1
|
Bimber BN, Sunshine J, McElfresh GW, Reed JS, Pathak R, Bateman KB, Hughes CM, Gilbride RM, Ford JC, Morrow D, Lifson JD, Sacha JB, Hansen SG, Picker LJ. Viral escape mutations do not account for non-protection from SIVmac239 challenge in RhCMV/SIV vaccinated rhesus macaques. Front Immunol 2024; 15:1444621. [PMID: 39170621 PMCID: PMC11336698 DOI: 10.3389/fimmu.2024.1444621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Simian immunodeficiency virus (SIV) vaccines based upon 68-1 Rhesus Cytomegalovirus (RhCMV) vectors show remarkable protection against pathogenic SIVmac239 challenge. Across multiple independent rhesus macaque (RM) challenge studies, nearly 60% of vaccinated RM show early, complete arrest of SIVmac239 replication after effective challenge, whereas the remainder show progressive infection similar to controls. Here, we performed viral sequencing to determine whether the failure to control viral replication in non-protected RMs is associated with the acquisition of viral escape mutations. While low level viral mutations accumulated in all animals by 28 days-post-challenge, which is after the establishment of viral control in protected animals, the dominant circulating virus in virtually all unprotected RMs was nearly identical to the challenge stock, and there was no difference in mutation patterns between this cohort and unvaccinated controls. These data definitively demonstrate that viral mutation does not explain lack of viral control in RMs not protected by RhCMV/SIV vaccination. We further demonstrate that during chronic infection RhCMV/SIV vaccinated RMs do not acquire escape mutation in epitopes targeted by RhCMV/SIV, but instead display mutation in canonical MHC-Ia epitopes similar to unvaccinated RMs. This suggests that after the initial failure of viral control, unconventional T cell responses induced by 68-1 RhCMV/SIV vaccination do not exert strong selective pressure on systemically replicating SIV.
Collapse
Affiliation(s)
- Benjamin N. Bimber
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Justine Sunshine
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - G. W. McElfresh
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Jason S. Reed
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Reese Pathak
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Katherine B. Bateman
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - David Morrow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, United States
| | - Jonah B. Sacha
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Scott G. Hansen
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| | - Louis J. Picker
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
2
|
Lima ÉRG, Queiroz MAF, Lima SS, Machado LFA, Cayres-Vallinoto IMV, Vallinoto ACR, Figueiredo FADPL, Guerreiro JF, Guimarães Ishak MDO, Ishak R. CCR5∆32 and SDF1 3'A: Gene Variants, Expression and Influence on Biological Markers for the Clinical Progression to AIDS among HIV-1 Virus Controllers in a Mixed Population of the Amazon Region of Brazil. Int J Mol Sci 2023; 24:ijms24054958. [PMID: 36902388 PMCID: PMC10003039 DOI: 10.3390/ijms24054958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/08/2023] Open
Abstract
CCR5Δ32 and SDF1-3'A polymorphisms were investigated in a cohort of viremia controllers, without the use of therapy, along with their influence on CD4+ T lymphocytes (TLs), CD8+ TLs, and plasma viral load (VL). The samples were analyzed from 32 HIV-1-infected individuals classified as viremia controllers 1 and 2 and viremia non-controllers, from both sexes, mostly heterosexuals, paired with 300 individuals from a control group. CCR5∆32 polymorphism was identified by PCR amplification of a fragment of 189 bp for the wild-type allele and 157 bp for the allele with the ∆32 deletion. SDF1-3'A polymorphism was identified by PCR, followed by enzymatic digestion (restriction fragment length polymorphism) with the Msp I enzyme. The relative quantification of gene expression was performed by real-time PCR. The distribution of allele and genotype frequencies did not show significant differences between the groups. The gene expression of CCR5 and SDF1 was not different between the profiles of AIDS progression. There was no significant correlation between the progression markers (CD4+ TL/CD8+ TL and VL) and the CCR5∆32 polymorphism carrier status. The 3'A allele variant was associated with a marked loss of CD4+ TLs and a higher plasma VL. Neither CCR5∆32 nor SDF1-3'A was associated with viremia control or the controlling phenotype.
Collapse
Affiliation(s)
- Érica Ribeiro Gomes Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Maria Alice Freitas Queiroz
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Correspondence: ; Tel.: +55-91-98864-4259
| | - Sandra Souza Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | | | | | - João Farias Guerreiro
- Human and Medical Genetics Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Ricardo Ishak
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
3
|
PD-1 blockade following ART interruption enhances control of pathogenic SIV in rhesus macaques. Proc Natl Acad Sci U S A 2022; 119:e2202148119. [PMID: 35939675 PMCID: PMC9388156 DOI: 10.1073/pnas.2202148119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed death-1 (PD-1) blockade during chronic Simian immunodeficiency virus (SIV) infection results in restoration of CD8 T-cell function and enhances viral control. Here, we tested the therapeutic benefits of PD-1 blockade administered soon after anti-retrovial therapy (ART) interruption (ATI) by treating SIV-infected and ART-suppressed macaques with either an anti-PD-1 antibody (n = 7) or saline (n = 4) at 4 wk after ATI. Following ATI, the plasma viremia increased rapidly in all animals, and the frequency of SIV-specific CD8 T cells also increased in some animals. PD-1 blockade post ATI resulted in higher proliferation of total memory CD8 and CD4 T cells and natural killer cells. PD-1 blockade also resulted in higher proliferation of SIV-specific CD8 T cells and promoted their differentiation toward better functional quality. Importantly, four out of the seven anti-PD-1 antibody-treated animals showed a rapid decline in plasma viremia by 100- to 2300-fold and this was observed only in animals that showed measurable SIV-specific CD8 T cells post PD-1 blockade. These results demonstrate that PD-1 blockade following ATI can significantly improve the function of anti-viral CD8 T cells and enhance viral control and strongly suggests its potential synergy with other immunotherapies that induce functional CD8 T-cell response under ART. These results have important implications for HIV cure research.
Collapse
|
4
|
Hierarchy of multiple viral CD8+ T-cell epitope mutations in sequential selection in simian immunodeficiency infection. Biochem Biophys Res Commun 2022; 607:124-130. [DOI: 10.1016/j.bbrc.2022.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
|
5
|
Smyth M, Khamina K, Popa A, Gudipati V, Agerer B, Lercher A, Kosack L, Endler L, Baazim H, Viczenczova C, Huppa JB, Bergthaler A. Characterization of CD8 T Cell-Mediated Mutations in the Immunodominant Epitope GP33-41 of Lymphocytic Choriomeningitis Virus. Front Immunol 2021; 12:638485. [PMID: 34194424 PMCID: PMC8236698 DOI: 10.3389/fimmu.2021.638485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) represent key immune effectors of the host response against chronic viruses, due to their cytotoxic response to virus-infected cells. In response to this selection pressure, viruses may accumulate escape mutations that evade CTL-mediated control. To study the emergence of CTL escape mutations, we employed the murine chronic infection model of lymphocytic choriomeningitis virus (LCMV). We developed an amplicon-based next-generation sequencing pipeline to detect low frequency mutations in the viral genome and identified non-synonymous mutations in the immunodominant LCMV CTL epitope, GP33-41, in infected wildtype mice. Infected Rag2-deficient mice lacking CTLs did not contain such viral mutations. By using transgenic mice with T cell receptors specific to GP33-41, we characterized the emergence of viral mutations in this epitope under varying selection pressure. We investigated the two most abundant viral mutations by employing reverse genetically engineered viral mutants encoding the respective mutations. These experiments provided evidence that these mutations prevent activation and expansion of epitope-specific CD8 T cells. Our findings on the mutational dynamics of CTL escape mutations in a widely-studied viral infection model contributes to our understanding of how chronic viruses interact with their host and evade the immune response. This may guide the development of future treatments and vaccines against chronic infections.
Collapse
Affiliation(s)
- Mark Smyth
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kseniya Khamina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexandra Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lukas Endler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
6
|
Evaluation of potential MHC-I allele-specific epitopes in Zika virus proteins and the effects of mutations on peptide-MHC-I interaction studied using in silico approaches. Comput Biol Chem 2021; 92:107459. [PMID: 33636637 DOI: 10.1016/j.compbiolchem.2021.107459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 11/24/2022]
Abstract
Zika virus (ZIKV) infection is a global health concern due to its association with microcephaly and neurological complications. The development of a T-cell vaccine is important to combat this disease. In this study, we propose ZIKV major histocompatibility complex I (MHC-I) epitopes based on in silico screening consensus followed by molecular docking, PRODIGY, and molecular dynamics (MD) simulation analyses. The effects of the reported mutations on peptide-MHC-I (pMHC-I) complexes were also evaluated. In general, our data indicate an allele-specific peptide-binding human leukocyte antigen (HLA) and potential epitopes. For HLA-B44, we showed that the absence of acidic residue Glu at P2, due to the loss of the electrostatic interaction with Lys45, has a negative impact on the pMHC-I complex stability and explains the low free energy estimated for the immunodominant peptide E-4 (IGVSNRDFV). Our MD data also suggest the deleterious effects of acidic residue Asp at P1 on the pMHC-I stability of HLA-B8 due to destabilization of the α-helix and β-strand. Free energy estimation further indicated that the mutation from Val to Ala at P9 of peptide E-247 (DAHAKRQTV), which was found exclusively in microcephaly samples, did not reduce HLA-B8 affinity. In contrast, the mutation from Thr to Pro at P2 of the peptide NS5-832 (VTKWTDIPY) decreased the interaction energy, number of intermolecular interactions, and adversely affected its binding mode with HLA-A1. Overall, our findings are important with regard to the design of T-cell peptide vaccines and for understanding how ZIKV escapes recognition by CD8 + T-cells.
