1
|
Sun Y, Li T, Guo Y, Sun P, Wu J, Pan C, Wang H, Zhu L. A Click-Type Enzymatic Method for Antigen-Adjuvant Conjugation. SMALL METHODS 2024:e2401116. [PMID: 39177201 DOI: 10.1002/smtd.202401116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 08/24/2024]
Abstract
The Toll-like receptor 9 (TLR9) stimulator, CpG oligodeoxynucleotide, has emerged as a potent enhancer of protein subunit vaccines. Incorporating the protein antigen directly with the CpG adjuvant presents a novel strategy to significantly reduce the required dosage of CpG compared to traditional methods that use separate components. In contrast to existing chemical conjugation methods, this study introduces an enzymatic approach for antigen-adjuvant coupling using a recombinant endonuclease DCV fused with SpyTag. This fusion protein catalyzes the covalent linkage between itself and the CpG adjuvant under mild conditions. These conjugates can be further linked with target protein antigens containing the SpyCatcher sequence, yielding stable, covalently-linked antigen-adjuvant complexes. The corresponding complex utilizing the receptor-binding domain (RBD) of SARS-CoV-2 spike protein as the model antigen, elicits high-titer, specific antibody production in mice via both subcutaneous administration and intratracheal inoculation. Notably, the tumor vaccine candidate fabricated by this method has also shown significant inhibition of cancer progression after intratracheal administration. The technique ensures precise, site-specific coupling and preserves the antigen's structural integrity due to the post-purification coupling strategy that simplifies manufacturing and aids in developing inhalable vaccines.
Collapse
Affiliation(s)
- Yange Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| |
Collapse
|
2
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2203028. [PMID: 36807733 PMCID: PMC11468714 DOI: 10.1002/adhm.202203028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Indexed: 02/20/2023]
Abstract
Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Jingyang Shan
- Department of NeurologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518000P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Xuejiao Song
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Guangwen Yang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Heng Dong
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
5
|
Shinchi H, Komaki F, Yuki M, Ohara H, Hayakawa N, Wakao M, Cottam HB, Hayashi T, Carson DA, Moroishi T, Suda Y. Glyco-Nanoadjuvants: Impact of Linker Length for Conjugating a Synthetic Small-Molecule TLR7 Ligand to Glyco-Nanoparticles on Immunostimulatory Effects. ACS Chem Biol 2022; 17:957-968. [PMID: 35353497 DOI: 10.1021/acschembio.2c00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Immunotherapy has become a powerful clinical strategy for treating infectious diseases and cancer. Synthetic small-molecule toll-like receptor 7 (TLR7) ligands are attractive candidates as immunostimulatory agents for immunotherapy. TLR7 is mainly localized in intracellular endosomal compartments so that the formulation of their small-molecule ligands with macromolecules enhances endocytic uptake of TLR7 ligands and improves the pharmaceutical properties. Previously, we demonstrated that gold nanoparticles co-immobilized with a TLR7 ligand derivative, that is, a conjugate of synthetic small-molecule TLR7 ligand (1V209) and thioctic acid (TA) via 4,7,10-trioxa-1,13-tridecanediamine, and α-mannose (1V209-αMan-GNPs: glyco-nanoadjuvants) significantly enhances immunostimulatory effects. In the present study, we designed a second-generation glyco-nanoadjuvant that possesses a poly(ethylene glycol) (PEG) chain as a spacer between 1V209 and GNPs and investigated the impact of linker length in 1V209 derivatives on the immunostimulatory activities. We used different chain lengths of PEG (n = 3, 5, 11, or 23) as spacers between 1V209 and thioctic acid to prepare four 1V209-αMan-GNPs. In the in vitro study using primary mouse bone-marrow-derived dendritic cells, 1V209-αMan-GNPs that immobilized with longer 1V209 derivatives, especially the 1V209 derivative possessing PEG23 (1V209-PEG23-TA), showed the highest potency toward induction both for interleukin-6 and type I interferon production than those derivatives with shorter PEG chains. Furthermore, 1V209-αMan-GNPs that immobilized with 1V209-PEG23-TA showed significantly higher adjuvant effects for inducing both humoral and cell-mediated immune responses against ovalbumin in the in vivo immunization study. These results indicate that the linker length for immobilizing small-molecule TLR7 ligand on the GNPs significantly affects the adjuvant activity of 1V209-αMan-GNPs and that 1V209-αMan-GNPs immobilized with 1V209-PEG-23-TA could be superior adjuvants for immunotherapies.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Fumikazu Komaki
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Masaharu Yuki
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Haruka Ohara
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Naohiro Hayakawa
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Howard B. Cottam
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Dennis A. Carson
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0809, United States
| | - Toshiro Moroishi
- Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
6
|
Gracia, Cao E, Kochappan R, Jh Porter C, Pr Johnston A, Trevaskis NL. Association of a vaccine adjuvant with endogenous HDL increases lymph uptake and dendritic cell activation. Eur J Pharm Biopharm 2021; 172:240-252. [PMID: 34571191 DOI: 10.1016/j.ejpb.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/28/2022]
