1
|
Khan A, Liu Y, Gad M, Kenny TC, Birsoy K. Solute carriers: The gatekeepers of metabolism. Cell 2025; 188:869-884. [PMID: 39983672 PMCID: PMC11875512 DOI: 10.1016/j.cell.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Solute carrier (SLC) proteins play critical roles in maintaining cellular and organismal homeostasis by transporting small molecules and ions. Despite a growing body of research over the past decade, physiological substrates and functions of many SLCs remain elusive. This perspective outlines key challenges in studying SLC biology and proposes an evidence-based framework for defining SLC substrates. To accelerate the deorphanization process, we explore systematic technologies, including human genetics, biochemistry, and computational and structural approaches. Finally, we suggest directions to better understand SLC functions beyond substrate identification in physiology and disease.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Giroud-Gerbetant J, Sotillo F, Hernández G, Ruano I, Sebastián D, Fort J, Sánchez M, Weiss G, Prats N, Zorzano A, Palacín M, Bodoy S. Defective Slc7a7 transport reduces erythropoietin compromising erythropoiesis. Mol Med 2025; 31:29. [PMID: 39881295 PMCID: PMC11776305 DOI: 10.1186/s10020-025-01100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Lysinuric protein intolerance is a rare autosomal disorder caused by mutations in the Slc7a7 gene that lead to impaired transport of neutral and basic amino acids. The gold standard treatment for lysinuric protein intolerance involves a low-protein diet and citrulline supplementation. While this approach partially improves cationic amino acid plasma levels and alleviates some symptoms, long-term treatment is suggested to be detrimental and may lead to life-threatening complications characterized by a wide range of hematological and immunological abnormalities. The specific cause of these hematopoietic defects-whether intrinsic to hematopoietic cells or driven by external factors-remains unclear. Given the limitations of current citrulline-based treatments and the unknown role of SLC7A7 in red blood cell production, there is an urgent need to investigate the pathways affected by SLC7A7 deficiency. METHODS We employed total inducible and cell type-specific Slc7a7 knockout mouse models to determine whether the hematological abnormalities observed in LPI are due to the loss of Slc7a7 function in hematopoietic cells. We analyzed erythropoiesis in these mice and performed bone marrow transplantation experiments to assess the role of Slc7a7 in erythroblasts and myeloid cells. The statistical significance of differences between groups was evaluated via standard statistical tests, including Student's t test and ANOVA. RESULTS Whole-body Slc7a7 knockout mice presented impaired erythropoiesis. However, this defect was not replicated in mice with Slc7a7 deficiency restricted to erythroblasts or myeloid cells, suggesting that the observed hematopoietic abnormalities are not due to intrinsic Slc7a7 loss in these cell types. Additionally, bone marrow transplants from control mice did not rescue the hematopoietic defects in Slc7a7-deficient mice, nor did the transplantation of Slc7a7-deficient cells induce defects in control recipients. Further investigation indicated that defective erythropoiesis is linked to impaired erythropoietin production in the kidney and subsequent iron overload. CONCLUSIONS The hematopoietic defects in the Lysinuric protein intolerance mouse model are not caused by intrinsic Slc7a7 loss in hematopoietic cells but rather by impaired erythropoietin production in the kidney. This finding opens potential avenues for therapeutic strategies targeting erythropoietin production to address hematological abnormalities in humans with lysinuric protein intolerance.
Collapse
Affiliation(s)
- Judith Giroud-Gerbetant
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, U-731, Spain
| | - Fernando Sotillo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gonzalo Hernández
- Department of Basic Sciences, Iron Metabolism: Regulation and Diseases Group. Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
| | - Irene Ruano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - David Sebastián
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Joana Fort
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, U-731, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mayka Sánchez
- Department of Basic Sciences, Iron Metabolism: Regulation and Diseases Group. Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
| | - Günter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria
| | - Neus Prats
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, U-731, Spain.
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Susanna Bodoy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, U-731, Spain.
- Biosciences Department, Faculty of Sciences, Technology and Engineering, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain.
| |
Collapse
|
3
|
Chakraborty S, Kaur R, Patra B, Meena JP, Kabra SK, Kabra M, Gupta N. The Great Masquerade: Varying Manifestations of Lysinuric Protein Intolerance. Indian J Pediatr 2025; 92:70-72. [PMID: 38703326 DOI: 10.1007/s12098-024-05124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 05/06/2024]
Abstract
Lysinuric protein intolerance (LPI) is an inborn metabolic error caused by cationic amino acid transport defects. The disease has a significant degree of phenotypic variation, with no confirmed genotype-phenotype correlation. Because it presents with symptoms similar to far more common diseases, the diagnosis is often missed, resulting in increased morbidity and mortality. This case series describes three examples of LPI with pulmonary, neurological, and immunological manifestations, emphasising the importance of keeping this disorder on the differential list. Appropriate metabolic and genetic testing is important in providing the correct diagnosis and timely care in such cases.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ravneet Kaur
- Pediatric Intensive Care, Department of Pediatrics, ABVIMS & Dr. RML Hospital, New Delhi, 110001, India
| | - Bijoy Patra
- Pediatric Intensive Care, Department of Pediatrics, ABVIMS & Dr. RML Hospital, New Delhi, 110001, India
| | - J P Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S K Kabra
- Division of Pulmonology and Pediatric Critical Care, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
4
|
Fort J, Nicolàs-Aragó A, Maggi L, Martinez-Molledo M, Kapiki D, González-Novoa P, Gómez-Gejo P, Zijlstra N, Bodoy S, Pardon E, Steyaert J, Llorca O, Orozco M, Cordes T, Palacín M. The conserved lysine residue in transmembrane helix 5 is pivotal for the cytoplasmic gating of the L-amino acid transporters. PNAS NEXUS 2025; 4:pgae584. [PMID: 39822574 PMCID: PMC11736713 DOI: 10.1093/pnasnexus/pgae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
L-Amino acid transporters (LATs) play a key role in a wide range of physiological processes. Defects in LATs can lead to neurological disorders and aminoacidurias, while the overexpression of these transporters is related to cancer. BasC is a bacterial LAT transporter with an APC fold. In this study, to monitor the cytoplasmic motion of BasC, we developed a single-molecule Förster resonance energy transfer assay that can characterize the conformational states of the intracellular gate in solution at room temperature. Based on combined biochemical and biophysical data and molecular dynamics simulations, we propose a model in which the conserved lysine residue in TM5 supports TM1a to explore both open and closed states within the cytoplasmic gate under apo conditions. This equilibrium can be altered by substrates, mutation of conserved lysine 154 in TM5, or a transport-blocking nanobody interacting with TM1a. Overall, these findings provide insights into the transport mechanism of BasC and highlight the significance of the lysine residue in TM5 in the cytoplasmic gating of LATs.
Collapse
Affiliation(s)
- Joana Fort
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adrià Nicolàs-Aragó
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luca Maggi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Maria Martinez-Molledo
- Structural Biology Programme, Spanish National Cancer Research Centre, 28029 Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Despoina Kapiki
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Paula González-Novoa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Patricia Gómez-Gejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Niels Zijlstra
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Susanna Bodoy
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biosciences, Universitat de Vic—Universitat Central de Catalunya, de la Laura 13, 08500 Vic, Spain
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinaan 2, 1050 Brussel, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinaan 2, 1050 Brussel, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinaan 2, 1050 Brussel, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinaan 2, 1050 Brussel, Belgium
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre, 28029 Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
- Biophysical Chemistry, Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona (UB), Diagonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Ma Y, Guo T, Ding J, Dong Z, Ren Y, Lu C, Zhao Y, Guo X, Cao G, Li B, Gao P. RNA-seq analysis of small intestine transcriptional changes induced by starvation stress in piglets. Anim Biotechnol 2024; 35:2295931. [PMID: 38147885 DOI: 10.1080/10495398.2023.2295931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Piglets may experience a variety of stress injuries, but the molecular regulatory mechanisms underlying these injuries are not well understood. In this study, we analysed the ileum of Large White (LW) and Mashen (MS) piglets at different times of starvation using chemical staining and transcriptome analysis. The intestinal barrier of piglets was damaged after starvation stress, but the intestinal antistress ability of MS piglets was stronger than LW piglets. A total of 8021 differentially expressed genes (DEGs) were identified in two breeds. Interestingly, the immune capacity (CHUK, TLR3) of MS piglets increased significantly after short-term starvation stress, while energy metabolism (NAGS, PLA2G12B, AGCG8) was predominant in LW piglets. After long-term starvation stress, the level of energy metabolism (PLIN5, PLA2G12B) was significantly increased in MS piglets. The expression of immune (HLA-DQB1, IGHG4, COL3A1, CD28, LAT) and disease (HSPA1B, MINPPI, ADH1C, GAL3ST1) related genes were significantly increased in two breeds of piglets. These results suggest that short-term stress mainly enhances immunity and energy metabolism in piglets, while long-term starvation produces greater stress on piglets, making it difficult for them to compensate for the damage to their bodies through self-regulation. This information can help improve the stress resistance of piglets through molecular breeding.