Collapse
|
7
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
8
|
Warren JA, Zhou S, Xu Y, Moeser MJ, MacMillan DR, Council O, Kirchherr J, Sung JM, Roan NR, Adimora AA, Joseph S, Kuruc JD, Gay CL, Margolis DM, Archin N, Brumme ZL, Swanstrom R, Goonetilleke N. The HIV-1 latent reservoir is largely sensitive to circulating T cells. eLife 2020; 9:57246. [PMID: 33021198 PMCID: PMC7593086 DOI: 10.7554/elife.57246] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
HIV-1-specific CD8+ T cells are an important component of HIV-1 curative strategies. Viral variants in the HIV-1 reservoir may limit the capacity of T cells to detect and clear virus-infected cells. We investigated the patterns of T cell escape variants in the replication-competent reservoir of 25 persons living with HIV-1 (PLWH) durably suppressed on antiretroviral therapy (ART). We identified all reactive T cell epitopes in the HIV-1 proteome for each participant and sequenced HIV-1 outgrowth viruses from resting CD4+ T cells. All non-synonymous mutations in reactive T cell epitopes were tested for their effect on the size of the T cell response, with a≥50% loss defined as an escape mutation. The majority (68%) of T cell epitopes harbored no detectable escape mutations. These findings suggest that circulating T cells in PLWH on ART could contribute to control of rebound and could be targeted for boosting in curative strategies.
Collapse
Affiliation(s)
- Joanna A Warren
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | - Yinyan Xu
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States
| | - Matthew J Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States
| | | | - Olivia Council
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jennifer Kirchherr
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Julia M Sung
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nadia R Roan
- Department of Urology, University of California San Francisco, San Francisco, United States.,Gladstone Institute of Virology and Immunology, San Francisco, United States
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina, Chapel Hill, United States
| | - Sarah Joseph
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - JoAnn D Kuruc
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Cynthia L Gay
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - David M Margolis
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nancie Archin
- Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Zabrina L Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States.,UNC Center For AIDS Research, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, United States.,Department of Medicine, University of North Carolina, Chapel Hill, United States.,UNC HIV Cure Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
9
|
Gomes STM, da Silva Graça Amoras E, Gomes ÉR, Queiroz MAF, Júnior ECS, de Vasconcelos Massafra JM, da Silva Lemos P, Júnior JLV, Ishak R, Vallinoto ACR. Immune escape mutations in HIV-1 controllers in the Brazilian Amazon region. BMC Infect Dis 2020; 20:546. [PMID: 32711474 PMCID: PMC7382849 DOI: 10.1186/s12879-020-05268-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV-1) infection is characterized by high viral replication and a decrease in CD4+ T cells (CD4+TC), resulting in AIDS, which can lead to death. In elite controllers and viremia controllers, viral replication is naturally controlled, with maintenance of CD4+TC levels without the use of antiretroviral therapy (ART). METHODS The aim of the present study was to describe virological and immunological risk factors among HIV-1-infected individuals according to characteristics of progression to AIDS. The sample included 30 treatment-naive patients classified into three groups based on infection duration (> 6 years), CD4+TC count and viral load: (i) 2 elite controllers (ECs), (ii) 7 viremia controllers (VCs) and (iii) 21 nonviremia controllers (NVCs). Nested PCR was employed to amplify the virus genome, which was later sequenced using the Ion PGM platform for subtyping and analysis of immune escape mutations. RESULTS Viral samples were classified as HIV-1 subtypes B and F. Greater selection pressure on mutations was observed in the group of viremia controllers, with a higher frequency of immunological escape mutations in the genes investigated, including two new mutations in gag. The viral sequences of viremia controllers and nonviremia controllers did not differ significantly regarding the presence of immune escape mutations. CONCLUSION The results suggest that progression to AIDS is not dependent on a single variable but rather on a set of characteristics and pressures exerted by virus biology and interactions with immunogenetic host factors.
Collapse
Affiliation(s)
- Samara Tatielle Monteiro Gomes
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Biological Science Institute, Federal University of Pará, Ananindeua, Brazil
| | | | - Érica Ribeiro Gomes
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | - Edivaldo Costa Sousa Júnior
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Poliana da Silva Lemos
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | - João Lídio Vianez Júnior
- Health Surveillance Department, Ministry of Health (IEC-SVS/MS), Evandro Chagas Institute, Ananindeua, Brazil
| | - Ricardo Ishak
- Laboratory of Virology, Biological Science Institute, Federal University of Pará (ICB/UFPA), Ananindeua, Brazil
| | | |
Collapse
|
10
|
Duru AD, Sun R, Allerbring EB, Chadderton J, Kadri N, Han X, Peqini K, Uchtenhagen H, Madhurantakam C, Pellegrino S, Sandalova T, Nygren PÅ, Turner SJ, Achour A. Tuning antiviral CD8 T-cell response via proline-altered peptide ligand vaccination. PLoS Pathog 2020; 16:e1008244. [PMID: 32365082 PMCID: PMC7224568 DOI: 10.1371/journal.ppat.1008244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/14/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022] Open
Abstract
Viral escape from CD8+ cytotoxic T lymphocyte responses correlates with disease progression and represents a significant challenge for vaccination. Here, we demonstrate that CD8+ T cell recognition of the naturally occurring MHC-I-restricted LCMV-associated immune escape variant Y4F is restored following vaccination with a proline-altered peptide ligand (APL). The APL increases MHC/peptide (pMHC) complex stability, rigidifies the peptide and facilitates T cell receptor (TCR) recognition through reduced entropy costs. Structural analyses of pMHC complexes before and after TCR binding, combined with biophysical analyses, revealed that although the TCR binds similarly to all complexes, the p3P modification alters the conformations of a very limited amount of specific MHC and peptide residues, facilitating efficient TCR recognition. This approach can be easily introduced in peptides restricted to other MHC alleles, and can be combined with currently available and future vaccination protocols in order to prevent viral immune escape.
Collapse
Affiliation(s)
- Adil Doganay Duru
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- NSU Cell Therapy Institute & Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Eva B. Allerbring
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jesseka Chadderton
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Kaliroi Peqini
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Hannes Uchtenhagen
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Chaithanya Madhurantakam
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- Structural and Molecular Biology Laboratory, Department of Biotechnology, TERI, School of Advanced Studies, New Delhi, India
| | - Sara Pellegrino
- DISFARM, Dipartimento di Scienze Farmaceutiche, Sezinone Chimica Generale e Organica, Università degli Studi, Milano, Italy
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Stephen J. Turner
- Department of Microbiology, Biomedical Discovery Institute, Monash University, Clayton, Australia
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
11
|
Borzooee F, Joris KD, Grant MD, Larijani M. APOBEC3G Regulation of the Evolutionary Race Between Adaptive Immunity and Viral Immune Escape Is Deeply Imprinted in the HIV Genome. Front Immunol 2019; 9:3032. [PMID: 30687306 PMCID: PMC6338068 DOI: 10.3389/fimmu.2018.03032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.
Collapse
Affiliation(s)
- Faezeh Borzooee
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Krista D Joris
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
12
|
McMichael AJ. Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? Could a CD8 + T-Cell Vaccine Prevent Persistent HIV Infection? Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029124. [PMID: 29254977 DOI: 10.1101/cshperspect.a029124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vaccines that stimulate CD8+ T cells could clear early virus infection or control ongoing infection and prevent disease. This could be valuable to combat human immunodeficiency virus type 1 (HIV-1) where it has not yet been possible to generate broadly reacting neutralizing antibodies with a vaccine. However, HIV-1 vaccines aimed at stimulating CD8+ T cells have had no success. In contrast, a cytomegalovirus vectored simian immunodeficiency virus (SIV) vaccine enabled clearance of early SIV infection. This may open the door to the design of an effective HIV vaccine.
Collapse
Affiliation(s)
- Andrew J McMichael
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| |
Collapse
|
13
|
Hu X, Lu Z, Valentin A, Rosati M, Broderick KE, Sardesai NY, Marx PA, Mullins JI, Pavlakis GN, Felber BK. Gag and env conserved element CE DNA vaccines elicit broad cytotoxic T cell responses targeting subdominant epitopes of HIV and SIV Able to recognize virus-infected cells in macaques. Hum Vaccin Immunother 2018; 14:2163-2177. [PMID: 29939820 PMCID: PMC6183272 DOI: 10.1080/21645515.2018.1489949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV sequence diversity and the propensity of eliciting immunodominant responses targeting inessential variable regions are hurdles in the development of an effective AIDS vaccine. We developed a DNA vaccine comprising conserved elements (CE) of SIV p27Gag and HIV-1 Env and found that priming vaccination with CE DNA is critical to efficiently overcome the dominance imposed by Gag and Env variable regions. Here, we show that DNA vaccinated macaques receiving the CE prime/CE+full-length DNA co-delivery booster vaccine regimens developed broad, potent and durable cytotoxic T cell responses targeting conserved protein segments of SIV Gag and HIV Env. Gag CE-specific T cells showed robust anamnestic responses upon infection with SIVmac239 which led to the identification of CE-specific cytotoxic lymphocytes able to recognize epitopes covering distinct CE on the surface of SIV infected cells in vivo. Though not controlling infection overall, we found an inverse correlation between Gag CE-specific CD8+ T cell responses and peak viremia. The T cell responses induced by the HIV Env CE immunogen were recalled in some animals upon SIV infection, leading to the identification of two cross-reactive epitopes between HIV and SIV Env based in sequence homology. These data demonstrate that a vaccine combining Gag and Env CE DNA subverted the normal immunodominance patterns, eliciting immune responses that included subdominant, highly conserved epitopes. These vaccine regimens augment cytotoxic T cell responses to highly conserved epitopes in the viral proteome and maximize response breadth. The vaccine-induced CE-specific T cells were expanded upon SIV infection, indicating that the predicted CE epitopes incorporated in the DNA vaccine are processed and exposed by infected cells in their natural context within the viral proteome.
