelrazek M, Albert MS, Dhaliwal I, Kirby M, Ouriadov A, Santyr GE, Venegas C, Radadia N, Svenningsen S, Nicholson JM, Parraga G. Post-Acute COVID-19 Syndrome: 129Xe MRI Ventilation Defects and Respiratory Outcomes One Year Later. Radiology 2023; 307:e222557. [PMID: 36749209 PMCID: PMC9926501 DOI: 10.1148/radiol.222557] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background In people with post-acute COVID-19 syndrome (PACS) and normal pulmonary function, 129Xe MRI ventilation defects, abnormal quality-of-life scores, and exercise limitation were reported 3-months after infection; the longitudinal trajectory remains unclear. Purpose To measure and compare pulmonary function, exercise capacity, quality-of-life, and 129Xe MRI ventilation defect percent (VDP) in people with PACS evaluated 3- and 15-months post-infection. Materials and Methods In this prospective study, participants with PACS aged 18-80 years were enrolled between July 2020 and August 2021 from two quaternary care centers. They were evaluated 3-months and 15-months post-infection for: 129Xe MRI VDP, diffusing capacity of the lung for carbon monoxide (DLCO), spirometry, oscillometry, six-minute walk distance (6MWD), and St. George's Respiratory Questionnaire (SGRQ). Differences between time-points were evaluated using paired t-tests. Multivariable models were generated to explain exercise capacity and quality-of-life improvements. Odds ratios (OR) were used to evaluate potential treatment influences. Results Fifty-three participants (mean age, 55 years ±18[SD]; 26 male; 27 female) attended both 3- and 15-month visits and were included in analysis. 129Xe MRI VDP (5.4%, 4.2%; P=.003), forced expiratory volume in 1-second (85%pred, 90%pred; P=.001), DLCO (89%pred, 99%pred; P=.002) and SGRQ (35, 25; P<.001) improved between the 3- and 15-month visit. VDP measured at 3- months post-COVID predicted the change in 6MWD (β=-.643, P=.001) while treatment with respiratory medication at 3-months predicted improved 15-month quality-of-life score (OR=4.0; 95%CI:1.2,13.8, P=.03). Conclusion Pulmonary function, gas-exchange, exercise capacity, quality-of-life, and 129Xe MRI ventilation defect percent (VDP) improved in participants with post-acute COVID-19 syndrome evaluated at 15-months as compared to 3-months post-infection. VDP measured at 3-months post-infection correlated with improved exercise capacity, whilst treatment with respiratory medication was associated with improved quality-of-life score at 15-months post-infection. Clinical Trial Registration: www.clinicaltrials.gov NCT05014516 See also the editorial by Vogel-Claussen in this issue.
Collapse
Affiliation(s)
| | | | | | | | | | - Inderdeep Dhaliwal
- Division of Respirology, Department of Medicine, Western University,
London, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Toronto,
Canada
| | - Alexei Ouriadov
- Department of Physics and Astronomy, Western University, London,
Canada
| | | | - Carmen Venegas
- Division of Respirology, Department of Medicine, McMaster University
and Firestone Institute for Respiratory Health, St Joseph's Health Care,
Hamilton, Canada
| | - Nisarg Radadia
- Division of Respirology, Department of Medicine, McMaster University
and Firestone Institute for Respiratory Health, St Joseph's Health Care,
Hamilton, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, McMaster University
and Firestone Institute for Respiratory Health, St Joseph's Health Care,
Hamilton, Canada
| | - J Michael Nicholson
- Division of Respirology, Department of Medicine, Western University,
London, Canada
| | - Grace Parraga
- Robarts Research Institute,Department of Medical Biophysics,Department of Medical Imaging, Western University, London,
Canada,Division of Respirology, Department of Medicine, Western University,
London, Canada
| |
Collapse
|
24
|
Sun P, Wu Z, Lin L, Hu G, Zhang X, Wang J. MR-Nucleomics: The study of pathological cellular processes with multinuclear magnetic resonance spectroscopy and imaging in vivo. NMR IN BIOMEDICINE 2023; 36:e4845. [PMID: 36259659 DOI: 10.1002/nbm.4845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Clinical medicine has experienced a rapid development in recent decades, during which therapies targeting specific cellular signaling pathways, or specific cell surface receptors, have been increasingly adopted. While these developments in clinical medicine call for improved precision in diagnosis and treatment monitoring, modern medical imaging methods are restricted mainly to anatomical imaging, lagging behind the requirements of precision medicine. Although positron emission tomography and single photon emission computed tomography have been used clinically for studies of metabolism, their applications have been limited by the exposure risk to ionizing radiation, the subsequent limitation in repeated and longitudinal studies, and the incapability in assessing downstream metabolism. Magnetic resonance spectroscopy (MRS) or spectroscopic imaging (MRSI) are, in theory, capable of assessing molecular activities in vivo, although they are often limited by sensitivity. Here, we review some recent developments in MRS and MRSI of multiple nuclei that have potential as molecular imaging tools in the clinic.
