1
|
Jun DJ, Shannon R, Tschida K, Smith DM. The Infralimbic, but not the Prelimbic Cortex is needed for a Complex Olfactory Memory Task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618554. [PMID: 39463969 PMCID: PMC11507807 DOI: 10.1101/2024.10.15.618554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The medial prefrontal cortex (mPFC) plays a key role in memory and behavioral flexibility, and a growing body of evidence suggests that the prelimbic (PL) and infralimbic (IL) subregions contribute differently to these processes. Studies of fear conditioning and goal-directed learning suggest that the PL promotes behavioral responses and memory retrieval, while the IL inhibits them. Other studies have shown that the mPFC is engaged under conditions of high interference. This raises the possibility that the PL and IL play differing roles in resolving interference. To examine this, we first used chemogenetics (DREADDs) to suppress mPFC neuronal activity and tested subjects on a conditional discrimination task known to be sensitive to muscimol inactivation. After confirming the effectiveness of the DREADD procedures, we conducted a second experiment to examine the PL and IL roles in a high interference memory task. We trained rats on two consecutive sets of conflicting odor discrimination problems, A and B, followed by test sessions involving a mid-session switch between the problem sets. Controls repeatedly performed worse on Set A, suggesting that learning Set B inhibited the rats' ability to retrieve Set A memories (i.e. retroactive interference). PL inactivation rats performed similarly to controls. However, IL inactivation rats did not show this effect, suggesting that the IL plays a critical role in suppressing the retrieval of previously acquired memories that may interfere with retrieval of more recent memories. These results suggest that the IL plays a critical role in memory control processes needed for resolving interference.
Collapse
Affiliation(s)
- Dahae J. Jun
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Rebecca Shannon
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - Katherine Tschida
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| | - David M. Smith
- Department of Psychology, Cornell University, 211 Uris Hall Ithaca, NY 14853 United States
| |
Collapse
|
2
|
Li A, Chen H, Naya Y. Mnemonically modulated perceptual processing to represent allocentric space in macaque inferotemporal cortex. Prog Neurobiol 2024; 241:102670. [PMID: 39366505 DOI: 10.1016/j.pneurobio.2024.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
To encode allocentric space information of a viewing object, it is important to relate perceptual information in the first-person perspective to the representation of an entire scene which would be constructed before. A substantial number of studies investigated the constructed scene information (e.g., cognitive map). However, only few studies have focused on its influence on perceptual processing. Therefore, we designed a visually guided saccade task requiring monkeys to gaze at objects in different locations on different backgrounds clipped from large self-designed mosaic pictures (parental pictures). In each trial, we presented moving backgrounds prior to object presentations, indicating a frame position of the background image on a parental picture. We recorded single-unit activities from 377 neurons in the posterior inferotemporal (PIT) cortex of two macaques. Equivalent numbers of neurons showed space-related (119 of 377) and object-related (125 of 377) information. The space-related neurons coded the gaze locations and background images jointly rather than separately. These results suggest that PIT neurons represent a particular location within a particular background image. Interestingly, frame positions of background images on parental pictures modulated the space-related responses dependently on parental pictures. As the frame positions could be acquired by only preceding visual experiences, the present results may provide neuronal evidence of a mnemonic effect on current perception, which might represent allocentric object location in a scene beyond the current view.
Collapse
Affiliation(s)
- Ao Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Department of Biological Structure, University of Washington, Seattle, WA 98195, United States; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, United States
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Jun H, Lee JY, Bleza NR, Ichii A, Donohue JD, Igarashi KM. Prefrontal and lateral entorhinal neurons co-dependently learn item-outcome rules. Nature 2024; 633:864-871. [PMID: 39169188 PMCID: PMC11484820 DOI: 10.1038/s41586-024-07868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
The ability to learn novel items depends on brain functions that store information about items classified by their associated meanings and outcomes1-4, but the underlying neural circuit mechanisms of this process remain poorly understood. Here we show that deep layers of the lateral entorhinal cortex (LEC) contain two groups of 'item-outcome neurons': one developing activity for rewarded items during learning, and another for punished items. As mice learned an olfactory item-outcome association, we found that the neuronal population of LEC layers 5/6 (LECL5/6) formed an internal map of pre-learned and novel items, classified into dichotomic rewarded versus punished groups. Neurons in the medial prefrontal cortex (mPFC), which form a bidirectional loop circuit with LECL5/6, developed an equivalent item-outcome rule map during learning. When LECL5/6 neurons were optogenetically inhibited, tangled mPFC representations of novel items failed to split into rewarded versus punished groups, impairing new learning by mice. Conversely, when mPFC neurons were inhibited, LECL5/6 representations of individual items were held completely separate, disrupting both learning and retrieval of associations. These results suggest that LECL5/6 neurons and mPFC neurons co-dependently encode item memory as a map of associated outcome rules.
Collapse
Affiliation(s)
- Heechul Jun
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jason Y Lee
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nicholas R Bleza
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ayana Ichii
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Jordan D Donohue
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Kei M Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, Samueli School of Engineering, University of California Irvine, Irvine, CA, USA.
- Center for Neural Circuit Mapping, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Amaral AC, Lister JP, Rueckemann JW, Wojnarowicz MW, McGaughy JA, Mokler DJ, Galler JR, Rosene DL, Rushmore RJ. Prenatal protein malnutrition decreases neuron numbers in the parahippocampal region but not prefrontal cortex in adult rats. Nutr Neurosci 2024:1-14. [PMID: 39088448 DOI: 10.1080/1028415x.2024.2371256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
OBJECTIVE Prenatal protein malnutrition produces anatomical and functional changes in the developing brain that persist despite immediate postnatal nutritional rehabilitation. Brain networks of prenatally malnourished animals show diminished activation of prefrontal areas and an increased activation of hippocampal regions during an attentional task [1]. While a reduction in cell number has been documented in hippocampal subfield CA1, nothing is known about changes in neuron numbers in the prefrontal or parahippocampal cortices. METHODS In the present study, we used unbiased stereology to investigate the effect of prenatal protein malnutrition on the neuron numbers in the medial prefrontal cortex and the cortices of the parahippocampal region that comprise the larger functional network. RESULTS Results show that prenatal protein malnutrition does not cause changes in the neuronal population in the medial prefrontal cortex of adult rats, indicating that the decrease in functional activation during attentional tasks is not due to a reduction in the number of neurons. Results also show that prenatal protein malnutrition is associated with a reduction in neuron numbers in specific parahippocampal subregions: the medial entorhinal cortex and presubiculum. DISCUSSION The affected regions along with CA1 comprise a tightly interconnected circuit, suggesting that prenatal malnutrition confers a vulnerability to specific hippocampal circuits. These findings are consistent with the idea that prenatal protein malnutrition produces a reorganization of structural and functional networks, which may underlie observed alterations in attentional processes and capabilities.
Collapse
Affiliation(s)
- A C Amaral
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - J P Lister
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J W Rueckemann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - M W Wojnarowicz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - J A McGaughy
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| | - D J Mokler
- Department of Biomedical Sciences, University of New England, Biddeford, ME, USA
| | - J R Galler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics & Division of Gastroenterology and Nutrition, MassGeneral Hospital for Children, Boston, MA, USA
| | - D L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - R J Rushmore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Mohan UR, Zhang H, Ermentrout B, Jacobs J. The direction of theta and alpha travelling waves modulates human memory processing. Nat Hum Behav 2024; 8:1124-1135. [PMID: 38459263 DOI: 10.1038/s41562-024-01838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/24/2024] [Indexed: 03/10/2024]
Abstract
To support a range of behaviours, the brain must flexibly coordinate neural activity across widespread brain regions. One potential mechanism for this coordination is a travelling wave, in which a neural oscillation propagates across the brain while organizing the order and timing of activity across regions. Although travelling waves are present across the brain in various species, their potential functional relevance has remained unknown. Here, using rare direct human brain recordings, we demonstrate a distinct functional role for travelling waves of theta- and alpha-band (2-13 Hz) oscillations in the cortex. Travelling waves propagate in different directions during separate cognitive processes. In episodic memory, travelling waves tended to propagate in a posterior-to-anterior direction during successful memory encoding and in an anterior-to-posterior direction during recall. Because travelling waves of oscillations correspond to local neuronal spiking, these patterns indicate that rhythmic pulses of activity move across the brain in different directions for separate behaviours. More broadly, our results suggest a fundamental role for travelling waves and oscillations in dynamically coordinating neural connectivity, by flexibly organizing the timing and directionality of network interactions across the cortex to support cognition and behaviour.