Abstract
Vaccines are a powerful health intervention but there is still an unmet need for effective preventative and therapeutic vaccines for many diseases such as cancer and infections. Interstitial (e.g. subcutaneous (SC)) injection in nano-sized carriers such as high density lipoproteins (HDLs) can improve the access of vaccine subunit antigens or adjuvants to target immune cells in the lymphatics and potentiate vaccination responses such as cytotoxic T lymphocyte (CTL) responses[1-3]. Here we examined how cholesterol conjugation to the vaccine adjuvant CpG, and incorporation into HDL, changes lymphatic absorption and association with, and processing by, dendritic cells (DCs), ultimately influencing adjuvant efficacy. We investigated the lymphatic disposition of cholesterol conjugated CpG incorporated into HDL (HDL(Chol-CpG-Cy5)) relative to cholesterol conjugated (Chol-CpG-Cy5) and unconjugated CpG (free CpG-Cy5) alone after SC administration into rats and mice. HDL (Chol-CpG-Cy5) and Chol-CpG-Cy5 differentially altered CpG absorption into lymph vs. blood, but surprisingly resulted in similarly higher LN accumulation relative to free CpG. The mechanism of access of Chol-CpG-Cy5 into lymph might be partly due to association with endogenous HDL at the injection site followed by transport into lymph in association with the HDL. To measure CpG association with and processing by DCs and the strength of the immune response, mice were vaccinated with free ovalbumin (OVA) co-administered with the different CpG constructs. There were significant changes in DC activation that were reflective of the trend in LN accumulation at 24h post-vaccination. However, T cell response at 24h and 7 days post-vaccination were not significantly different across the CpG groups although the response was less variable for Chol-CpG-Cy5 compared to free CpG Cy5 and also HDL(Chol-CpG-Cy5) - despite similar LN accumulation with the latter. Overall, our data indicate that cholesterol conjugation and incorporation into HDL increases adjuvant lymph disposition and DC activation.
Collapse
Affiliation(s)
- Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Ruby Kochappan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Christopher Jh Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Angus Pr Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Australia.
| |
Collapse
|
7
|
Kaladharan K, Kumar A, Gupta P, Illath K, Santra TS, Tseng FG. Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. MICROMACHINES 2021; 12:631. [PMID: 34071732 PMCID: PMC8228766 DOI: 10.3390/mi12060631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The ability to deliver foreign molecules into a single living cell with high transfection efficiency and high cell viability is of great interest in cell biology for applications in therapeutic development, diagnostics, and drug delivery towards personalized medicine. Various physical delivery methods have long demonstrated the ability to deliver cargo molecules directly to the cytoplasm or nucleus and the mechanisms underlying most of the approaches have been extensively investigated. However, most of these techniques are bulk approaches that are cell-specific and have low throughput delivery. In comparison to bulk measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. To elucidate distinct responses during cell genetic modification, methods to achieve transfection at the single-cell level are of great interest. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. This review article aims to cover various microfluidic-based physical methods for single-cell intracellular delivery such as electroporation, mechanoporation, microinjection, sonoporation, optoporation, magnetoporation, and thermoporation and their analysis. The mechanisms of various physical methods, their applications, limitations, and prospects are also elaborated.
Collapse
Affiliation(s)
- Kiran Kaladharan
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Ashish Kumar
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India; (P.G.); (K.I.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan; (K.K.); (A.K.)
| |
Collapse
|
8
|
Qin H, Zhao R, Qin Y, Zhu J, Chen L, Di C, Han X, Cheng K, Zhang Y, Zhao Y, Shi J, Anderson GJ, Zhao Y, Nie G. Development of a Cancer Vaccine Using In Vivo Click-Chemistry-Mediated Active Lymph Node Accumulation for Improved Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006007. [PMID: 33792097 DOI: 10.1002/adma.202006007] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Due to their ability to elicit a potent immune reaction with low systemic toxicity, cancer vaccines represent a promising strategy for treating tumors. Considerable effort has been directed toward improving the in vivo efficacy of cancer vaccines, with direct lymph node (LN) targeting being the most promising approach. Here, a click-chemistry-based active LN accumulation system (ALAS) is developed by surface modification of lymphatic endothelial cells with an azide group, which provide targets for dibenzocyclooctyne (DBCO)-modified liposomes, to improve the delivery of encapsulated antigen and adjuvant to LNs. When loading with OVA257-264 peptide and poly(I:C), the formulation elicits an enhanced CD8+ T cell response in vivo, resulting in a much more efficient therapeutic effect and prolonged median survival of mice. Compared to treatment with DBCO-conjugated liposomes (DL)-Ag/Ad without the azide targeting, the percent survival of ALAS-vaccine-treated mice improves by 100% over 60 days. Altogether, the findings indicate that the novel ALAS approach is a powerful strategy to deliver vaccine components to LNs for enhanced antitumor immunity.