Collapse
Affiliation(s)
- Xintao Hu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Zhongyan Lu
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| | - Antonio Valentin
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Margherita Rosati
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | | | | | - Preston A Marx
- d Tulane National Primate Research Center and Department of Tropical Medicine, School of Public Health and Tropical Medicine , Tulane University , New Orleans , LA , USA
| | - James I Mullins
- e Departments of Microbiology, Medicine and Laboratory Medicine , University of Washington , Seattle , WA , USA
| | - George N Pavlakis
- b Human Retrovirus Section, Vaccine Branch, Center for Cancer Research , National Cancer Institute at Frederick , Frederick, Frederick , MD , USA
| | - Barbara K Felber
- a Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick , Frederick , MD , USA
| |
Collapse
|
14
|
Ganusov VV. Time Intervals in Sequence Sampling, Not Data Modifications, Have a Major Impact on Estimates of HIV Escape Rates. Viruses 2018; 10:v10030099. [PMID: 29495443 PMCID: PMC5869492 DOI: 10.3390/v10030099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022] Open
Abstract
The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses.
Collapse
Affiliation(s)
- Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
Yang Y, Ganusov VV. Kinetics of HIV-Specific CTL Responses Plays a Minimal Role in Determining HIV Escape Dynamics. Front Immunol 2018; 9:140. [PMID: 29472921 PMCID: PMC5810297 DOI: 10.3389/fimmu.2018.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) have been suggested to play an important role in controlling human immunodeficiency virus (HIV-1 or simply HIV) infection. HIV, due to its high mutation rate, can evade recognition of T cell responses by generating escape variants that cannot be recognized by HIV-specific CTLs. Although HIV escape from CTL responses has been well documented, factors contributing to the timing and the rate of viral escape from T cells have not been fully elucidated. Fitness costs associated with escape and magnitude of the epitope-specific T cell response are generally considered to be the key in determining timing of HIV escape. Several previous analyses generally ignored the kinetics of T cell responses in predicting viral escape by either considering constant or maximal T cell response; several studies also considered escape from different T cell responses to be independent. Here, we focus our analysis on data from two patients from a recent study with relatively frequent measurements of both virus sequences and HIV-specific T cell response to determine impact of CTL kinetics on viral escape. In contrast with our expectation, we found that including temporal dynamics of epitope-specific T cell response did not improve the quality of fit of different models to escape data. We also found that for well-sampled escape data, the estimates of the model parameters including T cell killing efficacy did not strongly depend on the underlying model for escapes: models assuming independent, sequential, or concurrent escapes from multiple CTL responses gave similar estimates for CTL killing efficacy. Interestingly, the model assuming sequential escapes (i.e., escapes occurring along a defined pathway) was unable to accurately describe data on escapes occurring rapidly within a short-time window, suggesting that some of model assumptions must be violated for such escapes. Our results thus suggest that the current sparse measurements of temporal CTL dynamics in blood bear little quantitative information to improve predictions of HIV escape kinetics. More frequent measurements using more sensitive techniques and sampling in secondary lymphoid tissues may allow to better understand whether and how CTL kinetics impacts viral escape.
Collapse
Affiliation(s)
- Yiding Yang
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, United States
- Department of Mathematics, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
16
|
Leitman EM, Willberg CB, Tsai MH, Chen H, Buus S, Chen F, Riddell L, Haas D, Fellay J, Goedert JJ, Piechocka-Trocha A, Walker BD, Martin J, Deeks S, Wolinsky SM, Martinson J, Martin M, Qi Y, Sáez-Cirión A, Yang OO, Matthews PC, Carrington M, Goulder PJR. HLA-B*14:02-Restricted Env-Specific CD8 + T-Cell Activity Has Highly Potent Antiviral Efficacy Associated with Immune Control of HIV Infection. J Virol 2017; 91:e00544-17. [PMID: 28878089 PMCID: PMC5660483 DOI: 10.1128/jvi.00544-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Huabiao Chen
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Lynn Riddell
- Integrated Sexual Health Services, Northamptonshire Healthcare NHS Trust, Northampton, United Kingdom
| | - David Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jeffrey Martin
- Department of Medicine, University of California San Francisco Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| | - Steven M Wolinsky
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maureen Martin
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Otto O Yang
- Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- AIDS Healthcare Foundation, Los Angeles, California, USA
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Leitman EM, Thobakgale CF, Adland E, Ansari MA, Raghwani J, Prendergast AJ, Tudor-Williams G, Kiepiela P, Hemelaar J, Brener J, Tsai MH, Mori M, Riddell L, Luzzi G, Jooste P, Ndung'u T, Walker BD, Pybus OG, Kellam P, Naranbhai V, Matthews PC, Gall A, Goulder PJR. Role of HIV-specific CD8 + T cells in pediatric HIV cure strategies after widespread early viral escape. J Exp Med 2017; 214:3239-3261. [PMID: 28983013 PMCID: PMC5679167 DOI: 10.1084/jem.20162123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/22/2017] [Accepted: 08/30/2017] [Indexed: 11/04/2022] Open
Abstract
Recent studies have suggested greater HIV cure potential among infected children than adults. A major obstacle to HIV eradication in adults is that the viral reservoir is largely comprised of HIV-specific cytotoxic T lymphocyte (CTL) escape variants. We here evaluate the potential for CTL in HIV-infected slow-progressor children to play an effective role in "shock-and-kill" cure strategies. Two distinct subgroups of children were identified on the basis of viral load. Unexpectedly, in both groups, as in adults, HIV-specific CTL drove the selection of escape variants across a range of epitopes within the first weeks of infection. However, in HIV-infected children, but not adults, de novo autologous variant-specific CTL responses were generated, enabling the pediatric immune system to "corner" the virus. Thus, even when escape variants are selected in early infection, the capacity in children to generate variant-specific anti-HIV CTL responses maintains the potential for CTL to contribute to effective shock-and-kill cure strategies in pediatric HIV infection.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Christina F Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - M Azim Ansari
- Oxford Martin School, University of Oxford, Oxford, England, UK
| | - Jayna Raghwani
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, England, UK.,Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Gareth Tudor-Williams
- Division of Medicine, Department of Paediatrics, Imperial College London, London, England, UK
| | - Photini Kiepiela
- Medical Research Council, Durban, South Africa.,Witwatersrand Health Consortium, Johannesburg, South Africa
| | - Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, England, UK.,Linacre Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Jacqui Brener
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, England, UK
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, Oxford, England, UK.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan
| | - Lynn Riddell
- Northampton Healthcare NHS Foundation Trust, Cliftonville, England, UK
| | - Graz Luzzi
- Buckinghampshire Healthcare NHS Foundation Trust, High Wycombe, England, UK
| | - Pieter Jooste
- Paediatric Department, Kimberley Hospital, Northern Cape, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Bruce D Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, England, UK
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Babraham, England, UK.,Department of Medicine, Division of Infectious Diseases, Imperial College Faculty of Medicine, London, England, UK
| | - Vivek Naranbhai
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Philippa C Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, England, UK
| | - Astrid Gall
- Wellcome Trust Sanger Institute, Hinxton, England, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, England, UK .,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Gilliam BL, Redfield RR, Peters BS. HIV Vaccines. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Schwarz B, Morabito KM, Ruckwardt TJ, Patterson DP, Avera J, Miettinen HM, Graham BS, Douglas T. Viruslike Particles Encapsidating Respiratory Syncytial Virus M and M2 Proteins Induce Robust T Cell Responses. ACS Biomater Sci Eng 2016; 2:2324-2332. [PMID: 29367948 PMCID: PMC5777520 DOI: 10.1021/acsbiomaterials.6b00532] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subunit vaccines provide a safe, focused alternative to conventional vaccines. However, these vaccines often require significant adjuvants and are particularly hard to target toward cytotoxic T lymphocyte (CTL) immunity. Viruslike particles (VLPs) provide biomaterial scaffolds with pathogen-like polyvalent structures making them useful platforms for biomimetic antigen delivery to the immune system. Encapsidation of antigens within VLPs has been shown to enhance antigen availability for CD8 T cell responses. Here, we examine the potential to generate complex responses to multiple subunit antigens localized within the same VLP particle. Two proteins of respiratory syncytial virus (RSV) with well-characterized CD8 T cell responses, the matrix (M) and matrix 2 (M2) proteins, were successfully coencapsidated within the P22 VLP. Upon intranasal administration in mice, the particles stimulated CD8 T cell memory responses against both antigens. In addition, vaccination elicited tissue-resident T cell populations. Upon subsequent RSV challenge, P22-M/M2-treated mice displayed significantly reduced lung viral titers. This demonstrates the utility of the P22 VLP in directing immune responses to multiple encapsidated viral antigens, demonstrating the potential of this technology to facilitate immunity to multiple targets simultaneously.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaitlyn M. Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dustin P. Patterson
- Department of Chemistry and Biochemistry, University of Texas at Tyler, 3900 University Boulevard, Tyler, Texas 75799, United States
| | - John Avera
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Heini M. Miettinen
- Department of Microbiology and Immunology, Montana State University, PO Box 173400, Bozeman, Montana 59717, United States