Collapse
Affiliation(s)
- Peng Sun
- Clinical & Technical Support, Philips Healthcare, China
| | - Zhigang Wu
- Clinical & Technical Support, Philips Healthcare, China
| | - Liangjie Lin
- Clinical & Technical Support, Philips Healthcare, China
| | - Geli Hu
- Clinical & Technical Support, Philips Healthcare, China
| | | | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, China
| |
Collapse
|
25
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
26
|
Nelson C, Schmidt AB, Adelabu I, Nantogma S, Kiselev VG, Abdurraheem A, de Maissin H, Lehmkuhl S, Appelt S, Theis T, Chekmenev EY. Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2023; 62:e202215678. [PMID: 36437237 PMCID: PMC9889133 DOI: 10.1002/anie.202215678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The feasibility of Carbon-13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C-13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1-13 C]acetate. Hyperpolarized ethyl [1-13 C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1-13 C]acetate and polarization transfer from nascent parahydrogen-derived protons to the carbon-13 nucleus via magnetic field cycling yielding C-13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non-cryogenic 1.4T NMR spectrometer equipped with a radio-frequency detection coil with a quality factor (Q) of 32 without any modifications. C-13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long-lasting C-13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C-13 magnetic resonance hyperpolarization.
Collapse
Affiliation(s)
- Christopher Nelson
- Department of Chemistry, North Carolina State University, 27695-8204, Raleigh, NC, USA
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Valerij G Kiselev
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-, Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, 27695-8204, Raleigh, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
27
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
28
|
Ahookhosh K, Vanoirbeek J, Vande Velde G. Lung function measurements in preclinical research: What has been done and where is it headed? Front Physiol 2023; 14:1130096. [PMID: 37035677 PMCID: PMC10073442 DOI: 10.3389/fphys.2023.1130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Due to the close interaction of lung morphology and functions, repeatable measurements of pulmonary function during longitudinal studies on lung pathophysiology and treatment efficacy have been a great area of interest for lung researchers. Spirometry, as a simple and quick procedure that depends on the maximal inspiration of the patient, is the most common lung function test in clinics that measures lung volumes against time. Similarly, in the preclinical area, plethysmography techniques offer lung functional parameters related to lung volumes. In the past few decades, many innovative techniques have been introduced for in vivo lung function measurements, while each one of these techniques has their own advantages and disadvantages. Before each experiment, depending on the sensitivity of the required pulmonary functional parameters, it should be decided whether an invasive or non-invasive approach is desired. On one hand, invasive techniques offer sensitive and specific readouts related to lung mechanics in anesthetized and tracheotomized animals at endpoints. On the other hand, non-invasive techniques allow repeatable lung function measurements in conscious, free-breathing animals with readouts related to the lung volumes. The biggest disadvantage of these standard techniques for lung function measurements is considering the lung as a single unit and providing only global readouts. However, recent advances in lung imaging modalities such as x-ray computed tomography and magnetic resonance imaging opened new doors toward obtaining both anatomical and functional information from the same scan session, without the requirement for any extra pulmonary functional measurements, in more regional and non-invasive manners. Consequently, a new field of study called pulmonary functional imaging was born which focuses on introducing new techniques for regional quantification of lung function non-invasively using imaging-based techniques. This narrative review provides first an overview of both invasive and non-invasive conventional methods for lung function measurements, mostly focused on small animals for preclinical research, including discussions about their advantages and disadvantages. Then, we focus on those newly developed, non-invasive, imaging-based techniques that can provide either global or regional lung functional readouts at multiple time-points.
Collapse
Affiliation(s)
- Kaveh Ahookhosh
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- *Correspondence: Greetje Vande Velde,
| |
Collapse
|
29
|
Xue P, Fu Y, Zhang J, Ma L, Ren M, Zhang Z, Dong E. Effective lung ventilation estimation based on 4D CT image registration and supervoxels. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Xenon Induces Its Own Preferred Heterochiral Host from Exclusive Homochiral Assembly. J Am Chem Soc 2022; 144:22884-22889. [PMID: 36480928 DOI: 10.1021/jacs.2c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenon binding represents a formidable challenge, and efficient hosts remain rare. Here we report our findings that while enantiomeric bis(urea)-bis(thiourea) macrocycles form exclusive homochiral dimeric assemblies, xenon is able to overcome the narcissism and induces an otherwise-nonobservable heterochiral assembly as its preferred host. An experimental approach and fitting model were developed to obtain binding constants associated with the invisible assembly species. The determined xenon binding affinity with the heterochiral capsule reaches 1600 M-1, which is 15 times higher than that with the homochiral capsule and represents the highest record for an assembled host. The origin of the large difference in xenon affinity between the two subtle diastereotopic assemblies was revealed by single-crystal analysis. In the heterochiral capsule with S4 symmetry, the xenon atom is more tightly enclosed by van der Waals surroundings of the four thiourea groups arranged in a spherical cross-array, superior to the antiparallel array in the homochiral capsule with D2 symmetry.