Collapse
Affiliation(s)
- Uma R Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD, USA
| | | | - Bard Ermentrout
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Department of Neurological Surgery, Columbia University, New York City, NY, USA.
| |
Collapse
|
6
|
Yadav N, Toader A, Rajasethupathy P. Beyond hippocampus: Thalamic and prefrontal contributions to an evolving memory. Neuron 2024; 112:1045-1059. [PMID: 38272026 DOI: 10.1016/j.neuron.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
The hippocampus has long been at the center of memory research, and rightfully so. However, with emerging technological capabilities, we can increasingly appreciate memory as a more dynamic and brain-wide process. In this perspective, our goal is to begin developing models to understand the gradual evolution, reorganization, and stabilization of memories across the brain after their initial formation in the hippocampus. By synthesizing studies across the rodent and human literature, we suggest that as memory representations initially form in hippocampus, parallel traces emerge in frontal cortex that cue memory recall, and as they mature, with sustained support initially from limbic then diencephalic then cortical circuits, they become progressively independent of hippocampus and dependent on a mature cortical representation. A key feature of this model is that, as time progresses, memory representations are passed on to distinct circuits with progressively longer time constants, providing the opportunity to filter, forget, update, or reorganize memories in the process of committing to long-term storage.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Andrew Toader
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA
| | - Priya Rajasethupathy
- Laboratory of Neural Dynamics & Cognition, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
7
|
Feng T, Zhang C, Xu S, Wang L, Xu K, Xie Z, Xiang J, Chen W. A right convergence area of the prefrontal lobe is involved in the improvement of semantic fluency in patients with post-stroke aphasia. Top Stroke Rehabil 2024; 31:301-310. [PMID: 37651207 DOI: 10.1080/10749357.2023.2253632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES This study aimed to longitudinally observe the improvement mechanism of semantic fluency in subacute post-stroke aphasia (PSA) patients using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Twelve PSA patients, about one month after onset, were enrolled in this study and received speech-language therapy (SLT) for one month. Auditory comprehension and semantic fluency were evaluated using the Western Aphasia Battery (WAB) and the Animal Fluency Test. Before and after treatment, rs-fMRI data were collected, and the dice similarity coefficient was used to measure the spatial similarity between each patient's lesion and a reference lesion. The left posterior inferior temporal gyrus (pITG) was used as a seed to calculate the normalized functional connectivity in whole-brain voxel analysis using DPABI software for statistical analysis. RESULTS The dice similarity coefficient between each patient's lesion and the reference lesion showed moderate to high intensity (0.57 ± 0.14) in the Montreal Neurological Institute space. After treatment, we found a significant increase in functional connectivity between the left pITG and the right prefrontal lobe convergence area (peak t = 8.219, Gaussian random field multiple comparison correction, voxel p < 0.001, cluster p < 0.05). The increase in functional connectivity was negatively correlated with the improvement in auditory comprehension (r =-0.707, p = 0.033) and positively correlated with the improvement in semantic fluency (r = 0.79, p = 0.02). CONCLUSION The improvement of semantic fluency in subacute PSA patients may require the participation of the right convergence area of the prefrontal lobe.
Collapse
Affiliation(s)
- Tao Feng
- Department of Rehabilitation, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chao Zhang
- Department of Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Siwei Xu
- Department of Rehabilitation, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lingmin Wang
- Department of Rehabilitation, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kai Xu
- Department of Radiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiyuan Xie
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Jie Xiang
- Department of Rehabilitation, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiwei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
8
|
Suzuki T, Joho D, Kakeyama M. Purposive decision-making task in mice using touchscreen operant apparatus. Neurosci Res 2024; 200:34-40. [PMID: 37758027 DOI: 10.1016/j.neures.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Purposive decision-making, based on sensory input and memory, is a component of executive functioning. Evaluating executive functioning is crucial for understanding neuropsychiatric disorders and brain injuries. However, there's a lack of mouse tests for this purpose. To address this, we developed a novel touchscreen task to assess purposive decision-making in mice. In the present task, the mice had to touch the correct window (left or right), with a visual stimulus as a cue for decision-making. The mice gradually acquired a relationship between the visual stimuli and the action they should take. Each mouse made the correct choice more than 80% of the time based on the visual cue and memory and knowledge of themselves. We could clearly determine when the mice saw the visual cue. The present task offers a valuable tool for investigating the neural mechanisms behind decision-making.
Collapse
Affiliation(s)
- Takeru Suzuki
- Laboratory for Environmental Brain Sciences, Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Daisuke Joho
- Laboratory for Environmental Brain Sciences, Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
| | - Masaki Kakeyama
- Laboratory for Environmental Brain Sciences, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan.
| |
Collapse
|
9
|
Zhang Y, Roy DS. Memory Storage in Distributed Engram Cell Ensembles. ADVANCES IN NEUROBIOLOGY 2024; 38:29-43. [PMID: 39008009 DOI: 10.1007/978-3-031-62983-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
One of the most fascinating aspects of the brain is its ability to acquire new information from experience and retain it over time as memory. The search for physical correlates of memory, the memory engram, has been a longstanding priority in modern neurobiology. Advanced genetic approaches have led to the localization of engram cells in a few brain regions, including the hippocampus and cortex. Additionally, engram cells exhibit learning-induced, persistent modifications and have at least two states, active and silent. However, it has been hypothesized that engrams for a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Recent tissue-clearing techniques have permitted high-throughput analyses of intact brain samples, which have been used to obtain a map of the engram complex for a contextual fear memory. Careful examination of these engram complex maps has revealed a potentially underappreciated contribution of subcortical regions, specifically thalamic nuclei, to memory function. These more holistic studies support the unified engram complex hypothesis for memory storage and have important implications for understanding dysfunctional engrams in the context of human disease.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Life Sciences & IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Haidian District, Beijing, China
| | - Dheeraj S Roy
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
10
|
Lu J, Wu Z, Zeng F, Shi B, Liu M, Wu J, Liu Y. Modulation of smoker brain activity and functional connectivity by tDCS: A go/no-go task-state fMRI study. Heliyon 2023; 9:e21074. [PMID: 37920488 PMCID: PMC10618481 DOI: 10.1016/j.heliyon.2023.e21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) applied to particular brain areas may reduce a smoker's smoking cravings. Most studies on tDCS mechanisms are performed on brains in the resting state. Therefore, brain activity changes induced by tDCS during tasks need to be further studied. Methods Forty-six male smokers were randomised to receive anodal tDCS of the left/right dorsolateral prefrontal cortex (DLPFC) or sham tDCS. A go/no-go task was performed before and after stimulation, respectively. Brain activity and functional connectivity (FC) changes during the task state before and after tDCS were used for comparison. Results This study revealed that the anodal stimulation over one DLPFC area caused decreased activity in the ipsilateral precuneus during the go task state. Right DLPFC stimulation increased the FC between the bilateral DLPFCs and the right anterior cingulate cortex (ACC), which is closely associated with cognition and inhibition of executive functions. Additionally, the study showed variations in brain activity depending on whether the anode was positioned over the right or left DLPFC (R-DLPFC or L-DLPFC). Conclusion During the go task, tDCS might exert a suppressive effect on some brain areas, such as the precuneus. Stimulation on the R-DLPFC might strengthen the FC between the right ACC and the bilateral DLPFCs, which could enhance the ability of behavioural decision-making and inhibition to solve conflicts effectively. Stimulating the L-DLPFC alone could increase the FC of bilateral DLPFCs with some brain regions associated with response inhibition.
Collapse
Affiliation(s)
| | | | - Feiyan Zeng
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Bin Shi
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Mengqiu Liu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Jiaoyan Wu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Ying Liu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| |
Collapse
|
11
|
Zhou T, Kawasaki K, Suzuki T, Hasegawa I, Roe AW, Tanigawa H. Mapping information flow between the inferotemporal and prefrontal cortices via neural oscillations in memory retrieval and maintenance. Cell Rep 2023; 42:113169. [PMID: 37740917 DOI: 10.1016/j.celrep.2023.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Interaction between the inferotemporal (ITC) and prefrontal (PFC) cortices is critical for retrieving information from memory and maintaining it in working memory. Neural oscillations provide a mechanism for communication between brain regions. However, it remains unknown how information flow via neural oscillations is functionally organized in these cortices during these processes. In this study, we apply Granger causality analysis to electrocorticographic signals from both cortices of monkeys performing visual association tasks to map information flow. Our results reveal regions within the ITC where information flow to and from the PFC increases via specific frequency oscillations to form clusters during memory retrieval and maintenance. Theta-band information flow in both directions increases in similar regions in both cortices, suggesting reciprocal information exchange in those regions. These findings suggest that specific subregions function as nodes in the memory information-processing network between the ITC and the PFC.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan; Osaka University, Suita, Osaka 565-0871, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.
| | - Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan.
| |
Collapse
|
12
|
Kreitz S, Mennecke A, Konerth L, Rösch J, Nagel AM, Laun FB, Uder M, Dörfler A, Hess A. 3T vs. 7T fMRI: capturing early human memory consolidation after motor task utilizing the observed higher functional specificity of 7T. Front Neurosci 2023; 17:1215400. [PMID: 37638321 PMCID: PMC10448826 DOI: 10.3389/fnins.2023.1215400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.
Collapse
Affiliation(s)
- Silke Kreitz
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Laura Konerth
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Rösch
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- FAU NeW—Research Center for New Bioactive Compounds, Erlangen, Germany
| |
Collapse
|
13
|
Fetcho RN, Hall BS, Estrin DJ, Walsh AP, Schuette PJ, Kaminsky J, Singh A, Roshgodal J, Bavley CC, Nadkarni V, Antigua S, Huynh TN, Grosenick L, Carthy C, Komer L, Adhikari A, Lee FS, Rajadhyaksha AM, Liston C. Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships. Nat Commun 2023; 14:2487. [PMID: 37120443 PMCID: PMC10148889 DOI: 10.1038/s41467-023-37460-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/17/2023] [Indexed: 05/01/2023] Open
Abstract
Social hierarchies exert a powerful influence on behavior, but the neurobiological mechanisms that detect and regulate hierarchical interactions are not well understood, especially at the level of neural circuits. Here, we use fiber photometry and chemogenetic tools to record and manipulate the activity of nucleus accumbens-projecting cells in the ventromedial prefrontal cortex (vmPFC-NAcSh) during tube test social competitions. We show that vmPFC-NAcSh projections signal learned hierarchical relationships, and are selectively recruited by subordinate mice when they initiate effortful social dominance behavior during encounters with a dominant competitor from an established hierarchy. After repeated bouts of social defeat stress, this circuit is preferentially activated during social interactions initiated by stress resilient individuals, and plays a necessary role in supporting social approach behavior in subordinated mice. These results define a necessary role for vmPFC-NAcSh cells in the adaptive regulation of social interaction behavior based on prior hierarchical interactions.