Collapse
Affiliation(s)
- Yijia Ma
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Tong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianqin Ding
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhiling Dong
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yifei Ren
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
6
|
Banjarnahor S, Scherpinski LA, Keller M, König J, Maas R. Differential uptake of arginine derivatives by the human heteromeric amino acid transporter b 0,+AT-rBAT (SLC7A9-SLC3A1). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03510-z. [PMID: 39480524 DOI: 10.1007/s00210-024-03510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
L-arginine and its (patho-)physiologically active derivatives, L-homoarginine and asymmetric dimethylarginine (ADMA), show significant differences in their renal clearance. The underlying molecular mechanisms remain to be elucidated, but selective tubular transport protein-mediated mechanisms likely play a role. In the present study, we investigate the human heteromeric transporter b0,+AT-rBAT (encoded by the SLC7A9 and SLC3A1 genes) as a potential candidate because it is localized in the luminal membrane of human proximal tubule cells and capable of mediating the cellular uptake of amino acids, including L-arginine. Double-transfected Madin-Darby canine kidney (MDCK) cells stably expressing human b0,+AT-rBAT exhibited significant uptake of L-arginine and L-homoarginine, with apparent Km values of 512.6 and 197.0 μM, respectively. On the contrary, ADMA uptake was not saturated up to 4000 μM, with a transport rate > 5 nmol × mg protein-1 × min-1. With an IC50 value of 115.8 μM, L-arginine inhibited L-homoarginine uptake. Conversely, L-arginine only exhibited a partial inhibitory effect on ADMA uptake. Taken together, our data indicate that b0,+AT-rBAT may contribute to the differential renal handling of L-arginine, L-homoarginine, and ADMA.
Collapse
Affiliation(s)
- Sofna Banjarnahor
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- Research Centre for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), 16911, Cibinong, Jawa Barat, Indonesia
| | - Lorenz A Scherpinski
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Universität Regensburg, 93040, Regensburg, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
- FAU NeW Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Renke Maas
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
- FAU NeW Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
7
|
Vojcek E, Krikovszky D, Lódi C, Kovács L, Schnur J, Szabó AJ. Whole lung lavage and GM-CSF use for pulmonary alveolar proteinosis in an infant with lysinuric protein intolerance: a case report. Ital J Pediatr 2024; 50:111. [PMID: 38831374 PMCID: PMC11149197 DOI: 10.1186/s13052-024-01677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Lysinuric protein intolerance (LPI) is a multi-organ metabolic disorder characterized by the imbalance in absorption and excretion of cationic amino acids like lysine, ornithine and arginine. Infants with LPI typically present with recurrent vomiting, poor growth, interstitial lung disease or renal impairment. The early onset of pulmonary alveolar proteinosis (PAP) has been reported to be associated with a severe form of LPI. Treatment of PAP most commonly consists of whole-lung lavage (WLL) and in autoimmune PAP, granulocyte-macrophage colony stimulating factor (GM-CSF) administration. Nevertheless, GM-CSF therapy in LPI-associated PAP has not been scientifically justified. CASE PRESENTATION We describe the case of an 8-month-old infant presenting with respiratory failure due to LPI associated with PAP, who was twice treated with WLL; firstly, while on veno-venous ECMO assistance and then by the use of a selective bronchial blocker. After the two treatments with WLL, she was weaned from daytime respiratory support while on initially subcutaneous, then on inhaled GM-CSF therapy. CONCLUSIONS This case supports the notion that GM-CSF therapy might be of benefit in patients with LPI-associated PAP. Further studies are needed to clarify the exact mechanism of GM-CSF in patients with LPI-associated PAP.
Collapse
Affiliation(s)
- Eszter Vojcek
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay J. u. 53-54, Budapest, 1083, Hungary.
| | - Dóra Krikovszky
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay J. u. 53-54, Budapest, 1083, Hungary
| | - Csaba Lódi
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay J. u. 53-54, Budapest, 1083, Hungary
| | - Lajos Kovács
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay J. u. 53-54, Budapest, 1083, Hungary
| | | | - Attila J Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay J. u. 53-54, Budapest, 1083, Hungary
| |
Collapse
|
8
|
Pang Y, Huo F, Liu X, Fan Y, Zhang Z, Wu J, Wang Q. Lysinuric protein intolerance with novel mutations in solute carrier family 7A member 7 in a Chinese family. Pediatr Investig 2024; 8:149-153. [PMID: 38910857 PMCID: PMC11193372 DOI: 10.1002/ped4.12427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/02/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Lysinuric protein intolerance (LPI) is a rare genetic disorder caused by mutations in the solute carrier family 7A member 7 (SLC7A7) gene. Case presentation We presented two siblings with LPI, carrying novel mutations of c.776delT (p.L259Rfs*18) and c.155G>T (p.G52V) in SLC7A7. The younger sibling, preferring protein-rich foods, showed severe symptoms, including alveolar proteinosis, macrophage activation syndrome, severe diarrhea, and disturbance of consciousness with involuntary movements. In contrast, the elder sibling only had mild symptoms, likely due to aversion to protein-rich food since toddler age. Conclusion LPI is a congenital genetic metabolic disease with multi-system involvement. Initiating appropriate protein-restricted diet therapy as soon as possible could help prevent the progression of LPI.
