1
|
Chappell ME, Breda L, Tricoli L, Guerra A, Jarocha D, Castruccio Castracani C, Papp TE, Tanaka N, Hamilton N, Triebwasser MP, Ghiaccio V, Fedorky MT, Gollomp KL, Bochenek V, Roche AM, Everett JK, Cook EJ, Bushman FD, Teawtrakul N, Glentis S, Kattamis A, Mui BL, Tam YK, Weissman D, Abdulmalik O, Parhiz H, Rivella S. Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy. Blood 2024; 144:1633-1645. [PMID: 38949981 PMCID: PMC11487647 DOI: 10.1182/blood.2023023349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
ABSTRACT α-Thalassemia (AT) is one of the most commonly occurring inherited hematological diseases. However, few treatments are available, and allogeneic bone marrow transplantation is the only available therapeutic option for patients with severe AT. Research into AT has remained limited because of a lack of adult mouse models, with severe AT typically resulting in in utero lethality. By using a lipid nanoparticle (LNP) targeting the receptor CD117 and delivering a Cre messenger RNA (mRNACreLNPCD117), we were able to delete floxed α-globin genes at high efficiency in hematopoietic stem cells (HSC) ex vivo. These cells were then engrafted in the absence or presence of a novel α-globin-expressing lentiviral vector (ALS20αI). Myeloablated mice infused with mRNACreLNPCD117-treated HSC showed a complete knock out (KO) of α-globin genes. They showed a phenotype characterized by the synthesis of hemoglobin H (HbH; also known as β-tetramers or β4), aberrant erythropoiesis, and abnormal organ morphology, culminating in lethality ∼8 weeks after engraftment. Mice infused with mRNACreLNPCD117-treated HSC with at least 1 copy of ALS20αI survived long term with normalization of erythropoiesis, decreased production of HbH, and amelioration of the abnormal organ morphology. Furthermore, we tested ALS20αI in erythroid progenitors derived from α-globin-KO CD34+ cells and cells isolated from patients with both deletional and nondeletional HbH disease, demonstrating improvement in α-globin/β-globin mRNA ratio and reduction in the formation of HbH by high-performance liquid chromatography. Our results demonstrate the broad applicability of LNP for disease modeling, characterization of a novel mouse model of severe AT, and the efficacy of ALS20αI for treating AT.
Collapse
Affiliation(s)
- Maxwell E. Chappell
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
| | - Laura Breda
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lucas Tricoli
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Danuta Jarocha
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Center for Cellular Immunotherapeutics, Translational and Correlative Studies Laboratory, University of Pennsylvania, Philadelphia, PA
| | | | - Tyler E. Papp
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Naoto Tanaka
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nolan Hamilton
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael P. Triebwasser
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Valentina Ghiaccio
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan T. Fedorky
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kandace L. Gollomp
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Veronica Bochenek
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Aoife M. Roche
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emma J. Cook
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nattiya Teawtrakul
- Division of Hematology, Department of Internal Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand
| | - Stavros Glentis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonis Kattamis
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Drew Weissman
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hamideh Parhiz
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefano Rivella
- Cell and Molecular Biology Affinity Group, University of Pennsylvania, Philadelphia, PA
- Division of Hematology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Musculoskeletal Disorders, The Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
- Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
3
|
Zhang H, Jiang X, Jiao L, Sui M. Development and external validation of a novel prognostic nomogram for overall survival in prostate cancer patients with bone metastatic: a retrospective study of the SEER-based and a single Chinese center. J Cancer Res Clin Oncol 2023; 149:12647-12658. [PMID: 37450026 DOI: 10.1007/s00432-023-05126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Prostate cancer (PCa) patients with bone metastases (BM) often face a poor prognosis, a leading contributor to mortality within this group. This study aims to develop a novel prognostic nomogram to predict overall survival for them. METHODS We retrospectively analyzed PCa patients with BM from Surveillance, Epidemiology, and End Results (SEER) database and our hospital. Independent prognostic factors were identified using univariate and multivariate Cox regression analyses for the creation of a nomogram. Calibration curves and receiver operating characteristic (ROC) curves, along with the concordance index (C-index) and decision curve analysis (DCA), were employed to evaluate the performance of the constructed nomogram. RESULTS A total of 12,344 PCa patients with BM, derived from 2010 to 2019 SEER database, were randomly allocated into a training cohort (n = 8640) and an internal validation cohort (n = 3704). Additionally, an external validation cohort (n = 126) from our hospital. The novel nomogram integrates multiple factors: age, race, histopathology, organ metastasis, chemotherapy, Gleason score, and prostate-specific antigen (PSA). C-index for the training, internal validation, and external validation cohorts were 0.770 (0.766-0.774), 0.756 (0.749-0.763), and 0.751 (0.745-0.757) respectively. Similarly, the area under the curve (AUC) for each cohort exhibited comparable results (training cohort-3-year: 0.682, 6-year: 0.775, 9-year: 0.824; internal validation cohort-3-year: 0.681, 6-year: 0.750, 9-year: 0.806; external validation cohort-2-year: 0.667, 3-year: 0.744, 4-year: 0.800), indicating that the nomogram possesses robust discriminative ability. Calibration curve and DCA curve further proved the reliability and accuracy of the prognostic nomogram. CONCLUSION This study determined the independent risk factors for prostate cancer (PCa) patients with bone metastasis (BM) and subsequently developed a robust prognostic nomogram to predict overall survival (OS). This tool can serve to guide precise clinical treatment strategies for these patients.
Collapse
Affiliation(s)
- Hongyu Zhang
- Harbin Medical University, Harbin, 150001, China
| | | | - Le Jiao
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, 161000, Heilongjiang Province, China.
| | - Meiyan Sui
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, 161000, Heilongjiang Province, China.
| |
Collapse
|
4
|
Corder RM, Arez AP, Ferreira MU. Individual variation in Plasmodium vivax malaria risk: Are repeatedly infected people just unlucky? PLoS Negl Trop Dis 2023; 17:e0011020. [PMID: 36634044 PMCID: PMC9836309 DOI: 10.1371/journal.pntd.0011020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extensive research has examined why some people have frequent Plasmodium falciparum malaria episodes in sub-Saharan Africa while others remain free of disease most of the time. In contrast, malaria risk heterogeneity remains little studied in regions where P. vivax is the dominant species. Are repeatedly infected people in vivax malaria settings such as the Amazon just unlucky? Here, we briefly review evidence that human genetic polymorphism and acquired immunity after repeated exposure to parasites can modulate the risk of P. vivax infection and disease in predictable ways. One-fifth of the hosts account for 80% or more of the community-wide vivax malaria burden and contribute disproportionally to onward transmission, representing a priority target of more intensive interventions to achieve malaria elimination. Importantly, high-risk individuals eventually develop clinical immunity, even in areas with very low or residual malaria transmission, and may constitute a large but silent parasite reservoir.
