1
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2025; 113:244-259.e7. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
2
|
Stawikowska A, Dziembowska M, Kuzniewska B. Metabolic Phenotyping of Synaptic Mitochondria Using MitoPlates™ and Synaptoneurosomes. Methods Mol Biol 2025; 2878:67-74. [PMID: 39546257 DOI: 10.1007/978-1-0716-4264-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Mitochondrial functional assays using MitoPlates™ S-1 allow us to characterize mitochondria in terms of substrate metabolism. MitoPlates™ are 96-well microplates pre-coated with a diverse set of substrates. The electron flow from NADH and FADH2 producing mitochondrial substrates is measured based on the reduction of redox dye, that acts as a terminal electron acceptor. Here, we describe the application of MitoPlates™ to characterize the metabolism of synaptic mitochondria enclosed in isolated pre- and postsynaptic terminals (synaptoneurosomes).
Collapse
Affiliation(s)
- Aleksandra Stawikowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Smith PR, Garcia G, Meyer AR, Ryazanov AG, Ma T, Loerch S, Campbell ZT. eEF2K regulates pain through translational control of BDNF. Mol Cell 2024:S1097-2765(24)00948-1. [PMID: 39694034 DOI: 10.1016/j.molcel.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/01/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
mRNA translation is integral to pain, yet the key regulatory factors and their target mRNAs are unclear. Here, we uncover a mechanism that bridges noxious insults to multiple phases of translational control in murine sensory neurons. We find that a painful cue triggers repression of peptide chain elongation through activation of elongation factor 2 kinase (eEF2K). Attenuated elongation is sensed by a ribosome-coupled mechanism that triggers the integrated stress response (ISR). Both eEF2K and the ISR are required for pain-associated behaviors in vivo. This pathway simultaneously induces biosynthesis of brain-derived neurotrophic factor (BDNF). Selective blockade of Bdnf translation has analgesic effects in vivo. Our data suggest that precise spatiotemporal regulation of Bdnf translation is critical for appropriate behavioral responses to painful stimuli. Overall, our results demonstrate that eEF2K resides at the nexus of an intricate regulatory network that links painful cues to multiple layers of translational control.
Collapse
Affiliation(s)
- Patrick R Smith
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA
| | - Guadalupe Garcia
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA
| | - Angela R Meyer
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sarah Loerch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA; Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Ishchenko Y, Jeng AT, Feng S, Nottoli T, Manriquez-Rodriguez C, Nguyen KK, Carrizales MG, Vitarelli MJ, Corcoran EE, Greer CA, Myers SA, Koleske AJ. Heterozygosity for neurodevelopmental disorder-associated TRIO variants yields distinct deficits in behavior, neuronal development, and synaptic transmission in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574442. [PMID: 39131289 PMCID: PMC11312463 DOI: 10.1101/2024.01.05.574442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Genetic variants in TRIO are associated with neurodevelopmental disorders (NDDs) including schizophrenia (SCZ), autism spectrum disorder (ASD) and intellectual disability. TRIO uses its two guanine nucleotide exchange factor (GEF) domains to activate GTPases (GEF1: Rac1 and RhoG; GEF2: RhoA) that control neuronal development and connectivity. It remains unclear how discrete TRIO variants differentially impact these neurodevelopmental events. Here, we investigate how heterozygosity for NDD-associated Trio variants - +/K1431M (ASD), +/K1918X (SCZ), and +/M2145T (bipolar disorder, BPD) - impact mouse behavior, brain development, and synapse structure and function. Heterozygosity for different Trio variants impacts motor, social, and cognitive behaviors in distinct ways that align with clinical phenotypes in humans. Trio variants differentially impact head and brain size with corresponding changes in dendritic arbors of motor cortex layer 5 pyramidal neurons (M1 L5 PNs). Although neuronal structure was only modestly altered in the Trio variant heterozygotes, we observe significant changes in synaptic function and plasticity. We also identified distinct changes in glutamate synaptic release in +/K1431M and +/M2145T cortico-cortical synapses. The TRIO K1431M GEF1 domain has impaired ability to promote GTP exchange on Rac1, but +/K1431M mice exhibit increased Rac1 activity, associated with increased levels of the Rac1 GEF Tiam1. Acute Rac1 inhibition with NSC23766 rescued glutamate release deficits in +/K1431M variant cortex. Our work reveals that discrete NDD-associated Trio variants yield overlapping but distinct phenotypes in mice, demonstrates an essential role for Trio in presynaptic glutamate release, and underscores the importance of studying the impact of variant heterozygosity in vivo.
Collapse
Affiliation(s)
- Yevheniia Ishchenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Amanda T Jeng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Shufang Feng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Gerontology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Khanh K Nguyen
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Melissa G Carrizales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Matthew J Vitarelli
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ellen E Corcoran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Charles A Greer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Samuel A Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Zhang HL, Sun Y, Wu ZJ, Yin Y, Liu RY, Zhang JC, Zhang ZJ, Yau SY, Wu HX, Yuan TF, Zhang L, Adzic M, Chen G. Hippocampal PACAP signaling activation triggers a rapid antidepressant response. Mil Med Res 2024; 11:49. [PMID: 39044298 PMCID: PMC11265467 DOI: 10.1186/s40779-024-00548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.
Collapse
Affiliation(s)
- Hai-Lou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhang-Jie Wu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ying Yin
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rui-Yi Liu
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ji-Chun Zhang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, 999077, China
| | - Suk-Yu Yau
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hao-Xin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai, 200030, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Miroslav Adzic
- "Vinča" Institute of Nuclear Sciences, Laboratory of Molecular Biology and Endocrinology 090, University of Belgrade, 11001, Belgrade, Serbia
| | - Gang Chen
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China.
- Departments of Psychiatry & Clinical and Translational Institute of Psychiatric Disorders, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- The Guangdong-Hongkong-Macau Joint Laboratory of Traditional Chinese Medicine Regulation of Brain-Periphery Homeostasis and Comprehensive Health, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Chien CT, Puhl H, Vogel SS, Molloy JE, Chiu W, Khan S. Hub stability in the calcium calmodulin-dependent protein kinase II. Commun Biol 2024; 7:766. [PMID: 38918547 PMCID: PMC11199487 DOI: 10.1038/s42003-024-06423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The calcium calmodulin protein kinase II (CaMKII) is a multi-subunit ring assembly with a central hub formed by the association domains. There is evidence for hub polymorphism between and within CaMKII isoforms, but the link between polymorphism and subunit exchange has not been resolved. Here, we present near-atomic resolution cryogenic electron microscopy (cryo-EM) structures revealing that hubs from the α and β isoforms, either standalone or within an β holoenzyme, coexist as 12 and 14 subunit assemblies. Single-molecule fluorescence microscopy of Venus-tagged holoenzymes detects intermediate assemblies and progressive dimer loss due to intrinsic holoenzyme lability, and holoenzyme disassembly into dimers upon mutagenesis of a conserved inter-domain contact. Molecular dynamics (MD) simulations show the flexibility of 4-subunit precursors, extracted in-silico from the β hub polymorphs, encompassing the curvature of both polymorphs. The MD explains how an open hub structure also obtained from the β holoenzyme sample could be created by dimer loss and analysis of its cryo-EM dataset reveals how the gap could open further. An assembly model, considering dimer concentration dependence and strain differences between polymorphs, proposes a mechanism for intrinsic hub lability to fine-tune the stoichiometry of αβ heterooligomers for their dynamic localization within synapses in neurons.
Collapse
Affiliation(s)
- Chih-Ta Chien
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD, 20892, USA
| | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 208952, USA
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institutes on Alcohol, Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 208952, USA
| | - Justin E Molloy
- The Francis Crick Institute, London, UK
- CMCB, Warwick Medical School, Coventry, CV4 7AL, UK
| | - Wah Chiu
- Department of Bioengineering, and Department of Microbiology and Immunology, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- CryoEM and Bioimaging Division, Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Shahid Khan
- Molecular Biology Consortium @ Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
7
|
Hacisuleyman E, Hale CR, Noble N, Luo JD, Fak JJ, Saito M, Chen J, Weissman JS, Darnell RB. Neuronal activity rapidly reprograms dendritic translation via eIF4G2:uORF binding. Nat Neurosci 2024; 27:822-835. [PMID: 38589584 PMCID: PMC11088998 DOI: 10.1038/s41593-024-01615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Learning and memory require activity-induced changes in dendritic translation, but which mRNAs are involved and how they are regulated are unclear. In this study, to monitor how depolarization impacts local dendritic biology, we employed a dendritically targeted proximity labeling approach followed by crosslinking immunoprecipitation, ribosome profiling and mass spectrometry. Depolarization of primary cortical neurons with KCl or the glutamate agonist DHPG caused rapid reprogramming of dendritic protein expression, where changes in dendritic mRNAs and proteins are weakly correlated. For a subset of pre-localized messages, depolarization increased the translation of upstream open reading frames (uORFs) and their downstream coding sequences, enabling localized production of proteins involved in long-term potentiation, cell signaling and energy metabolism. This activity-dependent translation was accompanied by the phosphorylation and recruitment of the non-canonical translation initiation factor eIF4G2, and the translated uORFs were sufficient to confer depolarization-induced, eIF4G2-dependent translational control. These studies uncovered an unanticipated mechanism by which activity-dependent uORF translational control by eIF4G2 couples activity to local dendritic remodeling.