Collapse
|
31
|
Kern AL, Gutberlet M, Rumpel R, Bruesch I, Hohlfeld JM, Wacker F, Hensen B. Absolute thermometry using hyperpolarized 129 Xe free-induction decay and spin-echo chemical-shift imaging in rats. Magn Reson Med 2022; 89:54-63. [PMID: 36121206 DOI: 10.1002/mrm.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE To implement and test variants of chemical shift imaging (CSI) acquiring both free induction decays (FIDs) showing all dissolved-phase compartments and spin echoes for specifically assessing 129 $$ {}^{129} $$ Xe in lipids in order to perform precise lipid-dissolved 129 $$ {}^{129} $$ Xe MR thermometry in a rat model of general hypothermia. METHODS Imaging was performed at 2.89 T. T 2 $$ {T}_2 $$ of 129 $$ {}^{129} $$ Xe in lipids was determined in one rat by fitting exponentials to decaying signals of global spin-echo spectra. Four rats (conventional CSI) and six rats (turbo spectroscopic imaging) were scanned at three time points with core body temperature 37/34/37 ∘ $$ {}^{\circ } $$ C. Lorentzian functions were fit to spectra from regions of interest to determine the water-referenced chemical shift of lipid-dissolved 129 $$ {}^{129} $$ Xe in the abdomen. Absolute 129 $$ {}^{129} $$ Xe-derived temperature was compared to values from a rectal probe. RESULTS Global T 2 $$ {T}_2 $$ of 129 $$ {}^{129} $$ Xe in lipids was determined as 251 . 3 ms ± 81 . 4 ms $$ 251.3\;\mathrm{ms}\pm 81.4\;\mathrm{ms} $$ . Friedman tests showed significant changes of chemical shift with time for both sequence variants and both FID and spin-echo acquisitions. Mean and SD of 129 $$ {}^{129} $$ Xe and rectal probe temperature differences were found to be - 0 . 1 5 ∘ C ± 0 . 9 3 ∘ C $$ -0.1{5}^{\circ}\mathrm{C}\pm 0.9{3}^{\circ}\mathrm{C} $$ (FID) and - 0 . 3 8 ∘ C ± 0 . 6 4 ∘ C $$ -0.3{8}^{\circ}\mathrm{C}\pm 0.6{4}^{\circ}\mathrm{C} $$ (spin echo) for conventional CSI as well as 0 . 0 3 ∘ C ± 0 . 7 7 ∘ C $$ 0.0{3}^{\circ}\mathrm{C}\pm 0.7{7}^{\circ}\mathrm{C} $$ (FID) and - 0 . 0 6 ∘ C ± 0 . 7 6 ∘ C $$ -0.0{6}^{\circ}\mathrm{C}\pm 0.7{6}^{\circ}\mathrm{C} $$ (spin echo) for turbo spectroscopic imaging. CONCLUSION 129 $$ {}^{129} $$ Xe MRI using conventional CSI and turbo spectroscopic imaging of lipid-dissolved 129 $$ {}^{129} $$ Xe enables precise temperature measurements in the rat's abdomen using both FID and spin-echo acquisitions with acquisition of spin echoes enabling most precise temperature measurements.
Collapse
Affiliation(s)
- Agilo L Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Regina Rumpel
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Inga Bruesch
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Taskiran NP, Hiura GT, Zhang X, Barr RG, Dashnaw SM, Hoffman EA, Malinsky D, Oelsner EC, Prince MR, Smith BM, Sun Y, Sun Y, Wild JM, Shen W, Hughes EW. Mapping Alveolar Oxygen Partial Pressure in COPD Using Hyperpolarized Helium-3: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study. Tomography 2022; 8:2268-2284. [PMID: 36136886 PMCID: PMC9498778 DOI: 10.3390/tomography8050190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and emphysema are characterized by functional and structural damage which increases the spaces for gaseous diffusion and impairs oxygen exchange. Here we explore the potential for hyperpolarized (HP) 3He MRI to characterize lung structure and function in a large-scale population-based study. Participants (n = 54) from the Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study, a nested case-control study of COPD among participants with 10+ packyears underwent HP 3He MRI measuring pAO2, apparent diffusion coefficient (ADC), and ventilation. HP MRI measures were compared to full-lung CT and pulmonary function testing. High ADC values (>0.4 cm2/s) correlated with emphysema and heterogeneity in pAO2 measurements. Strong correlations were found between the heterogeneity of global pAO2 as summarized by its standard deviation (SD) (p < 0.0002) and non-physiologic pAO2 values (p < 0.0001) with percent emphysema on CT. A regional study revealed a strong association between pAO2 SD and visual emphysema severity (p < 0.003) and an association with the paraseptal emphysema subtype (p < 0.04) after adjustment for demographics and smoking status. HP noble gas pAO2 heterogeneity and the fraction of non-physiological pAO2 results increase in mild to moderate COPD. Measurements of pAO2 are sensitive to regional emphysematous damage detected by CT and may be used to probe pulmonary emphysema subtypes. HP noble gas lung MRI provides non-invasive information about COPD severity and lung function without ionizing radiation.