Collapse
Affiliation(s)
- Hao Qin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| | - Yuting Qin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Zhu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunzhi Di
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuexiang Han
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keman Cheng
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
| | - Yinlong Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Shi
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 4006, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| | - Guangjun Nie
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| |
Collapse
|
9
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
10
|
Site-specific antigen-adjuvant conjugation using cell-free protein synthesis enhances antigen presentation and CD8 + T-cell response. Sci Rep 2021; 11:6267. [PMID: 33737644 PMCID: PMC7973483 DOI: 10.1038/s41598-021-85709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
Antigen-adjuvant conjugation is known to enhance antigen-specific T-cell production in vaccine models, but scalable methods are required to generate site-specific conjugation for clinical translation of this technique. We report the use of the cell-free protein synthesis (CFPS) platform as a rapid method to produce large quantities (> 100 mg/L) of a model antigen, ovalbumin (OVA), with site-specific incorporation of p-azidomethyl-l-phenylalanine (pAMF) at two solvent-exposed sites away from immunodominant epitopes. Using copper-free click chemistry, we conjugated CpG oligodeoxynucleotide toll-like receptor 9 (TLR9) agonists to the pAMF sites on the mutant OVA protein. The OVA-CpG conjugates demonstrate enhanced antigen presentation in vitro and increased antigen-specific CD8+ T-cell production in vivo. Moreover, OVA-CpG conjugation reduced the dose of CpG needed to invoke antigen-specific T-cell production tenfold. These results highlight how site-specific conjugation and CFPS technology can be implemented to produce large quantities of covalently-linked antigen-adjuvant conjugates for use in clinical vaccines.
Collapse
|
11
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
12
|
Sato-Kaneko F, Yao S, Lao FS, Shpigelman J, Messer K, Pu M, Shukla NM, Cottam HB, Chan M, Chu PJ, Burkhart D, Schoener R, Matsutani T, Carson DA, Corr M, Hayashi T. A Novel Synthetic Dual Agonistic Liposomal TLR4/7 Adjuvant Promotes Broad Immune Responses in an Influenza Vaccine With Minimal Reactogenicity. Front Immunol 2020; 11:1207. [PMID: 32636840 PMCID: PMC7318308 DOI: 10.3389/fimmu.2020.01207] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
The limited efficacy of seasonal influenza vaccines is usually attributed to ongoing variation in the major antigenic targets for protective antibody responses including hemagglutinin (HA) and neuraminidase (NA). Hence, vaccine development has largely focused on broadening antigenic epitopes to generate cross-reactive protection. However, the vaccine adjuvant components which can accelerate, enhance and prolong antigenic immune responses, can also increase the breadth of these responses. We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus HA, inducing rapid, and sustained antibody responses that are protective against influenza viruses in homologous and heterologous murine challenge models. To further enhance adjuvant efficacy, we performed a structure-activity relationship study for the TLR4 ligand, N-cyclohexyl-2-((5-methyl-4-oxo-3-phenyl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide (C25H26N4O2S; 1Z105), and identified the 8-(furan-2-yl) substituted pyrimido[5,4-b]indole analog (C29H28N4O3S; 2B182C) as a derivative with higher potency in activating both human and mouse TLR4-NF-κB reporter cells and primary cells. In a prime-boost immunization model using inactivated influenza A virus [IIAV; A/California/04/2009 (H1N1)pdm09], 2B182C used as adjuvant induced higher serum anti-HA and anti-NA IgG1 levels compared to 1Z105, and also increased the anti-NA IgG2a responses. In combination with a TLR7 ligand, 1V270, 2B182C induced equivalent levels of anti-NA and anti-HA IgG1 to 1V270+1Z105. However, the combination of 1V270+2B182C induced 10-fold higher anti-HA and anti-NA IgG2a levels compared to 1V270+1Z105. A stable liposomal formulation of 1V270+2B182C was developed, which synergistically enhanced anti-HA and anti-NA IgG1 and IgG2a responses without demonstrable reactogenicity after intramuscular injection. Notably, vaccination with IIAV plus the liposomal formulation of 1V270+2B182C protected mice against lethal homologous influenza virus (H1N1)pdm09 challenge and reduced lung viral titers and cytokine levels. The combination adjuvant induced a greater diversity in B cell clonotypes of immunoglobulin heavy chain (IGH) genes in the draining lymph nodes and antibodies against a broad spectrum of HA epitopes encompassing HA head and stalk domains and with cross-reactivity against different subtypes of HA and NA. This novel combination liposomal adjuvant contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.