Collapse
Affiliation(s)
- Rodrigo M. Corder
- Department of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Marcelo U. Ferreira
- Global Health and Tropical Medicine (GHTM), institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
De Meulenaere K, Prajapati SK, Villasis E, Cuypers B, Kattenberg JH, Kasian B, Laman M, Robinson LJ, Gamboa D, Laukens K, Rosanas-Urgell A. Band 3-mediated Plasmodium vivax invasion is associated with transcriptional variation in PvTRAg genes. Front Cell Infect Microbiol 2022; 12:1011692. [PMID: 36250048 PMCID: PMC9563252 DOI: 10.3389/fcimb.2022.1011692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
The Plasmodium vivax reticulocyte invasion process is still poorly understood, with only a few receptor-ligand interactions identified to date. Individuals with the Southeast Asian ovalocytosis (SAO) phenotype have a deletion in the band 3 protein on the surface of erythrocytes, and are reported to have a lower incidence of clinical P. vivax malaria. Based on this observation, band 3 has been put forward as a receptor for P. vivax invasion, although direct proof is still lacking. In this study, we combined functional ex vivo invasion assays and transcriptome sequencing to uncover a band 3-mediated invasion pathway in P. vivax and potential band 3 ligands. Invasion by P. vivax field isolates was 67%-71% lower in SAO reticulocytes compared with non-SAO reticulocytes. Reticulocyte invasion was decreased by 40% and 27%-31% when blocking with an anti-band 3 polyclonal antibody and a PvTRAg38 peptide, respectively. To identify new band 3 receptor candidates, we mRNA-sequenced schizont-stage isolates used in the invasion assays, and observed high transcriptional variability in multigene and invasion-related families. Transcriptomes of isolates with low or high dependency on band 3 for invasion were compared by differential expression analysis, which produced a list of band 3 ligand candidates with high representation of PvTRAg genes. Our ex vivo invasion assays have demonstrated that band 3 is a P. vivax invasion receptor and confirm previous in vitro studies showing binding between PvTRAg38 and band 3, although the lower and variable inhibition levels observed suggest the involvement of other ligands. By coupling transcriptomes and invasion phenotypes from the same isolates, we identified a list of band 3 ligand candidates, of which the overrepresented PvTRAg genes are the most promising for future research.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Surendra Kumar Prajapati
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | - Bernadine Kasian
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
| | - Leanne J. Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute for Medical Research, Madang, Papua New Guinea
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Health Security and Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Holzschuh A, Gruenberg M, Hofmann NE, Wampfler R, Kiniboro B, Robinson LJ, Mueller I, Felger I, White MT. Co-infection of the four major Plasmodium species: Effects on densities and gametocyte carriage. PLoS Negl Trop Dis 2022; 16:e0010760. [PMID: 36099312 PMCID: PMC9506632 DOI: 10.1371/journal.pntd.0010760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/23/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Co-infection of the four major species of human malaria parasite Plasmodium falciparum (Pf), P. vivax (Pv), P. malariae (Pm), and P. ovale sp. (Po) is regularly observed, but there is limited understanding of between-species interactions. In particular, little is known about the effects of multiple Plasmodium species co-infections on gametocyte production. Methods We developed molecular assays for detecting asexual and gametocyte stages of Pf, Pv, Pm, and Po. This is the first description of molecular diagnostics for Pm and Po gametocytes. These assays were implemented in a unique epidemiological setting in Papua New Guinea with sympatric transmission of all four Plasmodium species permitting a comprehensive investigation of species interactions. Findings The observed frequency of Pf-Pv co-infection for asexual parasites (14.7%) was higher than expected from individual prevalence rates (23.8%Pf x 47.4%Pv = 11.3%). The observed frequency of co-infection with Pf and Pv gametocytes (4.6%) was higher than expected from individual prevalence rates (13.1%Pf x 28.2%Pv = 3.7%). The excess risk of co-infection was 1.38 (95% confidence interval (CI): 1.09, 1.67) for all parasites and 1.37 (95% CI: 0.95, 1.79) for gametocytes. This excess co-infection risk was partially attributable to malaria infections clustering in some villages. Pf-Pv-Pm triple infections were four times more frequent than expected by chance alone, which could not be fully explained by infections clustering in highly exposed individuals. The effect of co-infection on parasite density was analyzed by systematic comparison of all pairwise interactions. This revealed a significant 6.57-fold increase of Pm density when co-infected with Pf. Pm gametocytemia also increased with Pf co-infection. Conclusions Heterogeneity in exposure to mosquitoes is a key epidemiological driver of Plasmodium co-infection. Among the four co-circulating parasites, Pm benefitted most from co-infection with other species. Beyond this, no general prevailing pattern of suppression or facilitation was identified in pairwise analysis of gametocytemia and parasitemia of the four species. Trial registration This trial is registered with ClinicalTrials.gov, Trial ID: NCT02143934. The majority of malaria research focuses on the Plasmodium falciparum and P. vivax parasite species, due to their large public health burden. The epidemiology of P. malariae and P. ovale parasites has been comparatively neglected, due to a lack of research tools, most notably diagnostics. We present new molecular diagnostic assays for detecting P. malariae and P. ovale gametocytes, the sexual stage of the malaria parasite transmitted to mosquitoes. These assays were applied to samples collected in Papua New Guinea, a rare region with high transmission of the four major malaria parasite species. Patterns of co-infections were characterized accounting for interactions between pairs and triples of parasites. Heterogeneity in exposure to mosquito bites was identified as a key driver of patterns of co-infection. The effect of co-infection on parasite density was analyzed by systematic comparison of all pairwise interactions. The most significant within-host interaction of parasites was the large increase in P. malariae parasite density due to co-infection with P. falciparum. This finding was replicated for P. malariae gametocytes (but did not attain statistical significance due to low sample numbers) suggesting that co-infection provides a key transmission advantage to P. malariae.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maria Gruenberg
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Natalie E. Hofmann
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Rahel Wampfler
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Benson Kiniboro
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
| | - Leanne J. Robinson
- Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang and Maprik, Papua New Guinea
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail: (IF); (MTW)
| | - Michael T. White
- Institut Pasteur, Université de Paris Cité, G5 Épidémiologie et Analyse des Maladies Infectieuses, Département de Santé Globale, Paris, France
- * E-mail: (IF); (MTW)
| |
Collapse
|
7
|
Penman BS, Gandon S. Adaptive immunity selects against malaria infection blocking mutations. PLoS Comput Biol 2020; 16:e1008181. [PMID: 33031369 PMCID: PMC7544067 DOI: 10.1371/journal.pcbi.1008181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
The mutation responsible for Duffy negativity, which impedes Plasmodium vivax infection, has reached high frequencies in certain human populations. Conversely, mutations capable of blocking the more lethal P. falciparum have not succeeded in malarious zones. Here we present an evolutionary-epidemiological model of malaria which demonstrates that if adaptive immunity against the most virulent effects of malaria is gained rapidly by the host, mutations which prevent infection per se are unlikely to succeed. Our results (i) explain the rarity of strain-transcending P. falciparum infection blocking adaptations in humans; (ii) make the surprising prediction that mutations which block P. falciparum infection are most likely to be found in populations experiencing low or infrequent malaria transmission, and (iii) predict that immunity against some of the virulent effects of P. vivax malaria may be built up over the course of many infections.
Collapse
Affiliation(s)
- Bridget S. Penman
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sylvain Gandon
- CEFE, CNRS, University of Montpellier, Paul Valéry University of Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
8
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
9
|
Kawakami Y, Yamazaki K, Ohashi K. Intergenerational fluctuations in colour morph frequencies may maintain elytral polymorphisms in the ladybird beetle Cheilomenes sexmaculata (Coleoptera: Coccinellidae). Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractPhenotypic polymorphisms are found in a wide array of taxa, and unravelling the mechanisms that maintain them is of great interest to evolutionary and ecological biologists. Temporal environmental heterogeneity may play a role in the maintenance of polymorphisms but is poorly understood. In the present study, we analysed trends in intergenerational elytral colour morph frequencies in relation to changes in fitness and life history traits (i.e. body size, mortality, fecundity, hatching rate and mate preference) in the ladybird beetle Cheilomenes sexmaculata (Coleoptera: Coccinellidae). A long-term field survey spanning nine years showed that the frequency of dark morphs increases over winter and then decreases in spring. Dark morphs may have an advantage in winter due to their higher tolerance of low temperatures compared with light morphs. Light-morph females were heavier in winter than dark-morph females. They also mated more frequently and had higher hatching rates, potentially causing an increase in light morphs in spring. These results suggest that fluctuations in morph frequencies resulting from the conflicting directions of selection pressures between overwintering and spring generations may help to maintain genetic polymorphism.
Collapse
|
10
|
Lamptey H, Ofori MF, Adu B, Kusi KA, Dickson EK, Quakyi I, Alifrangis M. Association between alpha-thalassaemia trait, Plasmodium falciparum asexual parasites and gametocyte carriage in a malaria endemic area in Southern Ghana. BMC Res Notes 2019; 12:134. [PMID: 30867026 PMCID: PMC6417235 DOI: 10.1186/s13104-019-4181-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022] Open
Abstract
Objective The alpha-thalassaemia trait has been associated with protection against severe malaria but its role in Plasmodium falciparum asexual parasite and gametocyte carriage remains unclear. This study examined association between prevalence of α-thalassaemia and P. falciparum asexual stage parasitaemia and gametocytaemia in children, pregnant women and adults, which was part of a bigger study that investigated some key factors that influence gametocyte carriage. Results Overall prevalence of heterozygous α-thalassaemia trait among all the groups was 39.0%, while 8.2% were homozygous alpha thalassaemia. Asexual parasite prevalence was significantly higher in children (P = 0.008) compared to adults and pregnant women. Of the asexual P. falciparum positive individuals, gametocyte prevalence was 38.5% (15/39) in children, 29.7% (11/37) in pregnant women and 17.4% (4/23) in adults. Heterozygous α-thalassaemic children were less likely to harbour asexual parasites, compared with normal and those deficient (OR = 0.52; 95% CI 0.28–0.97; P = 0.037) under the dominant model. These heterozygous children were also associated with reduced risk of parasitaemia compared to heterozygous adults and pregnant women. Children with heterozygous α-thalassaemia trait had reduced risk of asexual parasite carriage. There was however, no association between α-thalassaemia trait and risk of gametocyte carriage.