Collapse
Affiliation(s)
- Robert N Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Baila S Hall
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - David J Estrin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Alexander P Walsh
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Peter J Schuette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Kaminsky
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ashna Singh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Roshgodal
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Charlotte C Bavley
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Viraj Nadkarni
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Susan Antigua
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Thu N Huynh
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Camille Carthy
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Komer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis S Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, New York, NY, USA.
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, New York, NY, USA.
| |
Collapse
|
14
|
Kadohisa M, Kusunoki M, Mitchell DJ, Bhatia C, Buckley MJ, Duncan J. Frontal and temporal coding dynamics in successive steps of complex behavior. Neuron 2023; 111:430-443.e3. [PMID: 36473483 DOI: 10.1016/j.neuron.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/21/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Ventrolateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex (dlPFC), and temporal cortex (TE) all contribute to visual decision-making. Accumulating evidence suggests that vlPFC may play a central role in multiple cognitive operations, perhaps resembling domain-general regions of the human frontal lobe. We trained monkeys in a task calling for learning, retrieval, and spatial selection of rewarded target objects. Recordings of neural activity covered large areas of vlPFC, dlPFC, and TE. Results suggested a central role for vlPFC in each cognitive operation with strong coding of each task feature, while only location was strongly coded in dlPFC and current object identity in TE. During target selection, target location was communicated first from vlPFC to dlPFC, followed by extensive mutual support. In vlPFC, stimulus identities were independently coded in different task operations. The results suggest a central role for the inferior frontal convexity in controlling successive operations of a complex, multi-step task.
Collapse
Affiliation(s)
- Mikiko Kadohisa
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Makoto Kusunoki
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK
| | - Cheshta Bhatia
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, UK; Department of Experimental Psychology, University of Oxford, Anna Watts Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
15
|
Kim SE, Kim HS, Kwak Y, Ahn MH, Choi KM, Min BK. Neurodynamic correlates for the cross-frequency coupled transcranial alternating current stimulation during working memory performance. Front Neurosci 2022; 16:1013691. [PMID: 36263365 PMCID: PMC9574066 DOI: 10.3389/fnins.2022.1013691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial current stimulation is a neuromodulation technique used to modulate brain oscillations and, in turn, to enhance human cognitive function in a non-invasive manner. This study investigated whether cross-frequency coupled transcranial alternating current stimulation (CFC-tACS) improved working memory performance. Participants in both the tACS-treated and sham groups were instructed to perform a modified Sternberg task, where a combination of letters and digits was presented. Theta-phase/high-gamma-amplitude CFC-tACS was administered over electrode F3 and its four surrounding return electrodes (Fp1, Fz, F7, and C3) for 20 min. To identify neurophysiological correlates for the tACS-mediated enhancement of working memory performance, we analyzed EEG alpha and theta power, cross-frequency coupling, functional connectivity, and nodal efficiency during the retention period of the working memory task. We observed significantly reduced reaction times in the tACS-treated group, with suppressed treatment-mediated differences in frontal alpha power and unidirectional Fz-delta-phase to Oz-high-gamma-amplitude modulation during the second half of the retention period when network analyses revealed tACS-mediated fronto-occipital dissociative neurodynamics between alpha suppression and delta/theta enhancement. These findings indicate that tACS modulated top-down control and functional connectivity across the fronto-occipital regions, resulting in improved working memory performance. Our observations are indicative of the feasibility of enhancing cognitive performance by the CFC-formed tACS.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
| | - Hyun-Seok Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, South Korea
| | - Youngchul Kwak
- Department of Electronics Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Min-Hee Ahn
- Laboratory of Brain and Cognitive Science for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Kyung Mook Choi
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Byoung-Kyong Min
- Institute for Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Interdisciplinary Program in Brain and Cognitive Sciences, Korea University, Seoul, South Korea
- *Correspondence: Byoung-Kyong Min,
| |
Collapse
|
16
|
Yadav N, Noble C, Niemeyer JE, Terceros A, Victor J, Liston C, Rajasethupathy P. Prefrontal feature representations drive memory recall. Nature 2022; 608:153-160. [PMID: 35831504 PMCID: PMC9577479 DOI: 10.1038/s41586-022-04936-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 06/06/2022] [Indexed: 02/03/2023]
Abstract
Memory formation involves binding of contextual features into a unitary representation1-4, whereas memory recall can occur using partial combinations of these contextual features. The neural basis underlying the relationship between a contextual memory and its constituent features is not well understood; in particular, where features are represented in the brain and how they drive recall. Here, to gain insight into this question, we developed a behavioural task in which mice use features to recall an associated contextual memory. We performed longitudinal imaging in hippocampus as mice performed this task and identified robust representations of global context but not of individual features. To identify putative brain regions that provide feature inputs to hippocampus, we inhibited cortical afferents while imaging hippocampus during behaviour. We found that whereas inhibition of entorhinal cortex led to broad silencing of hippocampus, inhibition of prefrontal anterior cingulate led to a highly specific silencing of context neurons and deficits in feature-based recall. We next developed a preparation for simultaneous imaging of anterior cingulate and hippocampus during behaviour, which revealed robust population-level representation of features in anterior cingulate, that lag hippocampus context representations during training but dynamically reorganize to lead and target recruitment of context ensembles in hippocampus during recall. Together, we provide the first mechanistic insights into where contextual features are represented in the brain, how they emerge, and how they access long-range episodic representations to drive memory recall.
Collapse
Affiliation(s)
- Nakul Yadav
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chelsea Noble
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
| | - James E Niemeyer
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Terceros
- Laboratory of Neural Dynamics and Cognition, The Rockefeller University, New York, NY, USA
| | - Jonathan Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
17
|
Burk DC, Sheinberg DL. Neurons in inferior temporal cortex are sensitive to motion trajectory during degraded object recognition. Cereb Cortex Commun 2022; 3:tgac034. [PMID: 36168516 PMCID: PMC9499820 DOI: 10.1093/texcom/tgac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Our brains continuously acquire sensory information and make judgments even when visual information is limited. In some circumstances, an ambiguous object can be recognized from how it moves, such as an animal hopping or a plane flying overhead. Yet it remains unclear how movement is processed by brain areas involved in visual object recognition. Here we investigate whether inferior temporal (IT) cortex, an area known for its relevance in visual form processing, has access to motion information during recognition. We developed a matching task that required monkeys to recognize moving shapes with variable levels of shape degradation. Neural recordings in area IT showed that, surprisingly, some IT neurons responded stronger to degraded shapes than clear ones. Furthermore, neurons exhibited motion sensitivity at different times during the presentation of the blurry target. Population decoding analyses showed that motion patterns could be decoded from IT neuron pseudo-populations. Contrary to previous findings, these results suggest that neurons in IT can integrate visual motion and shape information, particularly when shape information is degraded, in a way that has been previously overlooked. Our results highlight the importance of using challenging multifeature recognition tasks to understand the role of area IT in naturalistic visual object recognition.
Collapse
Affiliation(s)
- Diana C Burk
- Department of Neuroscience, Brown University , Providence, RI 02912 , United States
| | - David L Sheinberg
- Department of Neuroscience, Brown University , Providence, RI 02912 , United States
- Carney Institute for Brain Science, Brown University , Providence, RI 02912 , United States
| |
Collapse
|
18
|
Liang XY, Guo ZH, Wang XD, Guo XT, Sun JW, Wang M, Li HW, Chen L. Event-Related Potential Evidence for Involuntary Consciousness During Implicit Memory Retrieval. Front Behav Neurosci 2022; 16:902175. [PMID: 35832295 PMCID: PMC9272755 DOI: 10.3389/fnbeh.2022.902175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Classical notion claims that a memory is implicit if has nothing to do with consciousness during the information retrieval from storage, or is otherwise explicit. Here, we demonstrate event-related potential evidence for involuntary consciousness during implicit memory retrieval. We designed a passive oddball paradigm for retrieval of implicit memory in which an auditory stream of Shepard tones with musical pitch interval contrasts were delivered to the subjects. These contrasts evoked a mismatch negativity response, which is an event-related potential and a neural marker of implicit memory, in the subjects with long-term musical training, but not in the subjects without. Notably, this response was followed by a salient P3 component which implies involvement of involuntary consciousness in the implicit memory retrieval. Finally, source analysis of the P3 revealed moving dipoles from the frontal lobe to the insula, a brain region closely related to conscious attention. Our study presents a case of involvement of involuntary consciousness in the implicit memory retrieval and suggests a potential challenge to the classical definition of implicit memory.
Collapse
Affiliation(s)
- Xiu-Yuan Liang
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zi-Hao Guo
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Dong Wang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiao-Tao Guo
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Jing-Wu Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Ming Wang
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua-Wei Li
- Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Lin Chen
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
- Affiliated Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Andreau JM, Funahashi S. Prefrontal Neuronal Activities During Active Retrieval of Information From Long-Term Memory. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Single-neuron studies performed in the primate prefrontal cortex (PFC) revealed that retaining information in working memory (WM) is associated with sustained firing during the delay period in a match-to-sample task. On the other hand, single-neuron studies using a pair-association task have shown that retrieving information from long-term memory (LTM) is related to two kinds of neural activities: decreasing activity representing information linked to the sample stimulus and increasing activity predicting information for the forthcoming matching stimulus. To further examine neuronal behavioral patterns during LTM retrieval, we used a partial correlation coefficient analysis to analyze single-neuron activities in the PFC while monkeys performed the visual pair-association task. Results showed that, for most of the task-related neurons, firing activity depicted information from the sample stimulus. Nevertheless, some neurons showed an opposite pattern, this is, increasing activity during the delay period, possibly indicating a prospective memory coding from LTM. Interestingly, both activities seem to be present at different degrees as the delay period progresses. Together, these results unveil a new aspect of PFC neurons when retrieving unseen information from LTM.