Collapse
Affiliation(s)
- Ezgi Hacisuleyman
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
| | - Caryn R Hale
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Noble
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, USA
| | - John J Fak
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Misa Saito
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA
| | - Jin Chen
- Department of Pharmacology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Altos Labs, Bay Area Institute of Science, Redwood City, CA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
D'Andrea L, Audano M, Pedretti S, Pelucchi S, Stringhi R, Imperato G, De Cesare G, Cambria C, Laporte MH, Zamboni N, Antonucci F, Di Luca M, Mitro N, Marcello E. Glucose-derived glutamate drives neuronal terminal differentiation in vitro. EMBO Rep 2024; 25:991-1021. [PMID: 38243137 PMCID: PMC10933318 DOI: 10.1038/s44319-023-00048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.
Collapse
Affiliation(s)
- Laura D'Andrea
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Gabriele Imperato
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Giulia De Cesare
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Clara Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Via F.lli Cervi 93, Segrate, 20054 Milan and via Vanvitelli 32, Milan, Italy
| | - Marine H Laporte
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Via F.lli Cervi 93, Segrate, 20054 Milan and via Vanvitelli 32, Milan, Italy
- Institute of Neuroscience, IN-CNR, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy.
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Via Giuseppe Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
9
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
10
|
Ibrahim MJ, Baiju V, Sen S, Chandran PP, Ashraf GM, Haque S, Ahmad F. Utilities of Isolated Nerve Terminals in Ex Vivo Analyses of Protein Translation in (Patho)physiological Brain States: Focus on Alzheimer's Disease. Mol Neurobiol 2024; 61:91-103. [PMID: 37582987 DOI: 10.1007/s12035-023-03562-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Synapses are the cellular substrates of higher-order brain functions, and their dysfunction is an early and primary pathogenic mechanism across several neurological disorders. In particular, Alzheimer's disease (AD) is categorized by prodromal structural and functional synaptic deficits, prior to the advent of classical behavioral and pathological features. Recent research has shown that the development, maintenance, and plasticity of synapses depend on localized protein translation. Synaptosomes and synaptoneurosomes are biochemically isolated synaptic terminal preparations which have long been used to examine a variety of synaptic processes ex vivo in both healthy and pathological conditions. These ex vivo preparations preserve the mRNA species and the protein translational machinery. Hence, they are excellent in organello tools for the study of alterations in mRNA levels and protein translation in neuropathologies. Evaluation of synapse-specific basal and activity-driven de novo protein translation activity can be conveniently performed in synaptosomal/synaptoneurosomal preparations from both rodent and human brain tissue samples. This review gives a quick overview of the methods for isolating synaptosomes and synaptoneurosomes before discussing the studies that have utilized these preparations to study localized synapse-specific protein translation in (patho)physiological situations, with an emphasis on AD. While the review is not an exhaustive accumulation of all the studies evaluating synaptic protein translation using the synaptosomal model, the aim is to assemble the most relevant studies that have done so. The hope is to provide a suitable research platform to aid neuroscientists to utilize the synaptosomal/synaptoneurosomal models to evaluate the molecular mechanisms of synaptic dysfunction within the specific confines of mRNA localization and protein translation research.
Collapse
Affiliation(s)
- Mohammad Jasim Ibrahim
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Viswanath Baiju
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Shivam Sen
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Pranav Prathapa Chandran
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University City, 27272, Sharjah, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India, 632014.
| |
Collapse
|
11
|
Chojnacka M, Beroun A, Magnowska M, Stawikowska A, Cysewski D, Milek J, Dziembowska M, Kuzniewska B. Impaired synaptic incorporation of AMPA receptors in a mouse model of fragile X syndrome. Front Mol Neurosci 2023; 16:1258615. [PMID: 38025260 PMCID: PMC10665894 DOI: 10.3389/fnmol.2023.1258615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common monogenetic cause of inherited intellectual disability and autism in humans. One of the well-characterized molecular phenotypes of Fmr1 KO mice, a model of FXS, is increased translation of synaptic proteins. Although this upregulation stabilizes in adulthood, abnormalities during the critical period of plasticity have long-term effects on circuit formation and synaptic properties. Using high-resolution quantitative proteomics of synaptoneurosomes isolated from the adult, developed brains of Fmr1 KO mice, we show a differential abundance of proteins regulating the postsynaptic receptor activity of glutamatergic synapses. We investigated the AMPA receptor composition and shuttling in adult Fmr1 KO and WT mice using a variety of complementary experimental strategies such as surface protein crosslinking, immunostaining of surface receptors, and electrophysiology. We discovered that the activity-dependent synaptic delivery of AMPARs is impaired in adult Fmr1 KO mice. Furthermore, we show that Fmr1 KO synaptic AMPARs contain more GluA2 subunits that can be interpreted as a switch in the synaptic AMPAR subtype toward an increased number of Ca2+-impermeable receptors in adult Fmr1 KO synapses.
Collapse
Affiliation(s)
- Magdalena Chojnacka
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Aleksandra Stawikowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Ma T. Roles of eukaryotic elongation factor 2 kinase (eEF2K) in neuronal plasticity, cognition, and Alzheimer disease. J Neurochem 2023; 166:47-57. [PMID: 34796967 PMCID: PMC9117558 DOI: 10.1111/jnc.15541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023]
Abstract
Understanding the molecular signaling mechanisms underlying cognition and neuronal plasticity would provide insights into the pathogenesis of neuronal disorders characterized by cognitive syndromes such as Alzheimer disease (AD). Phosphorylation of the mRNA translational factor eukaryotic elongation factor 2 (eEF2) by its specific kinase eEF2K is critically involved in protein synthesis regulation. In this review, we discussed recent studies on the roles of eEF2K/eEF2 signaling in the context of regulation/dysregulation of cognitive function and synaptic plasticity. We specifically focus on the discussion of recent evidence indicating suppression of eEF2K signaling as a potential novel therapeutic avenue for AD and related dementias (ADRDs).
Collapse
Affiliation(s)
- Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine
| |
Collapse
|
13
|
Lekk I, Cabrera-Cabrera F, Turconi G, Tuvikene J, Esvald EE, Rähni A, Casserly L, Garton DR, Andressoo JO, Timmusk T, Koppel I. Untranslated regions of brain-derived neurotrophic factor mRNA control its translatability and subcellular localization. J Biol Chem 2023; 299:102897. [PMID: 36639028 PMCID: PMC9943900 DOI: 10.1016/j.jbc.2023.102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Giorgio Turconi
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Annika Rähni
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Laoise Casserly
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel R. Garton
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios Llc, Tallinn, Estonia.
| | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
14
|
Beiser T, Lisniansky E, Weitz M, Bingor A, Grad E, Rosenblum K, Thornton C, Yaka R. A functional eEF2K-eEF2 pathway in the NAc is critical for the expression of cocaine-induced psychomotor sensitisation and conditioned place preference. Transl Psychiatry 2022; 12:460. [PMID: 36319619 PMCID: PMC9626485 DOI: 10.1038/s41398-022-02232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2023] Open
Abstract
Recent evidence links synaptic plasticity and mRNA translation, via the eukaryotic elongation factor 2 kinase (eEF2K) and its only known substrate, eEF2. However, the involvement of the eEF2 pathway in cocaine-induced neuroadaptations and cocaine-induced behaviours is not known. Knock-in (KI) mice and shRNA were used to globally and specifically reduce eEF2K expression. Cocaine psychomotor sensitization and conditioned place preference were used to evaluate behavioural outcome. Changes in eEF2 phosphorylation were determined by western blot analyses. No effect was observed on the AMPA/NMDA receptor current ratio in the ventral tegmental area, 24 h after cocaine injection in eEF2K-KI mice compared with WT. However, development and expression of cocaine psychomotor sensitization were decreased in KI mice. Phosphorylated eEF2 was decreased one day after psychomotor sensitization and returned to baseline at seven days in the nucleus accumbens (NAc) of WT mice, but not in eEF2K-KI mice. However, one day following cocaine challenge, phosphorylated eEF2 decreased in WT but not KI mice. Importantly, specific targeting of eEF2K expression by shRNA in the NAc decreased cocaine condition place preference. These results suggest that the eEF2 pathway play a role in cocaine-induced locomotor sensitization and conditioned place preference.
Collapse
Affiliation(s)
- Tehila Beiser
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elvira Lisniansky
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Moriya Weitz
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Bingor
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Etty Grad
- grid.9619.70000 0004 1937 0538Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kobi Rosenblum
- grid.18098.380000 0004 1937 0562Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Claire Thornton
- grid.20931.390000 0004 0425 573XDepartment of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Rami Yaka
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Kuzniewska B, Rejmak K, Nowacka A, Ziółkowska M, Milek J, Magnowska M, Gruchota J, Gewartowska O, Borsuk E, Salamian A, Dziembowski A, Radwanska K, Dziembowska M. Disrupting interaction between miR-132 and Mmp9 3'UTR improves synaptic plasticity and memory in mice. Front Mol Neurosci 2022; 15:924534. [PMID: 35992198 PMCID: PMC9389266 DOI: 10.3389/fnmol.2022.924534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
As microRNAs have emerged to be important regulators of molecular events occurring at the synapses, the new questions about their regulatory effect on the behavior have araised. In the present study, we show for the first time that the dysregulated specific targeting of miR132 to Mmp9 mRNA in the mouse brain results in the increased level of Mmp9 protein, which affects synaptic plasticity and has an effect on memory formation. Our data points at the importance of complex and precise regulation of the Mmp9 level by miR132 in the brain.