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
20
|
Ayala VI, Trivett MT, Barsov EV, Jain S, Piatak M, Trubey CM, Alvord WG, Chertova E, Roser JD, Smedley J, Komin A, Keele BF, Ohlen C, Ott DE. Adoptive Transfer of Engineered Rhesus Simian Immunodeficiency Virus-Specific CD8+ T Cells Reduces the Number of Transmitted/Founder Viruses Established in Rhesus Macaques. J Virol 2016; 90:9942-9952. [PMID: 27558423 PMCID: PMC5068542 DOI: 10.1128/jvi.01522-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/18/2016] [Indexed: 01/16/2023] Open
Abstract
AIDS virus infections are rarely controlled by cell-mediated immunity, in part due to viral immune evasion and immunodeficiency resulting from CD4+ T-cell infection. One likely aspect of this failure is that antiviral cellular immune responses are either absent or present at low levels during the initial establishment of infection. To test whether an extensive, timely, and effective response could reduce the establishment of infection from a high-dose inoculum, we adoptively transferred large numbers of T cells that were molecularly engineered with anti-simian immunodeficiency virus (anti-SIV) activity into rhesus macaques 3 days following an intrarectal SIV inoculation. To measure in vivo antiviral activity, we assessed the number of viruses transmitted using SIVmac239X, a molecularly tagged viral stock containing 10 genotypic variants, at a dose calculated to transmit 12 founder viruses. Single-genome sequencing of plasma virus revealed that the two animals receiving T cells expressing SIV-specific T-cell receptors (TCRs) had significantly fewer viral genotypes than the two control animals receiving non-SIV-specific T cells (means of 4.0 versus 7.5 transmitted viral genotypes; P = 0.044). Accounting for the likelihood of transmission of multiple viruses of a particular genotype, the calculated means of the total number of founder viruses transmitted were 4.5 and 14.5 in the experimental and control groups, respectively (P = 0.021). Thus, a large antiviral T-cell response timed with virus exposure can limit viral transmission. The presence of strong, preexisting T-cell responses, including those induced by vaccines, might help prevent the establishment of infection at the lower-exposure doses in humans that typically transmit only a single virus. IMPORTANCE The establishment of AIDS virus infection in an individual is essentially a race between the spreading virus and host immune defenses. Cell-mediated immune responses induced by infection or vaccination are important contributors in limiting viral replication. However, in human immunodeficiency virus (HIV)/SIV infection, the virus usually wins the race, irreversibly crippling the immune system before an effective cellular immune response is developed and active. We found that providing an accelerated response by adoptively transferring large numbers of antiviral T cells shortly after a high-dose mucosal inoculation, while not preventing infection altogether, limited the number of individual viruses transmitted. Thus, the presence of strong, preexisting T-cell responses, including those induced by vaccines, might prevent infection in humans, where the virus exposure is considerably lower.
Collapse
Affiliation(s)
- Victor I Ayala
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Eugene V Barsov
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Sumiti Jain
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Gregory Alvord
- DMS Applied Information & Management Sciences, Frederick National Laboratory for Cancer Research, Maryland, USA
| | - Elena Chertova
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James D Roser
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alexander Komin
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program and Laboratory Animal Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
21
|
Abstract
The appalling toll on the populations of developing countries as a result of the HIV epidemic shows no signs of abatement. While costly drug therapies are effective in developed nations, the sheer scale of the epidemic elsewhere makes the need for a vaccine an ever more urgent goal. The prevalent DNA prime-viral boost strategy aims to elicit cytotoxic lymphocytes (CTL) against HIV, but this approach is undermined by the rapid mutation of HIV, which thereby escapes CTL control. Alloimmunity has been found to be protective in vertical transmission from infected mothers to their babies, in alloimmunization of women with their partners’ mononuclear cells, and in monkeys immunized with SIV grown in human T-cells. Vaginal mucosal immunization, as a result of unprotected sex with a regular partner, induced in vitro protection against HIV infection, and this was confirmed in macaques. The second type of natural protection is found in persons with the homozygous Δ32 CCR5 mutation, a 32-base-pair deletion of the CCR5 gene, which results in a lack of cell-surface expression of CCR5, which is associated with an increase in CC chemokines and the development of CCR5 antibodies. These two ‘experiments of nature’ have been used to develop vaccine strategies—first, in vaginal immunization of macaques with CCR5 peptides, in addition to HIV envelope (env) and SIV core (gag) antigens, all of which were linked to the 70-kD heat-shock protein (HSP70); and second, in mucosal allo-immunization of macaques, which also gave rise to in vitro protection from infection. Immunization with this vaccine elicited serum and vaginal IgG and IgA antibodies, IFNγ- and IL-12-producing cells, and increased concentrations of CCL-3 and CCL-4. Vaginal challenge with a simian immunodeficiency virus engineered to carry a human envelope protein (SHIV 89.6) showed significant clearance of SHIV in the immunized macaques. This platform strategy will now be developed to activate the co-stimulatory pathways with the aim of enhancing the primary allogeneic and CCR5-directed responses which are involved in natural protection against HIV infection. Abbreviations: IFN-γ, gamma interferon; IL-12, interleukin 12; MIP-1 α,β, Macrophage inflammatory protein-1; RANTES, Regulated on activation normal T-cell expressed and secreted; SDF-1, stromal-derived factor 1; SIV, simian immunodeficiency virus; and SHIV, engineered SIV carrying a human envelope protein.
Collapse
Affiliation(s)
- L A Bergmeier
- Mucosal Immunology Unit, Guy's King's and St Thomas' Medical and Dental School, Kings College London, London SE1 9RT, UK.
| | | |
Collapse
|
22
|
Abstract
Chemoprophylaxis may be a prevention strategy for the sexual transmission of human immunodeficiency virus (HIV). Evidence suggests that condom use has waned with the availability of antiretroviral medication, at least in some resource-rich settings. Barrier methods of HIV prevention have inherent problems, and the potential for failure. Microbicide research has focused primarily on male-to-female transmission. Analogous to post-exposure prophylaxis, HIV prevention may be achieved by pre-exposure prophylaxis in some settings. Research in this potential strategy may be rewarding.
Collapse
Affiliation(s)
- Mike Youle
- Royal Free Centre for HIV Medicine, Royal Free Hospital, Pond Street, London NW3 2QG.
| | | |
Collapse
|
23
|
Wikramaratna PS, Lourenço J, Klenerman P, Pybus OG, Gupta S. Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0290. [PMID: 26150656 PMCID: PMC4528488 DOI: 10.1098/rstb.2014.0290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite substantial advances in our knowledge of immune responses against HIV-1 and of its evolution within the host, it remains unclear why control of the virus eventually breaks down. Here, we present a new theoretical framework for the infection dynamics of HIV-1 that combines antibody and CD8+ T-cell responses, notably taking into account their different lifespans. Several apparent paradoxes in HIV pathogenesis and genetics of host susceptibility can be reconciled within this framework by assigning a crucial role to antibody responses in the control of viraemia. We argue that, although escape from or progressive loss of quality of CD8+ T-cell responses can accelerate disease progression, the underlying cause of the breakdown of virus control is the loss of antibody induction due to depletion of CD4+ T cells. Furthermore, strong antibody responses can prevent CD8+ T-cell escape from occurring for an extended period, even in the presence of highly efficacious CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
24
|
Leviyang S, Ganusov VV. Broad CTL Response in Early HIV Infection Drives Multiple Concurrent CTL Escapes. PLoS Comput Biol 2015; 11:e1004492. [PMID: 26506433 PMCID: PMC4624722 DOI: 10.1371/journal.pcbi.1004492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 08/06/2015] [Indexed: 12/15/2022] Open
Abstract
Recent studies have highlighted the ability of HIV to escape from cytotoxic T lymphocyte (CTL) responses that concurrently target multiple viral epitopes. Yet, the viral dynamics involved in such escape are incompletely understood. Previous analyses have made several strong assumptions regarding HIV escape from CTL responses such as independent or non-concurrent escape from individual CTL responses. Using experimental data from evolution of HIV half genomes in four patients we observe concurrent viral escape from multiple CTL responses during early infection (first 100 days of infection), providing confirmation of a recent result found in a study of one HIV-infected patient. We show that current methods of estimating CTL escape rates, based on the assumption of independent escapes, are biased and perform poorly when CTL escape proceeds concurrently at multiple epitopes. We propose a new method for analyzing longitudinal sequence data to estimate the rate of CTL escape across multiple epitopes; this method involves few parameters and performs well in simulation studies. By applying our novel method to experimental data, we find that concurrent multiple escapes occur at rates between 0.03 and 0.4 day−1, a relatively broad range that reflects uncertainty due to sparse sampling and wide ranges of parameter values. However, we show that concurrent escape at rates 0.1–0.2 day−1 across multiple epitopes is consistent with our patient datasets. Since the early 1990s, cytotoxic T lymphocytes (CTLs) have been known to play an important role in HIV infection with CTLs targeting HIV epitopes and, in turn, HIV escapes arising through mutations in the targeted epitopes. Over the past decade, studies have shown that CTL responses concurrently target multiple HIV epitopes, yet the effect of concurrent responses on HIV dynamics and evolution is not well understood. Through an analysis of patient datasets and a novel statistical method, we show that during early HIV infection concurrent CTL responses drive concurrent HIV escapes at multiple epitopes with significant pressure, suggesting a complex picture in which HIV simultaneously explores multiple mutational pathways to escape from broad and potent CTL response.