Collapse
Affiliation(s)
- Yilin Pang
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Feng Huo
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Xiao Liu
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Yimu Fan
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Zhezhe Zhang
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Jie Wu
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| | - Quan Wang
- Emergency DepartmentEmergency Intensive Care Unit, Beijing Children's HospitalCapital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
9
|
Wang Y, Li H, Huang Z, Yang S, Lu C, Zhang W, Zhao S, Yang C, Chen D. A novel variant in a Chinese boy with lysinuric protein intolerance: A case report and literature review. Heliyon 2024; 10:e27044. [PMID: 38444501 PMCID: PMC10912482 DOI: 10.1016/j.heliyon.2024.e27044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/13/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
We report a case of a 4-year-old boy with lysinuric protein intolerance in China. The patient presented with interstitial lung disease with obvious clubbing of the fingers and toes. During the course of diagnosis and treatment, we found he was averse to a high-protein diet, intolerant to activity, and had a history of diarrhea and fractures. Physical examination revealed hepatosplenomegaly and clubbing of the fingers and toes. Next-generation sequencing revealed compound heterozygous mutations (c.1387delG, c.958T > C) in SLC7A7, which was confirmed as a disease-causing gene for lysinuric protein intolerance. After a literature review, we found that c.958T > C had not been previously reported, and summarized the clinical and genetic characteristics of patients from different continents. His symptoms improved significantly after 3 months of being on a low-protein diet, supplementation with lysine, citrulline, carnitine, and trace elements, and oral corticosteroid treatment for 2 months. The patient is still under follow-up.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongwei Li
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhang Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sen Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengyu Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Cui Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Tan Y, Chrysopoulou M, Rinschen MM. Integrative physiology of lysine metabolites. Physiol Genomics 2023; 55:579-586. [PMID: 37781739 DOI: 10.1152/physiolgenomics.00061.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Lysine is an essential amino acid that serves as a building block in protein synthesis. Beside this, the metabolic activity of lysine has only recently been unraveled. Lysine metabolism is tissue specific and is linked to several renal, cardiovascular, and endocrinological diseases through human metabolomics datasets. As a free molecule, lysine takes part in the antioxidant response and engages in protein modifications, and its chemistry shapes both proteome and metabolome. In the proteome, it is an acceptor for a plethora of posttranslational modifications. In the metabolome, it can be modified, conjugated, and degraded. Here, we provide an update on integrative physiology of mammalian lysine metabolites such as α-aminoadipic acid, saccharopine, pipecolic acid, and lysine conjugates such as acetyl-lysine, and sugar-lysine conjugates such as advanced glycation end products. We also comment on their emerging associative and mechanistic links to renal disease, hypertension, diabetes, and cancer.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Hanafusa H, Nakamura K, Kamijo Y, Kitahara M, Ehara T, Yoshinaga T, Aoki K, Katoh N, Yamaguchi T, Kosho T, Sekijima Y. Lysinuric protein intolerance exhibiting renal tubular acidosis/Fanconi syndrome in a Japanese woman. JIMD Rep 2023; 64:410-416. [PMID: 37927490 PMCID: PMC10623098 DOI: 10.1002/jmd2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 11/07/2023] Open
Abstract
Lysinuric protein intolerance (LPI), caused by pathogenic variants of SLC7A7, is characterized by protein aversion, failure to thrive, hyperammonemia, and hepatomegaly. Recent studies have reported that LPI can cause multiple organ dysfunctions, including kidney disease, autoimmune deficiency, pulmonary alveolar proteinosis, and osteoporosis. We report the case of a 47-year-old Japanese woman who was initially diagnosed with renal tubular acidosis (RTA), Fanconi syndrome, and rickets. At the age of 3 years, she demonstrated a failure to thrive. Urinary amino acid analysis revealed elevated lysine and arginine levels, which were masked by pan-amino aciduria. She was subsequently diagnosed with rickets at 5 years of age and RTA/Fanconi syndrome at 15 years of age. She was continuously treated with supplementation of vitamin D3, phosphate, and bicarbonate. A renal biopsy at 18 years of age demonstrated diffuse proximal and distal tubular damage with endocytosis-lysosome pathway abnormalities. Distinctive symptoms of LPI, such as protein aversion and postprandial hyperammonemia were not observed throughout the patient's clinical course. The patient underwent a panel-based comprehensive genetic testing and was diagnosed with LPI. As the complications of LPI involve many organs, patients lacking distinctive symptoms may develop various diseases, including RTA/Fanconi syndrome. Our case indicates that proximal and distal tubular damages are notable findings in patients with LPI. The possibility of LPI should be carefully considered in the management of RTA/Fanconi syndrome and/or incomprehensible pathological tubular damage, even in the absence of distinctive symptoms; furthermore, a comprehensive genetic analysis is useful for diagnosing LPI.
Collapse
Affiliation(s)
- Hiroaki Hanafusa
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan
- Center for Medical GeneticsShinshu University HospitalMatsumotoJapan
| | - Katsuya Nakamura
- Center for Medical GeneticsShinshu University HospitalMatsumotoJapan
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| | - Yuji Kamijo
- Department of NephrologyShinshu University School of MedicineMatsumotoJapan
| | - Masashi Kitahara
- Department of PediatricsShinshu University School of MedicineMatsumotoJapan
| | - Takashi Ehara
- Department of PathologyShinshu University School of MedicineMatsumotoJapan
| | - Tsuneaki Yoshinaga
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| | - Kaoru Aoki
- Physical Therapy DivisionShinshu University School of Health SciencesMatsumotoJapan
| | - Nagaaki Katoh
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| | - Tomomi Yamaguchi
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan
- Center for Medical GeneticsShinshu University HospitalMatsumotoJapan
| | - Tomoki Kosho
- Department of Medical GeneticsShinshu University School of MedicineMatsumotoJapan
- Center for Medical GeneticsShinshu University HospitalMatsumotoJapan
- Research Center for Supports to Advanced ScienceShinshu UniversityMatsumotoJapan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology & Rheumatology)Shinshu University School of MedicineMatsumotoJapan
| |
Collapse
|
13
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Abstract
Amino acids derived from protein digestion are important nutrients for the growth and maintenance of organisms. Approximately half of the 20 proteinogenic amino acids can be synthesized by mammalian organisms, while the other half are essential and must be acquired from the nutrition. Absorption of amino acids is mediated by a set of amino acid transporters together with transport of di- and tripeptides. They provide amino acids for systemic needs and for enterocyte metabolism. Absorption is largely complete at the end of the small intestine. The large intestine mediates the uptake of amino acids derived from bacterial metabolism and endogenous sources. Lack of amino acid transporters and peptide transporter delays the absorption of amino acids and changes sensing and usage of amino acids by the intestine. This can affect metabolic health through amino acid restriction, sensing of amino acids, and production of antimicrobial peptides.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australia;
| |
Collapse
|
15
|
Stroup BM, Li X, Ho S, Zhouyao H, Chen Y, Ani S, Dawson B, Jin Z, Marom R, Jiang MM, Lorenzo I, Rosen D, Lanza D, Aceves N, Koh S, Seavitt JR, Heaney JD, Lee B, Burrage LC. Delayed skeletal development and IGF-1 deficiency in a mouse model of lysinuric protein intolerance. Dis Model Mech 2023; 16:dmm050118. [PMID: 37486182 PMCID: PMC10445726 DOI: 10.1242/dmm.050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
SLC7A7 deficiency, or lysinuric protein intolerance (LPI), causes loss of function of the y+LAT1 transporter critical for efflux of arginine, lysine and ornithine in certain cells. LPI is characterized by urea cycle dysfunction, renal disease, immune dysregulation, growth failure, delayed bone age and osteoporosis. We previously reported that Slc7a7 knockout mice (C57BL/6×129/SvEv F2) recapitulate LPI phenotypes, including growth failure. Our main objective in this study was to characterize the skeletal phenotype in these mice. Compared to wild-type littermates, juvenile Slc7a7 knockout mice demonstrated 70% lower body weights, 87% lower plasma IGF-1 concentrations and delayed skeletal development. Because poor survival prevents evaluation of mature knockout mice, we generated a conditional Slc7a7 deletion in mature osteoblasts or mesenchymal cells of the osteo-chondroprogenitor lineage, but no differences in bone architecture were observed. Overall, global Slc7a7 deficiency caused growth failure with low plasma IGF-1 concentrations and delayed skeletal development, but Slc7a7 deficiency in the osteoblastic lineage was not a major contributor to these phenotypes. Future studies utilizing additional tissue-specific Slc7a7 knockout models may help dissect cell-autonomous and non-cell-autonomous mechanisms underlying phenotypes in LPI.
Collapse
Affiliation(s)
- Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Ho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haonan Zhouyao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Rosen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathalie Aceves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Koh
- Rice University, Houston, TX 77005, USA
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
16
|
Kärki M, Tanner L, Lahtinen S, Soukka T, Niinikoski H. Plasma calprotectin is extremely high in patients with lysinuric protein intolerance. JIMD Rep 2023; 64:293-299. [PMID: 37404678 PMCID: PMC10315390 DOI: 10.1002/jmd2.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal recessive disorder affecting the transport of cationic amino acids. Elevated plasma zinc concentrations have been described in patients with LPI. Calprotectin is a calcium- and zinc-binding protein, produced by polymorphonuclear leukocytes and monocytes. Both zinc and calprotectin have an important role in immune system. In this study, we describe plasma zinc and plasma calprotectin concentrations in Finnish LPI patients. Plasma calprotectin concentration was measured from 10 LPI patients using an enzyme-linked immunosorbent assay (ELISA) and it was remarkably high in all LPI patients (median: 622 338 μg/L) compared to that in healthy controls (608 μg/L). Plasma zinc concentration was measured by photometry and it was normal or only mildly elevated (median: 14.9 μmol/L). All the patients had decreased glomerular infiltration rate (median: 50 mL/min/1.73 m2). In conclusion, we observed extremely high plasma calprotectin concentration in patients with LPI. Mechanism of this phenomenon is unknown.