Collapse
Affiliation(s)
- Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Karolina Rejmak
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Marta Magnowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Borsuk
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic Plasticity, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
17
|
Lewis V, Rodrigue B, Arsenault E, Zhang M, Taghavi-Abkuh FF, Silva WCC, Myers M, Matta-Camacho E, Aguilar-Valles A. Translational control by ketamine and its implications for comorbid cognitive deficits in depressive disorders. J Neurochem 2022. [PMID: 35680556 DOI: 10.1111/jnc.15652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Ketamine has shown antidepressant effects in patients with major depressive disorder (MDD) resistant to first-line treatments and approved for use in this patient population. Ketamine induces several forms of synaptic plasticity, which are proposed to underlie its antidepressant effects. However, the molecular mechanism of action directly responsible for ketamine's antidepressant effects remains under active investigation. It was recently demonstrated that the effectors of the mammalian target of rapamycin complex 1 (mTORC1) signalling pathway, namely, eukaryotic initiation factor 4E (eIF4E) binding proteins 1 and 2 (4E-BP1 and 4E-BP2), are central in mediating ketamine-induced synaptic plasticity and behavioural antidepressant-like effect. 4E-BPs are a family of messenger ribonucleic acid (mRNA) translation repressors inactivated by mTORC1. We observed that their expression in inhibitory interneurons mediates ketamine's effects in the forced swim and novelty suppressed feeding tests and the long-lasting inhibition of GABAergic neurotransmission in the hippocampus. In addition, another effector pathway that regulates translation elongation downstream of mTORC1, the eukaryotic elongation factor 2 kinase (eEF2K), has been implicated in ketamine's behavioural effects. We will discuss how ketamine's rapid antidepressant effect depends on the activation of neuronal mRNA translation through 4E-BP1/2 and eEF2K. Furthermore, given that these pathways also regulate cognitive functions, we will discuss the evidence of ketamine's effect on cognitive function in MDD. Overall, the data accrued from pre-clinical research have implicated the mRNA translation pathways in treating mood symptoms of MDD. However, it is yet unclear whether the pro-cognitive potential of subanesthetic ketamine in rodents also engages these pathways and whether such an effect is consistently observed in the treatment-resistant MDD population.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Emily Arsenault
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Molly Zhang
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Mysa Myers
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Edna Matta-Camacho
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
18
|
Eisen TJ, Li JJ, Bartel DP. The interplay between translational efficiency, poly(A) tails, microRNAs, and neuronal activation. RNA (NEW YORK, N.Y.) 2022; 28:808-831. [PMID: 35273099 PMCID: PMC9074895 DOI: 10.1261/rna.079046.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Neurons provide a rich setting for studying post-transcriptional control. Here, we investigate the landscape of translational control in neurons and search for mRNA features that explain differences in translational efficiency (TE), considering the interplay between TE, mRNA poly(A)-tail lengths, microRNAs, and neuronal activation. In neurons and brain tissues, TE correlates with tail length, and a few dozen mRNAs appear to undergo cytoplasmic polyadenylation upon light or chemical stimulation. However, the correlation between TE and tail length is modest, explaining <5% of TE variance, and even this modest relationship diminishes when accounting for other mRNA features. Thus, tail length appears to affect TE only minimally. Accordingly, miRNAs, which accelerate deadenylation of their mRNA targets, primarily influence target mRNA levels, with no detectable effect on either steady-state tail lengths or TE. Larger correlates with TE include codon composition and predicted mRNA folding energy. When combined in a model, the identified correlates explain 38%-45% of TE variance. These results provide a framework for considering the relative impact of factors that contribute to translational control in neurons. They indicate that when examined in bulk, translational control in neurons largely resembles that of other types of post-embryonic cells. Thus, detection of more specialized control might require analyses that can distinguish translation occurring in neuronal processes from that occurring in cell bodies.
Collapse
Affiliation(s)
- Timothy J Eisen
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jingyi Jessica Li
- Department of Statistics, Department of Biostatistics, Department of Computational Medicine, and Department of Human Genetics, University of California, Los Angeles, California 90095, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
19
|
Bose M, Nawaz MS, Pal R, Chattarji S. Stress Elicits Contrasting Effects on Rac1-Cofilin Signaling in the Hippocampus and Amygdala. Front Mol Neurosci 2022; 15:880382. [PMID: 35592113 PMCID: PMC9110925 DOI: 10.3389/fnmol.2022.880382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022] Open
Abstract
There is accumulating evidence for contrasting patterns of stress-induced morphological and physiological plasticity in glutamatergic synapses of the hippocampus and amygdala. The same chronic stress that leads to the formation of dendritic spines in the basolateral amygdala (BLA) of rats, leads to a loss of spines in the hippocampus. However, the molecular underpinnings of these divergent effects of stress on dendritic spines are not well understood. Since the activity of the Rho GTPase Rac1 and the actin-depolymerizing factor cofilin are known to play a pivotal role in spine morphogenesis, we investigated if alterations in this signaling pathway reflect the differential effects of stress on spine plasticity in the hippocampus and amygdala. A day after the end of chronic immobilization stress (2 h/day for 10 days), we found a reduction in the activity of Rac1, as well as its effector p21-activated kinase 1 (PAK1), in the rat hippocampus. These changes, in turn, decreased cofilin phosphorylation alongside a reduction in the levels of profilin isoforms. In striking contrast, the same chronic stress increased Rac1, PAK1 activity, cofilin phosphorylation, and profilin levels in the BLA, which is consistent with enhanced actin polymerization leading to spinogenesis in the BLA. In the hippocampus, on the other hand, the same stress caused the opposite changes, the functional consequences of which would be actin depolymerization leading to the elimination of spines. Together, these findings reveal a role for brain-region specific differences in the dysregulation of Rac1-to-cofilin signaling in the effects of repeated stress on two brain areas that are implicated in the emotional and cognitive symptoms of stress-related psychiatric disorders.
Collapse
|
20
|
APOE4 Affects Basal and NMDAR-Mediated Protein Synthesis in Neurons by Perturbing Calcium Homeostasis. J Neurosci 2021; 41:8686-8709. [PMID: 34475200 DOI: 10.1523/jneurosci.0435-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 01/24/2023] Open
Abstract
Apolipoprotein E (APOE), one of the primary lipoproteins in the brain has three isoforms in humans, APOE2, APOE3, and APOE4. APOE4 is the most well-established risk factor increasing the predisposition for Alzheimer's disease (AD). The presence of the APOE4 allele alone is shown to cause synaptic defects in neurons and recent studies have identified multiple pathways directly influenced by APOE4. However, the mechanisms underlying APOE4-induced synaptic dysfunction remain elusive. Here, we report that the acute exposure of primary cortical neurons or synaptoneurosomes to APOE4 leads to a significant decrease in global protein synthesis. Primary cortical neurons were derived from male and female embryos of Sprague Dawley (SD) rats or C57BL/6J mice. Synaptoneurosomes were prepared from P30 male SD rats. APOE4 treatment also abrogates the NMDA-mediated translation response indicating an alteration of synaptic signaling. Importantly, we demonstrate that both APOE3 and APOE4 generate a distinct translation response which is closely linked to their respective calcium signature. Acute exposure of neurons to APOE3 causes a short burst of calcium through NMDA receptors (NMDARs) leading to an initial decrease in protein synthesis which quickly recovers. Contrarily, APOE4 leads to a sustained increase in calcium levels by activating both NMDARs and L-type voltage-gated calcium channels (L-VGCCs), thereby causing sustained translation inhibition through eukaryotic translation elongation factor 2 (eEF2) phosphorylation, which in turn disrupts the NMDAR response. Thus, we show that APOE4 affects basal and activity-mediated protein synthesis responses in neurons by affecting calcium homeostasis.SIGNIFICANCE STATEMENT Defective protein synthesis has been shown as an early defect in familial Alzheimer's disease (AD). However, this has not been studied in the context of sporadic AD, which constitutes the majority of cases. In our study, we show that Apolipoprotein E4 (APOE4), the predominant risk factor for AD, inhibits global protein synthesis in neurons. APOE4 also affects NMDA activity-mediated protein synthesis response, thus inhibiting synaptic translation. We also show that the defective protein synthesis mediated by APOE4 is closely linked to the perturbation of calcium homeostasis caused by APOE4 in neurons. Thus, we propose the dysregulation of protein synthesis as one of the possible molecular mechanisms to explain APOE4-mediated synaptic and cognitive defects. Hence, the study not only suggests an explanation for the APOE4-mediated predisposition to AD, it also bridges the gap in understanding APOE4-mediated pathology.