Collapse
Affiliation(s)
- Naz P. Taskiran
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Correspondence: (N.P.T.); (E.W.H.); Tel.: +1-347-3693052 (N.P.T.); +1-626-4838731 (E.W.H.)
| | - Grant T. Hiura
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Xuzhe Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - R. Graham Barr
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Stephen M. Dashnaw
- Neurological Institute, Radiology, Columbia University, New York, NY 10032, USA
| | - Eric A. Hoffman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Malinsky
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Elizabeth C. Oelsner
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Martin R. Prince
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Benjamin M. Smith
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yanping Sun
- Division of General Medicine, Columbia University Irving Medial Center, New York, NY 10032, USA
| | - Yifei Sun
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Jim M. Wild
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
| | - Wei Shen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Institute of Human Nutrition, College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Magnetic Resonance Research Center (CMRRC), Columbia University, New York, NY 10027, USA
| | - Emlyn W. Hughes
- Department of Physics, Columbia University, New York, NY 10027, USA
- Correspondence: (N.P.T.); (E.W.H.); Tel.: +1-347-3693052 (N.P.T.); +1-626-4838731 (E.W.H.)
| |
Collapse
|
33
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
34
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
35
|
Wakayama T, Ueyama T, Imai F, Kimura A, Fujiwara H. Quantitative assessment of regional lung ventilation in emphysematous mice using hyperpolarized 129Xe MRI with a continuous flow hyperpolarizing system. Magn Reson Imaging 2022; 92:88-95. [PMID: 35654279 DOI: 10.1016/j.mri.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lung ventilation function in small animals can be assessed by using hyperpolarized gas MRI. For these experiments a free breathing protocol is generally preferred to mechanical ventilation as mechanical ventilation can often lead to ventilation lung injury, while the need to maintain a gas reservoir may lead to a partial reduction of the polarization. PURPOSE To evaluate regional lung ventilation of mice by a simple but fast method under free breathing and give evidence for effectiveness with an elastase instilled emphysematous mice. ANIMAL MODEL Emphysematous mice. MATERIALS AND METHODS A Look-Locker based saturation recovery sequence was developed for continuous flow hyperpolarized (CF-HP) 129Xe gas experiments, and the apparent gas-exchange rate, k', was measured by the analysis of the saturation recovery curve. RESULTS In mice with elastase-induced mild emphysema, reductions of 15-30% in k' values were observed as the results of lesion-induced changes in the lung. DATA CONCLUSION The proposed method was applied to an emphysematous model mice and ventilation dysfunctions have been approved as a definite decrease in k' values, supporting the usefulness for a non-invasive assessment of the lung functions in preclinical study by the CF-HP 129Xe experiments.
Collapse
Affiliation(s)
- Tetsuya Wakayama
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate of School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Ueyama
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate of School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumito Imai
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate of School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsuomi Kimura
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate of School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideaki Fujiwara
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Graduate of School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
36
|
Alenezi F, Covington TA, Mukherjee M, Mathai SC, Yu PB, Rajagopal S. Novel Approaches to Imaging the Pulmonary Vasculature and Right Heart. Circ Res 2022; 130:1445-1465. [PMID: 35482838 PMCID: PMC9060389 DOI: 10.1161/circresaha.121.319990] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increased appreciation for the importance of the right heart and pulmonary circulation in several disease states across the spectrum of pulmonary hypertension and left heart failure. However, assessment of the structure and function of the right heart and pulmonary circulation can be challenging, due to the complex geometry of the right ventricle, comorbid pulmonary airways and parenchymal disease, and the overlap of hemodynamic abnormalities with left heart failure. Several new and evolving imaging modalities interrogate the right heart and pulmonary circulation with greater diagnostic precision. Echocardiographic approaches such as speckle-tracking and 3-dimensional imaging provide detailed assessments of regional systolic and diastolic function and volumetric assessments. Magnetic resonance approaches can provide high-resolution views of cardiac structure/function, tissue characterization, and perfusion through the pulmonary vasculature. Molecular imaging with positron emission tomography allows an assessment of specific pathobiologically relevant targets in the right heart and pulmonary circulation. Machine learning analysis of high-resolution computed tomographic lung scans permits quantitative morphometry of the lung circulation without intravenous contrast. Inhaled magnetic resonance imaging probes, such as hyperpolarized 129Xe magnetic resonance imaging, report on pulmonary gas exchange and pulmonary capillary hemodynamics. These approaches provide important information on right ventricular structure and function along with perfusion through the pulmonary circulation. At this time, the majority of these developing technologies have yet to be clinically validated, with few studies demonstrating the utility of these imaging biomarkers for diagnosis or monitoring disease. These technologies hold promise for earlier diagnosis and noninvasive monitoring of right heart failure and pulmonary hypertension that will aid in preclinical studies, enhance patient selection and provide surrogate end points in clinical trials, and ultimately improve bedside care.