Collapse
Affiliation(s)
- Mari Kärki
- Department of PediatricsUniversity of TurkuTurkuFinland
| | - Laura Tanner
- Department of Clinical GeneticsHelsinki University HospitalHelsinkiFinland
- Department of Medical and Clinical GeneticsUniversity of HelsinkiHelsinkiFinland
| | - Satu Lahtinen
- Department of Life Technologies/BiotechnologyUniversity of TurkuTurkuFinland
| | - Tero Soukka
- Department of Life Technologies/BiotechnologyUniversity of TurkuTurkuFinland
| | | |
Collapse
|
17
|
IJzermans T, van der Meijden W, Hoeks M, Huigen M, Rennings A, Nijenhuis T. Improving a Rare Metabolic Disorder Through Kidney Transplantation: A Case Report of a Patient With Lysinuric Protein Intolerance. Am J Kidney Dis 2023; 81:493-496. [PMID: 36223829 DOI: 10.1053/j.ajkd.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023]
Abstract
Lysinuric protein intolerance (LPI) is a rare metabolic disorder with reduced renal and intestinal reabsorption of ornithine, lysine, and arginine. It is due to variants in SLC7A7, the gene encoding y+L amino acid transporter 1 (y+LAT1), which lead to urea cycle defects with protein intolerance. Chronic kidney disease in lysinuric protein intolerance is common and can progress to kidney failure and initiation of kidney replacement therapy. Kidney transplantation could in theory improve urine levels and, consequently, plasma levels of these amino acids and therefore improve clinical symptoms, as well as protein intolerance, in patients with lysinuric protein intolerance. However, data on kidney transplantation in patients with lysinuric protein intolerance are limited, and up until now no data on clinical and biochemical improvement after kidney transplantation have been reported. In this case report we describe a rare case of kidney transplantation in a lysinuric protein intolerance patient with substantial improvement in protein tolerance; in plasma and urine levels of ornithine, lysine, and arginine; and in lysinuric protein intolerance symptoms.
Collapse
Affiliation(s)
- Ties IJzermans
- Departments of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | - Marlijn Hoeks
- Haematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marleen Huigen
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Rennings
- Haematology and Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Departments of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Uusimaa J, Kettunen J, Varilo T, Järvelä I, Kallijärvi J, Kääriäinen H, Laine M, Lapatto R, Myllynen P, Niinikoski H, Rahikkala E, Suomalainen A, Tikkanen R, Tyynismaa H, Vieira P, Zarybnicky T, Sipilä P, Kuure S, Hinttala R. The Finnish genetic heritage in 2022 – from diagnosis to translational research. Dis Model Mech 2022; 15:278566. [PMID: 36285626 PMCID: PMC9637267 DOI: 10.1242/dmm.049490] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype–phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Johannes Kettunen
- Computational Medicine, Center for Life Course Health Research, University of Oulu 3 , 90014 Oulu , Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| | - Teppo Varilo
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki 6 , 00251 Helsinki , Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center 7 , 00014 Helsinki , Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
| | - Helena Kääriäinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare 4 , 00271 Helsinki
- Finland 4 , 00271 Helsinki
| | - Minna Laine
- Department of Pediatric Neurology, Helsinki University Hospital and University of Helsinki 9 , 00029 Helsinki , Finland
| | - Risto Lapatto
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital 10 , 00029 Helsinki , Finland
| | - Päivi Myllynen
- Department of Clinical Chemistry, Cancer and Translational Medicine Research Unit, Medical Research Center, University of Oulu and Northern Finland Laboratory Centre NordLab, Oulu University Hospital 11 , 90029 Oulu , Finland
| | - Harri Niinikoski
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku 13 , 20014 Turku , Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital 14 , 20014 Turku , Finland
- Department of Pediatrics, Turku University Hospital 15 , 20014 Turku , Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Department of Clinical Genetics, Oulu University Hospital 16 , 90029 Oulu , Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- HUS Diagnostics, Helsinki University Hospital 17 , 00014 Helsinki , Finland
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen 18 , D-35392 Giessen , Germany
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki 19 , 00014 Helsinki , Finland
| | - Päivi Vieira
- Children and Adolescents, Oulu University Hospital 1 , 90029 Oulu , Finland
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
| | - Tomas Zarybnicky
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki 20 , 00014 Helsinki , Finland
| | - Petra Sipilä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku 12 , 20014 Turku , Finland
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku 21 , 20014 Turku , Finland
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki 8 , 00014 Helsinki , Finland
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki 22 , 00014 Helsinki , Finland
| | - Reetta Hinttala
- Research Unit of Clinical Medicine and Medical Research Center, Oulu University Hospital and University of Oulu 2 , 90014 Oulu , Finland
- Biocenter Oulu, University of Oulu 5 , 90014 Oulu , Finland
| |
Collapse
|
19
|
Absorption of methionine sources in animals-is there more to know? ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:159-170. [PMID: 36712403 PMCID: PMC9860353 DOI: 10.1016/j.aninu.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
This literature review evaluates the absorption of methionine (Met) sources such as 2-hydroxy-4-methylthiobutyric acid (HMTBa), its calcium salts (HMTBa-Ca), and DL-methionine (DL-Met) by focusing on the state of knowledge regarding the absorption mechanism, experimental methodology, and factors affecting their absorption. The 2 Met sources differ in mechanism and site of absorption due to differences in their chemical characteristics and enzymatic conversion. This review addresses diffusion- and transport-mediated absorption systems for amino acids and carboxylic compounds, best elucidated by in vitro, ex vivo, and in vivo experimental models. Opportunities and limitations in the use of radioisotopes to depict absorption sites as well as host and microbial metabolism are described. Physiological and environmental conditions that lead to changes in gut absorptive capacity and the impact of Met source absorption are also evaluated. This review concludes that any comparison between HMTBa and DL-Met should consider their different behaviors during the absorption phase. Hence, the chemical characteristics of these 2 molecules entail different absorption sites and mechanisms, from passive absorption in the case of HMTBa and HMTBa-Ca to active transporters for DL-Met, HMTBa, and HMTBa-Ca. In addition, the different conversion modes of these 2 molecules further differentiate their absorption modes. Considering these important differences, it is easier to understand the apparent divergence between the conclusions of existing publications. When comparing these 2 molecules, it is recommended to properly adapt to the conditions under which the absorption of Met sources is evaluated.
Collapse
|
20
|
Jersin RÅ, Jonassen LR, Dankel SN. The neutral amino acid transporter SLC7A10 in adipose tissue, obesity and insulin resistance. Front Cell Dev Biol 2022; 10:974338. [PMID: 36172277 PMCID: PMC9512047 DOI: 10.3389/fcell.2022.974338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity, insulin resistance and type 2 diabetes represent major global health challenges, and a better mechanistic understanding of the altered metabolism in these conditions may give improved treatment strategies. SLC7A10, a member of the SLC7 subfamily of solute carriers, also named ASC-1 (alanine, serine, cysteine transporter-1), has recently been implicated as an important modulator of core processes in energy- and lipid metabolism, through its particularly high expression in adipocytes. In human cohorts, adipose SLC7A10 mRNA shows strong inverse correlations with insulin resistance, adipocyte size and components of the metabolic syndrome, strong heritability, and an association with type 2 diabetes risk alleles. SLC7A10 has been proposed as a marker of white as opposed to thermogenic beige and brown adipocytes, supported by increased formation of thermogenic beige adipocytes upon loss of Slc7a10 in mouse white preadipocytes. Overexpression of SLC7A10 in mature white adipocytes was found to lower the generation of reactive oxygen species (ROS) and stimulate mitochondrial respiratory capacity, while SLC7A10 inhibition had the opposite effect, indicating that SLC7A10 supports a beneficial increase in mitochondrial activity in white adipocytes. Consistent with these beneficial effects, inhibition of SLC7A10 was in mouse and human white adipocyte cultures found to increase lipid accumulation, likely explained by lowered serine uptake and glutathione production. Additionally, zebrafish with partial global Slc7a10b loss-of-function were found to have greater diet-induced body weight and larger visceral adipocytes compared to controls. However, challenging that SLC7A10 exerts metabolic benefits only in white adipocytes, suppression of SLC7A10 has been reported to decrease mitochondrial respiration and expression of thermogenic genes also in some beige and brown adipocyte cultures. Taken together, the data point to an important but complex role of SLC7A10 in metabolic regulation across different adipose tissue depots and adipocyte subtypes. Further research into SLC7A10 functions in specific adipocyte subtypes may lead to new precision therapeutics for mitigating the risk of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Regine Åsen Jersin
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Roxana Jonassen
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon Nitter Dankel
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- *Correspondence: Simon Nitter Dankel,
| |
Collapse
|
21
|
del Alamo D, DeSousa L, Nair RM, Rahman S, Meiler J, Mchaourab HS. Integrated AlphaFold2 and DEER investigation of the conformational dynamics of a pH-dependent APC antiporter. Proc Natl Acad Sci U S A 2022; 119:e2206129119. [PMID: 35969794 PMCID: PMC9407458 DOI: 10.1073/pnas.2206129119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
The Amino Acid-Polyamine-Organocation (APC) transporter GadC contributes to the survival of pathogenic bacteria under extreme acid stress by exchanging extracellular glutamate for intracellular γ-aminobutyric acid (GABA). Its structure, determined in an inward-facing conformation at alkaline pH, consists of the canonical LeuT-fold with a conserved five-helix inverted repeat, thereby resembling functionally divergent transporters such as the serotonin transporter SERT and the glucose-sodium symporter SGLT1. However, despite this structural similarity, it is unclear if the conformational dynamics of antiporters such as GadC follow the blueprint of these or other LeuT-fold transporters. Here, we used double electron-electron resonance (DEER) spectroscopy to monitor the conformational dynamics of GadC in lipid bilayers in response to acidification and substrate binding. To guide experimental design and facilitate the interpretation of the DEER data, we generated an ensemble of structural models in multiple conformations using a recently introduced modification of AlphaFold2 . Our experimental results reveal acid-induced conformational changes that dislodge the Cterminus from the permeation pathway coupled with rearrangement of helices that enables isomerization between inward- and outward-facing states. The substrate glutamate, but not GABA, modulates the dynamics of an extracellular thin gate without shifting the equilibrium between inward- and outward-facing conformations. In addition to introducing an integrated methodology for probing transporter conformational dynamics, the congruence of the DEER data with patterns of structural rearrangements deduced from ensembles of AlphaFold2 models illuminates the conformational cycle of GadC underpinning transport and exposes yet another example of the divergence between the dynamics of different families in the LeuT-fold.