Collapse
Affiliation(s)
- Jorge Mario Andreau
- Instituto de Investigación, Facultad de Psicología y Psicopedagogía, Universidad del Salvador, Ciudad Autónoma de Buenos Aires, Argentina
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environment Studies, Kyoto University, Kyoto, Japan
| | - Shintaro Funahashi
- Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environment Studies, Kyoto University, Kyoto, Japan
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, PR China
| |
Collapse
|
20
|
Hippocampal-medial prefrontal cortex network dynamics predict performance during retrieval in a context-guided object memory task. Proc Natl Acad Sci U S A 2022; 119:e2203024119. [PMID: 35561217 DOI: 10.1073/pnas.2203024119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceRecovering relevant information, while ignoring the irrelevant, is crucial for episodic memory (remembering a particular event at a specific temporal and spatial context). Information presented at any time could drive the retrieval of more than one memory trace; thus, there should be a mechanism to select the retrieval of the most relevant trace. However, how the brain controls memory interference is not well understood. Here, we analyzed the communication between ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC) during the resolution of an episodic memory task in rats. We found an increased synchronization between the vHPC and mPFC and identified specific mPFC neural subpopulations that selectively respond to object-context associations, and their firing preference correlates with the animals' behavioral responses.
Collapse
|
21
|
Tanigawa H, Majima K, Takei R, Kawasaki K, Sawahata H, Nakahara K, Iijima A, Suzuki T, Kamitani Y, Hasegawa I. Decoding distributed oscillatory signals driven by memory and perception in the prefrontal cortex. Cell Rep 2022; 39:110676. [PMID: 35417680 DOI: 10.1016/j.celrep.2022.110676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Sensory perception and memory recall generate different conscious experiences. Although externally and internally driven neural activities signifying the same perceptual content overlap in the sensory cortex, their distribution in the prefrontal cortex (PFC), an area implicated in both perception and memory, remains elusive. Here, we test whether the local spatial configurations and frequencies of neural oscillations driven by perception and memory recall overlap in the macaque PFC using high-density electrocorticography and multivariate pattern analysis. We find that dynamically changing oscillatory signals distributed across the PFC in the delta-, theta-, alpha-, and beta-band ranges carry significant, but mutually different, information predicting the same feature of memory-recalled internal targets and passively perceived external objects. These findings suggest that the frequency-specific distribution of oscillatory neural signals in the PFC serves cortical signatures responsible for distinguishing between different types of cognition driven by external perception and internal memory.
Collapse
Affiliation(s)
- Hisashi Tanigawa
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310016, China; Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan; Center for Transdisciplinary Research, Niigata University, Niigata, Niigata 951-8501, Japan
| | - Kei Majima
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; ATR Computational Neuroscience Laboratories, Keihanna Science City, Kyoto 619-0288, Japan
| | - Ren Takei
- Department of Bio-cybernetics, Faculty of Engineering, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Keisuke Kawasaki
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan
| | - Hirohito Sawahata
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan; Department of Industrial Engineering, Mechanical and Control Engineering Course, National Institute of Technology (KOSEN), Ibaraki College, Hitachinaka, Ibaraki 312-8508, Japan
| | - Kiyoshi Nakahara
- Center for Transdisciplinary Research, Niigata University, Niigata, Niigata 951-8501, Japan; Research Center for Brain Communication, Kochi University of Technology, Kami, Kochi 782-8502, Japan
| | - Atsuhiko Iijima
- Department of Bio-cybernetics, Faculty of Engineering, Niigata University, Niigata, Niigata 950-2181, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka 565-0871, Japan; Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukiyasu Kamitani
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan; ATR Computational Neuroscience Laboratories, Keihanna Science City, Kyoto 619-0288, Japan
| | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, Niigata, Niigata 951-8501, Japan; Center for Transdisciplinary Research, Niigata University, Niigata, Niigata 951-8501, Japan.
| |
Collapse
|
22
|
Roy DS, Park YG, Kim ME, Zhang Y, Ogawa SK, DiNapoli N, Gu X, Cho JH, Choi H, Kamentsky L, Martin J, Mosto O, Aida T, Chung K, Tonegawa S. Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nat Commun 2022; 13:1799. [PMID: 35379803 PMCID: PMC8980018 DOI: 10.1038/s41467-022-29384-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Neuronal ensembles that hold specific memory (memory engrams) have been identified in the hippocampus, amygdala, or cortex. However, it has been hypothesized that engrams of a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Here, we report a partial map of the engram complex for contextual fear conditioning memory by characterizing encoding activated neuronal ensembles in 247 regions using tissue phenotyping in mice. The mapping was aided by an engram index, which identified 117 cFos+ brain regions holding engrams with high probability, and brain-wide reactivation of these neuronal ensembles by recall. Optogenetic manipulation experiments revealed engram ensembles, many of which were functionally connected to hippocampal or amygdala engrams. Simultaneous chemogenetic reactivation of multiple engram ensembles conferred a greater level of memory recall than reactivation of a single engram ensemble, reflecting the natural memory recall process. Overall, our study supports the unified engram complex hypothesis for memory storage.
Collapse
Affiliation(s)
- Dheeraj S Roy
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Young-Gyun Park
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Minyoung E Kim
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ying Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sachie K Ogawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nicholas DiNapoli
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xinyi Gu
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jae H Cho
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Heejin Choi
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lee Kamentsky
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jared Martin
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Olivia Mosto
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tomomi Aida
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kwanghun Chung
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Institute for Medical Engineering and Science, Picower Institute for Learning and Memory, Department of Chemical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Yonsei-IBS Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Susumu Tonegawa
- RIKEN-MIT Laboratory for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Sun W, Tang P, Liang Y, Li J, Feng J, Zhang N, Lu D, He J, Chen X. The anterior cingulate cortex directly enhances auditory cortical responses in air-puffing-facilitated flight behavior. Cell Rep 2022; 38:110506. [PMID: 35263590 DOI: 10.1016/j.celrep.2022.110506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
For survival, animals encode prominent events in complex environments, which modulates their defense behavior. Here, we design a paradigm that assesses how a mild aversive cue (i.e., mild air puff) interacts with sound-evoked flight behavior in mice. We find that air puffing facilitates sound-evoked flight behavior by enhancing the auditory responses of auditory cortical neurons. We then find that the anterior part of the anterior cingulate cortex (ACC) encodes the valence of air puffing and modulates the auditory cortex through anatomical examination, physiological recordings, and optogenetic/chemogenetic manipulations. Activating ACC projections to the auditory cortex simulates the facilitating effect of air puffing, whereas inhibiting the ACC or its projections to the auditory cortex neutralizes this facilitating effect. These findings show that the ACC regulates sound-evoked flight behavior by potentiating neuronal responses in the auditory cortex.
Collapse
Affiliation(s)
- Wenjian Sun
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 0000 Hong Kong SAR, P.R. China
| | - Peng Tang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 0000 Hong Kong SAR, P.R. China
| | - Ye Liang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China
| | - Jing Li
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 0000 Hong Kong SAR, P.R. China
| | - Jingyu Feng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China
| | - Nan Zhang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, 0000 Hong Kong SAR, P.R. China
| | - Danyi Lu
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518507, P.R. China.
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, 0000 Hong Kong SAR, P.R. China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518507, P.R. China.
| |
Collapse
|
24
|
Liu N, Iijima A, Iwata Y, Ohashi K, Fujisawa N, Sasaoka T, Hasegawa I. Mental construction of object symbols from meaningless elements by Japanese macaques (Macaca fuscata). Sci Rep 2022; 12:3566. [PMID: 35246592 PMCID: PMC8897398 DOI: 10.1038/s41598-022-07563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
When writing an object's name, humans mentally construct its spelling. This capacity critically depends on use of the dual-structured linguistic system, in which meaningful words are represented by combinations of meaningless letters. Here we search for the evolutionary origin of this capacity in primates by designing dual-structured bigram symbol systems where different combinations of meaningless elements represent different objects. Initially, we trained Japanese macaques (Macaca fuscata) in an object-bigram symbolization task and in a visually-guided bigram construction task. Subsequently, we conducted a probe test using a symbolic bigram construction task. From the initial trial of the probe test, the Japanese macaques could sequentially choose the two elements of a bigram that was not actually seen but signified by a visually presented object. Moreover, the animals' spontaneous choice order bias, developed through the visually-guided bigram construction learning, was immediately generalized to the symbolic bigram construction test. Learning of dual-structured symbols by the macaques possibly indicates pre-linguistic adaptations for the ability of mentally constructing symbols in the common ancestors of humans and Old World monkeys.