Collapse
Affiliation(s)
- Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | | | - Steve C. Mathai
- Johns Hopkins Division of Pulmonary and Critical Care Medicine, Baltimore, MD
| | - Paul B. Yu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
37
|
Relationship between Lung and Brain Injury in COVID-19 Patients: A Hyperpolarized 129Xe-MRI-based 8-Month Follow-Up. Biomedicines 2022; 10:biomedicines10040781. [PMID: 35453531 PMCID: PMC9028000 DOI: 10.3390/biomedicines10040781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Although the lungs are the primary organ involved, increasing evidence supports the neuroinvasive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study investigates the potential relationship between coronavirus disease (COVID-19)-related deterioration of brain structure and the degree of damage to lung function. Nine COVID-19 patients were recruited in critical condition from Jin Yin-tan Hospital (Wuhan, China) who had been discharged between 4 February and 27 February 2020. The demographic, clinical, treatment, and laboratory data were extracted from the electronic medical records. All patients underwent chest CT imaging, 129Xe gas lung MRI, and 1H brain MRI. Four of the patients were followed up for 8 months. After nearly 12 months of recovery, we found no significant difference in lung ventilation defect percentage (VDP) between the COVID-19 group and the healthy group (3.8 ± 2.1% versus 3.7 ± 2.2%) using 129Xe MRI, and several lung-function-related parameters—such as gas–blood exchange time (T)—showed improvement (42.2 ms versus 32.5 ms). Combined with 1H brain MRI, we found that the change in gray matter volume (GMV) was strongly related to the degree of pulmonary function recovery—the greater the increase in GMV, the higher degree of pulmonary function damage.
Collapse
|
38
|
Joalland B, Chekmenev EY. Scanning Nuclear Spin Level Anticrossings by Constant-Adiabaticity Magnetic Field Sweeping of Parahydrogen-Induced 13C Polarization. J Phys Chem Lett 2022; 13:1925-1930. [PMID: 35180341 DOI: 10.1021/acs.jpclett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The polarization transfer between 1H protons and 13C heteronuclei is of central importance in the development of parahydrogen-based hyperpolarization techniques dedicated to the production of 13C-hyperpolarized molecular probes. Here we unveil the spin conversion efficiency in the polarization transfer between parahydrogen-derived protons and 13C nuclei of an ethyl acetate biomolecule, formed by the homogeneous hydrogenation of vinyl acetate with parahydrogen, obtained by applying constant-adiabaticity sweep profiles at ultralow magnetic fields. The experiments employed natural C-13 abundance. Spin level anticrossings can be detected experimentally using a scanning approach and are selected to improve the polarization transfer efficiency. 13C polarization of up to 12% is readily achieved on the carbonyl center. The results demonstrate the simplicity, reproducibility, and high conversion efficiency of the technique, opening the door for a refined manipulation of hyperpolarized spins in both basic science experiments (e.g., state-selected spectroscopy in the strong-coupling regime) and biomedical nuclear magnetic resonance applications.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
39
|
Perron S, Ouriadov A, Wawrzyn K, Hickling S, Fox MS, Serrai H, Santyr G. Application of a 2D frequency encoding sectoral approach to hyperpolarized 129Xe MRI at low field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107159. [PMID: 35183921 DOI: 10.1016/j.jmr.2022.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Inhaled hyperpolarized 129Xe MRI is a non-invasive and radiation risk free lung imaging method, which can directly measure the business unit of the lung where gas exchange occurs: the alveoli and acinar ducts (lung function). Currently, three imaging approaches have been demonstrated to be useful for hyperpolarized 129Xe MR in lungs: Fast Gradient Recalled Echo (FGRE), Radial Projection Reconstruction (PR), and spiral/cones. Typically, non-Cartesian acquisitions such as PR and spiral/cones require specific data post-processing, such as interpolating, regridding, and density-weighting procedures for image reconstruction, which often leads to smoothing effects and resolution degradation. On the other hand, Cartesian methods such as FGRE are not short-echo time (TE) methods; they suffer from imaging gradient-induced diffusion-weighting of the k-space center, and employ a significant number of radio-frequency (RF) pulses. Due to the non-renewable magnetization of the hyperpolarized media, the use of a large number of RF pulses (FGRE/PR) required for full k-space coverage is a significant limitation, especially for low field (<0.5 T) hyperpolarized gas MRI. We demonstrate an ultra-fast, purely frequency-encoded, Cartesian pulse sequence called Frequency-Encoding Sectoral (FES), which takes advantage of the long T2* of hyperpolarized 129Xe gas at low field strength (0.074 T). In contrast to PR/FGRE, it uses a much smaller number of RF pulses, and consequently maximizes image Signal-to-Noise Ratio (SNR) while shortening acquisition time. Additionally, FES does not suffer from non-uniform T2* decay leading to image blurring; a common issue with interleaved spirals/cones. The Cartesian k-space coverage of the proposed FES method does not require specific k-space data post-processing, unlike PR/FGRE and spiral/cones methods. Proton scans were used to compare the FES sequence to both FGRE and Phase Encoding Sectoral, in terms of their SNR values and imaging efficiency estimates. Using FES, proton and hyperpolarized 129Xe images were acquired from a custom hollow acrylic phantom (0.04L) and two normal rats (129Xe only), utilizing both single-breath and multiple-breath schemes. For the 129Xe phantom images, the apparent diffusion coefficient, T1, and T2* relaxation maps were acquired and generated. Blurring due to the T2* decay and B0 field variation were simulated to estimate dependence of the image resolution on the duration of the data acquisition windows (i.e. sector length), and temperature-induced resonance frequency shift from the low field magnet hardware.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada.