Collapse
Affiliation(s)
- Diego del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
| | - Lillian DeSousa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Rahul M. Nair
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Suhaila Rahman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37212
- Institute for Drug Discovery, Leipzig University, Leipzig, Germany 04109
| | - Hassane S. Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
22
|
Lee WF, Fan WL, Tseng MH, Yang HY, Huang JL, Wu CY. Characteristics and genetic analysis of patients suspected with early-onset systemic lupus erythematosus. Pediatr Rheumatol Online J 2022; 20:68. [PMID: 35964089 PMCID: PMC9375402 DOI: 10.1186/s12969-022-00722-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is rarely diagnosed before 5-years-old. Those with disease onset at a very young age are predicted by a higher genetic risk and a more severe phenotype. We performed whole-exome sequencing to survey the genetic etiologies and clinical manifestations in patients fulfilling 2012 SLICC SLE classification criteria before the age of 5. CASE PRESENTATION Among the 184 childhood-onset SLE patients regularly followed in a tertiary medical center in Taiwan, 7 cases (3.8%) of which onset ≦ 5 years of age were identified for characteristic review and genetic analysis. Compared to those onset at elder age, cases onset before the age of 5 are more likely to suffer from proliferative glomerulonephritis, renal thrombotic microangiopathy, neuropsychiatric disorder and failure to thrive. Causative genetic etiologies were identified in 3. In addition to the abundance of autoantibodies, patient with homozygous TREX1 (c.292_293 ins A) mutation presented with chilblain-like skin lesions, peripheral spasticity, endocrinopathy and experienced multiple invasive infections. Patient with SLC7A7 (c.625 + 1 G > A) mutation suffered from profound glomerulonephritis with full-house glomerular deposits as well as hyperammonemia, metabolic acidosis and episodic conscious disturbance. Two other cases harbored variants in lupus associating genes C1s, C2, DNASE1 and DNASE1L3 and another with CFHR4. Despite fulfilling the classification criteria for lupus, many of the patients required treatments beyond conventional therapy. CONCLUSIONS Genetic etiologies and lupus mimickers were found among a substantial proportion of patients suspected with early-onset SLE. Detail clinical evaluation and genetic testing are important for tailored care and personalized treatment.
Collapse
Affiliation(s)
- Wan-Fang Lee
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Min-Hua Tseng
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jing-Long Huang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei city, Taiwan.
| | - Chao-Yi Wu
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, No.5 Fu-Hsing St. Kuei Shan Hsiang, Taoyuan, Taoyuan Hsien, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Matsukawa Y, Sakamoto K, Ikeda Y, Taga T, Kosaki K, Maruo Y. Familial hemophagocytic lymphohistiocytosis syndrome due to lysinuric protein intolerance: a patient with a novel compound heterozygous pathogenic variant in SLC7A7. Int J Hematol 2022; 116:635-638. [DOI: 10.1007/s12185-022-03375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
24
|
McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2022; 205:1016-1035. [PMID: 35227171 PMCID: PMC9851473 DOI: 10.1164/rccm.202112-2742so] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/24/2022] [Indexed: 01/23/2023] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Brenna C. Carey
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
25
|
Structural basis for substrate specificity of heteromeric transporters of neutral amino acids. Proc Natl Acad Sci U S A 2021; 118:2113573118. [PMID: 34848541 DOI: 10.1073/pnas.2113573118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.
Collapse
|
26
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Nicolàs-Aragó A, Fort J, Palacín M, Errasti-Murugarren E. Rush Hour of LATs towards Their Transport Cycle. MEMBRANES 2021; 11:602. [PMID: 34436365 PMCID: PMC8399266 DOI: 10.3390/membranes11080602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022]
Abstract
The mammalian SLC7 family comprises the L-amino acid transporters (LATs) and the cationic amino acid transporters (CATs). The relevance of these transporters is highlighted by their involvement in several human pathologies, including inherited rare diseases and acquired diseases, such as cancer. In the last four years, several crystal or cryo-EM structures of LATs and CATs have been solved. These structures have started to fill our knowledge gap that previously was based on the structural biology of remote homologs of the amino acid-polyamine-organocation (APC) transporters. This review recovers this structural and functional information to start generating the molecular bases of the transport cycle of LATs. Special attention is given to the known transporter conformations within the transport cycle and the molecular bases for substrate interaction and translocation, including the asymmetric interaction of substrates at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
| | - Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (J.F.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
| |
Collapse
|
29
|
Avci Durmusalioglu E, Isik E, Ayyildiz Emecen D, Goksen D, Ozen S, Onay H, Kose M, Atik T, Darcan S, Cogulu O, Ozkinay F. The utility of reverse phenotyping: a case of lysinuric protein intolerance presented with childhood osteoporosis. J Pediatr Endocrinol Metab 2021; 34:957-960. [PMID: 33823103 DOI: 10.1515/jpem-2021-0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/18/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Childhood osteoporosis is often a consequence of a chronic disease or its treatment. Lysinuric protein intolerance (LPI), a rare secondary cause of the osteoporosis, is an autosomal recessive disorder with clinical features ranging from minimal protein intolerance to severe multisystemic involvement. We report a case diagnosed to have LPI using a Next Generation Sequencing (NGS) panel and evaluate the utility of reverse phenotyping. CASE PRESENTATION A fifteen-year-old-boy with an initial diagnosis of osteogenesis imperfecta, was referred due to a number of atypical findings accompanying to osteoporosis such as splenomegaly and bicytopenia. A NGS panel (TruSight One Sequencing Panel) was performed and a novel homozygous mutation of c.257G>A (p.Gly86Glu) in the SLC7A7 gene (NM_001126106.2), responsible for LPI, was detected. The diagnosis was confirmed via reverse phenotyping. CONCLUSIONS Reverse phenotyping using a multigene panel shortens the diagnostic process.