Collapse
|
21
|
Kawatake-Kuno A, Murai T, Uchida S. A Multiscale View of the Mechanisms Underlying Ketamine's Antidepressant Effects: An Update on Neuronal Calcium Signaling. Front Behav Neurosci 2021; 15:749180. [PMID: 34658809 PMCID: PMC8514675 DOI: 10.3389/fnbeh.2021.749180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating disease characterized by depressed mood, loss of interest or pleasure, suicidal ideation, and reduced motivation or hopelessness. Despite considerable research, mechanisms underlying MDD remain poorly understood, and current advances in treatment are far from satisfactory. The antidepressant effect of ketamine is among the most important discoveries in psychiatric research over the last half-century. Neurobiological insights into the ketamine’s effects have shed light on the mechanisms underlying antidepressant efficacy. However, mechanisms underlying the rapid and sustained antidepressant effects of ketamine remain controversial. Elucidating such mechanisms is key to identifying new therapeutic targets and developing therapeutic strategies. Accumulating evidence demonstrates the contribution of the glutamatergic pathway, the major excitatory neurotransmitter system in the central nervous system, in MDD pathophysiology and antidepressant effects. The hypothesis of a connection among the calcium signaling cascade stimulated by the glutamatergic system, neural plasticity, and epigenetic regulation of gene transcription is further supported by its associations with ketamine’s antidepressant effects. This review briefly summarizes the potential mechanisms of ketamine’s effects with a specific focus on glutamatergic signaling from a multiscale perspective, including behavioral, cellular, molecular, and epigenetic aspects, to provide a valuable overview of ketamine’s antidepressant effects.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
GluN3-Containing NMDA Receptors in the Rat Nucleus Accumbens Core Contribute to Incubation of Cocaine Craving. J Neurosci 2021; 41:8262-8277. [PMID: 34413203 DOI: 10.1523/jneurosci.0406-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cue-induced cocaine craving progressively intensifies (incubates) after withdrawal from cocaine self-administration in rats and humans. In rats, the expression of incubation ultimately depends on Ca2+-permeable AMPARs that accumulate in synapses onto medium spiny neurons (MSNs) in the NAc core. However, the delay in their accumulation (∼1 month after drug self-administration ceases) suggests earlier waves of plasticity. This prompted us to conduct the first study of NMDAR transmission in NAc core during incubation, focusing on the GluN3 subunit, which confers atypical properties when incorporated into NMDARs, including insensitivity to Mg2+ block and Ca2+ impermeability. Whole-cell patch-clamp recordings were conducted in MSNs of adult male rats 1-68 d after discontinuing extended-access saline or cocaine self-administration. NMDAR transmission was enhanced after 5 d of cocaine withdrawal, and this persisted for at least 68 d of withdrawal. The earliest functional alterations were mediated through increased contributions of GluN2B-containing NMDARs, followed by increased contributions of GluN3-containing NMDARs. As predicted by GluN3-NMDAR incorporation, fewer MSN spines exhibited NMDAR-mediated Ca2+ entry. GluN3A knockdown in NAc core was sufficient to prevent incubation of craving, consistent with biotinylation studies showing increased GluN3A surface expression, although array tomography studies suggested that adaptations involving GluN3B also occur. Collectively, our data show that a complex cascade of NMDAR and AMPAR plasticity occurs in NAc core, potentially through a homeostatic mechanism, leading to persistent increases in cocaine cue reactivity and relapse vulnerability. This is a remarkable example of experience-dependent glutamatergic plasticity evolving over a protracted window in the adult brain.SIGNIFICANCE STATEMENT "Incubation of craving" is an animal model for the persistence of vulnerability to cue-induced relapse after prolonged drug abstinence. Incubation also occurs in human drug users. AMPAR plasticity in medium spiny neurons (MSNs) of the NAc core is critical for incubation of cocaine craving but occurs only after a delay. Here we found that AMPAR plasticity is preceded by NMDAR plasticity that is essential for incubation and involves GluN3, an atypical NMDAR subunit that markedly alters NMDAR transmission. Together with AMPAR plasticity, this represents profound remodeling of excitatory synaptic transmission onto MSNs. Given the importance of MSNs for translating motivation into action, this plasticity may explain, at least in part, the profound shifts in motivated behavior that characterize addiction.
Collapse
|
23
|
Mendoza MB, Gutierrez S, Ortiz R, Moreno DF, Dermit M, Dodel M, Rebollo E, Bosch M, Mardakheh FK, Gallego C. The elongation factor eEF1A2 controls translation and actin dynamics in dendritic spines. Sci Signal 2021; 14:14/691/eabf5594. [PMID: 34257105 DOI: 10.1126/scisignal.abf5594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synaptic plasticity involves structural modifications in dendritic spines that are modulated by local protein synthesis and actin remodeling. Here, we investigated the molecular mechanisms that connect synaptic stimulation to these processes. We found that the phosphorylation of isoform-specific sites in eEF1A2-an essential translation elongation factor in neurons-is a key modulator of structural plasticity in dendritic spines. Expression of a nonphosphorylatable eEF1A2 mutant stimulated mRNA translation but reduced actin dynamics and spine density. By contrast, a phosphomimetic eEF1A2 mutant exhibited decreased association with F-actin and was inactive as a translation elongation factor. Activation of metabotropic glutamate receptor signaling triggered transient dissociation of eEF1A2 from its regulatory guanine exchange factor (GEF) protein in dendritic spines in a phosphorylation-dependent manner. We propose that eEF1A2 establishes a cross-talk mechanism that coordinates translation and actin dynamics during spine remodeling.
Collapse
Affiliation(s)
- Mònica B Mendoza
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Sara Gutierrez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Raúl Ortiz
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Elena Rebollo
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain
| | - Miquel Bosch
- Department of Basic Sciences, Universitat Internacional de Catalunya (UIC-Barcelona), Sant Cugat del Vallès 08195, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse square, London EC1M 6BQ, UK
| | - Carme Gallego
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Catalonia 08028, Spain.
| |
Collapse
|
24
|
Shen Y, Zhang ZC, Cheng S, Liu A, Zuo J, Xia S, Liu X, Liu W, Jia Z, Xie W, Han J. PQBP1 promotes translational elongation and regulates hippocampal mGluR-LTD by suppressing eEF2 phosphorylation. Mol Cell 2021; 81:1425-1438.e10. [PMID: 33662272 DOI: 10.1016/j.molcel.2021.01.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/07/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.
Collapse
Affiliation(s)
- Yuqian Shen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zi Chao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Shanshan Cheng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - An Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Jian Zuo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Shuting Xia
- Institute of Neuroscience, Soochow University, Suzhou 215000, China
| | - Xian Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wenhua Liu
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Xie
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Junhai Han
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Affiliated ZhongDa Hospital, Institute of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
25
|
Hien A, Molinaro G, Liu B, Huber KM, Richter JD. Ribosome profiling in mouse hippocampus: plasticity-induced regulation and bidirectional control by TSC2 and FMRP. Mol Autism 2020; 11:78. [PMID: 33054857 PMCID: PMC7556950 DOI: 10.1186/s13229-020-00384-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mutations in TSC2 are the most common cause of tuberous sclerosis (TSC), a disorder with a high incidence of autism and intellectual disability. TSC2 regulates mRNA translation required for group 1 metabotropic glutamate receptor-dependent synaptic long-term depression (mGluR-LTD) and behavior, but the identity of mRNAs responsive to mGluR-LTD signaling is largely unknown. METHODS We utilized Tsc2+/- mice as a mouse model of TSC and prepared hippocampal slices from these animals. We induced mGluR-LTD synaptic plasticity in slices and processed the samples for RNA-seq and ribosome profiling to identify differentially expressed genes in Tsc2+/- and following mGluR-LTD synaptic plasticity. RESULTS Ribosome profiling reveals that in Tsc2+/- mouse hippocampal slices, the expression of several mRNAs was dysregulated: terminal oligopyrimidine (TOP)-containing mRNAs decreased, while FMRP-binding targets increased. Remarkably, we observed the opposite changes of FMRP binding targets in Fmr1-/y hippocampi. In wild-type hippocampus, induction of mGluR-LTD caused rapid changes in the steady-state levels of hundreds of mRNAs, many of which are FMRP targets. Moreover, mGluR-LTD failed to promote phosphorylation of eukaryotic elongation factor 2 (eEF2) in TSC mice, and chemically mimicking phospho-eEF2 with low cycloheximide enhances mGluR-LTD in TSC mice. CONCLUSION These results suggest a molecular basis for bidirectional regulation of synaptic plasticity and behavior by TSC2 and FMRP. Our study also suggests that altered mGluR-regulated translation elongation contributes to impaired synaptic plasticity in Tsc2+/- mice.
Collapse
Affiliation(s)
- Annie Hien
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
26
|
Gladulich LFH, Peixoto-Rodrigues MC, Campello-Costa P, Paes-de-Carvalho R, Cossenza M. NMDA-induced nitric oxide generation and CREB activation in central nervous system is dependent on eukaryotic elongation factor 2 kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118783. [DOI: 10.1016/j.bbamcr.2020.118783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
|
27
|
Gladulich LFH, Xie J, Jensen KB, Kamei M, Paes-de-Carvalho R, Cossenza M, Proud CG. Bicuculline regulated protein synthesis is dependent on Homer1 and promotes its interaction with eEF2K through mTORC1-dependent phosphorylation. J Neurochem 2020; 157:1086-1101. [PMID: 32892352 DOI: 10.1111/jnc.15178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
The regulation of protein synthesis is a vital and finely tuned process in cellular physiology. In neurons, this process is very precisely regulated, as which mRNAs undergo translation is highly dependent on context. One of the most prominent regulators of protein synthesis is the enzyme eukaryotic elongation factor kinase 2 (eEF2K) that regulates the elongation stage of protein synthesis. This kinase and its substrate, eukaryotic elongation factor 2 (eEF2) are important in processes such as neuronal development and synaptic plasticity. eEF2K is regulated by multiple mechanisms including Ca2+ -ions and the mTORC1 signaling pathway, both of which play key roles in neurological processes such as learning and memory. In such settings, the localized control of protein synthesis is of crucial importance. In this work, we sought to investigate how the localization of eEF2K is controlled and the impact of this on protein synthesis in neuronal cells. In this study, we used both SH-SY5Y neuroblastoma cells and mouse cortical neurons, and pharmacologically and/or genetic approaches to modify eEF2K function. We show that eEF2K activity and localization can be regulated by its binding partner Homer1b/c, a scaffolding protein known for its participation in calcium-regulated signaling pathways. Furthermore, our results indicate that this interaction is regulated by the mTORC1 pathway, through a known phosphorylation site in eEF2K (S396), and that it affects rates of localized protein synthesis at synapses depending on the presence or absence of this scaffolding protein.