Collapse
Affiliation(s)
- Nanxi Liu
- Department of Physiology, Niigata University School of Medicine, 1-757 Asahimachi St, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsuhiko Iijima
- Department of Physiology, Niigata University School of Medicine, 1-757 Asahimachi St, Chuo-ku, Niigata, 951-8510, Japan. .,Graduate School of Science and Technology, Niigata University, Niigata, Japan. .,School of Health Sciences, Niigata University, Niigata, Japan. .,Neurophysiology & Biomedical Engineering Lab, Interdisciplinary Program of Biomedical Engineering, Assistive Technology and Art and Sports Sciences, Faculty of Engineering, Niigata University, 8050 2-no-chou, Ikarashi, Nishi-ku, Niigata, 950-2181, Japan.
| | - Yutaka Iwata
- Department of Physiology, Niigata University School of Medicine, 1-757 Asahimachi St, Chuo-ku, Niigata, 951-8510, Japan.,Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kento Ohashi
- Department of Physiology, Niigata University School of Medicine, 1-757 Asahimachi St, Chuo-ku, Niigata, 951-8510, Japan.,Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | | | - Isao Hasegawa
- Department of Physiology, Niigata University School of Medicine, 1-757 Asahimachi St, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
25
|
Zhong P, Cao Q, Yan Z. Selective impairment of circuits between prefrontal cortex glutamatergic neurons and basal forebrain cholinergic neurons in a tauopathy mouse model. Cereb Cortex 2022; 32:5569-5579. [PMID: 35235649 PMCID: PMC9753040 DOI: 10.1093/cercor/bhac036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder linked to cognitive decline. To understand how specific neuronal circuits are impaired in AD, we have used optogenetic and electrophysiological approaches to reveal the functional changes between prefrontal cortex (PFC) and basal forebrain (BF), 2 key regions controlling cognitive processes, in a tauopathy mouse model. We found that the glutamatergic synaptic responses in BF cholinergic neurons from P301S Tau mice (6-8 months old) were markedly diminished. The attenuated long-range PFC to BF pathway in the AD model significantly increased the failure rate of action potential firing of BF cholinergic neurons triggered by optogenetic stimulations of glutamatergic terminals from PFC. In contrast, the projection from PFC to other regions, such as amygdala and striatum, was largely unaltered. On the other hand, optogenetic stimulation of cholinergic terminals from BF induced a persistent reduction of the excitability of PFC pyramidal neurons from Tau mice, instead of the transient reduction exhibited in wild-type mice. Taken together, these data have revealed a selective aberration of the pathway between PFC pyramidal neurons and BF cholinergic neurons in a tauopathy mouse model. This circuit deficit may underlie the loss of attention and executive function in AD.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Zhen Yan
- Corresponding author: State University of New York at Buffalo, 955 Main St., Room 3102, Buffalo, NY 14203, United States.
| |
Collapse
|
26
|
Abstract
Increasing research has revealed that uninformative spatial sounds facilitate the early processing of visual stimuli. This study examined the crossmodal interactions of semantically congruent stimuli by assessing whether the presentation of event-related characteristic sounds facilitated or interfered with the visual search for corresponding event scenes in pictures. The search array consisted of four images: one target and three non-target pictures. Auditory stimuli were presented to participants in synchronization with picture onset using three types of sounds: a sound congruent with a target, a sound congruent with a distractor, or a control sound. The control sound varied across six experiments, alternating between a sound unrelated to the search stimuli, white noise, and no sound. Participants were required to swiftly localize a target position while ignoring the sound presentation. Visual localization resulted in rapid responses when a sound that was semantically related to the target was played. Furthermore, when a sound was semantically related to a distractor picture, the response times were longer. When the distractor-congruent sound was used, participants incorrectly localized the distractor position more often than at the chance level. These findings were replicated when the experiments ruled out the possibility that participants would learn picture-sound pairs during the visual tasks (i.e., the possibility of brief training during the experiments). Overall, event-related crossmodal interactions occur based on semantic representations, and audiovisual associations may develop as a result of long-term experiences rather than brief training in a laboratory.
Collapse
|
27
|
The body-ownership is unconsciously distorted in the brain: An event-related potential study of rubber hand illusion. PSIHOLOGIJA 2022. [DOI: 10.2298/psi210126002l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Many studies have reported that bottom-up multisensory integration of visual, tactile, and proprioceptive information can distort our sense of body-ownership, producing rubber hand illusion (RHI). There is less evidence about when and how the body-ownership is distorted in the brain during RHI. To examine whether this illusion effect occurs preattentively at an early stage of processing, we monitored the visual mismatch negativity (vMMN) component (the index of automatic deviant detection) and N2 (the index for conflict monitoring). Participants first performed an RHI elicitation task in a synchronous or asynchronous setting and then finished a passive visual oddball task in which the deviant stimuli were unrelated to the explicit task. A significant interaction between Deviancy (deviant hand vs. standard hand) and Group (synchronous vs. asynchronous) was found. The asynchronous group showed clear mismatch effects in both vMMN and N2, while the synchronous group had such effect only in N2. The results indicate that after the elicitation of RHI bottom-up integration could be retrieved at the early stage of sensory processing before top-down processing, providing evidence for the priority of the bottom-up processes after the generation of RHI and revealing the mechanism of how the body-ownership is unconsciously distorted in the brain.
Collapse
|
28
|
Fulvi Mari C. Memory retrieval dynamics and storage capacity of a modular network model of association cortex with featural decomposition. Biosystems 2021; 211:104570. [PMID: 34801644 DOI: 10.1016/j.biosystems.2021.104570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022]
Abstract
The primate heteromodal cortex presents an evident functional modularity at a mesoscopic level, with physiological and anatomical evidence pointing to it as likely substrate of long-term memory. In order to investigate some of its properties, a model of multimodular autoassociator is studied. Each of the many modules represents a neocortical functional ensemble of recurrently connected neurons and operates as a Hebbian autoassociator, storing a number of local features which it can recall upon cue. The global memory patterns are made of combinations of features sparsely distributed across the modules. Intermodular connections are modelled as a finite-connectivity random graph. Any pair of features in any respective pair of modules is allowed to be involved in several memory patterns; the coarse-grained modular network dynamics is defined in such a way as to overcome the consequent ambiguity of associations. Effects of long-range homeostatic synaptic scaling on network performance are also assessed. The dynamical process of cued retrieval almost saturates a natural upper bound while producing negligible spurious activation. The extent of finite-size effects on storage capacity is quantitatively evaluated. In the limit of infinite size, the functional relationship between storage capacity and number of features per module reduces to that which other authors found by methods from equilibrium statistical mechanics, which suggests that the origin of the functional form is of a combinatorial nature. In contrast with its apparent inevitability at intramodular level, long-range synaptic scaling results to be of minor relevance to both retrieval and storage capacity, casting doubt on its existence in the neocortex. A conjecture is also posited about how statistical fluctuation of connectivity across the network may underpin spontaneous emergence of semantic hierarchies through learning.
Collapse
|
29
|
Eldridge MAG, Hines BE, Murray EA. The visual prefrontal cortex of anthropoids: interaction with temporal cortex in decision making and its role in the making of "visual animals". Curr Opin Behav Sci 2021; 41:22-29. [PMID: 33796638 PMCID: PMC8009333 DOI: 10.1016/j.cobeha.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The ventral prefrontal cortex (PFC) of primates-a region strongly implicated in decision making-receives highly processed visual sensory inputs from the inferior temporal cortex (ITC) and perirhinal cortex (PRC) and can therefore be considered visual PFC. Usually, the functions of temporal cortex and visual PFC have been discussed in separate literatures. By considering them together, we aim to clarify the ways in which fronto-temporal networks guide decision making. After discussing the ways in which visual PFC interacts with temporal cortex to promote decision making, we offer specific predictions about the selective roles of the ITC- and PRC-based fronto-temporal networks. Finally, we suggest that an increased reliance on visual PFC in anthropoid primates led to our emergence as 'visual' animals.
Collapse
Affiliation(s)
- Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| | - Brendan E Hines
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| | - Elisabeth A Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
30
|
Yang FC, Dokovna LB, Burwell RD. Functional Differentiation of Dorsal and Ventral Posterior Parietal Cortex of the Rat: Implications for Controlled and Stimulus-Driven Attention. Cereb Cortex 2021; 32:1787-1803. [PMID: 34546356 DOI: 10.1093/cercor/bhab308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
The posterior parietal cortex (PPC) is important for visuospatial attention. The primate PPC shows functional differentiation such that dorsal areas are implicated in top-down, controlled attention, and ventral areas are implicated in bottom-up, stimulus-driven attention. Whether the rat PPC also shows such functional differentiation is unknown. Here, we address this open question using functional neuroanatomy and in vivo electrophysiology. Using conventional tract-tracing methods, we examined connectivity with other structures implicated in visuospatial attention including the lateral posterior nucleus of the thalamus (LPn) and the postrhinal cortex (POR). We showed that the LPn projects to the entire PPC, preferentially targeting more ventral areas. All parts of the PPC and POR are reciprocally connected with the strongest connections evident between ventral PPC and caudal POR. Next, we simultaneously recorded neuronal activity in dorsal and ventral PPC as rats performed a visuospatial attention (VSA ) task that engages in both bottom-up and top-down attention. Previously, we provided evidence that the dorsal PPC is engaged in multiple cognitive process including controlled attention (Yang et al. 2017). Here, we further showed that ventral PPC cells respond to stimulus onset more rapidly than dorsal PPC cells, providing evidence for a role in stimulus-driven, bottom-up attention.