Collapse
Affiliation(s)
- Sivan Leviyang
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, United States of America
- * E-mail:
| | - Vitaly V. Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
25
|
The Breadth of Expandable Memory CD8+ T Cells Inversely Correlates with Residual Viral Loads in HIV Elite Controllers. J Virol 2015; 89:10735-47. [PMID: 26269189 DOI: 10.1128/jvi.01527-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/27/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Previous studies have shown that elite controllers with minimal effector T cell responses harbor a low-frequency, readily expandable, highly functional, and broadly directed memory population. Here, we interrogated the in vivo relevance of this cell population by investigating whether the breadth of expandable memory responses is associated with the magnitude of residual viremia in individuals achieving durable suppression of HIV infection. HIV-specific memory CD8(+) T cells were expanded by using autologous epitopic and variant peptides. Viral load was measured by an ultrasensitive single-copy PCR assay. Following expansion, controllers showed a greater increase in the overall breadth of Gag responses than did untreated progressors (P = 0.01) as well as treated progressors (P = 0.0003). Nef- and Env-specific memory cells expanded poorly for all groups, and their expanded breadths were indistinguishable among groups (P = 0.9 for Nef as determined by a Kruskal-Wallis test; P = 0.6 for Env as determined by a Kruskal-Wallis test). More importantly, we show that the breadth of expandable, previously undetectable Gag-specific responses was inversely correlated with residual viral load (r = -0.6; P = 0.009). Together, these data reveal a direct link between the abundance of Gag-specific expandable memory responses and prolonged maintenance of low-level viremia. Our studies highlight a CD8(+) T cell feature that would be desirable in a vaccine-induced T cell response. IMPORTANCE Many studies have shown that the rare ability of some individuals to control HIV infection in the absence of antiretroviral therapy appears to be heavily dependent upon special HIV-specific killer T lymphocytes that are able to inhibit viral replication. The identification of key features of these immune cells has the potential to inform rational HIV vaccine design. This study shows that a special subset of killer lymphocytes, known as central memory CD8(+) T lymphocytes, is at least partially involved in the durable control of HIV replication. HIV controllers maintain a large proportion of Gag-specific expandable memory CD8(+) T cells involved in ongoing viral suppression. These data suggest that induction of this cell subset by future HIV vaccines may be important for narrowing possible routes of rapid escape from vaccine-induced CD8(+) T cell responses.
Collapse
|
26
|
Expansion of Simian Immunodeficiency Virus (SIV)-Specific CD8 T Cell Lines from SIV-Naive Mauritian Cynomolgus Macaques for Adoptive Transfer. J Virol 2015; 89:9748-57. [PMID: 26178985 DOI: 10.1128/jvi.00993-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/09/2015] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED CD8 T cells play a crucial role in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). However, the specific qualities and characteristics of an effective CD8 T cell response remain unclear. Although targeting breadth, cross-reactivity, polyfunctionality, avidity, and specificity are correlated with HIV control, further investigation is needed to determine the precise contributions of these various attributes to CD8 T cell efficacy. We developed protocols for isolating and expanding SIV-specific CD8 T cells from SIV-naive Mauritian cynomolgus macaques (MCM). These cells exhibited an effector memory phenotype, produced cytokines in response to cognate antigen, and suppressed viral replication in vitro. We further cultured cell lines specific for four SIV-derived epitopes, Nef103-111 RM9, Gag389-394 GW9, Env338-346 RF9, and Nef254-262 LT9. These cell lines were up to 94.4% pure, as determined by major histocompatibility complex (MHC) tetramer analysis. After autologous transfer into two MCM recipients, expanded CD8 T cells persisted in peripheral blood and lung tissue for at least 24 weeks and trafficked to multiple extralymphoid tissues. However, these cells did not impact the acute-phase SIV load after challenge compared to historic controls. The expansion and autologous transfer of SIV-specific T cells into naive animals provide a unique model for exploring cellular immunity and the control of SIV infection and facilitate a systematic evaluation of therapeutic adoptive transfer strategies for eradication of the latent reservoir. IMPORTANCE CD8 T cells play a crucial role in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Autologous adoptive transfer studies followed by SIV challenge may help define the critical elements of an effective T cell response to HIV and SIV infection. We developed protocols for isolating and expanding SIV-specific CD8 T cells from SIV-naive Mauritian cynomolgus macaques. This is an important first step toward the development of autologous transfer strategies to explore cellular immunity and potential therapeutic applications in the SIV model.
Collapse
|
27
|
Jallow S, Leligdowicz A, Kramer HB, Onyango C, Cotten M, Wright C, Whittle HC, McMichael A, Dong T, Kessler BM, Rowland-Jones SL. The presence of prolines in the flanking region of an immunodominant HIV-2 gag epitope influences the quality and quantity of the epitope generated. Eur J Immunol 2015; 45:2232-42. [PMID: 26018465 PMCID: PMC4832300 DOI: 10.1002/eji.201545451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/31/2022]
Abstract
Both the recognition of HIV‐infected cells and the immunogenicity of candidate CTL vaccines depend on the presentation of a peptide epitope at the cell surface, which in turn depends on intracellular antigen processing. Differential antigen processing maybe responsible for the differences in both the quality and the quantity of epitopes produced, influencing the immunodominance hierarchy of viral epitopes. Previously, we showed that the magnitude of the HIV‐2 gag‐specific T‐cell response is inversely correlated with plasma viral load, particularly when responses are directed against an epitope, 165DRFYKSLRA173, within the highly conserved Major Homology Region of gag‐p26. We also showed that the presence of three proline residues, at positions 119, 159 and 178 of gag‐p26, was significantly correlated with low viral load. Since this proline motif was also associated with stronger gag‐specific CTL responses, we investigated the impact of these prolines on proteasomal processing of the protective 165DRFYKSLRA173 epitope. Our data demonstrate that the 165DRFYKSLRA173 epitope is most efficiently processed from precursors that contain two flanking proline residues, found naturally in low viral‐load patients. Superior antigen processing and enhanced presentation may account for the link between infection with HIV‐2 encoding the “PPP‐gag” sequence and both strong gag‐specific CTL responses as well as lower viral load.
Collapse
Affiliation(s)
- Sabelle Jallow
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | | | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | - Cynthia Wright
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Andrew McMichael
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Tao Dong
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, UK
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Indoctrinating T cells to attack pathogens through homeschooling. Trends Immunol 2015; 36:337-43. [PMID: 25979654 DOI: 10.1016/j.it.2015.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
Adaptive immunity is predicated on the ability of the T cell repertoire to have pre-existing specificity for the universe of potential pathogens. Recent findings suggest that T cell receptor (TCR)-self-major histocompatibility protein (pMHC) interactions limit autoimmune responses while enhancing T cell response to foreign antigens. We review these findings here, placing them in context of the current understanding of how TCR-self-pMHC interactions regulate T cell activation thresholds, and suggest that TCR-self-pMHC interactions increase the efficiency of the T cell repertoire by giving a competitive advantage to peptide cross-reactive T cells. We propose that self-reactivity and peptide cross-reactivity are controlled by particular CDR3 sequence motifs, which would allow thymic selection to contribute to solving the feat of broad pathogen specificity by exporting T cells that are pre-screened by positive and negative selection for the ability to be 'moderately' peptide cross-reactive.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW To describe the recent data on the role of coinhibitory receptors, such as PD-1, Tim-3, CD160, as mediators of the 'exhaustion' of virus-specific CD8 T cells in chronic infections and particularly in HIV. RECENT FINDINGS Exhaustion of chronic virus-specific CD8 T cells is a dynamic process characterized by altered differentiation, impaired function, and compromised proliferation/survival profile of these cells. This process is mediated by coinhibitory receptors expressed on the surface of virus-specific CD8 T cells and an orchestrated function of centrally connected pathways. Coexpression of several coinhibitory receptors characterizes severely exhausted virus-specific CD8 T cells. Several studies suggest a synergistic action, instead of a redundant role, of the different receptors. In-vivo manipulation of the coinhibitory network can rejuvenate exhausted virus-specific CD8 T cell responses and constrain replication of chronic viruses, including HIV. SUMMARY Revealing the molecular basis of virus-specific CD8 T cell exhaustion in chronic infections is critical for the understanding of the disease pathogenesis and the designing of novel vaccines aiming to enhance the cytolytic arm of the immune system. This is of particular interest for the development of immunotherapies in the context of a functional cure for HIV.