Collapse
Affiliation(s)
- Enise Avci Durmusalioglu
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esra Isik
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Durdugul Ayyildiz Emecen
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Damla Goksen
- Department of Pediatric Endocrinology and Diabetes, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Samim Ozen
- Department of Pediatric Endocrinology and Diabetes, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Huseyin Onay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Melis Kose
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tahir Atik
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Sukran Darcan
- Department of Pediatric Endocrinology and Diabetes, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozgur Cogulu
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Pediatric Genetics Subdivision, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
30
|
Contreras JL, Ladino MA, Aránguiz K, Mendez GP, Coban-Akdemir Z, Yuan B, Gibbs RA, Burrage LC, Lupski JR, Chinn IK, Vogel TP, Orange JS, Poli MC. Immune Dysregulation Mimicking Systemic Lupus Erythematosus in a Patient With Lysinuric Protein Intolerance: Case Report and Review of the Literature. Front Pediatr 2021; 9:673957. [PMID: 34095032 PMCID: PMC8172984 DOI: 10.3389/fped.2021.673957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is an inborn error of metabolism caused by defective transport of cationic amino acids in epithelial cells of intestines, kidneys and other tissues as well as non-epithelial cells including macrophages. LPI is caused by biallelic, pathogenic variants in SLC7A7. The clinical phenotype of LPI includes failure to thrive and multi-system disease including hematologic, neurologic, pulmonary and renal manifestations. Individual presentations are extremely variable, often leading to misdiagnosis or delayed diagnosis. Here we describe a patient that clinically presented with immune dysregulation in the setting of early-onset systemic lupus erythematosus (SLE), including renal involvement, in whom an LPI diagnosis was suspected post-mortem based on exome sequencing analysis. A review of the literature was performed to provide an overview of the clinical spectrum and immune mechanisms involved in this disease. The precise mechanism by which ineffective amino acid transport triggers systemic inflammatory features is not yet understood. However, LPI should be considered in the differential diagnosis of early-onset SLE, particularly in the absence of response to immunosuppressive therapy.
Collapse
Affiliation(s)
| | - Mabel A. Ladino
- Universidad de Chile, Reumatóloga Pediátrica Hospital San Juan de Dios, Santiago, Chile
| | - Katherine Aránguiz
- Unidad de Inmunología y Reumatología Hospital Luis Calvo Mackenna, Providencia, Chile
| | - Gonzalo P. Mendez
- Patológo Renal, Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Bo Yuan
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Richard A. Gibbs
- Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Texas Children's Hospital, Houston, TX, United States
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Sequencing Center, Baylor College of Medicine, Houston, TX, United States
- Texas Children's Hospital, Houston, TX, United States
| | - Ivan K. Chinn
- Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Division of Allergy, Immunology and Retrovirology, Baylor College of Medicine, Houston, TX, United States
| | - Tiphanie P. Vogel
- Texas Children's Hospital, Houston, TX, United States
- Department of Pediatrics, Division of Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Jordan S. Orange
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, New York Presbyterian Morgan Stanley Children's Hospital, Columbia University, New York, NY, United States
| | - M. Cecilia Poli
- Facultad de Medicina Universidad del Desarrollo-Clínica Alemana, Santiago, Chile
- Department of Pediatrics, Division of Allergy, Immunology and Retrovirology, Baylor College of Medicine, Houston, TX, United States
- Unidad de Inmunología y Reumatología, Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
31
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
32
|
Errasti-Murugarren E, Palacín M. Heteromeric Amino Acid Transporters in Brain: from Physiology to Pathology. Neurochem Res 2021; 47:23-36. [PMID: 33606172 DOI: 10.1007/s11064-021-03261-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
In humans, more than 50 transporters are responsible for the traffic and balance of amino acids within and between cells and tissues, and half of them have been associated with disease [1]. Covering all common amino acids, Heteromeric Amino acid Transporters (HATs) are one class of such transporters. This review first highlights structural and functional studies that solved the atomic structure of HATs and revealed molecular clues on substrate interaction. Moreover, this review focuses on HATs that have a role in the central nervous system (CNS) and that are related to neurological diseases, including: (i) LAT1/CD98hc and its role in the uptake of branched chain amino acids trough the blood brain barrier and autism. (ii) LAT2/CD98hc and its potential role in the transport of glutamine between plasma and cerebrospinal fluid. (iii) y+LAT2/CD98hc that is emerging as a key player in hepatic encephalopathy. xCT/CD98hc as a potential therapeutic target in glioblastoma, and (iv) Asc-1/CD98hc as a potential therapeutic target in pathologies with alterations in NMDA glutamate receptors.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine. Institute of Science and Technology (BIST), 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08028, Barcelona, Spain. .,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
33
|
Shen L, Sharma D, Yu Y, Long F, Karner CM. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J Cell Sci 2021; 134:jcs251645. [PMID: 33262314 PMCID: PMC7823158 DOI: 10.1242/jcs.251645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Osteoblasts are the principal bone-forming cells. As such, osteoblasts have enhanced demand for amino acids to sustain high rates of matrix synthesis associated with bone formation. The precise systems utilized by osteoblasts to meet these synthetic demands are not well understood. WNT signaling is known to rapidly stimulate glutamine uptake during osteoblast differentiation. Using a cell biology approach, we identified two amino acid transporters, γ(+)-LAT1 and ASCT2 (encoded by Slc7a7 and Slc1a5, respectively), as the primary transporters of glutamine in response to WNT. ASCT2 mediates the majority of glutamine uptake, whereas γ(+)-LAT1 mediates the rapid increase in glutamine uptake in response to WNT. Mechanistically, WNT signals through the canonical β-catenin (CTNNB1)-dependent pathway to rapidly induce Slc7a7 expression. Conversely, Slc1a5 expression is regulated by the transcription factor ATF4 downstream of the mTORC1 pathway. Targeting either Slc1a5 or Slc7a7 using shRNA reduced WNT-induced glutamine uptake and prevented osteoblast differentiation. Collectively, these data highlight the critical nature of glutamine transport for WNT-induced osteoblast differentiation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yilin Yu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
34
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
35
|
Facilitated Diffusion of Proline across Membranes of Liposomes and Living Cells by a Calix[4]pyrrole Cavitand. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Demy DL, Carrère M, Noche R, Tauzin M, Le Bris M, Baek C, Leshchiner I, Goessling W, Herbomel P. The cationic amino acid exporter Slc7a7 is induced and vital in zebrafish tissue macrophages with sustained efferocytic activity. J Cell Sci 2020; 133:jcs249037. [PMID: 32973110 DOI: 10.1242/jcs.249037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023] Open
Abstract
Most tissues harbor a substantial population of resident macrophages. Here, we elucidate a functional link between the Slc7a7 cationic amino acid transporter and tissue macrophages. We identified a mutant zebrafish devoid of microglia due to a mutation in the slc7a7 gene. We found that in Slc7a7-deficient larvae, macrophages do enter the retina and brain to become microglia, but then die during the developmental wave of neuronal apoptosis, which triggers intense efferocytic work from them. A similar macrophage demise occurs in other tissues, at stages where macrophages have to engulf many cell corpses, whether due to developmental or experimentally triggered cell death. We found that Slc7a7 is the main cationic amino acid transporter expressed in macrophages of zebrafish larvae, and that its expression is induced in tissue macrophages within 1-2 h upon efferocytosis. Our data indicate that Slc7a7 is vital not only for microglia but also for any steadily efferocytic tissue macrophages, and that slc7a7 gene induction is one of the adaptive responses that allow them to cope with the catabolism of numerous dead cells without compromising their own viability.
Collapse
Affiliation(s)
- Doris Lou Demy
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| | - Mireille Carrère
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| | - Ramil Noche
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| | - Muriel Tauzin
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| | - Marion Le Bris
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| | - Chooyoung Baek
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| | | | - Wolfram Goessling
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Philippe Herbomel
- Institut Pasteur, Department of Developmental & Stem Cell Biology, 75015 Paris, France
- CNRS, UMR3738, 75015 Paris, France
| |
Collapse
|
37
|
Wang Y, Song W, Wang J, Wang T, Xiong X, Qi Z, Fu W, Yang X, Chen YG. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med 2020; 217:jem.20191130. [PMID: 31753849 PMCID: PMC7041720 DOI: 10.1084/jem.20191130] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Single-cell transcriptome analysis of epithelial cells from human ileum, colon, and rectum reveals different nutrient-absorption preferences in the small and large intestine, providing a rich resource for further characterization of human intestine cell constitution and functions. The intestine plays an important role in nutrient digestion and absorption, microbe defense, and hormone secretion. Although major cell types have been identified in the mouse intestinal epithelium, cell type–specific markers and functional assignments are largely unavailable for human intestine. Here, our single-cell RNA-seq analyses of 14,537 epithelial cells from human ileum, colon, and rectum reveal different nutrient absorption preferences in the small and large intestine, suggest the existence of Paneth-like cells in the large intestine, and identify potential new marker genes for human transient-amplifying cells and goblet cells. We have validated some of these insights by quantitative PCR, immunofluorescence, and functional analyses. Furthermore, we show both common and differential features of the cellular landscapes between the human and mouse ilea. Therefore, our data provide the basis for detailed characterization of human intestine cell constitution and functions, which would be helpful for a better understanding of human intestine disorders, such as inflammatory bowel disease and intestinal tumorigenesis.