Collapse
Affiliation(s)
- Helena Lamptey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.
| | - Michael Fokuo Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Bright Adu
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Asamoah Kusi
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Emmanuel Kakra Dickson
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Isabella Quakyi
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, National University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
11
|
Abstract
The thalassemias and other inherited disorders of hemoglobin are likely to remain a serious global health problem for the foreseeable future. Currently, they are most frequent in the tropical belt; an assessment of their true frequency and the likely cost of management for the governments of these countries will require a form of micromapping. Over recent years, there has been major progress toward better prevention and management of the thalassemias in richer countries; it is likely that, using the tools of molecular genetics, they will eventually be completely curable, although this is probably a long time in the future.
Collapse
Affiliation(s)
- David J Weatherall
- University of Oxford, Weatherall Institute of Molecular Medicine, John Radcilffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
12
|
Associations between erythrocyte polymorphisms and risks of uncomplicated and severe malaria in Ugandan children: A case control study. PLoS One 2018; 13:e0203229. [PMID: 30222732 PMCID: PMC6141089 DOI: 10.1371/journal.pone.0203229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022] Open
Abstract
Background Evidence for association between sickle cell and alpha thalassemia trait and severe malaria is compelling. However, for these polymorphisms associations with uncomplicated malaria, and for G6PD deficiency associations with uncomplicated and severe malaria, findings have been inconsistent. We studied samples from a three-arm case-control study with the objective of determining associations between common host erythrocyte polymorphisms and both uncomplicated and severe malaria, including different severe malaria phenotypes. Method We assessed hemoglobin abnormalities, α-thalassemia, and G6PD deficiency by molecular methods in 325 children with severe malaria age-matched to 325 children with uncomplicated malaria and 325 healthy community controls. Conditional logistic regression was used to measure associations between specified genotypes and malaria outcomes. Results No tested polymorphisms offered significant protection against uncomplicated malaria. α-thalassemia homozygotes (_α/_α) had increased risk of uncomplicated malaria (OR 2.40; 95%CI 1.15, 5.03, p = 0.020). HbAS and α-thalassemia heterozygous (_α/αα) genotypes protected against severe malaria compared to uncomplicated malaria (HbAS OR 0.46; 0.23, 0.95, p = 0.036; _α/αα OR 0.51; 0.24, 0.77; p = 0.001) or community (HbAS OR 0.23; 0.11, 0.50; p<0.001; _α/αα; OR 0.49; 0.32, 0.76; p = 0.002) controls. The α-thalassemia homozygous (_α/_α) genotype protected against severe malaria when compared to uncomplicated malaria controls (OR 0.34; 95%CI 0.156, 0.73, p = 0.005), but not community controls (OR 1.03; 0.46, 2.27, p = 0.935). Stratifying by the severe malaria phenotype, compared to community controls, the protective effect of HbAS was limited to children with severe anemia (OR 0.17; 95%CI 0.04, 0.65; p = 0.009) and that of _α/αα to those with altered consciousness (OR 0.24; 0.09, 0.59; p = 0.002). A negative epistatic effect was seen between HbAS and _α/αα; protection compared to uncomplicated malaria controls was not seen in individuals with both polymorphisms (OR 0.45; 0.11, 1.84; p = 0.269). G6PD deficiency was not protective against severe malaria. Conclusion Associations were complex, with HbAS principally protective against severe anemia, _α/αα against altered consciousness, and negative epistasis between the two polymorphisms.
Collapse
|
13
|
An Observational Study of the Effect of Hemoglobinopathy, Alpha Thalassemia and Hemoglobin E on P. Vivax Parasitemia. Mediterr J Hematol Infect Dis 2018. [PMID: 29531652 PMCID: PMC5841942 DOI: 10.4084/mjhid.2018.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background The protective effect of α-thalassemia, a common hematological disorder in Southeast Asia, against Plasmodium falciparum malaria has been well established. However, there is much less understanding of the effect of α-thalassemia against P. vivax. Here, we aimed to investigate the proportion of α-thalassemia including the impact of α-thalassemia and HbE on the parasitemia of P. vivax in Southeast Asian malaria patients in Thailand. Methods A total of 210 malaria patients, admitted to the Hospital for Tropical Diseases, Thailand during 2011–2012, consisting of 159 Myanmeses, 13 Karens, 26 Thais, 3 Mons, 3 Laotians, and 6 Cambodians were recruited. Plasmodium spp. and parasite densities were determined. Group of deletion mutation (--SEA, −α3.7, −α4.2deletion) and substitution mutation (HbCS and HbE) were genotyped using multiplex gap-PCR and PCR-RFLP, respectively. Results In our malaria patients, 17/210 homozygous and 74/210 heterozygous −α3.7 deletion were found. Only 3/210 heterozygous −α4.2 and 2/210 heterozygous--SEA deletion were detected. HbE is frequently found with 6/210 homozygotes and 35/210 heterozygotes. The most common thalassemia allele frequencies in Myanmar population were −α3.7 deletion (0.282), followed by HbE (0.101), HbCS (0.013), −α4.2 deletion (0.009), and --SEA deletion (0.003). Only density of P. vivax in α-thalassemia trait patients (−α3.7/−α3.7, --SEA/αα, −α3.7/−α4.2) but not in silent α-thalassemia (−α3.7/αα, −α4.2/αα, ααCS/αα) were significantly higher compared with non-α-thalassemia patients (p=0.027). HbE did not affect P. vivax parasitemia. The density of P. falciparum significantly increased in heterozygous HbE patients (p=0.046). Conclusions Alpha-thalassemia trait is associated with high levels of P. vivax parasitemia in malaria patients in Southeast Asia.
Collapse
|
14
|
Plasmodium falciparum malaria skews globin gene expression balance in in-vitro haematopoietic stem cell culture system: Its implications in malaria associated anemia. Exp Parasitol 2018; 185:29-38. [DOI: 10.1016/j.exppara.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/01/2017] [Accepted: 01/02/2018] [Indexed: 01/02/2023]
|
15
|
Valaei A, Karimipoor M, Kordafshari A, Zeinali S. Molecular Basis of α-Thalassemia in Iran. IRANIAN BIOMEDICAL JOURNAL 2018; 22:6-14. [PMID: 29115104 PMCID: PMC5712386 DOI: 10.22034/ibj.22.1.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alpha-thalassemia (α-thal) is probably the most prevalent monogenic condition in the world. Deletions are the most common types of mutations in α-thal, followed by point mutations and small insertion/deletion. In the context of national screening program for prevention of thalassemia and hemoglobinopathies in Iran, α-thal carriers have come to more attention. Therefore, the frequency and distribution of α-globin mutations in various regions of the country have been studied in recent years. A comprehensive search was performed in PubMed, Scopus, and national databases for finding reports on mutation detection in α-thal carriers and HbH disease with Iranian origin. The mutation data of 10849 α-thal carriers showed that -α3.7 and α-5NT were the most common deletional and nondeletional mutations, respectively. In HbH disease cases, the -α3.7/--MED was the most prevalent genotype. Overall, 42 different mutations have been identified in α-globin cluster reflecting the high heterogeneity of the mutations in Iranian populations.
Collapse
Affiliation(s)
- Atefeh Valaei
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Kordafshari
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Medical Genetics Lab of Dr. Zeinali, Kawsar Human Genetics Research Center, Tehran, Iran
| |
Collapse
|
16
|
Goheen MM, Campino S, Cerami C. The role of the red blood cell in host defence against falciparum malaria: an expanding repertoire of evolutionary alterations. Br J Haematol 2017; 179:543-556. [PMID: 28832963 DOI: 10.1111/bjh.14886] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The malaria parasite has co-evolved with its human host as each organism struggles for resources and survival. The scars of this war are carried in the human genome in the form of polymorphisms that confer innate resistance to malaria. Clinical, epidemiological and genome-wide association studies have identified multiple polymorphisms in red blood cell (RBC) proteins that attenuate malaria pathogenesis. These include well-known polymorphisms in haemoglobin, intracellular enzymes, RBC channels, RBC surface markers, and proteins impacting the RBC cytoskeleton and RBC morphology. A better understanding of how changes in RBC physiology impact malaria pathogenesis may uncover new strategies to combat the disease.