Collapse
|
30
|
Smith NMG, Mlcochova P, Watters SA, Aasa-Chapman MMI, Rabin N, Moore S, Edwards SG, Garson JA, Grant PR, Ferns RB, Kashuba A, Mayor NP, Schellekens J, Marsh SGE, McMichael AJ, Perelson AS, Pillay D, Goonetilleke N, Gupta RK. Proof-of-Principle for Immune Control of Global HIV-1 Reactivation In Vivo. Clin Infect Dis 2015; 61:120-8. [PMID: 25778749 PMCID: PMC4463006 DOI: 10.1093/cid/civ219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
It is unclear whether the human immune response is sufficiently potent to clear human immunodeficiency virus (HIV) type 1 latently infected cells globally reactivated by drug treatment. We report an elite controller who, following myeloablation and full HIV reactivation, achieved sustained control of viremia. Background. Emerging data relating to human immunodeficiency virus type 1 (HIV-1) cure suggest that vaccination to stimulate the host immune response, particularly cytotoxic cells, may be critical to clearing of reactivated HIV-1–infected cells. However, evidence for this approach in humans is lacking, and parameters required for a vaccine are unknown because opportunities to study HIV-1 reactivation are rare. Methods. We present observations from a HIV-1 elite controller, not treated with combination antiretroviral therapy, who experienced viral reactivation following treatment for myeloma with melphalan and autologous stem cell transplantation. Mathematical modeling was performed using a standard viral dynamic model. Enzyme-linked immunospot, intracellular cytokine staining, and tetramer staining were performed on peripheral blood mononuclear cells; in vitro CD8 T-cell–mediated control of virion production by autologous CD4 T cells was quantified; and neutralizing antibody titers were measured. Results. Viral rebound was measured at 28 000 copies/mL on day 13 post-transplant before rapid decay to <50 copies/mL in 2 distinct phases with t1/2 of 0.71 days and 4.1 days. These kinetics were consistent with an expansion of cytotoxic effector cells and killing of productively infected CD4 T cells. Following transplantation, innate immune cells, including natural killer cells, recovered with virus rebound. However, most striking was the expansion of highly functional HIV-1–specific cytotoxic CD8 T cells, at numbers consistent with those applied in modeling, as virus control was regained. Conclusions. These observations provide evidence that the human immune response is capable of controlling coordinated global HIV-1 reactivation, remarkably with potency equivalent to combination antiretroviral therapy. These data will inform design of vaccines for use in HIV-1 curative interventions.
Collapse
Affiliation(s)
| | - Petra Mlcochova
- Department of Infection, Division of Infection and Immunity, University College London
| | - Sarah A Watters
- Department of Infection, Division of Infection and Immunity, University College London
| | | | - Neil Rabin
- University College London Hospitals National Health Service (NHS) Foundation Trust
| | - Sally Moore
- University College London Hospitals National Health Service (NHS) Foundation Trust
| | - Simon G Edwards
- Mortimer Market Centre, Central and North West London NHS Foundation Trust, United Kingdom
| | - Jeremy A Garson
- Department of Infection, Division of Infection and Immunity, University College London
| | - Paul R Grant
- University College London Hospitals National Health Service (NHS) Foundation Trust
| | - R Bridget Ferns
- Department of Infection, Division of Infection and Immunity, University College London
| | - Angela Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Neema P Mayor
- Anthony Nolan Research Institute, Royal Free Hospital Cancer Institute, University College London, United Kingdom
| | - Jennifer Schellekens
- Anthony Nolan Research Institute, Royal Free Hospital Cancer Institute, University College London, United Kingdom
| | - Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital Cancer Institute, University College London, United Kingdom
| | | | | | - Deenan Pillay
- Department of Infection, Division of Infection and Immunity, University College London Africa Centre for Health and Population Sciences, University of KwaZulu Natal, South Africa
| | - Nilu Goonetilleke
- Nuffield Department of Medicine, University of Oxford Department of Microbiology & Immunology, University of North Carolina at Chapel Hill
| | - Ravindra K Gupta
- Department of Infection, Division of Infection and Immunity, University College London
| |
Collapse
|
31
|
HIV vaccine research: the challenge and the way forward. J Immunol Res 2015; 2015:503978. [PMID: 25861656 PMCID: PMC4377490 DOI: 10.1155/2015/503978] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) is a worldwide epidemic, with over 35 million people infected currently. Therefore, the development of a safe and effective HIV-1 vaccine is on top of the global health priority. In the past few years, there have been many promising advances in the prevention of HIV/AIDS, among which the RV144 Thai trial has been encouraging and suggests optimization of the current vaccine strategies or search for novel strategies. Here we reviewed the brief history of HIV-1 vaccine, analyzed key challenges existing now, and illustrated future research priority/directions for a therapeutic or prophylactic HIV-1 vaccine, with the hope of accelerating the speed of vaccine development. We believe that an effective HIV-1 vaccine, together with other prevention approaches, will bring an end to this epidemic in the near future.
Collapse
|
32
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
Simian immunodeficiency virus (SIV) is a robust pathogen used in non-human primates to model HIV vaccines. SIV encodes a number of potential vaccine targets. By far the largest and most conserved protein target in SIV is its gag-pol protein that bears many epitopes to drive multivalent immune T cell responses. While gag-pol is an attractive antigen, it is only translated after a frame shift between gag and pol with the effect that gag and pol are expressed at an approximate 10/1 ratio. The codon bias of native lentiviral genes are also mismatched with the abundance of tRNAs in mammalian cells resulting in poor expression of unmodified SIV genes. To provide a better SIV gag-pol immunogen for gene-based vaccination, we codon-optimized the full gag-pol sequence from SIVmac239. To increase pol expression, we artificially moved the pol sequence in frame to gag to bypass the need for a translational frame shift for its expression. Finally, we inserted four "self-cleaving" picornavirus sequences into gag p24, protease, reverse transcriptase, and into integrase to fragment the proteins for potentially better immune presentation. We demonstrate that these immunogens are well expressed in vitro and drive similar antibody and T cell responses with or without cleavage sequences.
Collapse
|
34
|
Tongo M, Burgers WA. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses 2014; 6:3968-90. [PMID: 25341662 PMCID: PMC4213573 DOI: 10.3390/v6103968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022] Open
Abstract
The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
35
|
Abstract
UNLABELLED Recall T cell responses to HIV-1 antigens are used as a surrogate for endogenous cellular immune responses generated during infection. Current methods of identifying antigen-specific T cell reactivity in HIV-1 infection use bulk peripheral blood mononuclear cells (PBMC) yet ignore professional antigen-presenting cells (APC) that could reveal otherwise hidden responses. In the present study, peptides representing autologous variants of major histocompatibility complex (MHC) class I-restricted epitopes from HIV-1 Gag and Env were used as antigens in gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and polyfunctional cytokine assays. Here we show that dendritic cells (DC) enhanced T cell reactivity at all stages of disease progression but specifically restored T cell reactivity after combination antiretroviral therapy (cART) to early infection levels. Type 1 cytokine secretion was also enhanced by DC and was most apparent late post-cART. We additionally show that DC reveal polyfunctional T cell responses after many years of treatment, when potential immunotherapies would be implemented. These data underscore the potential efficacy of DC immunotherapy that aims to awaken a dormant, autologous, HIV-1-specific CD8+ T cell response. IMPORTANCE Assessment of endogenous HIV-1-specific T cell responses is critical for generating immunotherapies for subjects on cART. Current assays ignore the ability of dendritic cells to reveal these responses and may therefore underestimate the breadth and magnitude of T cell reactivity. As DC do not prime new responses in these assays, it can be assumed that the observed responses are not detected without appropriate stimulation. This is important because dogma states that HIV-1 mutates to evade host recognition and that CD8+ cytotoxic T lymphocyte (CTL) failure is due to the inability of T cells to recognize the autologous virus. The results presented here indicate that responses to autologous virus are generated during infection but may need additional stimulation to be effective. Detecting the breadth and magnitude of HIV-1-specific T cell reactivity generated in vivo is of the utmost importance for generating effective DC immunotherapies.
Collapse
|
36
|
Gijsbers EF, van Nuenen AC, de la Peňa AT, Bowles EJ, Stewart-Jones GB, Schuitemaker H, Kootstra NA. Low level of HIV-1 evolution after transmission from mother to child. Sci Rep 2014; 4:5079. [PMID: 24866155 PMCID: PMC5381489 DOI: 10.1038/srep05079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2014] [Indexed: 02/06/2023] Open
Abstract
Mother-to-child HIV-1 transmission pairs represent a good opportunity to study the dynamics of CTL escape and reversion after transmission in the light of shared and non-shared HLA-alleles. Mothers share half of their HLA alleles with their children, while the other half is inherited from the father and is generally discordant between mother and child. This implies that HIV-1 transmitted from mother to child enters a host environment to which it has already partially adapted. Here, we studied viral evolution and the dynamics of CTL escape mutations and reversion of these mutations after transmission in the context of shared and non-shared HLA alleles in viral variants obtained from five mother-to-child transmission pairs. Only limited HIV-1 evolution was observed in the children after mother-to-child transmission. Viral evolution was mainly driven by forward mutations located inside CTL epitopes restricted by HLA alleles inherited from the father, which may be indicative of CTL pressure.