Collapse
Affiliation(s)
- Yalong Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wanlu Song
- The MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jilian Wang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Ting Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaochen Xiong
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhen Qi
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Xuerui Yang
- The MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
38
|
Stroup BM, Marom R, Li X, Hsu CW, Chang CY, Truong LD, Dawson B, Grafe I, Chen Y, Jiang MM, Lanza D, Green JR, Sun Q, Barrish JP, Ani S, Christiansen AE, Seavitt JR, Dickinson ME, Kheradmand F, Heaney JD, Lee B, Burrage LC. A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Hum Mol Genet 2020; 29:2171-2184. [PMID: 32504080 PMCID: PMC7399531 DOI: 10.1093/hmg/ddaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, University Clinic, Dresden D-01307, Germany
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennie Rose Green
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - J P Barrish
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
39
|
Alqarajeh F, Omorodion J, Bosfield K, Shur N, Ferreira CR. Lysinuric protein intolerance: Pearls to detect this otherwise easily missed diagnosis. ACTA ACUST UNITED AC 2020; 5:81-86. [PMID: 33134088 PMCID: PMC7590902 DOI: 10.3233/trd-190035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND: Lysinuric protein intolerance (LPI) is a rare autosomal recessive disorder characterized by deficient membrane transport of cationic amino acids. It is caused by pathogenic variants in SLC7A7, resulting in impairment of intestinal import and renal proximal tubule loss of the affected amino acids. LPI typically presents with gastrointestinal symptoms, such as vomiting, diarrhea, and failure to thrive. CASE REPORT: A 4-year-old African-American boy presented with multiple respiratory tract infections, weight loss in the setting of chronic diarrhea and worsening abdominal distention, and multiple episodes of rectal prolapse. Development was unaffected. Laboratory examination demonstrated mild anemia, hypokalemia and hypoalbuminemia, transaminitis, and normal ammonia. Initial urine amino acid analysis did not show major elevations of lysine and ornithine, often lower than expected in the setting of malnutrition. Upon initiation of total parenteral nutrition (TPN), his urine amino acids showed a characteristic profile of dibasic aminoaciduria. CONCLUSIONS: Failure to thrive, chronic diarrhea, and hepatomegaly should raise suspicion for LPI. Urine amino acids can be normal in this condition in the setting of malnutrition, a common complication of the disease. Additionally, it has been previously shown that the plasma arginine and ornithine concentration is higher in LPI subjects.
Collapse
Affiliation(s)
- Firas Alqarajeh
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Jacklyn Omorodion
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kerri Bosfield
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Natasha Shur
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Martinelli D, Schiff M, Semeraro M, Agolini E, Novelli A, Dionisi-Vici C. CUGC for lysinuric protein intolerance (LPI). Eur J Hum Genet 2020; 28:1129-1134. [PMID: 32249831 DOI: 10.1038/s41431-020-0617-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Diego Martinelli
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Manuel Schiff
- Fédération de Génétique Médicale, Hôpital Necker Enfants Malades, Paris, France.,UMR1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, Paris, France
| | - Michela Semeraro
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Molecular Genetics Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
41
|
The genetic landscape of the human solute carrier (SLC) transporter superfamily. Hum Genet 2019; 138:1359-1377. [PMID: 31679053 PMCID: PMC6874521 DOI: 10.1007/s00439-019-02081-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
Abstract
The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic polymorphisms in SLC genes have been associated with inter-individual differences in drug efficacy and toxicity. However, despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identified, 99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conservation, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants with putative functional effects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, and 83% of deleterious SLC variants were only identified in a single population. Interestingly, population-specific carrier frequencies of loss-of-function variants in SLC genes associated with recessive Mendelian disease recapitulated the ethnogeographic variation of the corresponding disorders, including cystinuria in Jewish individuals, type II citrullinemia in East Asians, and lysinuric protein intolerance in Finns, thus providing a powerful resource for clinical geneticists to inform about population-specific prevalence and allelic composition of Mendelian SLC diseases. In summary, we present the most comprehensive data set of SLC variability published to date, which can provide insights into inter-individual differences in SLC transporter function and guide the optimization of population-specific genotyping strategies in the bourgeoning fields of personalized medicine and precision public health.
Collapse
|
42
|
Inducible Slc7a7 Knockout Mouse Model Recapitulates Lysinuric Protein Intolerance Disease. Int J Mol Sci 2019; 20:ijms20215294. [PMID: 31653080 PMCID: PMC6862226 DOI: 10.3390/ijms20215294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal disease caused by defective cationic amino acid (CAA) transport due to mutations in SLC7A7, which encodes for the y+LAT1 transporter. LPI patients suffer from a wide variety of symptoms, which range from failure to thrive, hyperammonemia, and nephropathy to pulmonar alveolar proteinosis (PAP), a potentially life-threatening complication. Hyperammonemia is currently prevented by citrulline supplementation. However, the full impact of this treatment is not completely understood. In contrast, there is no defined therapy for the multiple reported complications of LPI, including PAP, for which bronchoalveolar lavages do not prevent progression of the disease. The lack of a viable LPI model prompted us to generate a tamoxifen-inducible Slc7a7 knockout mouse (Slc7a7-/-). The Slc7a7-/- model resembles the human LPI phenotype, including malabsorption and impaired reabsorption of CAA, hypoargininemia and hyperammonemia. Interestingly, the Slc7a7-/- mice also develops PAP and neurological impairment. We observed that citrulline treatment improves the metabolic derangement and survival. On the basis of our findings, the Slc7a7-/- model emerges as a promising tool to further study the complexity of LPI, including its immune-like complications, and to design evidence-based therapies to halt its progression.
Collapse
|
43
|
Lysinuric protein intolerance with homozygous SLC7A7 mutation caused by maternal uniparental isodisomy of chromosome 14. J Hum Genet 2019; 64:1137-1140. [PMID: 31427715 DOI: 10.1038/s10038-019-0657-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 11/08/2022]
Abstract
Lysinuric protein intolerance (LPI) is caused by mutations in the SLC7A7 gene at 14q11.2. Its clinical presentation includes failure to thrive, protein intolerance due to a secondary urea cycle defect, interstitial lung disease, renal tubulopathy, and immune disorders. Maternal uniparental disomy 14 (UPD14mat) is the most common cause of Temple syndrome (TS14), which is characterized by severe intrauterine and postnatal growth failure. Here, we describe a severe form of LPI accompanied by TS14 in an 11-month-old girl, which presented as profound failure to thrive and delayed development. LPI was diagnosed by the detection of a homozygous mutation of c.713 C>T (p.Ser238Phe) in SLC7A7, which was eventually found to co-occur with UPD14mat. Despite receiving a protein-restricted diet with citrulline and lysine supplementation, the severe failure to thrive has persisted at follow-up of the patient at 4 years of age.
Collapse
|
44
|
Saudubray JM, Mochel F, Lamari F, Garcia-Cazorla A. Proposal for a simplified classification of IMD based on a pathophysiological approach: A practical guide for clinicians. J Inherit Metab Dis 2019; 42:706-727. [PMID: 30883825 DOI: 10.1002/jimd.12086] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
In view of the rapidly expanding number of IMD discovered by next generation sequencing, we propose a simplified classification of IMD that mixes elements from a clinical diagnostic perspective and a pathophysiological approach based on three large categories. We highlight the increasing importance of complex molecule metabolism and its connection with cell biology processes. Small molecule disorders have biomarkers and are divided in two subcategories: accumulation and deficiency. Accumulation of small molecules leads to acute or progressive postnatal "intoxication", present after a symptom-free interval, aggravated by catabolism and food intake. These treatable disorders must not be missed! Deficiency of small molecules is due to impaired synthesis of compounds distal to a block or altered transport of essential molecules. This subgroup shares many clinical characteristics with complex molecule disorders. Complex molecules (like glycogen, sphingolipids, phospholipids, glycosaminoglycans, glycolipids) are poorly diffusible. Accumulation of complex molecules leads to postnatal progressive storage like in glycogen and lysosomal storage disorders. Many are treatable. Deficiency of complex molecules is related to the synthesis and recycling of these molecules, which take place in organelles. They may interfere with fœtal development. Most present as neurodevelopmental or neurodegenerative disorders unrelated to food intake. Peroxisomal disorders, CDG defects of intracellular trafficking and processing, recycling of synaptic vesicles, and tRNA synthetases also belong to this category. Only few have biomarkers and are treatable. Disorders involving primarily energy metabolism encompass defects of membrane carriers of energetic molecules as well as cytoplasmic and mitochondrial metabolic defects. This oversimplified classification is connected to the most recent available nosology of IMD.