Collapse
Affiliation(s)
- Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Susana Campino
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, The London School of Hygiene & Tropical Medicine, London, UK
| | - Carla Cerami
- MRC International Nutrition Group at Keneba, MRC Unit The Gambia, Banjul, The Gambia
| |
Collapse
|
17
|
Strader MB, Alayash AI. Exploring Oxidative Reactions in Hemoglobin Variants Using Mass Spectrometry: Lessons for Engineering Oxidatively Stable Oxygen Therapeutics. Antioxid Redox Signal 2017; 26:777-793. [PMID: 27626360 PMCID: PMC5421604 DOI: 10.1089/ars.2016.6805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 01/29/2023]
Abstract
SIGNIFICANCE Worldwide demand has driven the development of hemoglobin (Hb)-based oxygen carriers (HBOCs) as potential acellular oxygen therapeutics. HBOCs have the potential to provide an oxygen bridge to patients and minimize current problems associated with supply and storage of donated blood. However, to date, safety and efficacy issues have hampered the approval of viable HBOCs in the United States. These previous efforts have underscored the need for a better molecular understanding of toxicity to design safe and oxidatively stable HBOCs. Recent Advances: High-resolution accurate mass (HRAM) mass spectrometry (MS) has recently become a versatile tool in characterizing oxidative post-translational modifications that occur in Hb. When integrated with other analytical techniques, HRAM data have been invaluable in providing mechanistic insight into the extent of oxidative modification by quantifying oxidation in amino acids near the reactive heme or at specific "oxidative hotspots." CRITICAL ISSUES In addition to providing a deeper understanding of Hb oxidative toxicity, HRAM MS studies are currently being used toward developing suitable HBOCs using a "two-prong" strategy that involves (i) understanding the mechanism of Hb toxicity by evaluating mutant Hbs identified in patients with hemoglobinopathies and (ii) utilizing this information toward designing against (or for) these reactions in acellular oxygen therapeutics that will result in oxidatively stable protein. FUTURE DIRECTIONS Future HRAM studies are aimed at fully characterizing engineered candidate HBOCs to determine the most oxidatively stable protein while retaining oxygen carrying function in vivo. Antioxid. Redox Signal. 26, 777-793.
Collapse
Affiliation(s)
- Michael Brad Strader
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| | - Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research , Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
18
|
Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, Hay SI. Global Epidemiology of Plasmodium vivax. Am J Trop Med Hyg 2016; 95:15-34. [PMID: 27402513 PMCID: PMC5198891 DOI: 10.4269/ajtmh.16-0141] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023] Open
Abstract
Plasmodium vivax is the most widespread human malaria, putting 2.5 billion people at risk of infection. Its unique biological and epidemiological characteristics pose challenges to control strategies that have been principally targeted against Plasmodium falciparum Unlike P. falciparum, P. vivax infections have typically low blood-stage parasitemia with gametocytes emerging before illness manifests, and dormant liver stages causing relapses. These traits affect both its geographic distribution and transmission patterns. Asymptomatic infections, high-risk groups, and resulting case burdens are described in this review. Despite relatively low prevalence measurements and parasitemia levels, along with high proportions of asymptomatic cases, this parasite is not benign. Plasmodium vivax can be associated with severe and even fatal illness. Spreading resistance to chloroquine against the acute attack, and the operational inadequacy of primaquine against the multiple attacks of relapse, exacerbates the risk of poor outcomes among the tens of millions suffering from infection each year. Without strategies accounting for these P. vivax-specific characteristics, progress toward elimination of endemic malaria transmission will be substantially impeded.
Collapse
Affiliation(s)
- Rosalind E. Howes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio
| | - Katherine E. Battle
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Kamini N. Mendis
- Global Malaria Program, World Health Organization, Geneva, Switzerland
| | - David L. Smith
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, Maryland
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington
| | | | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon I. Hay
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| |
Collapse
|
19
|
Weatherall DJ. Thalassaemia and malaria, revisited. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Shakeel M, Arif M, Rehman SU, Yaseen T. Investigation of molecular heterogeneity of β-thalassemia disorder in District Charsadda of Pakistan. Pak J Med Sci 2016; 32:491-4. [PMID: 27182268 PMCID: PMC4859051 DOI: 10.12669/pjms.322.9415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: Thalassemia is blood related disease which arises from the reduced level of hemoglobin in red blood cells (RBC), a protein responsible for carrying oxygen inside the body. Considering its widespread occurrence in developing countries like Pakistan, this study aims to investigate the common molecular anomalies of the beta thalassemia disease in district Charsadda, Khyber Pakhtunkhwa. Methods: This work was done at Abdul Wali Khan University (AWKU) Mardan, Khyber Pakhtunkhwa, Pakistan. The work was performed on the blood samples collected from the patients and their families with beta thalassemia major (n = 13 families) belonged to District Charsadda. The collected blood samples were analyzed for presence of six known mutations with the help of polymerase cha in reaction technique i.e. amplification of refractory mutation system. Results: Our Study reports six known mutations (IVS-1-5, FSC 8/9, CD 41/42, IVS-1-1, CD 15 and FSC-5) accounting for about 90% of total beta thalassemia genes in this country. Among the reported mutations, IVS 1-5 was the most prevalent beta thalassemia gene in patients belonging to District Charsadda. Conclusion: The results and findings of the current study may help in accessing the frequency of these common mutations and in initiating pre-natal diagnosis programme in Pakistan.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Dr. Muhammad Shakeel, PhD (UK). Department of Biotechnology, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif
- Mr. Muhammad Arif, M.Phil. Department of Biotechnology, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Shoaib Ur Rehman
- Dr. Shoaib Ur Rehman, PhD (Pakistan). Department of Biotechnology, Bannu University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Tabassum Yaseen
- Dr. Tabassum Yaseen, PhD (Pakistan). Department of Botany, Bacha Khan University Charsadda, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
21
|
Oxidative instability of hemoglobin E (β26 Glu→Lys) is increased in the presence of free α subunits and reversed by α-hemoglobin stabilizing protein (AHSP): Relevance to HbE/β-thalassemia. Redox Biol 2016; 8:363-74. [PMID: 26995402 PMCID: PMC4804395 DOI: 10.1016/j.redox.2016.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 01/24/2023] Open
Abstract
When adding peroxide (H2O2), β subunits of hemoglobin (Hb) bear the burden of oxidative changes due in part to the direct oxidation of its Cys93. The presence of unpaired α subunits within red cells and/or co-inheritance of another β subunit mutant, HbE (β26 Glu→Lys) have been implicated in the pathogenesis and severity of β thalassemia. We have found that although both HbA and HbE autoxidize at initially comparable rates, HbE loses heme at a rate almost 2 fold higher than HbA due to unfolding of the protein. Using mass spectrometry and the spin trap, DMPO, we were able to quantify irreversible oxidization of βCys93 to reflect oxidative instability of β subunits. In the presence of free α subunits and H2O2, both HbA and HbE showed βCys93 oxidation which increased with higher H2O2 concentrations. In the presence of Alpha-hemoglobin stabilizing protein (AHSP), which stabilizes the α-subunit in a redox inactive hexacoordinate conformation (thus unable to undergo the redox ferric/ferryl transition), Cys93 oxidation was substantially reduced in both proteins. These experiments establish two important features that may have relevance to the mechanistic understanding of these two inherited hemoglobinopathies, i.e. HbE/β thalassemia: First, a persistent ferryl/ferryl radical in HbE is more damaging to its own β subunit (i.e., βCys93) than HbA. Secondly, in the presence of excess free α-subunit and under the same oxidative conditions, these events are substantially increased for HbE compared to HbA, and may therefore create an oxidative milieu affecting the already unstable HbE. A compromised redox ferric/ferryl cycle promotes oxidative instability in hemoglobin E (HbE). The presence of unmatched alpha subunits aggravates oxidative instability of HbE. Alpha-hemoglobin stabilizing protein (AHSP) reverses alpha subunit destabilizing effects on HbE.