Collapse
Affiliation(s)
- Esther F Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ad C van Nuenen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alba Torrents de la Peňa
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Emma J Bowles
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Guillaume B Stewart-Jones
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Hanneke Schuitemaker
- 1] Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands [2]
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Osuna CE, Gonzalez AM, Chang HH, Hung AS, Ehlinger E, Anasti K, Alam SM, Letvin NL. TCR affinity associated with functional differences between dominant and subdominant SIV epitope-specific CD8+ T cells in Mamu-A*01+ rhesus monkeys. PLoS Pathog 2014; 10:e1004069. [PMID: 24743648 PMCID: PMC3990730 DOI: 10.1371/journal.ppat.1004069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/28/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the factors that contribute to CD8+ T cell immunodominance hierarchies during viral infection are known. However, the functional differences that exist between dominant and subdominant epitope-specific CD8+ T cells remain poorly understood. In this study, we characterized the phenotypic and functional differences between dominant and subdominant simian immunodeficiency virus (SIV) epitope-specific CD8+ T cells restricted by the major histocompatibility complex (MHC) class I allele Mamu-A*01 during acute and chronic SIV infection. Whole genome expression analyses during acute infection revealed that dominant SIV epitope-specific CD8+ T cells had a gene expression profile consistent with greater maturity and higher cytotoxic potential than subdominant epitope-specific CD8+ T cells. Flow-cytometric measurements of protein expression and anti-viral functionality during chronic infection confirmed these phenotypic and functional differences. Expression analyses of exhaustion-associated genes indicated that LAG-3 and CTLA-4 were more highly expressed in the dominant epitope-specific cells during acute SIV infection. Interestingly, only LAG-3 expression remained high during chronic infection in dominant epitope-specific cells. We also explored the binding interaction between peptide:MHC (pMHC) complexes and their cognate TCRs to determine their role in the establishment of immunodominance hierarchies. We found that epitope dominance was associated with higher TCR:pMHC affinity. These studies demonstrate that significant functional differences exist between dominant and subdominant epitope-specific CD8+ T cells within MHC-restricted immunodominance hierarchies and suggest that TCR:pMHC affinity may play an important role in determining the frequency and functionality of these cell populations. These findings advance our understanding of the regulation of T cell immunodominance and will aid HIV vaccine design.
Collapse
Affiliation(s)
- Christa E. Osuna
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Ana Maria Gonzalez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hsun-Hsien Chang
- Children's Hospital Informatics Program, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Shi Hung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth Ehlinger
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kara Anasti
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University of Medicine, Durham, North Carolina, United States of America
| | - Norman L. Letvin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Abstract
Although it is not clear what arm of the immune response correlates with protection from HIV-1 infection or disease, a robust broad cellular and humoral immune response will likely be needed to control this infection. Accordingly, it is crucial to characterize which HIV-1 gene products are potential targets to elicit these responses. DNA vaccination has been shown to be effective for induction of both humoral and cellular immune responses in animal models. Most DNA vaccine strategies studied to date have been based on targeting structural HIV-1 proteins, but others have focused on the regulatory/accessory HIV-1 proteins as an approach to induce immune responses able to recognize early infected cells. It has also become clear that HIV-DNA vaccine efficacy in humans requires improvement. Combinations of HIV-1 genes, improvement of the DNA vector itself, or addition of genetic adjuvants (cytokines or costimulatory molecules) as part of the DNA vaccine itself, have been evaluated by several groups as approaches for enhancing DNA vaccine-induced immune responses. Encouraging results have been obtained in primate models, supporting that these strategies should be further evaluated in humans, for either prophylaxis or immune therapy of HIV-1.
Collapse
Affiliation(s)
- Sandra A Calarota
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA.
| | | |
Collapse
|
39
|
Wallace A, West K, Rothman AL, Ennis FA, Lu S, Wang S. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1). Hum Vaccin Immunother 2013; 9:2095-102. [PMID: 23941868 DOI: 10.4161/hv.26009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.
Collapse
Affiliation(s)
- Aaron Wallace
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Kim West
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA; Center for Infectious Diseases and Vaccine Research; University of Massachusetts Medical School; Worcester, MA USA
| | - Alan L Rothman
- Center for Infectious Diseases and Vaccine Research; University of Massachusetts Medical School; Worcester, MA USA
| | - Francis A Ennis
- Center for Infectious Diseases and Vaccine Research; University of Massachusetts Medical School; Worcester, MA USA
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines; Department of Medicine; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
40
|
Bachler BC, Humbert M, Lakhashe SK, Rasmussen RA, Ruprecht RM. Live-virus exposure of vaccine-protected macaques alters the anti-HIV-1 antibody repertoire in the absence of viremia. Retrovirology 2013; 10:63. [PMID: 23800339 PMCID: PMC3695773 DOI: 10.1186/1742-4690-10-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We addressed the question whether live-virus challenges could alter vaccine-induced antibody (Ab) responses in vaccinated rhesus macaques (RMs) that completely resisted repeated exposures to R5-tropic simian-human immunodeficiency viruses encoding heterologous HIV clade C envelopes (SHIV-Cs). RESULTS We examined the Ab responses in aviremic RMs that had been immunized with a multi-component protein vaccine (multimeric HIV-1 gp160, HIV-1 Tat and SIV Gag-Pol particles) and compared anti-Env plasma Ab titers before and after repeated live-virus exposures. Although no viremia was ever detected in these animals, they showed significant increases in anti-gp140 Ab titers after they had encountered live SHIVs. When we investigated the dynamics of anti-Env Ab titers during the immunization and challenge phases further, we detected the expected, vaccine-induced increases of Ab responses about two weeks after the last protein immunization. Remarkably, these titers kept rising during the repeated virus challenges, although no viremia resulted. In contrast, in vaccinated RMs that were not exposed to virus, anti-gp140 Ab titers declined after the peak seen two weeks after the last immunization. These data suggest boosting of pre-existing, vaccine-induced Ab responses as a consequence of repeated live-virus exposures. Next, we screened polyclonal plasma samples from two of the completely protected vaccinees by peptide phage display and designed a strategy that selects for recombinant phages recognized only by Abs present after - but not before - any SHIV challenge. With this "subtractive biopanning" approach, we isolated V3 mimotopes that were only recognized after the animals had been exposed to live virus. By detailed epitope mapping of such anti-V3 Ab responses, we showed that the challenges not only boosted pre-existing binding and neutralizing Ab titers, but also induced Abs targeting neo-antigens presented by the heterologous challenge virus. CONCLUSIONS Anti-Env Ab responses induced by recombinant protein vaccination were altered by the multiple, live SHIV challenges in vaccinees that had no detectable viral loads. These data may have implications for the interpretation of "vaccine only" responses in clinical vaccine trials.
Collapse
Affiliation(s)
- Barbara C Bachler
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Nilu Goonetilleke
- Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, UK
| | | |
Collapse
|
42
|
Kubinak JL, Ruff JS, Cornwall DH, Middlebrook EA, Hasenkrug KJ, Potts WK. Experimental viral evolution reveals major histocompatibility complex polymorphisms as the primary host factors controlling pathogen adaptation and virulence. Genes Immun 2013; 14:365-72. [PMID: 23698707 DOI: 10.1038/gene.2013.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 02/05/2023]
Abstract
Using an experimental evolution approach, we recently demonstrated that the mouse-specific pathogen Friend virus (FV) complex adapted to specific major histocompatibility complex (MHC) genotypes, which resulted in fitness tradeoffs when viruses were exposed to hosts possessing novel MHC polymorphisms. Here we report the analysis of patterns of pathogen adaptation and virulence evolution from viruses adapting to one of three hosts that differ across the entire genome (A/WySn, DBA/2J and BALB/c). We found that serial passage of FV complex through these mouse genotypes resulted in significant increases in pathogen fitness (156-fold) and virulence (11-fold). Adaptive responses by post-passage viruses also resulted in host-genotype-specific patterns of adaptation. To evaluate the relative importance of MHC versus non-MHC polymorphisms as factors influencing pathogen adaptation and virulence, we compared the magnitude of fitness tradeoffs incurred by post-passage viruses when infecting hosts possessing either novel MHC polymorphisms alone or hosts possessing novel MHC and non-MHC polymorphisms. MHC polymorphisms alone accounted for 71% and 83% of the total observed reductions in viral fitness and virulence in unfamiliar host genotypes, respectively. Strikingly, these data suggest that genetic polymorphisms within the MHC, a gene region representing only -0.1% of the genome, are major host factors influencing pathogen adaptation and virulence evolution.