Collapse
Affiliation(s)
- Luis F H Gladulich
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Jianling Xie
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Kirk B Jensen
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| | - Makoto Kamei
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia.,Center for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Marcelo Cossenza
- Program of Neurosciences, Fluminense Federal University, Niterói, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Christopher G Proud
- Lifelong Health, South Australia Health & Medical Research Institute (SAHMRI) Adelaide, SA, Australia
| |
Collapse
|
28
|
Licznerski P, Park HA, Rolyan H, Chen R, Mnatsakanyan N, Miranda P, Graham M, Wu J, Cruz-Reyes N, Mehta N, Sohail S, Salcedo J, Song E, Effman C, Effman S, Brandao L, Xu GN, Braker A, Gribkoff VK, Levy RJ, Jonas EA. ATP Synthase c-Subunit Leak Causes Aberrant Cellular Metabolism in Fragile X Syndrome. Cell 2020; 182:1170-1185.e9. [PMID: 32795412 DOI: 10.1016/j.cell.2020.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022]
Abstract
Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase β subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.
Collapse
Affiliation(s)
- Pawel Licznerski
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Han-A Park
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Harshvardhan Rolyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Rongmin Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nelli Mnatsakanyan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Paige Miranda
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jing Wu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | - Nikita Mehta
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sana Sohail
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Jorge Salcedo
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Erin Song
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Samuel Effman
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Lucas Brandao
- Department of Biology, Clark University, Worcester, MA 01610, USA
| | - Gulan N Xu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Amber Braker
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT 06511, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
29
|
Kuzniewska B, Cysewski D, Wasilewski M, Sakowska P, Milek J, Kulinski TM, Winiarski M, Kozielewicz P, Knapska E, Dadlez M, Chacinska A, Dziembowski A, Dziembowska M. Mitochondrial protein biogenesis in the synapse is supported by local translation. EMBO Rep 2020; 21:e48882. [PMID: 32558077 PMCID: PMC7403725 DOI: 10.15252/embr.201948882] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/21/2020] [Accepted: 05/15/2020] [Indexed: 01/02/2023] Open
Abstract
Synapses are the regions of the neuron that enable the transmission and propagation of action potentials on the cost of high energy consumption and elevated demand for mitochondrial ATP production. The rapid changes in local energetic requirements at dendritic spines imply the role of mitochondria in the maintenance of their homeostasis. Using global proteomic analysis supported with complementary experimental approaches, we show that an essential pool of mitochondrial proteins is locally produced at the synapse indicating that mitochondrial protein biogenesis takes place locally to maintain functional mitochondria in axons and dendrites. Furthermore, we show that stimulation of synaptoneurosomes induces the local synthesis of mitochondrial proteins that are transported to the mitochondria and incorporated into the protein supercomplexes of the respiratory chain. Importantly, in a mouse model of fragile X syndrome, Fmr1 KO mice, a common disease associated with dysregulation of synaptic protein synthesis, we observed altered morphology and respiration rates of synaptic mitochondria. That indicates that the local production of mitochondrial proteins plays an essential role in synaptic functions.
Collapse
Affiliation(s)
- Bozena Kuzniewska
- Laboratory of Molecular Basis of Synaptic PlasticityCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | | | - Michal Wasilewski
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
- ReMedy International Research Agenda UnitUniversity of WarsawWarsawPoland
| | - Paulina Sakowska
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Jacek Milek
- Laboratory of Molecular Basis of Synaptic PlasticityCentre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Tomasz M Kulinski
- Institute of Biochemistry and BiophysicsPASWarsawPoland
- Laboratory of RNA BiologyInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Pawel Kozielewicz
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | | | - Michal Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Agnieszka Chacinska
- Laboratory of Mitochondrial BiogenesisCentre of New TechnologiesUniversity of WarsawWarsawPoland
- ReMedy International Research Agenda UnitUniversity of WarsawWarsawPoland
- Laboratory of Mitochondrial BiogenesisInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Andrzej Dziembowski
- Institute of Biochemistry and BiophysicsPASWarsawPoland
- Laboratory of RNA BiologyInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Magdalena Dziembowska
- Laboratory of Molecular Basis of Synaptic PlasticityCentre of New TechnologiesUniversity of WarsawWarsawPoland
| |
Collapse
|
30
|
Ghosh Dastidar S, Das Sharma S, Chakraborty S, Chattarji S, Bhattacharya A, Muddashetty RS. Distinct regulation of bioenergetics and translation by group I mGluR and NMDAR. EMBO Rep 2020; 21:e48037. [PMID: 32351028 PMCID: PMC7271334 DOI: 10.15252/embr.201948037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity is responsible for the high energy consumption in the brain. However, the cellular mechanisms draining ATP upon the arrival of a stimulus are yet to be explored systematically at the post-synapse. Here, we provide evidence that a significant fraction of ATP is consumed upon glutamate stimulation to energize mGluR-induced protein synthesis. We find that both mGluR and NMDAR alter protein synthesis and ATP consumption with distinct kinetics at the synaptic-dendritic compartments. While mGluR activation leads to a rapid and sustained reduction in neuronal ATP levels, NMDAR activation has no immediate impact on the same. ATP consumption correlates inversely with the kinetics of protein synthesis for both receptors. We observe a persistent elevation in protein synthesis within 5 minutes of mGluR activation and a robust inhibition of the same within 2 minutes of NMDAR activation, assessed by the phosphorylation status of eEF2 and metabolic labeling. However, a delayed protein synthesis-dependent ATP expenditure ensues after 15 minutes of NMDAR stimulation. We identify a central role for AMPK in the correlation between protein synthesis and ATP consumption. AMPK is dephosphorylated and inhibited upon mGluR activation, while it is phosphorylated upon NMDAR activation. Perturbing AMPK activity disrupts receptor-specific modulations of eEF2 phosphorylation and protein synthesis. Our observations, therefore, demonstrate that the regulation of the AMPK-eEF2 signaling axis by glutamate receptors alters neuronal protein synthesis and bioenergetics.
Collapse
Affiliation(s)
- Sudhriti Ghosh Dastidar
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Shreya Das Sharma
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- The University of Trans‐Disciplinary Health Sciences and TechnologyBangaloreIndia
| | - Sumita Chakraborty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Sumantra Chattarji
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
- National Center for Biological SciencesBangaloreIndia
| | - Aditi Bhattacharya
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| | - Ravi S Muddashetty
- Institute for Stem Cell Sciences and Regenerative MedicineBangaloreIndia
| |
Collapse
|
31
|
David O, Barrera I, Gould N, Gal-Ben-Ari S, Rosenblum K. D1 Dopamine Receptor Activation Induces Neuronal eEF2 Pathway-Dependent Protein Synthesis. Front Mol Neurosci 2020; 13:67. [PMID: 32499677 PMCID: PMC7242790 DOI: 10.3389/fnmol.2020.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
Dopamine, alongside other neuromodulators, defines brain and neuronal states, inter alia through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr56 but not eIF2α in cortical primary neuronal culture in a time-dependent manner. NMDA receptor, mTOR, and ERK pathways are upstream of the D1 receptor-dependent eEF2 dephosphorylation and essential for it. Furthermore, D1 receptor activation resulted in a major reduction in dendritic eEF2 phosphorylation levels. D1-dependent eEF2 dephosphorylation results in an increase of BDNF and synapsin2b expression which was followed by a small yet significant increase in general protein synthesis. These results reveal the role of dopamine D1 receptor in the regulation of eEF2 pathway translation in neurons and present eEF2 as a promising therapeutic target for addiction and depression as well as other psychiatric disorders.
Collapse
Affiliation(s)
- Orit David
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Nathaniel Gould
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
32
|
Cossenza M, Socodato R, Mejía-García TA, Domith I, Portugal CC, Gladulich LFH, Duarte-Silva AT, Khatri L, Antoine S, Hofmann F, Ziff EB, Paes-de-Carvalho R. Protein synthesis inhibition promotes nitric oxide generation and activation of CGKII-dependent downstream signaling pathways in the retina. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118732. [PMID: 32360667 DOI: 10.1016/j.bbamcr.2020.118732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/15/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023]
Abstract
Nitric oxide is an important neuromodulator in the CNS, and its production within neurons is modulated by NMDA receptors and requires a fine-tuned availability of L-arginine. We have previously shown that globally inhibiting protein synthesis mobilizes intracellular L-arginine "pools" in retinal neurons, which concomitantly enhances neuronal nitric oxide synthase-mediated nitric oxide production. Activation of NMDA receptors also induces local inhibition of protein synthesis and L-arginine intracellular accumulation through calcium influx and stimulation of eucariotic elongation factor type 2 kinase. We hypothesized that protein synthesis inhibition might also increase intracellular L-arginine availability to induce nitric oxide-dependent activation of downstream signaling pathways. Here we show that nitric oxide produced by inhibiting protein synthesis (using cycloheximide or anisomycin) is readily coupled to AKT activation in a soluble guanylyl cyclase and cGKII-dependent manner. Knockdown of cGKII prevents cycloheximide or anisomycin-induced AKT activation and its nuclear accumulation. Moreover, in retinas from cGKII knockout mice, cycloheximide was unable to enhance AKT phosphorylation. Indeed, cycloheximide also produces an increase of ERK phosphorylation which is abrogated by a nitric oxide synthase inhibitor. In summary, we show that inhibition of protein synthesis is a previously unanticipated driving force for nitric oxide generation and activation of downstream signaling pathways including AKT and ERK in cultured retinal cells. These results may be important for the regulation of synaptic signaling and neuronal development by NMDA receptors as well as for solving conflicting data observed when using protein synthesis inhibitors for studying neuronal survival during development as well in behavior and memory studies.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, RJ, Brazil.