Collapse
Affiliation(s)
- Fang-Chi Yang
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Lisa B Dokovna
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rebecca D Burwell
- Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI 02912, USA.,Department of Neuroscience, Brown University, Providence, RI 02912, USA
| |
Collapse
|
31
|
Yu JY, Frank LM. Prefrontal cortical activity predicts the occurrence of nonlocal hippocampal representations during spatial navigation. PLoS Biol 2021; 19:e3001393. [PMID: 34529647 PMCID: PMC8494358 DOI: 10.1371/journal.pbio.3001393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022] Open
Abstract
The receptive field of a neuron describes the regions of a stimulus space where the neuron is consistently active. Sparse spiking outside of the receptive field is often considered to be noise, rather than a reflection of information processing. Whether this characterization is accurate remains unclear. We therefore contrasted the sparse, temporally isolated spiking of hippocampal CA1 place cells to the consistent, temporally adjacent spiking seen within their spatial receptive fields ("place fields"). We found that isolated spikes, which occur during locomotion, are strongly phase coupled to hippocampal theta oscillations and transiently express coherent nonlocal spatial representations. Further, prefrontal cortical activity is coordinated with and can predict the occurrence of future isolated spiking events. Rather than local noise within the hippocampus, sparse, isolated place cell spiking reflects a coordinated cortical-hippocampal process consistent with the generation of nonlocal scenario representations during active navigation.
Collapse
Affiliation(s)
- Jai Y. Yu
- Department of Psychology, Institute for Mind and Biology, Neuroscience Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Loren M. Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Departments of Physiology and Psychiatry, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
32
|
Giarrocco F, Averbeck B. Organization of Parieto-Prefrontal and Temporo-Prefrontal Networks in the Macaque. J Neurophysiol 2021; 126:1289-1309. [PMID: 34379536 DOI: 10.1152/jn.00092.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The connectivity among architectonically defined areas of the frontal, parietal, and temporal cortex of the macaque has been extensively mapped through tract tracing methods. To investigate the statistical organization underlying this connectivity, and identify its underlying architecture, we performed a hierarchical cluster analysis on 69 cortical areas based on their anatomically defined inputs. We identified 10 frontal, 4 parietal, and 5 temporal hierarchically related sets of areas (clusters), defined by unique sets of inputs and typically composed of anatomically contiguous areas. Across cortex, clusters that share functional properties were linked by dominant information processing circuits in a topographically organized manner that reflects the organization of the main fiber bundles in the cortex. This led to a dorsal-ventral subdivision of the frontal cortex, where dorsal and ventral clusters showed privileged connectivity with parietal and temporal areas, respectively. Ventrally, temporo-frontal circuits encode information to discriminate objects in the environment, their value, emotional properties, and functions such as memory and spatial navigation. Dorsal parieto-frontal circuits encode information for selecting, generating, and monitoring appropriate actions based on visual-spatial and somatosensory information. This organization may reflect evolutionary antecedents, in which the vertebrate pallium, which is the ancestral cortex, was defined by a ventral and lateral olfactory region and a medial hippocampal region.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| | - Bruno Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
33
|
Zhang Q, Zhang D, Liao PC. Leading indicators of mental representation in construction hazard recognition. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2021; 28:2066-2079. [PMID: 34225576 DOI: 10.1080/10803548.2021.1952005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hazard recognition is mainly a visual search and cognitive process. Mental representations of hazards may impact mental states of hazard recognition. We assessed the effects of critical indicators of mental presentations of construction hazards on prefrontal cortex activation, a proxy for the mental states of hazard recognition. Students participated in a hazard inspection experiment, with near-infrared spectroscopy (NIRS) used to record prefrontal cortex activation. The effects of critical indicators of the hazards' mental representations on prefrontal activation were analyzed. Results demonstrated that site familiarity, risk tolerance and safety knowledge have significant effects on medial prefrontal activation for hazards at a low visual clutter level. High levels of site familiarity and risk tolerance reduced medial prefrontal activation and saved cognitive resources. Theoretically, the findings supplement the knowledge of safety hazards' mental representations; and practically, the findings guide provision of individual-specific guidance for improving workers' hazard inspection performance.
Collapse
Affiliation(s)
- Qingwen Zhang
- Department of Construction Management, School of Civil Engineering, Tsinghua University, People's Republic of China
| | - Dan Zhang
- Department of Psychology, School of Social Sciences, Tsinghua University, People's Republic of China
| | - Pin-Chao Liao
- Department of Construction Management, School of Civil Engineering, Tsinghua University, People's Republic of China
| |
Collapse
|
34
|
Immink MA, Pointon M, Wright DL, Marino FE. Prefrontal Cortex Activation During Motor Sequence Learning Under Interleaved and Repetitive Practice: A Two-Channel Near-Infrared Spectroscopy Study. Front Hum Neurosci 2021; 15:644968. [PMID: 34054448 PMCID: PMC8160091 DOI: 10.3389/fnhum.2021.644968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/13/2021] [Indexed: 11/21/2022] Open
Abstract
Training under high interference conditions through interleaved practice (IP) results in performance suppression during training but enhances long-term performance relative to repetitive practice (RP) involving low interference. Previous neuroimaging work addressing this contextual interference effect of motor learning has relied heavily on the blood-oxygen-level-dependent (BOLD) response using functional magnetic resonance imaging (fMRI) methodology resulting in mixed reports of prefrontal cortex (PFC) recruitment under IP and RP conditions. We sought to clarify these equivocal findings by imaging bilateral PFC recruitment using functional near-infrared spectroscopy (fNIRS) while discrete key pressing sequences were trained under IP and RP schedules and subsequently tested following a 24-h delay. An advantage of fNIRS over the fMRI BOLD response is that the former measures oxygenated and deoxygenated hemoglobin changes independently allowing for assessment of cortical hemodynamics even when there is neurovascular decoupling. Despite slower sequence performance durations under IP, bilateral PFC oxygenated and deoxygenated hemoglobin values did not differ between practice conditions. During test, however, slower performance from those previously trained under RP coincided with hemispheric asymmetry in PFC recruitment. Specifically, following RP, test deoxygenated hemoglobin values were significantly lower in the right PFC. The present findings contrast with previous behavioral demonstrations of increased cognitive demand under IP to illustrate a more complex involvement of the PFC in the contextual interference effect. IP and RP incur similar levels of bilateral PFC recruitment, but the processes underlying the recruitment are dissimilar. PFC recruitment during IP supports action reconstruction and memory elaboration while RP relies on PFC recruitment to maintain task variation information in working memory from trial to trial. While PFC recruitment under RP serves to enhance immediate performance, it does not support long-term performance.
Collapse
Affiliation(s)
- Maarten A. Immink
- Sport, Health, Activity, Performance and Exercise (SHAPE) Research Centre, Flinders University, Adelaide, SA, Australia
- Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, SA, Australia
| | - Monique Pointon
- School of Exercise Science, Sport & Health, Charles Sturt University, Bathurst, NSW, Australia
| | - David L. Wright
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Frank E. Marino
- School of Exercise Science, Sport & Health, Charles Sturt University, Bathurst, NSW, Australia
| |
Collapse
|
35
|
Ng S, Herbet G, Lemaitre AL, Moritz-Gasser S, Duffau H. Disrupting self-evaluative processing with electrostimulation mapping during awake brain surgery. Sci Rep 2021; 11:9386. [PMID: 33931714 PMCID: PMC8087680 DOI: 10.1038/s41598-021-88916-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Brain awake surgery with cognitive monitoring for tumor removal has become a standard of treatment for functional purpose. Yet, little attention has been given to patients' interpretation and awareness of their own responses to selected cognitive tasks during direct electrostimulation (DES). We aim to report disruptions of self-evaluative processing evoked by DES during awake surgery. We further investigate cortico-subcortical structures involved in self-assessment process and report the use of an intraoperative self-assessment tool, the self-confidence index (SCI). Seventy-two patients who had undergone awake brain tumor resections were selected. Inclusion criteria were the occurrence of a DES-induced disruption of an ongoing task followed by patient's failure to remember or criticize these impairments, or a dissociation between patient's responses to an ongoing task and patient's SCI. Disruptions of self-evaluation were frequently associated with semantic disorders and critical sites were mostly found along the left/right ventral semantic streams. Disconnectome analyses generated from a tractography-based atlas confirmed the high probability of the inferior fronto-occipital fasciculus to be transitory 'disconnected'. These findings suggest that white matters pathways belonging to the ventral semantic stream may be critically involved in human self-evaluative processing. Finally, the authors discuss the implementation of the SCI task during multimodal intraoperative monitoring.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France. .,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Av Augustin Fliche, 34295, Montpellier, France.,Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM U1191, Montpellier, France.,Department of Speech-Language Pathology, University of Montpellier, Montpellier, France
| |
Collapse
|
36
|
Born RT, Bencomo GM. Illusions, Delusions, and Your Backwards Bayesian Brain: A Biased Visual Perspective. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:272-285. [PMID: 33784667 PMCID: PMC8238803 DOI: 10.1159/000514859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
The retinal image is insufficient for determining what is "out there," because many different real-world geometries could produce any given retinal image. Thus, the visual system must infer which external cause is most likely, given both the sensory data and prior knowledge that is either innate or learned via interactions with the environment. We will describe a general framework of "hierarchical Bayesian inference" that we and others have used to explore the role of cortico-cortical feedback in the visual system, and we will further argue that this approach to "seeing" makes our visual systems prone to perceptual errors in a variety of different ways. In this deliberately provocative and biased perspective, we argue that the neuromodulator, dopamine, may be a crucial link between neural circuits performing Bayesian inference and the perceptual idiosyncrasies of people with schizophrenia.