| | - Krzysztof Wawrzyn
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | | | - Matthew S Fox
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Hacene Serrai
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada
| | - Giles Santyr
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Pilot Quality-Assurance Study of a Third-Generation Batch-Mode Clinical-Scale Automated Xenon-129 Hyperpolarizer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041327. [PMID: 35209116 PMCID: PMC8879294 DOI: 10.3390/molecules27041327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
We present a pilot quality assurance (QA) study of a clinical-scale, automated, third-generation (GEN-3) 129Xe hyperpolarizer employing batch-mode spin-exchange optical pumping (SEOP) with high-Xe densities (50% natural abundance Xe and 50% N2 in ~2.6 atm total pressure sourced from Nova Gas Technologies) and rapid temperature ramping enabled by an aluminum heating jacket surrounding the 0.5 L SEOP cell. 129Xe hyperpolarization was performed over the course of 700 gas loading cycles of the SEOP cell, simulating long-term hyperpolarized contrast agent production in a clinical lung imaging setting. High levels of 129Xe polarization (avg. %PXe = 51.0% with standard deviation σPXe = 3.0%) were recorded with fast 129Xe polarization build-up time constants (avg. Tb = 25.1 min with standard deviation σTb = 3.1 min) across the first 500 SEOP cell refills, using moderate temperatures of 75 °C. These results demonstrate a more than 2-fold increase in build-up rate relative to previously demonstrated results in a comparable QA study on a second-generation (GEN-2) 129Xe hyperpolarizer device, with only a minor reduction in maximum achievable %PXe and with greater consistency over a larger number of SEOP cell refill processes at a similar polarization lifetime duration (avg. T1 = 82.4 min, standard deviation σT1 = 10.8 min). Additionally, the effects of varying SEOP jacket temperatures, distribution of Rb metal, and preparation and operation of the fluid path are quantified in the context of device installation, performance optimization and maintenance to consistently produce high 129Xe polarization values, build-up rates (Tb as low as 6 min) and lifetimes over the course of a typical high-throughput 129Xe polarization SEOP cell life cycle. The results presented further demonstrate the significant potential for hyperpolarized 129Xe contrast agent in imaging and bio-sensing applications on a clinical scale.
Collapse
|
41
|
Bozovic G, Schaefer-Prokop CM, Bankier AA. Pulmonary functional imaging (PFI): A historical review and perspective. Acta Radiol 2022; 64:90-100. [PMID: 35118881 DOI: 10.1177/02841851221076324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PFI Pulmonary Functional Imaging (PFI) refers to visualization and measurement of ventilation, perfusion, gas flow and exchange as well as biomechanics. In this review, we will highlight the historical development of PFI, describing recent advances and listing the various techniques for PFI offered per modality. Challenges PFI is facing and requirements for PFI from a clinical point of view will be pointed out. Hereby the review is meant as an introduction to PFI.
Collapse
Affiliation(s)
- Gracijela Bozovic
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cornelia M Schaefer-Prokop
- Department of Radiology, Meander Medical Centre, TZ Amersfoort, The Netherlands
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander A Bankier
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
42
|
Shammi UA, D'Alessandro MF, Altes T, Hersman FW, Ruset IC, Mugler J, Meyer C, Mata J, Qing K, Thomen R. Comparison of Hyperpolarized 3He and 129Xe MR Imaging in Cystic Fibrosis Patients. Acad Radiol 2022; 29 Suppl 2:S82-S90. [PMID: 33487537 DOI: 10.1016/j.acra.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis. MATERIALS AND METHODS Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility. RESULTS A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients. CONCLUSION In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.