Collapse
|
22
|
Kuesap J, Chaijaroenkul W, Rungsihirunrat K, Pongjantharasatien K, Na-Bangchang K. Coexistence of Malaria and Thalassemia in Malaria Endemic Areas of Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:265-70. [PMID: 26174819 PMCID: PMC4510677 DOI: 10.3347/kjp.2015.53.3.265] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
Hemoglobinopathy and malaria are commonly found worldwide particularly in malaria endemic areas. Thalassemia, the alteration of globin chain synthesis, has been reported to confer resistance against malaria. The prevalence of thalassemia was investigated in 101 malaria patients with Plasmodium falciparum and Plasmodium vivax along the Thai-Myanmar border to examine protective effect of thalassemia against severe malaria. Hemoglobin typing was performed using low pressure liquid chromatography (LPLC) and α-thalassemia was confirmed by multiplex PCR. Five types of thalassemia were observed in malaria patients. The 2 major types of thalassemia were Hb E (18.8%) and α-thalassemia-2 (11.9%). There was no association between thalassemia hemoglobinopathy and malaria parasitemia, an indicator of malaria disease severity. Thalassemia had no significant association with P. vivax infection, but the parasitemia in patients with coexistence of P. vivax and thalassemia was about 2-3 times lower than those with coexistence of P. falciparum and thalassemia and malaria without thalassemia. Furthermore, the parasitemia of P. vivax in patients with coexistence of Hb E showed lower value than coexistence with other types of thalassemia and malaria without coexistence. Parasitemia, hemoglobin, and hematocrit values in patients with coexistence of thalassemia other than Hb E were significantly lower than those without coexistence of thalassemia. Furthermore, parasitemia with coexistence of Hb E were 2 times lower than those with coexistence of thalassemia other than Hb E. In conclusion, the results may, at least in part, support the protective effect of thalassemia on the development of hyperparasitemia and severe anemia in malaria patients.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - W Chaijaroenkul
- Center of Excellence for Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - K Rungsihirunrat
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Kesara Na-Bangchang
- Center of Excellence for Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
23
|
Daou M, Kituma E, Kavishe R, Chilongola J, Mosha F, van der Ven A, Kouriba B, Bousema T, Sauerwein R, Doumbo O. α-Thalassaemia trait is associated with antibody prevalence against malaria antigens AMA-1 and MSP-1. J Trop Pediatr 2015; 61:139-42. [PMID: 25604491 DOI: 10.1093/tropej/fmu077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A longitudinal study was conducted in a low endemic area in northern Tanzania to examine the influence of the α-thalassaemia trait on malaria incidence and antibody responses to malaria apical membrane antigen-1 (AMA-1) and merozoite surface protein1-19 (MSP-119). Out of 394 children genotyped for α-thalassaemia trait, 4.1% (16 of 394) and 30.7% (121 of 394) were homozygous and heterozygous, respectively. During the 1 year follow-up, four incidents of malaria cases were detected without an evident association with α-thalassaemia. Being heterozygous or homozygous for α-thalassaemia was associated with an increased prevalence of antibodies to AMA-1 [odds ratio (OR): 1.83, 95% confidence interval (CI): 1.07-3.12, p = 0.027] and MSP-1 (OR: 2.04, 95% CI: 1.16-3.60, p = 0.013) after adjustment for age and reported bednet use. The observed association between α-thalassaemia and malaria antibody responses may reflect longer-term differences in antigen exposure or differences in antibody acquisition upon exposure in this low endemic setting.
Collapse
Affiliation(s)
- Modibo Daou
- Faculty of Pharmacy, Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Mali Kilimanjaro Christians Medical, Center: Department of Kilimanjaro Clinical Research Institute Moshi Tanzania Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elimsaada Kituma
- Kilimanjaro Christians Medical, Center: Department of Kilimanjaro Clinical Research Institute Moshi Tanzania
| | - Reginald Kavishe
- Kilimanjaro Christians Medical, Center: Department of Kilimanjaro Clinical Research Institute Moshi Tanzania
| | - Jaffu Chilongola
- Kilimanjaro Christians Medical, Center: Department of Kilimanjaro Clinical Research Institute Moshi Tanzania
| | - Frank Mosha
- Kilimanjaro Christians Medical, Center: Department of Kilimanjaro Clinical Research Institute Moshi Tanzania
| | - André van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bourema Kouriba
- Faculty of Pharmacy, Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ogobaro Doumbo
- Faculty of Pharmacy, Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Mali
| |
Collapse
|
24
|
Woolhouse MEJ, Thumbi SM, Jennings A, Chase-Topping M, Callaby R, Kiara H, Oosthuizen MC, Mbole-Kariuki MN, Conradie I, Handel IG, Poole EJ, Njiiri E, Collins NE, Murray G, Tapio M, Auguet OT, Weir W, Morrison WI, Kruuk LEB, Bronsvoort BMDC, Hanotte O, Coetzer K, Toye PG. Co-infections determine patterns of mortality in a population exposed to parasite infection. SCIENCE ADVANCES 2015; 1:e1400026. [PMID: 26601143 PMCID: PMC4643819 DOI: 10.1126/sciadv.1400026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Many individual hosts are infected with multiple parasite species, and this may increase or decrease the pathogenicity of the infections. This phenomenon is termed heterologous reactivity and is potentially an important determinant of both patterns of morbidity and mortality and of the impact of disease control measures at the population level. Using infections with Theileria parva (a tick-borne protozoan, related to Plasmodium) in indigenous African cattle [where it causes East Coast fever (ECF)] as a model system, we obtain the first quantitative estimate of the effects of heterologous reactivity for any parasitic disease. In individual calves, concurrent co-infection with less pathogenic species of Theileria resulted in an 89% reduction in mortality associated with T. parva infection. Across our study population, this corresponds to a net reduction in mortality due to ECF of greater than 40%. Using a mathematical model, we demonstrate that this degree of heterologous protection provides a unifying explanation for apparently disparate epidemiological patterns: variable disease-induced mortality rates, age-mortality profiles, weak correlations between the incidence of infection and disease (known as endemic stability), and poor efficacy of interventions that reduce exposure to multiple parasite species. These findings can be generalized to many other infectious diseases, including human malaria, and illustrate how co-infections can play a key role in determining population-level patterns of morbidity and mortality due to parasite infections.
Collapse
Affiliation(s)
- Mark E. J. Woolhouse
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- Corresponding author. E-mail:
| | - Samuel M. Thumbi
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164–7090, USA
| | - Amy Jennings
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Margo Chase-Topping
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Rebecca Callaby
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Henry Kiara
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Mary N. Mbole-Kariuki
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ilana Conradie
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Ian G. Handel
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - E. Jane Poole
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Evalyne Njiiri
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Gemma Murray
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Miika Tapio
- Natural Resources Institute Finland (Luke), Green technology, FI-31600 Jokioinen, Finland
| | - Olga Tosas Auguet
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Willie Weir
- Henry Wellcome Building, Institute of Biodiversity, Animal Health and Comparative Medicine, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - W. Ivan Morrison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Loeske E. B. Kruuk
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - B. Mark de C. Bronsvoort
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
- The Roslin Institute, University of Edinburgh, The Roslin Building, Easter Bush, Midlothian EH25 9RG, UK
| | - Olivier Hanotte
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Koos Coetzer
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - Philip G. Toye
- International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya
| |
Collapse
|
25
|
Weatherall DJ. A journey in science: early lessons from the hemoglobin field. Mol Med 2014; 20:478-85. [PMID: 25548947 DOI: 10.2119/molmed.2014.00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 11/06/2022] Open
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the Cerami Award Monograph is by David J Weatherall, Founder, Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital. A visionary in the field of hemoglobin, this is the story of Professor Weatherall's scientific journey.
Collapse
Affiliation(s)
- David J Weatherall
- Weatherall Institute of Molecular Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
26
|
|
27
|
Potential immune mechanisms associated with anemia in Plasmodium vivax malaria: a puzzling question. Infect Immun 2014; 82:3990-4000. [PMID: 25092911 DOI: 10.1128/iai.01972-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of malaria is complex, generating a broad spectrum of clinical manifestations. One of the major complications and concerns in malaria is anemia, which is responsible for considerable morbidity in the developing world, especially in children and pregnant women. Despite its enormous health importance, the immunological mechanisms involved in malaria-induced anemia remain incompletely understood. Plasmodium vivax, one of the causative agents of human malaria, is known to induce a strong inflammatory response with a robust production of immune effectors, including cytokines and antibodies. Therefore, it is possible that the extent of the immune response not only may facilitate the parasite killing but also may provoke severe illness, including anemia. In this review, we consider potential immune effectors and their possible involvement in generating this clinical outcome during P. vivax infections.
Collapse
|
28
|
Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol 2014; 30:39-47. [PMID: 24996199 DOI: 10.1016/j.coi.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 11/26/2022]
Abstract
Infection with malaria parasites has imposed a strong selective pressure on the human genome, promoting the convergent evolution of a diverse range of genetic adaptations, many of which are harboured by the red blood cell, which hosts the pathogenic stage of the Plasmodium life cycle. Recent genome-wide and multi-centre association studies of severe malaria have consistently identified ATP2B4, encoding the major Ca(2+) pump of erythrocytes, as a novel resistance locus. Evidence is also accumulating that interaction occurs among resistance loci, the most recent example being negative epistasis among alpha-thalassemia and haptoglobin type 2. Finally, studies on the effect of haemoglobin S and C on parasite transmission to mosquitoes have suggested that protective variants could increase in frequency enhancing parasite fitness.