Collapse
Affiliation(s)
- Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianluca M Bencomo
- Department of Computer Science, Whittier College, Whittier, California, USA
| |
Collapse
|
37
|
Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021; 53:3039-3062. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
How does the brain guide our actions? This is a complex issue, where the medial prefrontal cortex (mPFC) plays a crucial role. The mPFC is essential for cognitive flexibility and decision making. These functions are related to reward- and aversion-based learning, which ultimately drive behavior. Though, cortical projections and modulatory systems that may regulate those processes in the mPFC are less understood. How does the mPFC regulate approach-avoidance behavior in the case of conflicting aversive and appetitive stimuli? This is likely dependent on the bottom-up neuromodulation of the mPFC projection neurons. In this review, we integrate behavioral-, pharmacological-, and viral-based circuit manipulation data showing the involvement of mPFC dopaminergic, noradrenergic, cholinergic, and serotoninergic inputs in reward and aversion processing. Given that an incorrect balance of reward and aversion value could be a key problem in mental diseases such as substance use disorders, we discuss outstanding questions for future research on the role of mPFC modulation in reward and aversion.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Jorge Horacio Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
38
|
Yordanova J, Kolev V, Nicolardi V, Simione L, Mauro F, Garberi P, Raffone A, Malinowski P. Attentional and cognitive monitoring brain networks in long-term meditators depend on meditation states and expertise. Sci Rep 2021; 11:4909. [PMID: 33649378 PMCID: PMC7921394 DOI: 10.1038/s41598-021-84325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/15/2021] [Indexed: 01/23/2023] Open
Abstract
Meditation practice is suggested to engage training of cognitive control systems in the brain. To evaluate the functional involvement of attentional and cognitive monitoring processes during meditation, the present study analysed the electroencephalographic synchronization of fronto-parietal (FP) and medial-frontal (MF) brain networks in highly experienced meditators during different meditation states (focused attention, open monitoring and loving kindness meditation). The aim was to assess whether and how the connectivity patterns of FP and MF networks are modulated by meditation style and expertise. Compared to novice meditators, (1) highly experienced meditators exhibited a strong theta synchronization of both FP and MF networks in left parietal regions in all mediation styles, and (2) only the connectivity of lateralized beta MF networks differentiated meditation styles. The connectivity of intra-hemispheric theta FP networks depended non-linearly on meditation expertise, with opposite expertise-dependent patterns found in the left and the right hemisphere. In contrast, inter-hemispheric FP connectivity in faster frequency bands (fast alpha and beta) increased linearly as a function of expertise. The results confirm that executive control systems play a major role in maintaining states of meditation. The distinctive lateralized involvement of FP and MF networks appears to represent a major functional mechanism that supports both generic and style-specific meditation states. The observed expertise-dependent effects suggest that functional plasticity within executive control networks may underpin the emergence of unique meditation states in expert meditators.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria.
| | - Valentina Nicolardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Social and Cognitive Neurosciences Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Federica Mauro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Garberi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| |
Collapse
|
39
|
Interhemispheric transfer of working memories. Neuron 2021; 109:1055-1066.e4. [PMID: 33561399 PMCID: PMC9134350 DOI: 10.1016/j.neuron.2021.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/17/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022]
|
40
|
Xing B, Mack NR, Guo KM, Zhang YX, Ramirez B, Yang SS, Lin L, Wang DV, Li YC, Gao WJ. A Subpopulation of Prefrontal Cortical Neurons Is Required for Social Memory. Biol Psychiatry 2021; 89:521-531. [PMID: 33190846 PMCID: PMC7867585 DOI: 10.1016/j.biopsych.2020.08.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is essential for social behaviors, yet whether and how it encodes social memory remains unclear. METHODS We combined whole-cell patch recording, morphological analysis, optogenetic/chemogenetic manipulation, and the TRAP (targeted recombination in active populations) transgenic mouse tool to study the social-associated neural populations in the mPFC. RESULTS Fos-TRAPed prefrontal social-associated neurons are excitatory pyramidal neurons with relatively small soma sizes and thin-tufted apical dendrite. These cells exhibit intrinsic firing features of dopamine D1 receptor-like neurons, show persisting firing pattern after social investigation, and project dense axons to nucleus accumbens. In behaving TRAP mice, selective inhibition of prefrontal social-associated neurons does not affect social investigation but does impair subsequent social recognition, whereas optogenetic reactivation of their projections to the nucleus accumbens enables recall of a previously encountered but "forgotten" mouse. Moreover, chemogenetic activation of mPFC-to-nucleus accumbens projections ameliorates MK-801-induced social memory impairments. CONCLUSIONS Our results characterize the electrophysiological and morphological features of social-associated neurons in the mPFC and indicate that these Fos-labeled, social-activated prefrontal neurons are necessary and sufficient for social memory.
Collapse
Affiliation(s)
- Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nancy R. Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Kai-Ming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Xiang Zhang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Billy Ramirez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Dong V. Wang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Kim G, Kwon M, Kang W, Lee SH. Is Reconsolidation a General Property of Memory? Front Hum Neurosci 2021; 15:643106. [PMID: 33732126 PMCID: PMC7959766 DOI: 10.3389/fnhum.2021.643106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Memory reconsolidation holds great hope for memory modification approaches and clinical treatments of mental disorders associated with maladaptive memories. However, it remains controversial as to whether reconsolidation is a general property of all types of memory. Especially, discrepancies have been reported in research focusing on whether declarative memory undergoes reconsolidation, and whether old memories can be reorganized after retrieval. Here, we discuss how these inconsistent results can be reconciled and what information we need to uncover for the general use of reconsolidation.
Collapse
Affiliation(s)
- Gayoung Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Wonjun Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
42
|
Marin-Garcia E, Mattfeld AT, Gabrieli JDE. Neural Correlates of Long-Term Memory Enhancement Following Retrieval Practice. Front Hum Neurosci 2021; 15:584560. [PMID: 33613206 PMCID: PMC7889502 DOI: 10.3389/fnhum.2021.584560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Retrieval practice, relative to further study, leads to long-term memory enhancement known as the “testing effect.” The neurobiological correlates of the testing effect at retrieval, when the learning benefits of testing are expressed, have not been fully characterized. Participants learned Swahili-English word-pairs and were assigned randomly to either the Study-Group or the Test-Group. After a week delay, all participants completed a cued-recall test while undergoing functional magnetic resonance imaging (fMRI). The Test-Group had superior memory for the word-pairs compared to the Study-Group. While both groups exhibited largely overlapping activations for remembered word-pairs, following an interaction analysis the Test-Group exhibited differential performance-related effects in the left putamen and left inferior parietal cortex near the supramarginal gyrus. The same analysis showed the Study-Group exhibited greater activations in the dorsal MPFC/pre-SMA and bilateral frontal operculum for remembered vs. forgotten word-pairs, whereas the Test-Group showed the opposite pattern of activation in the same regions. Thus, retrieval practice during training establishes a unique striatal-supramarginal network at retrieval that promotes enhanced memory performance. In contrast, study alone yields poorer memory but greater activations in frontal regions.
Collapse
Affiliation(s)
- Eugenia Marin-Garcia
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Faculty of Psychology, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aaron T Mattfeld
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Psychology, Florida International University, Miami, FL, United States
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
43
|
Cross-Hemispheric Complementary Prefrontal Mechanisms during Task Switching under Perceptual Uncertainty. J Neurosci 2021; 41:2197-2213. [PMID: 33468569 DOI: 10.1523/jneurosci.2096-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 01/22/2023] Open
Abstract
Flexible adaptation to changing environments is a representative executive control function implicated in the frontoparietal network that requires appropriate extraction of goal-relevant information through perception of the external environment. It remains unclear, however, how the flexibility is achieved under situations where goal-relevant information is uncertain. To address this issue, the current study examined neural mechanisms for task switching in which task-relevant information involved perceptual uncertainty. Twenty-eight human participants of both sexes alternated behavioral tasks in which they judged motion direction or color of visually presented colored dot stimuli that moved randomly. Task switching was associated with frontoparietal regions in the left hemisphere, and perception of ambiguous stimuli involved contralateral homologous frontoparietal regions. On the other hand, in stimulus-modality-dependent occipitotemporal regions, task coding information was increased during task switching. Effective connectivity analysis revealed that the frontal regions signaled toward the modality-dependent occipitotemporal regions when a relevant stimulus was more ambiguous, whereas the occipitotemporal regions signaled toward the frontal regions when the stimulus was more distinctive. These results suggest that complementary prefrontal mechanisms in the left and right hemispheres help to achieve a behavioral goal when the external environment involves perceptual uncertainty.SIGNIFICANCE STATEMENT In our daily life, environmental information to achieve a goal is not always certain, but we make judgments in such situations, and change our behavior accordingly. This study examined how the flexibility of behavior is achieved in a situation where goal-relevant information involves perceptual uncertainty. fMRI revealed that the lateral prefrontal cortex (PFC) in the left hemisphere is associated with behavioral flexibility, and the perception of ambiguous stimuli involves the PFC in the right hemisphere. These bilateral PFC signaled to stimulus-modality-dependent occipitotemporal regions, depending on perceptual uncertainty and the task to be performed. These top-down signals supplement task coding in the occipitotemporal regions, and highlight interhemispheric prefrontal mechanisms involved in executive control and perceptual decision-making.
Collapse
|
44
|
Kar K, DiCarlo JJ. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition. Neuron 2020; 109:164-176.e5. [PMID: 33080226 DOI: 10.1016/j.neuron.2020.09.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Distributed neural population spiking patterns in macaque inferior temporal (IT) cortex that support core object recognition require additional time to develop for specific, "late-solved" images. This suggests the necessity of recurrent processing in these computations. Which brain circuits are responsible for computing and transmitting these putative recurrent signals to IT? To test whether the ventrolateral prefrontal cortex (vlPFC) is a critical recurrent node in this system, here, we pharmacologically inactivated parts of vlPFC and simultaneously measured IT activity while monkeys performed object discrimination tasks. vlPFC inactivation deteriorated the quality of late-phase (>150 ms from image onset) IT population code and produced commensurate behavioral deficits for late-solved images. Finally, silencing vlPFC caused the monkeys' IT activity and behavior to become more like those produced by feedforward-only ventral stream models. Together with prior work, these results implicate fast recurrent processing through vlPFC as critical to producing behaviorally sufficient object representations in IT.