| | - Renato Socodato
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Telmo A Mejía-García
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Ivan Domith
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Camila C Portugal
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Instituto de Investigação e Inovação em Saúde (i3S) and Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Luis F H Gladulich
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Aline T Duarte-Silva
- Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Latika Khatri
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Shannon Antoine
- Graduate Program in Neuroscience & Physiology, New York University School of Medicine, New York, NY, United States
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie der TU-München, Munich, Germany
| | - Edward B Ziff
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Roberto Paes-de-Carvalho
- Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil; Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
33
|
Zhou J, Chow HM, Liu Y, Wu D, Shi M, Li J, Wen L, Gao Y, Chen G, Zhuang K, Lin H, Zhang G, Xie W, Li H, Leng L, Wang M, Zheng N, Sun H, Zhao Y, Zhang Y, Xue M, Huang TY, Bu G, Xu H, Yuan Z, Herrup K, Zhang J. Cyclin-Dependent Kinase 5-Dependent BAG3 Degradation Modulates Synaptic Protein Turnover. Biol Psychiatry 2020; 87:756-769. [PMID: 31955914 DOI: 10.1016/j.biopsych.2019.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Synaptic protein dyshomeostasis and functional loss is an early invariant feature of Alzheimer's disease (AD), yet the unifying etiological pathway remains largely unknown. Knowing that cyclin-dependent kinase 5 (CDK5) plays critical roles in synaptic formation and degeneration, its phosphorylation targets were reexamined in search of candidates with direct global impacts on synaptic protein dynamics, and the associated regulatory network was also analyzed. METHODS Quantitative phosphoproteomics and bioinformatics analyses were performed to identify top-ranked candidates. A series of biochemical assays was used to investigate the associated regulatory signaling networks. Histological, electrochemical, and behavioral assays were performed in conditional knockout, small hairpin RNA-mediated knockdown, and AD-related mice models to evaluate the relevance of CDK5 to synaptic homeostasis and functions. RESULTS Among candidates with known implications in synaptic modulations, BAG3 ranked the highest. CDK5-mediated phosphorylation on S297/S291 (mouse/human) destabilized BAG3. Loss of BAG3 unleashed the selective protein degradative function of the HSP70 machinery. In neurons, this resulted in enhanced degradation of a number of glutamatergic synaptic proteins. Conditional neuronal knockout of Bag3 in vivo led to impairment of learning and memory functions. In human AD and related mouse models, aberrant CDK5-mediated loss of BAG3 yielded similar effects on synaptic homeostasis. Detrimental effects of BAG3 loss on learning and memory functions were confirmed in these mice, and such effects were reversed by ectopic BAG3 reexpression. CONCLUSIONS Our results highlight that the neuronal CDK5-BAG3-HSP70 signaling axis plays a critical role in modulating synaptic homeostasis. Dysregulation of the signaling pathway directly contributes to synaptic dysfunction and AD pathogenesis.
Collapse
Affiliation(s)
- Jiechao Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Yan Liu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Di Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jieyin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Wen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guimiao Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guanyun Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenting Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengdan Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Naizhen Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Maoqiang Xue
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
34
|
Shah S, Molinaro G, Liu B, Wang R, Huber KM, Richter JD. FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Rep 2020; 30:4459-4472.e6. [PMID: 32234480 PMCID: PMC7179797 DOI: 10.1016/j.celrep.2020.02.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/24/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Silencing of FMR1 and loss of its gene product, FMRP, results in fragile X syndrome (FXS). FMRP binds brain mRNAs and inhibits polypeptide elongation. Using ribosome profiling of the hippocampus, we find that ribosome footprint levels in Fmr1-deficient tissue mostly reflect changes in RNA abundance. Profiling over a time course of ribosome runoff in wild-type tissue reveals a wide range of ribosome translocation rates; on many mRNAs, the ribosomes are stalled. Sucrose gradient ultracentrifugation of hippocampal slices after ribosome runoff reveals that FMRP co-sediments with stalled ribosomes, and its loss results in decline of ribosome stalling on specific mRNAs. One such mRNA encodes SETD2, a lysine methyltransferase that catalyzes H3K36me3. Chromatin immunoprecipitation sequencing (ChIP-seq) demonstrates that loss of FMRP alters the deployment of this histone mark. H3K36me3 is associated with alternative pre-RNA processing, which we find occurs in an FMRP-dependent manner on transcripts linked to neural function and autism spectrum disorders.
Collapse
Affiliation(s)
- Sneha Shah
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruijia Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
35
|
Beretta S, Gritti L, Verpelli C, Sala C. Eukaryotic Elongation Factor 2 Kinase a Pharmacological Target to Regulate Protein Translation Dysfunction in Neurological Diseases. Neuroscience 2020; 445:42-49. [PMID: 32088293 DOI: 10.1016/j.neuroscience.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023]
Abstract
Two major processes tightly regulate protein synthesis, the initiation of mRNA translation and elongation phase that mediates the movement of ribosomes along the mRNA. The elongation phase is a high energy-consuming process, and is mainly regulated by the eukaryotic elongation factor 2 kinase (eEF2K) activity that phosphorylates and inhibits eEF2, the only known substrate of the kinase. eEF2K activity is closely regulated by several signaling pathways because the translation elongation phase strongly influences the cellular energy demand and can change the expression of specific proteins in different tissues. An increasing number of recent findings link eEF2k over activation to an array of human diseases, such as atherosclerosis, pulmonary arterial hypertension, progression of solid tumors, and some major neurological disorders. Several neurological studies suggest that eEF2K is a valuable target in treating epilepsy, depression and major neurodegenerative diseases. Despite eEF2k is an ubiquitous and conserved protein, it has been proved that its deletion does not affect development in animal models and in general cell viability. Therefore, it is possible to postulate that inhibiting its function may not cause serious side effects. In addition, eEF2K is a peculiar kinase molecularly different from most of other mammalian kinases and new compounds that inhibit eEF2K should not necessarily interfere with other important protein kinases. In this review we will critically summarize the evidence supporting the role of the altered eEF2K/eEF2 pathway in defined neurological diseases and its implications in curing these diseases in animal models, and possibly in humans, by targeting eEF2K activity.
Collapse
Affiliation(s)
| | | | | | - Carlo Sala
- CNR Neuroscience Institute, Milano, Italy.
| |
Collapse
|
36
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
37
|
Zhao J, Fok AHK, Fan R, Kwan PY, Chan HL, Lo LHY, Chan YS, Yung WH, Huang J, Lai CSW, Lai KO. Specific depletion of the motor protein KIF5B leads to deficits in dendritic transport, synaptic plasticity and memory. eLife 2020; 9:53456. [PMID: 31961321 PMCID: PMC7028368 DOI: 10.7554/elife.53456] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
The kinesin I family of motor proteins are crucial for axonal transport, but their roles in dendritic transport and postsynaptic function are not well-defined. Gene duplication and subsequent diversification give rise to three homologous kinesin I proteins (KIF5A, KIF5B and KIF5C) in vertebrates, but it is not clear whether and how they exhibit functional specificity. Here we show that knockdown of KIF5A or KIF5B differentially affects excitatory synapses and dendritic transport in hippocampal neurons. The functional specificities of the two kinesins are determined by their diverse carboxyl-termini, where arginine methylation occurs in KIF5B and regulates its function. KIF5B conditional knockout mice exhibit deficits in dendritic spine morphogenesis, synaptic plasticity and memory formation. Our findings provide insights into how expansion of the kinesin I family during evolution leads to diversification and specialization of motor proteins in regulating postsynaptic function. Transporting molecules within a cell becomes a daunting task when the cell is a neuron, with fibers called axons and dendrites that can stretch as long as a meter. Neurons use many different molecules to send messages across the body and store memories in the brain. If the right molecules cannot be delivered along the length of nerve cells, connections to neighboring neurons may decay, which may impair learning and memory. Motor proteins are responsible for transporting molecules within cells. Kinesins are a type of motor protein that typically transports materials from the body of a neuron to the cell’s periphery, including the dendrites, which is where a neuron receives messages from other nerve cells. Each cell has up to 45 different kinesin motors, but it is not known whether each one performs a distinct task or if they have overlapping roles. Now, Zhao, Fok et al. have studied two similar kinesins, called KIF5A and KIF5B, in rodent neurons to determine their roles. First, it was shown that both proteins were found at dendritic spines, which are small outgrowths on dendrites where contact with other cells occurs. Next, KIF5A and KIF5B were depleted, one at a time, from neurons extracted from a brain region called the hippocampus. Removing KIF5B interfered with the formation of dendritic spines, but removing KIF5A did not have an effect. Dendritic spines are essential for learning and memory, so several behavioral tests were conducted on mice that had been genetically modified to express less KIF5B in the forebrain. These tests revealed that the mice performed poorly in tasks that tested their memory recall. This work opens a new area of research studying the specific roles of different kinesin motor proteins in nerve cells. This could have important implications because certain kinesin motor proteins such as KIF5A are known to be defective in some inherited neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjun Zhao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ruolin Fan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Pui-Yi Kwan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Hei-Lok Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Louisa Hoi-Ying Lo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jiandong Huang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Sossin WS, Costa-Mattioli M. Translational Control in the Brain in Health and Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032912. [PMID: 30082469 DOI: 10.1101/cshperspect.a032912] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Translational control in neurons is crucially required for long-lasting changes in synaptic function and memory storage. The importance of protein synthesis control to brain processes is underscored by the large number of neurological disorders in which translation rates are perturbed, such as autism and neurodegenerative disorders. Here we review the general principles of neuronal translation, focusing on the particular relevance of several key regulators of nervous system translation, including eukaryotic initiation factor 2α (eIF2α), the mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1), and the eukaryotic elongation factor 2 (eEF2). These pathways regulate the overall rate of protein synthesis in neurons and have selective effects on the translation of specific messenger RNAs (mRNAs). The importance of these general and specific translational control mechanisms is considered in the normal functioning of the nervous system, particularly during synaptic plasticity underlying memory, and in the context of neurological disorders.