Collapse
Affiliation(s)
- Valentina D Mangano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
29
|
Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med 2013; 10:e1001575; discussion e1001575. [PMID: 24358031 PMCID: PMC3866090 DOI: 10.1371/journal.pmed.1001575] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 11/06/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. METHODS AND FINDINGS Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81-9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16-9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44-9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49-9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99-3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00-2.23), 1.87 (95% CI 1.74-2.01), and 2.18 (95% CI 1.76-2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%-13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%-16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17-6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in multivariable analyses. CONCLUSIONS In Papua P. vivax is the dominant cause of severe anemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria control strategies in areas of Plasmodium co-endemicity.
Collapse
|
30
|
Oxidative stress and β-thalassemic erythroid cells behind the molecular defect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:985210. [PMID: 24205432 PMCID: PMC3800594 DOI: 10.1155/2013/985210] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
β-thalassemia is a worldwide distributed monogenic red cell disorder, characterized by the absence or reduced β-globin chain synthesis. Despite the extensive knowledge of the molecular defects causing β-thalassemia, less is known about the mechanisms responsible for the associated ineffective erythropoiesis and reduced red cell survival, which sustain anemia of β-thalassemia. The unbalance of alpha-gamma chain and the presence of pathological free iron promote a severe red cell membrane oxidative stress, which results in abnormal β-thalassemic red cell features. These cells are precociously removed by the macrophage system through two mechanisms: the removal of phosphatidylserine positive cells and through the natural occurring antibody produced against the abnormally clustered membrane protein band 3. In the present review we will discuss the changes in β-thalassemic red cell homeostasis related to the oxidative stress and its connection with production of microparticles and with malaria infection. The reactive oxygen species (ROS) are also involved in ineffective erythropoiesis of β-thalassemia through still partially known pathways. Novel cytoprotective systems such as ASHP, eIF2α, and peroxiredoxin-2 have been suggested to be important against ROS in β-thalassemic erythropoiesis. Finally, we will discuss the results of the major in vitro and in vivo studies with antioxidants in β-thalassemia.
Collapse
|
31
|
Weatherall DJ. The Role of the Inherited Disorders of Hemoglobin, the First “Molecular Diseases,” in the Future of Human Genetics. Annu Rev Genomics Hum Genet 2013; 14:1-24. [DOI: 10.1146/annurev-genom-091212-153500] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Weatherall
- Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom;
| |
Collapse
|
32
|
Opoku-Okrah C, Gordge M, Kweku Nakua E, Abgenyega T, Parry M, Robertson C, Smith CL. An investigation of the protective effect of alpha+-thalassaemia against severe Plasmodium falciparum amongst children in Kumasi, Ghana. Int J Lab Hematol 2013; 36:62-70. [PMID: 23837700 DOI: 10.1111/ijlh.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Several factors influence the severity of Plasmodium falciparum; here, we investigate the impact of alpha+-thalassaemia genotype on P. falciparum parasitemia and prevalence of severe anaemia amongst microcytic children from Kumasi, Ghana. METHODS Seven hundred and thirty-two children (≤10 years) with P. falciparum were categorised into normocytic and microcytic (mean cell volume ≤76 fL). Microcytic individuals were genotyped for the -α(3.7) deletional thalassaemia mutation and parasite densities determined. RESULTS Amongst microcytic patients both parasite densities and prevalence of severe malaria parasitemia (≥100 000/μL) were significantly lower (P < 0.001) in the presence of an alpha+-thalassaemia genotype compared with non-alpha+-thalassaemia genotype. There was no evidence that alpha+-thalassaemia protected against severe anaemia. The protection conferred by alpha-thalassaemia genotype against severe P. falciparum parasitemia did not change with increasing age. CONCLUSION The severity of P. falciparum parasitemia was significantly lower in both the homozygous and heterozygous alpha+-thalassaemia groups compared with microcytic individuals with non-alpha+-thalassaemia genotype. The protective effect, from severe malaria, of the alpha+-thalassaemia allele does not alter with age.
Collapse
Affiliation(s)
- C Opoku-Okrah
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,University of Westminster, School of Life Sciences, London, UK
| | - M Gordge
- University of Westminster, School of Life Sciences, London, UK
| | - E Kweku Nakua
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - T Abgenyega
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - M Parry
- University of Westminster, School of Life Sciences, London, UK
| | - C Robertson
- University of Westminster, School of Life Sciences, London, UK
| | - C L Smith
- University of Westminster, School of Life Sciences, London, UK
| |
Collapse
|
33
|
Susceptibility to lethal cerebral malaria is regulated by epistatic interaction between chromosome 4 (Berr6) and chromosome 1 (Berr7) loci in mice. Genes Immun 2013; 14:249-57. [DOI: 10.1038/gene.2013.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Yap ZM, Sun KM, Teo CR, Tan AS, Chong SS. Evidence of differential selection for the −α3.7and −α4.2single-α-globin gene deletions within the same population. Eur J Haematol 2013; 90:210-3. [DOI: 10.1111/ejh.12058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi Min Yap
- University College London Medical School; University College London; London; UK
| | - Kar Mun Sun
- School of Biological Sciences; Nanyang Technological University of Singapore; Singapore
| | | | | | | |
Collapse
|
35
|
Anstey NM, Douglas NM, Poespoprodjo JR, Price RN. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. ADVANCES IN PARASITOLOGY 2013. [PMID: 23199488 DOI: 10.1016/b978-0-12-397900-1.00003-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vivax malaria was historically described as 'benign tertian malaria' because individual clinical episodes were less likely to cause severe illness than Plasmodium falciparum. Despite this, Plasmodium vivax was, and remains, responsible for major morbidity and significant mortality in vivax-endemic areas. Single infections causing febrile illness in otherwise healthy individuals rarely progress to severe disease. Nevertheless, in the presence of co-morbidities, P. vivax can cause severe illness and fatal outcomes. Recurrent or chronic infections in endemic areas can cause severe anaemia and malnutrition, particularly in early childhood. Other severe manifestations include acute lung injury, acute kidney injury and uncommonly, coma. Multiorgan failure and shock are described but further studies are needed to investigate the role of bacterial and other co-infections in these syndromes. In pregnancy, P. vivax infection can cause maternal anaemia, miscarriage, low birth weight and congenital malaria. Compared to P. falciparum, P. vivax has a greater capacity to elicit an inflammatory response, resulting in a lower pyrogenic threshold. Conversely, cytoadherence of P. vivax to endothelial cells is less frequent and parasite sequestration is not thought to be a significant cause of severe illness in vivax malaria. With a predilection for young red cells, P. vivax does not result in the high parasite biomass associated with severe disease in P. falciparum, but a four to fivefold greater removal of uninfected red cells from the circulation relative to P. falciparum is associated with a similar risk of severe anaemia. Mechanisms underlying the pathogenesis of severe vivax syndromes remain incompletely understood.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | | | | | | |
Collapse
|
36
|
Zimmerman PA, Ferreira MU, Howes RE, Mercereau-Puijalon O. Red blood cell polymorphism and susceptibility to Plasmodium vivax. ADVANCES IN PARASITOLOGY 2013; 81:27-76. [PMID: 23384621 PMCID: PMC3728992 DOI: 10.1016/b978-0-12-407826-0.00002-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fy(a) antigen, compared to Fy(b), is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria.
Collapse
Affiliation(s)
- Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | |
Collapse
|
37
|
The host genetic diversity in malaria infection. J Trop Med 2012; 2012:940616. [PMID: 23316245 PMCID: PMC3532872 DOI: 10.1155/2012/940616] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/06/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.