Collapse
Affiliation(s)
- Kohitij Kar
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 01239, USA.
| | - James J DiCarlo
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 01239, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 01239, USA
| |
Collapse
|
45
|
Viswanathan P, Nieder A. Spatial Neuronal Integration Supports a Global Representation of Visual Numerosity in Primate Association Cortices. J Cogn Neurosci 2020; 32:1184-1197. [DOI: 10.1162/jocn_a_01548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our sense of number rests on the activity of neurons that are tuned to the number of items and show great invariance across display formats and modalities. Whether numerosity coding becomes abstracted from local spatial representations characteristic of visual input is not known. We mapped the visual receptive fields (RFs) of numerosity-selective neurons in the pFC and ventral intraparietal area in rhesus monkeys. We found numerosity selectivity in pFC and ventral intraparietal neurons irrespective of whether they exhibited an RF and independent of the location of their RFs. RFs were not predictive of the preference of numerosity-selective neurons. Furthermore, the presence and location of RFs had no impact on tuning width and quality of the numerosity-selective neurons. These findings show that neurons in frontal and parietal cortices integrate abstract visuospatial stimuli to give rise to global and spatially released number representations as required for number perception.
Collapse
|
46
|
An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity. eNeuro 2020; 7:ENEURO.0374-19.2020. [PMID: 32127347 PMCID: PMC7189483 DOI: 10.1523/eneuro.0374-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Working memory (WM) is a key component of human memory and cognition. Computational models have been used to study the underlying neural mechanisms, but neglected the important role of short-term memory (STM) and long-term memory (LTM) interactions for WM. Here, we investigate these using a novel multiarea spiking neural network model of prefrontal cortex (PFC) and two parietotemporal cortical areas based on macaque data. We propose a WM indexing theory that explains how PFC could associate, maintain, and update multimodal LTM representations. Our simulations demonstrate how simultaneous, brief multimodal memory cues could build a temporary joint memory representation as an “index” in PFC by means of fast Hebbian synaptic plasticity. This index can then reactivate spontaneously and thereby also the associated LTM representations. Cueing one LTM item rapidly pattern completes the associated uncued item via PFC. The PFC–STM network updates flexibly as new stimuli arrive, thereby gradually overwriting older representations.
Collapse
|
47
|
Boolani A, Ryan J, Vo T, Wong B, Banerjee NK, Banerjee S, Fulk G, Smith ML, Martin R. Do Changes in Mental Energy and Fatigue Impact Functional Assessments Associated with Fall Risks? An Exploratory Study Using Machine Learning. PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS 2020. [DOI: 10.1080/02703181.2020.1748788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ali Boolani
- Department of Physical Therapy, Clarkson University, Potsdam, New York, USA
| | - Jenna Ryan
- Department of Computer Science, Clarkson University, Potsdam, New York, USA
| | - Trang Vo
- Department of Physician Assistant, Clarkson University, Potsdam, New York, USA
| | - Brandon Wong
- Department of Physician Assistant, Clarkson University, Potsdam, New York, USA
| | | | - Sean Banerjee
- Department of Computer Science, Clarkson University, Potsdam, New York, USA
| | - George Fulk
- Department of Physical Therapy, Clarkson University, Potsdam, New York, USA
- Department of Physical Therapy, State University of New York (SUNY) Upstate Medical Center, Syracuse, New York, USA
| | - Matthew Lee Smith
- Center for Population Health and Aging, Texas A&M University, College Station, Texas, USA
| | - Rebecca Martin
- Department of Physical Therapy, Clarkson University, Potsdam, New York, USA
| |
Collapse
|
48
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
49
|
Wang R, Martin CD, Lei AL, Hausknecht KA, Ishiwari K, Richards JB, Haj-Dahmane S, Shen RY. Prenatal Ethanol Exposure Leads to Attention Deficits in Both Male and Female Rats. Front Neurosci 2020; 14:12. [PMID: 32038156 PMCID: PMC6992663 DOI: 10.3389/fnins.2020.00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Prenatal ethanol exposure (PE) causes multiple behavioral and cognitive deficits, collectively referred to as fetal alcohol spectrum disorders (FASD). Studies show that 49-94% of FASD children exhibit attention deficits, even when they have normal IQs or lack severe facial deformities, suggesting that attention deficits could be caused by even moderate prenatal exposure to alcohol, of which the underlying neural mechanisms are still unclear. A valid rodent model could help elucidate this phenomenon. MATERIALS AND METHODS A second-trimester equivalent binge drinking PE model was utilized. Pregnant Sprague Dawley rats were administered with 15% (w/v) ethanol (6 g/kg/day, via gastric gavage) during gestational days 8-20, and their offspring were the subjects in the present study. A modified 2-choice reaction time (2-CRT) task was used to illustrate possible attention deficits, including increased action impulsivity and lapses of attention. Enhanced impulsivity was reflected by more premature responses while increased lapses of attention were manifested as more incorrect responses and/or greater variability of reaction time, demonstrated by more skewed distributions of reaction time. Ten-week-old male and female rats were tested for three sessions following 16-19 days of training. RESULTS Our PE paradigm caused no major teratogenic effects. PE led to increased impulsivity exhibited as greater premature responses and augmented lapses of attention shown by greater skewnesses of reaction time distributions, relative to controls. The deficits were observed in both PE male and female rats. Interestingly, in males, the attention deficits were detected only when the 2-CRT task was relatively difficult whereas in females they were detected even when the task was at a less demanding level. CONCLUSION We show that the binge drinking pattern of PE led to attention deficits in both sexes of rats even though no major teratogenic effects were observed. Therefore, this rodent model can be used to study neural mechanisms underlying attention deficits caused by PE and to explore effective intervention approaches for FASD.
Collapse
Affiliation(s)
- Ruixiang Wang
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
- Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Connor D. Martin
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Anna L. Lei
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Kathryn A. Hausknecht
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Keita Ishiwari
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jerry B. Richards
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Roh-Yu Shen
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
50
|
Hakamata Y, Komi S, Sato E, Izawa S, Mizukami S, Moriguchi Y, Motomura Y, Matsui M, Kim Y, Hanakawa T, Inoue Y, Tagaya H. Cortisol-related hippocampal-extrastriate functional connectivity explains the adverse effect of cortisol on visuospatial retrieval. Psychoneuroendocrinology 2019; 109:104310. [PMID: 31404897 DOI: 10.1016/j.psyneuen.2019.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/28/2022]
Abstract
Cortisol is known to affect visuospatial memory through its major binding site in the brain, the hippocampus. The synchronization of neural activity between the hippocampus, prefrontal cortex (PFC), and visual cortex is presumed to be essential for the formation of visuospatial memory because of their visuospatial learning-dependent neuroplasticity. However, it remains unclear how hippocampal connectivity with the PFC and visual cortex is involved in the relationship between cortisol and visuospatial memory in humans. We thus investigated whether functional connectivity (FC) of the hippocampus, specifically its rostral and caudal subdivisions, mediates the relationship between visuospatial memory and endogenous cortisol. One-hundred sixty-six healthy young adults underwent standard neuropsychological tests to assess visuospatial construction (a complex figure copying test) and retrieval (the corresponding recall test) and collected their saliva at 6-time points across 2 consecutive days for measurement of daily cortisol concentrations (dCOR). Ninety of them received resting-state fMRI scans. Greater dCOR was significantly associated with better figure copying performance, but contrastingly with poorer figure recall. In proportion to dCOR, the rostral hippocampus (rHC) showed significantly increased FC with the PFC (including its dorsolateral and medial parts) and the inferior lateral occipital cortex (iLOC), while the caudal hippocampus had increased FC with the anterior middle temporal cortex. Of the cortisol-related hippocampal connectivity, the rHC-iLOC FC was specifically correlated with figure recall and showed complete mediation for the negative relationship of dCOR with figure recall. These results suggest that cortisol might have enhancing effects on visuospatial encoding as well as impairing effects on visuospatial retrieval, possibly due to its occupancy patterns of corticosteroid receptors. Cortisol's adverse effects on visuospatial retrieval might be explained through cortisol-related rostral hippocampal connectivity with the iLOC, which is a part of the extrastriate cortex implicated in visuospatial perception. Thorough dissection of hippocampal-prefrontal-extrastriate connectivity might facilitate the understanding of neural mechanisms underlying cortisol's contrasting effects on encoding (or consolidation) and retrieval of visuospatial information.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan; Department of Health Science, Kitasato University School of Allied Health Sciences, Japan.
| | - Shotaro Komi
- Department of Radiology, Kitasato University Hospital, Japan
| | - Eisuke Sato
- Department of Medical Radiological Technology, Kyorin University School of Health Sciences, Japan
| | - Shuhei Izawa
- Occupational Stress Research Group, National Institute of Occupational Safety and Health, Japan
| | - Shinya Mizukami
- Department of Clinical Engineering, Kitasato University School of Allied Health Sciences, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan
| | - Yuki Motomura
- Department of Human Science, Kyushu University, Japan
| | - Mie Matsui
- Institute of Liberal Arts and Science, Kanazawa University, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Japan
| | - Hirokuni Tagaya
- Department of Health Science, Kitasato University School of Allied Health Sciences, Japan
| |
Collapse
|