Collapse
Affiliation(s)
- Wayne S Sossin
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A-2B4, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
39
|
Kute PM, Ramakrishna S, Neelagandan N, Chattarji S, Muddashetty RS. NMDAR mediated translation at the synapse is regulated by MOV10 and FMRP. Mol Brain 2019; 12:65. [PMID: 31291981 PMCID: PMC6617594 DOI: 10.1186/s13041-019-0473-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Protein synthesis is crucial for maintaining synaptic plasticity and synaptic signalling. Here we have attempted to understand the role of RNA binding proteins, Fragile X Mental Retardation Protein (FMRP) and Moloney Leukemia Virus 10 (MOV10) protein in N-Methyl-D-Aspartate Receptor (NMDAR) mediated translation regulation. We show that FMRP is required for translation downstream of NMDAR stimulation and MOV10 is the key specificity factor in this process. In rat cortical synaptoneurosomes, MOV10 in association with FMRP and Argonaute 2 (AGO2) forms the inhibitory complex on a subset of NMDAR responsive mRNAs. On NMDAR stimulation, MOV10 dissociates from AGO2 and promotes the translation of its target mRNAs. FMRP is required to form MOV10-AGO2 inhibitory complex and to promote translation of MOV10 associated mRNAs. Phosphorylation of FMRP appears to be the potential switch for NMDAR mediated translation and in the absence of FMRP, the distinct translation response to NMDAR stimulation is lost. Thus, FMRP and MOV10 have an important regulatory role in NMDAR mediated translation at the synapse.
Collapse
Affiliation(s)
- Preeti Madhav Kute
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science and Technology & Research Academy (SASTRA) University, Thanjavur, 613401, India
| | - Sarayu Ramakrishna
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064, India
| | - Nagammal Neelagandan
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Sumantra Chattarji
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, EH89XD, UK
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair (CBDR), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India.
| |
Collapse
|
40
|
Proud CG. Phosphorylation and Signal Transduction Pathways in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033050. [PMID: 29959191 DOI: 10.1101/cshperspect.a033050] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein synthesis, including the translation of specific messenger RNAs (mRNAs), is regulated by extracellular stimuli such as hormones and by the levels of certain nutrients within cells. This control involves several well-understood signaling pathways and protein kinases, which regulate the phosphorylation of proteins that control the translational machinery. These pathways include the mechanistic target of rapamycin complex 1 (mTORC1), its downstream effectors, and the mitogen-activated protein (MAP) kinase (extracellular ligand-regulated kinase [ERK]) signaling pathway. This review describes the regulatory mechanisms that control translation initiation and elongation factors, in particular the effects of phosphorylation on their interactions or activities. It also discusses current knowledge concerning the impact of these control systems on the translation of specific mRNAs or subsets of mRNAs, both in physiological processes and in diseases such as cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, North Terrace, Adelaide SA5000, Australia; and School of Biological Sciences, University of Adelaide, Adelaide SA5000, Australia
| |
Collapse
|
41
|
Sakellari M, Chondrogianni N, Gonos ES. Protein synthesis inhibition induces proteasome assembly and function. Biochem Biophys Res Commun 2019; 514:224-230. [PMID: 31029420 DOI: 10.1016/j.bbrc.2019.04.114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
Abstract
Protein synthesis and degradation balance have a crucial role in maintenance of cellular homeostasis and function. The ubiquitin-proteasome system is one of the major cellular proteolytic machineries responsible for the removal of normal, abnormal, denatured or in general damaged proteins. Proteasome is a multisubunit enzyme that consists of the 20S core and the 19S regulatory complexes giving rise to multiple active forms. In the present study we investigated the crosstalk between protein synthesis and proteasome-mediated protein degradation. Pharmacological protein synthesis inhibition led to increased proteasome function and assembly of 30S/26S proteasome complexes, in human primary embryonic fibroblasts. The enhancement in proteasome function counted for the degradation of ubiquitinated, misfolded and oxidized proteins. Additionally, it was found that heat shock proteins 70 and 90 are probably involved in the elevated proteasome assembly. Our results provide an insight on how the mechanisms of protein synthesis, protein degradation and heat shock protein chaperones machinery interact under various cellular conditions.
Collapse
Affiliation(s)
- Marianthi Sakellari
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Örebro University, Medical School, Örebro, 701 82, Sweden
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece; Örebro University, Medical School, Örebro, 701 82, Sweden.
| |
Collapse
|
42
|
Martinetz S, Meinung CP, Jurek B, von Schack D, van den Burg EH, Slattery DA, Neumann ID. De Novo Protein Synthesis Mediated by the Eukaryotic Elongation Factor 2 Is Required for the Anxiolytic Effect of Oxytocin. Biol Psychiatry 2019; 85:802-811. [PMID: 30826070 DOI: 10.1016/j.biopsych.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The neuropeptide oxytocin (OXT) mediates its actions, including anxiolysis, via its G protein-coupled OXT receptor. Within the paraventricular nucleus of the hypothalamus (PVN), OXT-induced anxiolysis is mediated, at least in part, via activation of the mitogen-activated protein kinase pathway following calcium influx through transient receptor potential cation channel subfamily V member 2 channels. In the periphery, OXT activates eukaryotic elongation factor 2 (eEF2), an essential mediator of protein synthesis. METHODS In order to study whether OXT activates eEF2 also in neurons to exert its anxiolytic properties in the PVN, we performed in vivo and cell culture experiments. RESULTS We demonstrate that OXT, in a protein kinase C-dependent manner, activates eEF2 both in a hypothalamic cell line and in vivo within the PVN. Next, we reveal that OXT stimulates de novo protein synthesis, while inhibition of protein synthesis within the PVN prevents the anxiolytic effect of OXT in male rats. Moreover, activation of eEF2 within the PVN conveyed an anxiolytic effect supporting a role of OXT-induced eEF2 activation and protein synthesis for its anxiolysis. Finally, we show that one of the proteins that is upregulated by OXT is the neuropeptide Y receptor 5. Infusion of a specific neuropeptide Y receptor 5 agonist into the PVN consequently led to decreased anxiety-related behavior, while pretreatment with a neuropeptide Y receptor 5 antagonist prevented the anxiolytic effect of OXT. CONCLUSIONS Taken together, these results show that OXT recruits several intracellular signaling cascades to induce protein synthesis, which mediates the anxiolytic effects of OXT within the PVN and suggests that eEF2 represents a novel target for anxiety-related disorders.
Collapse
Affiliation(s)
- Stefanie Martinetz
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Carl-Philipp Meinung
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Benjamin Jurek
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - David von Schack
- Biotherapeutics Clinical Research and Development, Precision Medicine, New York, New York
| | | | - David A Slattery
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
43
|
Paul A, Nawalpuri B, Shah D, Sateesh S, Muddashetty RS, Clement JP. Differential Regulation of Syngap1 Translation by FMRP Modulates eEF2 Mediated Response on NMDAR Activity. Front Mol Neurosci 2019; 12:97. [PMID: 31143100 PMCID: PMC6520660 DOI: 10.3389/fnmol.2019.00097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
SYNGAP1, a Synaptic Ras-GTPase activating protein, regulates synapse maturation during a critical developmental window. Heterozygous mutation in SYNGAP1 (SYNGAP1 -/+) has been shown to cause Intellectual Disability (ID) in children. Recent studies have provided evidence for altered neuronal protein synthesis in a mouse model of Syngap1 -/+. However, the molecular mechanism behind the same is unclear. Here, we report the reduced expression of a known translation regulator, FMRP, during a specific developmental period in Syngap1 -/+ mice. Our results demonstrate that FMRP interacts with and regulates the translation of Syngap1 mRNA. We further show reduced Fmr1 translation leads to decreased FMRP level during development in Syngap1 -/+ which results in an increase in Syngap1 translation. These developmental changes are reflected in the altered response of eEF2 phosphorylation downstream of NMDA Receptor (NMDAR)-mediated signaling. In this study, we propose a cross-talk between FMRP and SYNGAP1 mediated signaling which can also explain the compensatory effect of impaired signaling observed in Syngap1 -/+ mice.