Collapse
Affiliation(s)
- Ummul Afia Shammi
- Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri
| | | | - Talissa Altes
- Radiology, School of Medicine, University of Missouri, Columbia, Missouri
| | | | | | - John Mugler
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia; Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Craig Meyer
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia; Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jamie Mata
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kun Qing
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert Thomen
- Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri; Radiology, School of Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
43
|
Tsinovoy A, Katz O, Landau A, Moiseyev N. Enhanced Coupling of Electron and Nuclear Spins by Quantum Tunneling Resonances. PHYSICAL REVIEW LETTERS 2022; 128:013401. [PMID: 35061487 DOI: 10.1103/physrevlett.128.013401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Noble-gas spins feature hours-long coherence times, owing to their great isolation from the environment, and find practical usage in various applications. However, this isolation leads to extremely slow preparation times, relying on weak spin transfer from an electron-spin ensemble. Here we propose a controllable mechanism to enhance this transfer rate. We analyze the spin dynamics of helium-3 atoms with hot, optically excited potassium atoms and reveal the formation of quasibound states in resonant binary collisions. We find a resonant enhancement of the spin-exchange cross section by up to 6 orders of magnitude and 2 orders of magnitude enhancement for the thermally averaged, polarization rate coefficient. We further examine the effect for various other noble gases and find that the enhancement is universal. We outline feasible conditions under which the enhancement may be experimentally observed and practically utilized.
Collapse
Affiliation(s)
- Anatoli Tsinovoy
- Faculty of Physics, Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Rafael, Ltd., Haifa 3102102, Israel
| | - Or Katz
- Rafael, Ltd., Haifa 3102102, Israel
| | - Arie Landau
- Institute of Advanced Studies in Theoretical Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Nimrod Moiseyev
- Faculty of Physics, Solid State Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
44
|
Chen Y, Bae Y, Heinrich AJ. Harnessing the Quantum Behavior of Spins on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2107534. [PMID: 34994026 DOI: 10.1002/adma.202107534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The desire to control and measure individual quantum systems such as atoms and ions in a vacuum has led to significant scientific and engineering developments in the past decades that form the basis of today's quantum information science. Single atoms and molecules on surfaces, on the other hand, are heavily investigated by physicists, chemists, and material scientists in search of novel electronic and magnetic functionalities. These two paths crossed in 2015 when it was first clearly demonstrated that individual spins on a surface can be coherently controlled and read out in an all-electrical fashion. The enabling technique is a combination of scanning tunneling microscopy (STM) and electron spin resonance, which offers unprecedented coherent controllability at the Angstrom length scale. This review aims to illustrate the essential ingredients that allow the quantum operations of single spins on surfaces. Three domains of applications of surface spins, namely quantum sensing, quantum control, and quantum simulation, are discussed with physical principles explained and examples presented. Enabled by the atomically-precise fabrication capability of STM, single spins on surfaces might one day lead to the realization of quantum nanodevices and artificial quantum materials at the atomic scale.
Collapse
Affiliation(s)
- Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
45
|
Tominaga Y, Takeda K. An electro-mechano-optical NMR probe for 1H– 13C double resonance in a superconducting magnet. Analyst 2022; 147:1847-1852. [DOI: 10.1039/d2an00220e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A compact nanomembrane radiofrequency-to-light transducer brings the emerging Electro-Mechano-Optical (EMO) NMR technique into the realm of practical NMR in chemistry using a superconducting magnet.
Collapse
Affiliation(s)
- Yusuke Tominaga
- Division of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Kazuyuki Takeda
- Division of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| |
Collapse
|
46
|
Abstract
The use of magnetic resonance imaging (MRI) and spectroscopy (MRS) in the clinical setting enables the acquisition of valuable anatomical information in a rapid, non-invasive fashion. However, MRI applications for identifying disease-related biomarkers are limited due to low sensitivity at clinical magnetic field strengths. The development of hyperpolarized (hp) 129Xe MRI/MRS techniques as complements to traditional 1H-based imaging has been a burgeoning area of research over the past two decades. Pioneering experiments have shown that hp 129Xe can be encapsulated within host molecules to generate ultrasensitive biosensors. In particular, xenon has high affinity for cryptophanes, which are small organic cages that can be functionalized with affinity tags, fluorophores, solubilizing groups, and other moieties to identify biomedically relevant analytes. Cryptophane sensors designed for proteins, metal ions, nucleic acids, pH, and temperature have achieved nanomolar-to-femtomolar limits of detection via a combination of 129Xe hyperpolarization and chemical exchange saturation transfer (CEST) techniques. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI. This review aims to summarize the development of cryptophane biosensors for 129Xe MRI applications, while highlighting innovative biosensor designs and the consequent enhancements in detection sensitivity, which will be invaluable in expanding the scope of 129Xe MRI.![]()
Collapse
Affiliation(s)
- Serge D Zemerov
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34 St., Philadelphia, PA 19104-6323, USA
| |
Collapse
|
47
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
48
|
Zhang Z, Jiang Y, Pi H, Chen H, Liu C, Feng J, Liu M. THz-enhanced dynamic nuclear polarized liquid spectrometer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 330:107044. [PMID: 34352701 DOI: 10.1016/j.jmr.2021.107044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) technology can be utilized to dramatically enhance NMR signal. In this paper, we report on the development of a self-constructed 5 T DNP spectrometer for liquid samples and the 13C DNP enhancement achieved with this spectrometer. The DNP spectrometer is comprised of a wide-bore superconducting magnet, a home-made console, a dual resonance probe and a self-built 140 GHz microwave source for the spectrometer. Specifically, a microwave source of traveling wave tube (TWT) amplifier has been developed, which can provide a maximum power output of 4.4 W and a wide frequency tuning range of 1 GHz. The excellent performance of our built liquid-state DNP spectrometer is verified by the observation of more than 100-fold DNP enhancement of the 13C NMR signal for liquid 13CCl4 sample. Our result shows the superiority of DNP technology in the liquid-state high-field NMR spectrometer.