Collapse
Affiliation(s)
- J L Kubinak
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Kron MW, Engler T, Schmidt E, Schirmbeck R, Kochanek S, Kreppel F. High-capacity adenoviral vectors circumvent the limitations of ΔE1 and ΔE1/ΔE3 adenovirus vectors to induce multispecific transgene product-directed CD8 T-cell responses. J Gene Med 2013; 13:648-57. [PMID: 22095925 DOI: 10.1002/jgm.1629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The ability to induce cytotoxic T lymphocyte (CTL) responses that are multispecific is considered to comprise an essential feature for an efficacious genetic vaccine against many pathogens including HIV and hepatitis C virus. ΔE1Ad vectors are promising vectored vaccines but have been shown to induce antigen-specific CTLs with only limited multispecificity. In the present study, we investigated the applicability of gene-deleted high-capacity adenovirus (HC-Ad) vectors and focused on the induction of multispecific CTL responses. METHODS We generated Δ E1 and HC-Ad vectors expressing hepatitis B virus small surface antigen (HBsAg). We comparatively analyzed the CTL profiles against various transgene product- and vector-derived epitopes in several mouse strains and HBsAg- and vector-directed antibody responses. RESULTS HC-Ad vectors efficiently induced multispecific HBsAg-directed CTLs. By contrast, ΔE1Ad vectors mainly primed CTLs against one immunodominant epitope of HBsAg. This absence of multispecific CTL responses correlated with the induction of CTLs against viral epitopes generated by de novo expression of Ad genes from the ΔE1Ad vector. However, Ad-specific CTLs induced in trans did not impair HC-AdS-induced multispecific CTL responses against HBsAg. Finally, HC-Ad vectors also induced higher HBsAg antibody titers compared to ΔE1Ad vectors. CONCLUSIONS De novo expression of viral genes from ΔE1Ad vector genomes restricts the multispecificity of transgene product-specific CTLs by immunodominance effects. HC-Ad vectors devoid of Ad genes are favorable for the induction of both multispecific CD8 T-cell responses and high antibody responses. Our results suggest the deletion of Ad genes as an important means for developing potent Ad-based vectored vaccines.
Collapse
|
44
|
Yang Y, Xiao Y, Wu J. Pulse HIV vaccination: feasibility for virus eradication and optimal vaccination schedule. Bull Math Biol 2013; 75:725-51. [PMID: 23535904 DOI: 10.1007/s11538-013-9831-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/04/2013] [Indexed: 11/25/2022]
Abstract
We modify the classical virus dynamics model by incorporating an immune response with fixed or fluctuating vaccination frequencies and dosages to obtain a system of impulsive differential equations for the virus dynamics of both the wild-type and mutant strains. This model framework permits us to obtain precise conditions for the virus elimination, which are much more feasible compared with existing results, which require frequent vaccine administration with large dosage. We also consider the corresponding impulsive optimal control problem to describe when and how much of the vaccine should be administered in order to maximize levels of healthy CD4(+) T cells and immune response cells. A gradient-based optimization method is applied to obtain the optimal schedule numerically. For a case study when the CTL vaccine is administered in a period of one year, our numerical studies support the optimal vaccination schedule consisting of vaccine administration three times, with the first dosage strong (to boost the immune system), followed by a second dosage shortly after (to strengthen the immune response) and then the third and final dosage long after (to ensure the immune system can handle viruses rebound).
Collapse
Affiliation(s)
- Youping Yang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | | | | |
Collapse
|
45
|
T cells target APOBEC3 proteins in human immunodeficiency virus type 1-infected humans and simian immunodeficiency virus-infected Indian rhesus macaques. J Virol 2013; 87:6073-80. [PMID: 23536679 DOI: 10.1128/jvi.00579-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
APOBEC3 proteins mediate potent antiretroviral activity by hypermutating the retroviral genome during reverse transcription. To counteract APOBEC3 and gain a replicative advantage, lentiviruses such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have evolved the Vif protein, which targets APOBEC3 proteins for proteasomal degradation. However, the proteasome plays a critical role in the generation of T cell peptide epitopes. Whether Vif-mediated destruction of APOBEC3 proteins leads to the generation and presentation of APOBEC3-derived T cell epitopes on the surfaces of lentivirus-infected cells remains unknown. Here, using peptides derived from multiple Vif-sensitive APOBEC3 proteins, we identified APOBEC3-specific T cell responses in both HIV-1-infected patients and SIV-infected rhesus macaques. These results raise the possibility that these T cell responses may be part of the larger antiretroviral immune response.
Collapse
|
46
|
Frequent and variable cytotoxic-T-lymphocyte escape-associated fitness costs in the human immunodeficiency virus type 1 subtype B Gag proteins. J Virol 2013; 87:3952-65. [PMID: 23365420 DOI: 10.1128/jvi.03233-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic-T-lymphocyte (CTL) escape mutations undermine the durability of effective human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cell responses. The rate of CTL escape from a given response is largely governed by the net of all escape-associated viral fitness costs and benefits. The observation that CTL escape mutations can carry an associated fitness cost in terms of reduced virus replication capacity (RC) suggests a fitness cost-benefit trade-off that could delay CTL escape and thereby prolong CD8 response effectiveness. However, our understanding of this potential fitness trade-off is limited by the small number of CTL escape mutations for which a fitness cost has been quantified. Here, we quantified the fitness cost of the 29 most common HIV-1B Gag CTL escape mutations using an in vitro RC assay. The majority (20/29) of mutations reduced RC by more than the benchmark M184V antiretroviral drug resistance mutation, with impacts ranging from 8% to 69%. Notably, the reduction in RC was significantly greater for CTL escape mutations associated with protective HLA class I alleles than for those associated with nonprotective alleles. To speed the future evaluation of CTL escape costs, we also developed an in silico approach for inferring the relative impact of a mutation on RC based on its computed impact on protein thermodynamic stability. These data illustrate that the magnitude of CTL escape-associated fitness costs, and thus the barrier to CTL escape, varies widely even in the conserved Gag proteins and suggest that differential escape costs may contribute to the relative efficacy of CD8 responses.
Collapse
|
47
|
Sircar P, Furr KL, Letvin NL. Systemic vaccination induces clonally diverse SIV-specific CD8+ T-cell populations in systemic and mucosal compartments. Mucosal Immunol 2013; 6:93-103. [PMID: 22763409 DOI: 10.1038/mi.2012.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An HIV-1 vaccine must elicit a clonally diverse virus-specific CD8+ T-cell response to contain mutant virus forms, and these responses must be present in mucosal tissues, which are the site of early HIV-1 replication. We show that systemic delivery of prototype vaccine vectors in rhesus monkeys induced SIV (simian immunodeficiency virus)-specific CD8+ T-cell responses in systemic and mucosal compartments with comparable clonal compositions. Although clonal sharing was maintained between the peripheral blood and lungs, the clonal constituents of the vaccine-induced CD8+ T-cell populations in the gastrointestinal mucosal tissues evolved away from the peripheral blood population. A phenotypic characterization indicated that the divergence was a consequence of differential trafficking and retention of the vaccine-induced cells in mucosal compartments. These findings highlight the circulation of vaccine-induced CD8+ T-cell populations between systemic and mucosal compartments and the importance of the expression of specific homing molecules for localization in mucosal tissues.
Collapse
Affiliation(s)
- P Sircar
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
48
|
|
49
|
Liu MKP, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, Brackenridge S, Li H, Pavlicek JW, Cai F, Rose-Abrahams M, Treurnicht F, Hraber P, Riou C, Gray C, Ferrari G, Tanner R, Ping LH, Anderson JA, Swanstrom R, Cohen M, Karim SSA, Haynes B, Borrow P, Perelson AS, Shaw GM, Hahn BH, Williamson C, Korber BT, Gao F, Self S, McMichael A, Goonetilleke N. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 2012; 123:380-93. [PMID: 23221345 DOI: 10.1172/jci65330] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022] Open
Abstract
HIV-1 accumulates mutations in and around reactive epitopes to escape recognition and killing by CD8+ T cells. Measurements of HIV-1 time to escape should therefore provide information on which parameters are most important for T cell-mediated in vivo control of HIV-1. Primary HIV-1-specific T cell responses were fully mapped in 17 individuals, and the time to virus escape, which ranged from days to years, was measured for each epitope. While higher magnitude of an individual T cell response was associated with more rapid escape, the most significant T cell measure was its relative immunodominance measured in acute infection. This identified subject-level or "vertical" immunodominance as the primary determinant of in vivo CD8+ T cell pressure in HIV-1 infection. Conversely, escape was slowed significantly by lower population variability, or entropy, of the epitope targeted. Immunodominance and epitope entropy combined to explain half of all the variability in time to escape. These data explain how CD8+ T cells can exert significant and sustained HIV-1 pressure even when escape is very slow and that within an individual, the impacts of other T cell factors on HIV-1 escape should be considered in the context of immunodominance.
Collapse
Affiliation(s)
- Michael K P Liu
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:396165. [PMID: 23213618 PMCID: PMC3506893 DOI: 10.1155/2012/396165] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/13/2012] [Indexed: 01/16/2023]
Abstract
The outcomes of host-parasite interactions depend on the coevolutionary forces acting upon them, but because every host-parasite relation is enmeshed in a web of biotic and abiotic interactions across a heterogeneous landscape, host-parasite coevolution has proven difficult to study. Simple laboratory phage-bacteria microcosms can ameliorate this difficulty by allowing controlled, well-replicated experiments with a limited number of interactors. Genetic, population, and life history data obtained from these studies permit a closer examination of the fundamental correlates of host-parasite coevolution. In this paper, I describe the results of phage-bacteria coevolutionary studies and their implications for the study of host-parasite coevolution. Recent experimental studies have confirmed phage-host coevolutionary dynamics in the laboratory and have shown that coevolution can increase parasite virulence, specialization, adaptation, and diversity. Genetically, coevolution frequently proceeds in a manner best described by the Gene for Gene model, typified by arms race dynamics, but certain contexts can result in Red Queen dynamics according to the Matching Alleles model. Although some features appear to apply only to phage-bacteria systems, other results are broadly generalizable and apply to all instances of antagonistic coevolution. With laboratory host-parasite coevolutionary studies, we can better understand the perplexing array of interactions that characterize organismal diversity in the wild.
Collapse
Affiliation(s)
- John J. Dennehy
- Biology Department, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
- The Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|