Collapse
Affiliation(s)
- Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Bharti Nawalpuri
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Shruthi Sateesh
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi S Muddashetty
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
44
|
Birla H, Keswani C, Rai SN, Singh SS, Zahra W, Dilnashin H, Rathore AS, Singh SP. Neuroprotective effects of Withania somnifera in BPA induced-cognitive dysfunction and oxidative stress in mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2019; 15:9. [PMID: 31064381 PMCID: PMC6503545 DOI: 10.1186/s12993-019-0160-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a major endocrine disruptor and a xenobiotic compound is used abundantly in the production of polycarbonate plastics and epoxy resins. Human exposure to this compound is primarily via its leaching from the protective internal epoxy resin coatings of containers into the food and beverages. In addition, the plastics used in dental prostheses and sealants also contain considerable amount of BPA and have a high risk of human exposure. Since it is a well-known endocrine disruptor and closely mimics the molecular structure of human estrogen thereby impairing learning and memory. Withania somnifera (Ws), commonly known as Ashwagandha is known for its varied therapeutic uses in Ayurvedic system of medicine. The present study was undertaken to demonstrate the impairment induced by BPA on the spatial learning, working memory and its alleviation by Ws in Swiss albino mice. The study was conducted on thirty Swiss albino mice, randomly distributed among three groups: control, BPA and BPA + Ws. The behavioral recovery after treatment with Ws was investigated using the Y-maize and Morris water maize test. Whereas, for the estimation of recovery of NMDA receptor which is related to learning and memory in hippocampus region by western blot and immunohistochemistry. Furthermore, the oxidative stress and antioxidant level was assessed by biochemical tests like MDA, SOD and catalase. RESULTS The study revealed that administration of Ws alleviated the behavioral deficits induced by BPA. Alongside, Ws treatment reinstated the number of NMDA receptors in hippocampus region and showed anti-oxidative property while ameliorating the endogenous anti-oxidant level in the brain. CONCLUSION These findings suggest that Ws significantly ameliorates the level of BPA intoxicated oxidative stress thereby potentially treating cognitive dysfunction which acts as the primary symptom in a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
45
|
Maciąg F, Majewski Ł, Boguszewski PM, Gupta RK, Wasilewska I, Wojtaś B, Kuznicki J. Behavioral and electrophysiological changes in female mice overexpressing ORAI1 in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1137-1150. [PMID: 30659848 DOI: 10.1016/j.bbamcr.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 11/15/2022]
Abstract
Orai proteins form highly selective Ca2+ release-activated channels (CRACs). They play a critical role in store-operated Ca2+ entry (SOCE; i.e., the influx of external Ca2+ that is induced by the depletion of endoplasmic reticulum Ca2+ stores). Of the three Orai homologs that are present in mammals (Orai1-3), the physiological function of Orai1 is the best described. CRACs are formed by both homomeric assemblies and heteromultimers of Orais. Orai1 and Orai2 can form heteromeric channels that differ in conductivity during SOCE, depending on their Orai1-to-Orai2 ratio. The present study explored the potential consequences of ORAI1 overexpression in neurons where the dominant isoform is Orai2. We established the Tg(ORAI1)Ibd transgenic mouse line that overexpresses ORAI1 in brain neurons. We observed seizure-like symptoms in aged (≥15-month-old) female mice but not in males of the same age. The application of kainic acid and bicuculline to slices that were isolated from 8-month-old (±1 month) female Tg(ORAI1)Ibd mice revealed a significantly lower frequency of interictal bursts compared with samples that were isolated from wildtype mice. No differences were observed in male mice of a similar age. A battery of behavioral tests showed that context recognition decreased only in female transgenic mice. The phenotype that was observed in female mice suggests that ORAI1 overexpression may affect neuronal activity in a sex-dependent manner. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Filip Maciąg
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., Warsaw 02-109, Poland
| | - Łukasz Majewski
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., Warsaw 02-109, Poland.
| | - Paweł M Boguszewski
- Laboratory of Animal Models, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., Warsaw 02-093, Poland
| | - Rishikesh Kumar Gupta
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., Warsaw 02-109, Poland
| | - Iga Wasilewska
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., Warsaw 02-109, Poland
| | - Bartosz Wojtaś
- Laboratory of Molecular Neurobiology, Neurobiology Centre, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Kuznicki
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Str., Warsaw 02-109, Poland
| |
Collapse
|
46
|
Mechanism underlying NMDA blockade-induced inhibition of aggression in post-weaning socially isolated mice. Neuropharmacology 2018; 143:95-105. [DOI: 10.1016/j.neuropharm.2018.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/22/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022]
|
47
|
Grant SGN. Synapse molecular complexity and the plasticity behaviour problem. Brain Neurosci Adv 2018; 2:2398212818810685. [PMID: 32166154 PMCID: PMC7058196 DOI: 10.1177/2398212818810685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/06/2023] Open
Abstract
Synapses are the hallmark of brain complexity and have long been thought of as simple connectors between neurons. We are now in an era in which we know the full complement of synapse proteins and this has created an existential crisis because the molecular complexity far exceeds the requirements of most simple models of synaptic function. Studies of the organisation of proteome complexity and its evolution provide surprising new insights that challenge existing dogma and promote the development of new theories about the origins and role of synapses in behaviour. The postsynaptic proteome of excitatory synapses is a structure with high molecular complexity and sophisticated computational properties that is disrupted in over 130 brain diseases. A key goal of 21st-century neuroscience is to develop comprehensive molecular datasets on the brain and develop theories that explain the molecular basis of behaviour.
Collapse
Affiliation(s)
- Seth G N Grant
- Genes to Cognition Programme, Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Stefanik MT, Milovanovic M, Werner CT, Spainhour JCG, Wolf ME. Withdrawal From Cocaine Self-administration Alters the Regulation of Protein Translation in the Nucleus Accumbens. Biol Psychiatry 2018; 84:223-232. [PMID: 29622268 PMCID: PMC6054574 DOI: 10.1016/j.biopsych.2018.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cue-induced cocaine craving incubates during abstinence from cocaine self-administration. Expression of incubation ultimately depends on elevation of homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors in the nucleus accumbens (NAc). This adaptation requires ongoing protein translation for its maintenance. Aberrant translation is implicated in central nervous system diseases, but nothing is known about glutamatergic regulation of translation in the drug-naïve NAc or after incubation. METHODS NAc tissue was obtained from drug-naïve rats and from rats after 1 or >40 days of abstinence from extended-access cocaine or saline self-administration. Newly translated proteins were labeled using 35S-Met/Cys or puromycin. We compared basal overall translation and its regulation by metabotropic glutamate receptor 1 (mGlu1), mGlu5, and N-methyl-D-aspartate receptors (NMDARs) in drug-naïve, saline control, and cocaine rats, and we compared GluA1 and GluA2 translation by immunoprecipitating puromycin-labeled proteins. RESULTS In all groups, overall translation was unaltered by mGlu1 blockade (LY367385) but increased by mGlu5 blockade (MTEP). NMDAR blockade (AVP) increased overall translation in drug-naïve and saline control rats but not in cocaine/late withdrawal rats. Cocaine/late withdrawal rats exhibited greater translation of GluA1 (but not GluA2), which was not further affected by NMDAR blockade. CONCLUSIONS Our results suggest that increased GluA1 translation contributes to the elevated homomeric GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor levels in the NAc that mediate incubation. Additional contributions to incubation-related plasticity may result from loss of the braking influence on translation normally exerted by NMDARs. Apart from elucidating incubation-related adaptations, we found a suppressive effect of mGlu5 on NAc translation regardless of drug exposure, which is opposite to results obtained in the hippocampus and points to heterogeneity of translational regulation between brain regions.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois
| | - Mike Milovanovic
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois
| | - Craig T Werner
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois
| | - John C G Spainhour
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Atlanta, Georgia
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin School of Medicine and Science, North Chicago, Illinois.
| |
Collapse
|
49
|
Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol 2018; 56:2741-2759. [PMID: 30056576 PMCID: PMC6459971 DOI: 10.1007/s12035-018-1243-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Abstract
Neuroligins (NLGNs) are cell adhesion molecules located on the postsynaptic side of the synapse that interact with their presynaptic partners neurexins to maintain trans-synaptic connection. Fragile X syndrome (FXS) is a common neurodevelopmental disease that often co-occurs with autism and is caused by the lack of fragile X mental retardation protein (FMRP) expression. To gain an insight into the molecular interactions between the autism-related genes, we sought to determine whether FMRP controls the synaptic levels of NLGNs. We show evidences that FMRP associates with Nlgn1, Nlgn2, and Nlgn3 mRNAs in vitro in both synaptoneurosomes and neuronal cultures. Next, we confirm local translation of Nlgn1, Nlgn2, and Nlgn3 mRNAs to be synaptically regulated by FMRP. As a consequence of elevated Nlgns mRNA translation Fmr1 KO mice exhibit increased incorporation of NLGN1 and NLGN3 into the postsynaptic membrane. Finally, we show that neuroligins synaptic level is precisely and dynamically regulated by their rapid proteolytic cleavage upon NMDA receptor stimulation in both wild type and Fmr1 KO mice. In aggregate, our study provides a novel approach to understand the molecular basis of FXS by linking the dysregulated synaptic expression of NLGNs with FMRP.
Collapse
|
50
|
Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS. Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome. Mol Cell 2018; 71:169-177.e6. [PMID: 29979964 PMCID: PMC6070390 DOI: 10.1016/j.molcel.2018.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.
Collapse
Affiliation(s)
- Kapil V Ramachandran
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jack M Fu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas B Schaffer
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- The Johns Hopkins University School of Medicine Microscope Facility, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|