Collapse
|
38
|
Rosanas-Urgell A, Senn N, Rarau P, Aponte JJ, Reeder JC, Siba PM, Michon P, Mueller I. Lack of associations of α(+)-thalassemia with the risk of Plasmodium falciparum and Plasmodium vivax infection and disease in a cohort of children aged 3-21 months from Papua New Guinea. Int J Parasitol 2012; 42:1107-13. [PMID: 23085147 DOI: 10.1016/j.ijpara.2012.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Despite consistent evidence of a protective effect of α(+)-thalassemia against severe Plasmodium falciparum disease, the mechanisms underlying this protection remain unknown. An increase in risk of Plasmodium vivax malaria in early childhood resulting in a cross-species protection against severe P. falciparum malaria has been proposed as a possible mechanism in Melanesian children. The association of α(+)-thalassemia genotypes with a risk of P. falciparum and P. vivax infection and uncomplicated illness was reassessed in a cohort of 1,112 Papua New Guinean children, followed from 3 to 21 months of age. Three hundred and eighty-nine (35.0%) children were homozygous for α(+)-thalassemia (-α/-α), 506 (45.5%) heterozygous (αα/-α) and 217 (19.5%) homozygous for the wild-type allele. No significant differences in the incidence of P. falciparum (Pf) or P. vivax (Pv) malaria were observed between α(+)-thalassemia homozygote (Pf: incidence rate ratio (IRR)=1.13, CI(95) (0.82, 1.56), P=0.45, Pv: IRR=1.15, CI(95) (0.88, 1.50), P=0.31), heterozygote (Pf: IRR=0.98, CI(95) (0.71, 1.34), P=0.93, Pv: IRR=1.14, CI(95) (0.88, 1.48), P=0.33) and wild-type children. The prevalence of infection with either species did not differ between α(+)-thalassemia genotypes, although densities of P. vivax (but not of P. falciparum) infections were significantly higher in α(+)-thalassemia homozygote and heterozygote children. An excessive risk of moderate-to-severe anemia (Hb<8 g/dl) was observed in α(+)-thalassemia homozygote children (IRR=1.54, CI(95) (1.12, 2.11), P=0.008). This study therefore failed to confirm an increased risk of P. vivax or P. falciparum malaria in very young, α(+)-thalassemic children without significant levels of acquired immunity. This confirms the lack of protection by α(+)-thalassemia against uncomplicated P. falciparum and challenges the hypothesis of immunological cross-protection between P. falciparum and P. vivax as a mechanism underlying α(+)-thalassemia protection against severe P. falciparum disease in Melanesian children.
Collapse
|
39
|
Williams TN, Weatherall DJ. World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med 2012; 2:a011692. [PMID: 22951448 PMCID: PMC3426822 DOI: 10.1101/cshperspect.a011692] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although information about the precise world distribution and frequency of the inherited hemoglobin disorders is still limited, there is no doubt that they are going to pose an increasing burden on global health resources in the future. Their high frequency is a reflection of natural selection combined with a high frequency of consanguineous marriages in many countries, together with an epidemiological transition; whereby, as public health measures improve in the poorer countries of the world, more babies with these disorders are surviving to present for treatment.
Collapse
Affiliation(s)
- Thomas N Williams
- Kenya Medical Research Institute/Wellcome Trust Programme, Centre for Geographical Research, Kilifi District Hospital, PO Box 230, Kilifi, Kenya.
| | | |
Collapse
|
40
|
Omar AH, Yasunami M, Yamazaki A, Shibata H, Ofori MF, Akanmori BD, Shuaibu MN, Kikuchi M, Hirayama K. Toll-like receptor 9 (TLR9) polymorphism associated with symptomatic malaria: a cohort study. Malar J 2012; 11:168. [PMID: 22594374 PMCID: PMC3426469 DOI: 10.1186/1475-2875-11-168] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In areas mesoendemic for malaria transmission, symptomatic individuals play a significant role as reservoirs for malaria infection. Understanding the pathogenesis of symptomatic malaria is important in devising tools for augmenting malaria control. In this study, the effect of TLR9 polymorphisms on susceptibility to symptomatic malaria was investigated among Ghanaian children. METHODS Four hundred and twenty nine (429) healthy Ghanaian children, aged three to eleven years (3-11 years), were enrolled into a cohort study and actively followed up for symptomatic malaria for one year. Four TLR9 single nucleotide polymorphisms (SNPs) namely: rs187084 (C-1486 T), rs5743836(C-1237 T), rs352139 (G + 1174A) and rs352140 (G + 2848A) were genotyped by direct sequencing, and their attributable and relative risks for symptomatic malaria determined. TLR9 haplotypes were inferred using the PHASE software and analysed for the risk of symptomatic malaria. A luciferase assay was performed to investigate whether the TLR9 haplotypes influence TLR9 promoter activity. RESULTS The rs352139 GG genotype showed a significantly increased relative risk of 4.8 for symptomatic malaria (P = 0.0024) and a higher mean parasitaemia (P = 0.04). Conversely, the rs352140 GG genotype showed a significantly reduced relative risk of 0.34 (P = 0.048). TLR9 haplotypes analyses showed that TTAG haplotype was significantly associated with reduced relative risk of 0.2 for symptomatic malaria (P = 4×10⁻⁶) and a lower mean parasitaemia (0.007), while CTGA haplotype had an increased relative risk of 3.3 (P = 0.005). Functional luciferase reporter gene expression assay revealed that the TTA haplotype had a significantly higher promoter activity than the CCG, CTG and TCG haplotypes. CONCLUSIONS Taken together, these findings indicate a significant association of TLR9 gene polymorphisms with symptomatic malaria among Ghanaian children in Dangme-West district.
Collapse
Affiliation(s)
- Ahmeddin H Omar
- Department of Immunogenetics, Institute of Tropical Medicine-NEKKEN and Global COE Program, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, Price RN. The anaemia of Plasmodium vivax malaria. Malar J 2012; 11:135. [PMID: 22540175 PMCID: PMC3438072 DOI: 10.1186/1475-2875-11-135] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022] Open
Abstract
Plasmodium vivax threatens nearly half the world's population and is a significant impediment to achievement of the millennium development goals. It is an important, but incompletely understood, cause of anaemia. This review synthesizes current evidence on the epidemiology, pathogenesis, treatment and consequences of vivax-associated anaemia. Young children are at high risk of clinically significant and potentially severe vivax-associated anaemia, particularly in countries where transmission is intense and relapses are frequent. Despite reaching lower densities than Plasmodium falciparum, Plasmodium vivax causes similar absolute reduction in red blood cell mass because it results in proportionately greater removal of uninfected red blood cells. Severe vivax anaemia is associated with substantial indirect mortality and morbidity through impaired resilience to co-morbidities, obstetric complications and requirement for blood transfusion. Anaemia can be averted by early and effective anti-malarial treatment.
Collapse
Affiliation(s)
- Nicholas M Douglas
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Pierre A Buffet
- INSERM - UPMC, (Paris 6 University) UMRs945, F-75013, Paris, France
- Department of Parasitology, Pitié-Salpétrière Hospital, Assistance Publique – Hôpitaux de Paris, F-75013, Paris, France
- Institut Pasteur, Unité d’Immunologie Moléculaire des Parasites, Département de Parasitologie Mycologie, F-75015, Paris, France
| | - Jeanne R Poespoprodjo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Mimika District Health Authority, Timika, Papua, Indonesia
- Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Tsin W Yeo
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ric N Price
- Global Health Division, Menzies School of Health Research, PO Box 41096, Casuarina, NT 0811, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Medicine, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
42
|
Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2012; 12:457-68. [PMID: 22445352 DOI: 10.1016/s1473-3099(12)70055-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Haemoglobinopathies can reduce the risk of malaria syndromes. We aimed to quantify the relation between different haemoglobin mutations and malaria protection to strengthen the foundation for translational studies of malaria pathogenesis and immunity. METHODS We systematically searched the Medline and Embase databases for studies that estimated the risk of malaria in patients with and without haemoglobinopathies up to Sept 9, 2011, and identified additional studies from reference lists. We included studies that enrolled mainly children or pregnant women and had the following outcomes: Plasmodium falciparum severe malaria, uncomplicated malaria, asymptomatic parasitaemia, or pregnancy-associated malaria, and Plasmodium vivax malaria. Two reviewers identified studies independently, assessed quality of the studies, and extracted data. We produced odds ratios (ORs; 95% CIs) for case-control studies and incidence rate ratios (IRRs; 95% CIs) for prospective studies. We did the meta-analysis with a random-effects model when equivalent outcomes were reported in more than one study. FINDINGS Of 62 identified studies, 44 reported data for haemoglobin AS, 19 for haemoglobin AC and CC, and 18 for α-thalassaemia. Meta-analysis of case-control studies showed a decreased risk of severe P. falciparum malaria in individuals with haemoglobin AS (OR 0·09, 95% CI 0·06-0·12), haemoglobin CC (0·27, 0·11-0·63), haemoglobin AC (0·83, 0·67-0·96), homozygous α-thalassaemia (0·63, 0·48-0·83), and heterozygous α-thalassaemia (0·83, 0·74-0·92). In meta-analysis of prospective trials only haemoglobin AS was consistently associated with protection from uncomplicated malaria (IRR 0·69, 95% CI 0·61-0·79); no haemoglobinopathies led to consistent protection from asymptomatic parasitaemia. Few clinical studies have investigated β-thalassaemia, haemoglobin E, P. vivax malaria, or pregnancy-associated malaria. INTERPRETATION Haemoglobin AS, CC, and AC genotypes and homozygous and heterozygous α-thalassaemia provide significant protection from severe malaria syndromes, but these haemoglobinopathies differ substantially in the degree of protection provided and confer mild or no protection against uncomplicated malaria and asymptomatic parasitaemia. Through attenuation of severity of malaria, haemoglobinopathies could serve as a model for investigation of the mechanisms of malaria pathogenesis and immunity. FUNDING US National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- Steve M Taylor
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
43
|
Clark CJ, Phillips RS. Cerebral malaria protection in mice by species-specific Plasmodium coinfection is associated with reduced CC chemokine levels in the brain. Parasite Immunol 2012; 33:637-41. [PMID: 21851365 DOI: 10.1111/j.1365-3024.2011.01329.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebral malaria is a major pathological complication of Plasmodium falciparum infection in humans. Epidemiological observations have suggested that the clinical evolution of P. falciparum infections may be influenced by the concurrent presence of another Plasmodium species. Infection of susceptible mouse strains with P. berghei ANKA (PbA) provides an experimental model of cerebral malaria which has been extensively used to identify different components of the immune system involved in cerebral malaria. This model has also been employed to investigate the influence of experimental mixed-Plasmodium-species infections on the expression of cerebral malaria; PbA-induced cerebral malaria is completely inhibited by the simultaneous presence of P. yoelii yoelii 17 X clone 1.1 parasites, and accumulation of CD8(+) T cells in the brain vasculature is abolished. We investigated whether brain levels of CD8(+) -T-cell-chemoattractant chemokines CCL3, CCL4 and CCL5 are reduced in these protected coinfected mice compared with PbA-infected mice. Coinfected mice were found to exhibit significantly reduced levels of all three chemokines on day 6 post-infection. This finding may contribute to the abolition of the accumulation of CD8(+) T cells in the brain vasculature and the prevention of the development of cerebral malaria in coinfected mice.