Collapse
Affiliation(s)
- Zhekai Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jiang
- Institute of Applied Electronics of CAEP, Mianyang 621900, China
| | - Haiya Pi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Chen
- Institute of Applied Electronics of CAEP, Mianyang 621900, China.
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiwen Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
49
|
Grynko V, Shepelytskyi Y, Li T, Hassan A, Granberg K, Albert MS. Hyperpolarized 129 Xe multi-slice imaging of the human brain using a 3D gradient echo pulse sequence. Magn Reson Med 2021; 86:3175-3181. [PMID: 34272774 DOI: 10.1002/mrm.28932] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To demonstrate the possibility of performing multi-slice in-vivo human brain MRI using hyperpolarized (HP) xenon-129 (129 Xe) in two different orientations and to calculate the signal-to-noise ratio (SNR). METHODS Two healthy female participants were imaged during a single breath-hold of HP 129 Xe using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). Each HP 129 Xe multi-slice brain image was acquired during separate HP 129 Xe breath-holds using 3D gradient echo (GRE) imaging. The acquisition started 10 s after the inhalation of 1 L of HP 129 Xe. Overall, four sagittal and three axial images were acquired (seven imaging sessions per participant). The SNR was calculated for each slice in both orientations. RESULTS The first ever HP 129 Xe multi-slice images of the brain were acquired in axial and sagittal orientations. The HP 129 Xe signal distribution correlated well with the gray matter distribution. The highest SNR values were close in the axial and sagittal orientations (19.46 ± 3.25 and 18.76 ± 4.94, respectively). Additionally, anatomical features, such as the ventricles, were observed in both orientations. CONCLUSION The possibility of using multi-slice HP 129 Xe human brain magnetic resonance imaging was demonstrated for the first time. HP 129 Xe multi-slice MRI can be implemented for brain imaging to improve current diagnostic methods.
Collapse
Affiliation(s)
- Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Karl Granberg
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
50
|
Puddu C, Rao M, Xu X, Deppe MH, Collier G, Maunder A, Chan HF, De Zanche N, Robb F, Wild JM. An asymmetrical whole-body birdcage RF coil without RF shield for hyperpolarized 129 Xe lung MR imaging at 1.5 T. Magn Reson Med 2021; 86:3373-3381. [PMID: 34268802 DOI: 10.1002/mrm.28915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE This study describes the development and testing of an asymmetrical xenon-129 (129 Xe) birdcage radiofrequency (RF) coil for 129 Xe lung ventilation imaging at 1.5 Tesla, which allows proton (1 H) system body coil transmit-receive functionality. METHODS The 129 Xe RF coil is a whole-body asymmetrical elliptical birdcage constructed without an outer RF shield to enable 1 H imaging. B 1 + field homogeneity and flip angle mapping of the 129 Xe birdcage RF coil and 1 H system body RF coil with the 129 Xe RF coil in situ were evaluated in the MR scanner. The functionality of the 129 Xe birdcage RF coil was demonstrated through hyperpolarized 129 Xe lung ventilation imaging with the birdcage in both transceiver configuration and transmit-only configuration when combined with an 8-channel 129 Xe receive-only RF coil array. The functionality of 1 H system body coil with the 129 Xe RF coil in situ was demonstrated by acquiring coregistered 1 H lung anatomical MR images. RESULTS The asymmetrical birdcage produced a homogeneous B 1 + field (±10%) in agreement with electromagnetic simulations. Simulations indicated an optimal detuning configuration with 4 diodes. The obtained g-factor of 1.4 for acceleration factor of R = 2 indicates optimal array configuration. Coregistered 1 H anatomical images from the system body coil along with 129 Xe lung images demonstrated concurrent and compatible arrangement of the RF coils. CONCLUSION A large asymmetrical birdcage for homogenous B 1 + transmission with high sensitivity reception for 129 Xe lung MRI at 1.5 Tesla has been demonstrated. The unshielded asymmetrical birdcage design enables 1 H structural lung MR imaging in the same exam.
Collapse
Affiliation(s)
- Claudio Puddu
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Xiaojun Xu
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Martin H Deppe
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Guilhem Collier
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Adam Maunder
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Nicola De Zanche
- Department of Medical Physics, Cross Cancer Institute and University of Alberta, Alberta, Canada
| | - Fraser Robb
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.,GE Healthcare, Aurora, Ohio, USA
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|