Collapse
Affiliation(s)
- Jean-Marie Saudubray
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
| | - Fanny Mochel
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
- Centre de Référence Neurométabolique Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and ICM, F-75013, Paris, France
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Foudil Lamari
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
- Centre de Référence Neurométabolique Adulte, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
- Département de Biochimie, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Angeles Garcia-Cazorla
- Neurology Department, Neurometabolic Unit and Synaptic Metabolism Lab, Institut Pediàtric de Recerca, Hospital Sant Joan de Déu, metabERN and CIBERER-ISCIII, Barcelona, Spain
| |
Collapse
|
45
|
Krammer EM, Prévost M. Function and Regulation of Acid Resistance Antiporters. J Membr Biol 2019; 252:465-481. [DOI: 10.1007/s00232-019-00073-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/08/2019] [Indexed: 01/07/2023]
|
46
|
Noguchi A, Takahashi T. Overview of symptoms and treatment for lysinuric protein intolerance. J Hum Genet 2019; 64:849-858. [PMID: 31213652 DOI: 10.1038/s10038-019-0620-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022]
Abstract
Lysinuric protein intolerance (LPI) is caused by dysfunction of the dibasic amino acid membrane transport owing to the functional abnormality of y+L amino acid transporter-1 (y+ LAT-1). LPI is associated with autosomal recessive inheritance and pathological variants in the responsible gene SLC7A7 are also observed. The pathophysiology of this disease had earlier been understood as a transport defect in polarized cells (e.g., intestinal or renal tubular epithelium); however, in recent years, transport defects in non-polarized cells such as lymphocytes and macrophages have also been recognized as important. Although the former can cause death, malnutrition, and urea cycle dysfunction (hyperammonemia), the latter can induce renal, pulmonary, and immune disorders. Furthermore, although therapeutic interventions can prevent hyperammonemic episodes to some extent, progression of pulmonary and renal complications cannot be prevented, thereby influencing prognosis. Such pathological conditions are currently being explored and further investigation would prove beneficial. In this study, we have summarized the basic pathology as revealed in recent years, along with the clinical aspects and genetic features.
Collapse
Affiliation(s)
- Atsuko Noguchi
- Akita University Graduate School of Medicine, Pediatrics, Akita, Akita, Japan.
| | - Tsutomu Takahashi
- Akita University Graduate School of Medicine, Pediatrics, Akita, Akita, Japan
| |
Collapse
|
47
|
L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nat Commun 2019; 10:1807. [PMID: 31000719 PMCID: PMC6472337 DOI: 10.1038/s41467-019-09837-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/02/2019] [Indexed: 11/26/2022] Open
Abstract
L-amino acid transporters (LATs) play key roles in human physiology and are implicated in several human pathologies. LATs are asymmetric amino acid exchangers where the low apparent affinity cytoplasmic side controls the exchange of substrates with high apparent affinity on the extracellular side. Here, we report the crystal structures of an LAT, the bacterial alanine-serine-cysteine exchanger (BasC), in a non-occluded inward-facing conformation in both apo and substrate-bound states. We crystallized BasC in complex with a nanobody, which blocks the transporter from the intracellular side, thus unveiling the sidedness of the substrate interaction of BasC. Two conserved residues in human LATs, Tyr 236 and Lys 154, are located in equivalent positions to the Na1 and Na2 sites of sodium-dependent APC superfamily transporters. Functional studies and molecular dynamics (MD) calculations reveal that these residues are key for the asymmetric substrate interaction of BasC and in the homologous human transporter Asc-1. L-Amino acid Transporters (LATs) are asymmetric amino acid exchangers. Here the authors determine the crystal structure of a prokaryotic LAT, the alanine-serine-cysteine exchanger (BasC) and identify key residues for asymmetric substrate interaction in both BasC and the homologous human transporter Asc-1 through functional studies.
Collapse
|
48
|
Cui D, Hu YH, Tang G, Shen D, Chen L, Liao JX, Chen SL. [Clinical features of children with lysinuric protein intolerance and SLC7A7 gene mutation: an analysis of 3 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:375-380. [PMID: 31014432 PMCID: PMC7389226 DOI: 10.7499/j.issn.1008-8830.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/14/2019] [Indexed: 09/12/2023]
Abstract
Lysinuric protein intolerance (LPI) is an autosomal recessive disorder caused by SLC7A7 gene mutation and often involves severe lesions in multiple systems. Lung involvement is frequently seen in children with LPI and such children tend to have a poor prognosis. This article summarizes the clinical manifestations and gene mutation characteristics of three children diagnosed with LPI by SLC7A7 gene analysis. All three children had the manifestations of aversion to protein-rich food after weaning, delayed development, anemia, hepatosplenomegaly, and osteoporosis, as well as an increase in orotic acid in urine. In addition, interstitial pneumonia and diffuse pulmonary interstitial lesions were observed in two children. SLC7A7 gene detection showed three pathogenic mutations in these children, namely c.1387delG(p.V463CfsX56), c.1215G>A(p.W405X) and homozygous c.625+1G>A. After a definite diagnosis was made, all three children were given a low-protein diet and oral administration of citrulline [100 mg/(kg.d)], iron protein succinylate [4 mg/(kg.d)], calcium and zinc gluconates oral solution (10 mL/day) and vitamin D (400 IU/day). In addition, patient 3 was given prednisone acetate (5 mg/day). The children had varying degrees of improvement in symptoms and signs. It is hard to distinguish LPI from urea cycle disorder due to the features of amino acid and organic acid metabolism in LPI, and SLC7A7 gene analysis is the basis for a definite diagnosis of LPI.
Collapse
Affiliation(s)
- Dong Cui
- Department of Inherited Metabolic Diseases, Shenzhen Children's Hospital Affiliated to Medical College of Shantou University, Shenzhen 518038, China.
| | | | | | | | | | | | | |
Collapse
|
49
|
Analysis of LPI-causing mutations on y+LAT1 function and localization. Orphanet J Rare Dis 2019; 14:63. [PMID: 30832686 PMCID: PMC6399926 DOI: 10.1186/s13023-019-1028-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
Background y+LAT1, encoded by SCL7A7, is the protein mutated in Lysinuric Protein Intolerance (LPI), a rare metabolic disease caused by a defective cationic amino acid (CAA, arginine, lysine, ornithine) transport at the basolateral membrane of intestinal and renal tubular cells. The disease is characterized by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are heterogeneous with lung and immunological complications that are not explainable by the CAA transport defect. With the exception of the Finnish founder mutation (c.895-2A > T, LPIFin), LPI-causative mutations are heterogeneous and genotype-phenotype correlations have not been found. Here we addressed system y+L-mediated arginine uptake in monocytes from three LPI Italian patients and in lymphoblasts carrying the same mutations; in parallel, the genetic defects carried by the patients were reproduced as eGFP-tagged y+LAT1 mutants in transfected CHO cells to define the function and localization protein. Results System y+L activity is impaired in monocytes isolated from all LPI patients, and in CHO cells transfected with the three eGFP-y+LAT1 mutants, but not in lymphoblasts bearing the same mutations. The analysis of protein localization with confocal microscopy revealed that the eGFP-tagged mutants were retained inside the cytosol, with a pattern of expression quite heterogeneous among the mutants. Conclusions The three mutations studied of y+LAT1 transporter result in a defective arginine transport both in ex vivo (monocytes) and in vitro (CHO transfected cells) models, likely caused by the retention of the mutated proteins in the cytosol. The different effect of y+LAT1 mutation on arginine transport in monocytes and lymphoblasts is supposed to be due to the different expression of SLC7A7 mRNA in the two models, supporting the hypothesis that the impact of LPI defect largely depends on the relative abundance of LPI target gene in each cell type. Electronic supplementary material The online version of this article (10.1186/s13023-019-1028-2) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|