Collapse
Affiliation(s)
- C J Clark
- Infection & Immunity, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | |
Collapse
|
44
|
Águas R, Ferreira MU, Gomes MGM. Modeling the effects of relapse in the transmission dynamics of malaria parasites. J Parasitol Res 2011; 2012:921715. [PMID: 21966590 PMCID: PMC3182068 DOI: 10.1155/2012/921715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/12/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022] Open
Abstract
Often regarded as "benign," Plasmodium vivax infections lay in the shadows of the much more virulent P. falciparum infections. However, about 1.98 billion people are at risk of both parasites worldwide, stressing the need to understand the epidemiology of Plasmodium vivax, particularly under the scope of decreasing P. falciparum prevalence and ecological interactions between both species. Two epidemiological observations put the dynamics of both species into perspective: (1) ACT campaigns have had a greater impact on P. falciparum prevalence. (2) Complete clinical immunity is attained at younger ages for P. vivax, under similar infection rates. We systematically compared two mathematical models of transmission for both Plasmodium species. Simulations suggest that an ACT therapy combined with a hypnozoite killing drug would eliminate both species. However, P. vivax elimination is predicted to be unstable. Differences in age profiles of clinical malaria can be explained solely by P. vivax's ability to relapse, which accelerates the acquisition of clinical immunity and serves as an immunity boosting mechanism. P. vivax transmission can subsist in areas of low mosquito abundance and is robust to drug administration initiatives due to relapse, making it an inconvenient and cumbersome, yet less lethal alternative to P. falciparum.
Collapse
Affiliation(s)
- Ricardo Águas
- Instituto Gulbenkian de Ciência, 2781-901 Oeiras, Portugal
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | |
Collapse
|
45
|
Veenemans J, Jansen EJS, Baidjoe AY, Mbugi EV, Demir AY, Kraaijenhagen RJ, Savelkoul HFJ, Verhoef H. Effect of α(+)-thalassaemia on episodes of fever due to malaria and other causes: a community-based cohort study in Tanzania. Malar J 2011; 10:280. [PMID: 21939508 PMCID: PMC3195205 DOI: 10.1186/1475-2875-10-280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
Background It is controversial to what degree α+-thalassaemia protects against episodes of uncomplicated malaria and febrile disease due to infections other than Plasmodium. Methods In Tanzania, in children aged 6-60 months and height-for-age z-score < -1.5 SD (n = 612), rates of fevers due to malaria and other causes were compared between those with heterozygous or homozygotes α+-thalassaemia and those with a normal genotype, using Cox regression models that accounted for multiple events per child. Results The overall incidence of malaria was 3.0/child-year (1, 572/526 child-years); no differences were found in malaria rates between genotypes (hazard ratios, 95% CI: 0.93, 0.82-1.06 and 0.91, 0.73-1.14 for heterozygotes and homozygotes respectively, adjusted for baseline factors that were predictive for outcome). However, this association strongly depended on age: among children aged 6-17 months, those with α+-thalassaemia experienced episodes more frequently than those with a normal genotype (1.30, 1.02-1.65 and 1.15, 0.80-1.65 for heterozygotes and homozygotes respectively), whereas among their peers aged 18-60 months, α+-thalassaemia protected against malaria (0.80, 0.68-0.95 and 0.78, 0.60-1.03; p-value for interaction 0.001 and 0.10 for hetero- and homozygotes respectively). No effect was observed on non-malarial febrile episodes. Conclusions In this population, the association between α+-thalassaemia and malaria depends on age. Our data suggest that protection by α+-thalassaemia is conferred by more efficient acquisition of malaria-specific immunity.
Collapse
Affiliation(s)
- Jacobien Veenemans
- Wageningen University, Cell Biology and Immunology Group, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Danquah I, Ziniel P, Eggelte TA, Ehrhardt S, Mockenhaupt FP. Influence of haemoglobins S and C on predominantly asymptomatic Plasmodium infections in northern Ghana. Trans R Soc Trop Med Hyg 2011; 104:713-9. [PMID: 20800861 DOI: 10.1016/j.trstmh.2010.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022] Open
Abstract
The haemoglobin (Hb) variants HbS and HbC protect against severe malaria. Yet, the influence particularly of HbC on asymptomatic or mild Plasmodium infection is not well established. In a dry season cross-sectional survey among 2108 children aged 0.5-9 years in the Northern Region of Ghana, Plasmodium species and density, as well as Hb, were analysed with respect to Hb genotypes. HbAC occurred in 19.7% and HbAS in 7.4% (HbSC, 0.8%; HbCC, 0.8%; HbSS, 0.3%). Overall, 56% of the children had microscopically visible parasitaemia. By PCR, P. falciparum, P. malariae, and P. ovale were present in 74.5%, 9.7%, and 5.5%, respectively. Febrile parasitaemia was rare (2.8%) but anaemia (Hb<11g/dL) frequent (59.3%). Children with HbAA and HbAC showed virtually identical malariometric parameters. In contrast, children with HbAS had significantly less parasitaemia, lower parasite densities, and a higher proportion of submicroscopic P. falciparum infection. Remarkably, in children with HbCC, P. malariae infection occurred in 37.5% (adjusted odds ratio (aOR), 5.8; 95% CI, 1.8-18.8) and P. ovale in 18.8% (aOR, 3.61; 95% CI, 0.97-13.5). In this population with predominantly asymptomatic Plasmodium infection, HbAC shows no discernible effect on malaria-related parameters. Homozygous HbC, in contrast, confers an increased risk of P. malariae infection which conceivably may modulate falciparum malaria.
Collapse
Affiliation(s)
- Ina Danquah
- Charité - University Medicine Berlin, Spandauer Damm 130, 14050 Berlin, Germany.
| | | | | | | | | |
Collapse
|
48
|
Meyer CG, Calixto Fernandes MH, Intemann CD, Kreuels B, Kobbe R, Kreuzberg C, Ayim M, Ruether A, Loag W, Ehmen C, Adjei S, Adjei O, Horstmann RD, May J. IL3 variant on chromosomal region 5q31–33 and protection from recurrent malaria attacks. Hum Mol Genet 2011; 20:1173-81. [DOI: 10.1093/hmg/ddq562] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Weatherall D, Williams T, Allen S, O’Donnell A. The Population Genetics and Dynamics of the Thalassemias. Hematol Oncol Clin North Am 2010; 24:1021-31. [DOI: 10.1016/j.hoc.2010.08.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G, Foote S, Gros P. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome 2010; 22:32-42. [DOI: 10.1007/s00335-010-9302-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/03/2010] [Indexed: 11/24/2022]
|