Collapse
Affiliation(s)
- Fumi Sato-Kaneko
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Fitzgerald S. Lao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Shpigelman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Karen Messer
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Minya Pu
- Division of Biostatistics, University of California, San Diego, La Jolla, CA, United States
| | - Nikunj M. Shukla
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Howard B. Cottam
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Michael Chan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Paul J. Chu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | | | | | | | - Dennis A. Carson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Hogervorst TP, Li RJE, Marino L, Bruijns SCM, Meeuwenoord NJ, Filippov DV, Overkleeft HS, van der Marel GA, van Vliet SJ, van Kooyk Y, Codée JDC. C-Mannosyl Lysine for Solid Phase Assembly of Mannosylated Peptide Conjugate Cancer Vaccines. ACS Chem Biol 2020; 15:728-739. [PMID: 32045202 PMCID: PMC7091534 DOI: 10.1021/acschembio.9b00987] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Dendritic
cells (DCs) are armed with a multitude of Pattern Recognition
Receptors (PRRs) to recognize pathogens and initiate pathogen-tailored
T cell responses. In these responses, the maturation of DCs is key,
as well as the production of cytokines that help to accomplish T cell
responses. DC-SIGN is a frequently exploited PRR that can effectively
be targeted with mannosylated antigens to enhance the induction of
antigen-specific T cells. The natural O-mannosidic
linkage is susceptible to enzymatic degradation, and its chemical
sensitivity complicates the synthesis of mannosylated antigens. For
this reason, (oligo)mannosides are generally introduced in a late
stage of the antigen synthesis, requiring orthogonal conjugation handles
for their attachment. To increase the stability of the mannosides
and streamline the synthesis of mannosylated peptide antigens, we
here describe the development of an acid-stable C-mannosyl lysine, which allows for the inline introduction of mannosides
during solid-phase peptide synthesis (SPPS). The developed amino acid
has been successfully used for the assembly of both small ligands
and peptide antigen conjugates comprising an epitope of the gp100
melanoma-associated antigen and a TLR7 agonist for DC activation.
The ligands showed similar internalization capacities and binding
affinities as the O-mannosyl analogs. Moreover, the
antigen conjugates were capable of inducing maturation, stimulating
the secretion of pro-inflammatory cytokines, and providing enhanced
gp100 presentation to CD8+ and CD4+ T cells,
similar to their O-mannosyl counterparts. Our results
demonstrate that the C-mannose lysine is a valuable
building block for the generation of anticancer peptide-conjugate
vaccine modalities.
Collapse
Affiliation(s)
- Tim P. Hogervorst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - R. J. Eveline Li
- Amsterdam UMC-Location Vrije Universiteit Amsterdam, Deptartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Laura Marino
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sven C. M. Bruijns
- Amsterdam UMC-Location Vrije Universiteit Amsterdam, Deptartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Nico J. Meeuwenoord
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dmitri V. Filippov
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Sandra J. van Vliet
- Amsterdam UMC-Location Vrije Universiteit Amsterdam, Deptartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC-Location Vrije Universiteit Amsterdam, Deptartment of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
14
|
Hu Y, Tang L, Zhu Z, Meng H, Chen T, Zhao S, Jin Z, Wang Z, Jin G. A novel TLR7 agonist as adjuvant to stimulate high quality HBsAg-specific immune responses in an HBV mouse model. J Transl Med 2020; 18:112. [PMID: 32131853 PMCID: PMC7055022 DOI: 10.1186/s12967-020-02275-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background The global burden of hepatitis B virus (HBV) infection in terms of morbidity and mortality is immense. Novel treatments that can induce a protective immune response are urgently needed to effectively control the HBV epidemic and eventually eradicate chronic HBV infection. Methods We designed and evaluated an HBV therapeutic vaccine consisting of a novel Toll-like receptor 7 (TLR7) agonist T7-EA, an Alum adjuvant and a recombinant HBsAg protein. We used RNA-seq, ELISA and hTLR7/8 reporting assays to characterize T7-EA in vitro and real-time PCR to evaluate the tissue-retention characteristics in vivo. To evaluate the adjuvant potential, we administrated T7-EA intraperitoneally in a formulation with an Alum adjuvant and HBsAg in normal and HBV mice, then, we evaluated the HBsAg-specific immune responses by ELISA and Elispot assays. Results T7-EA acted as an hTLR7-specific agonist and induced a similar gene expression pattern as an unmodified TLR7 ligand when Raw 264.7 cells were exposed to T7-EA; however, T7-EA was more potent than the unmodified TLR7 ligand. In vivo studies showed that T7-EA had tissue-retaining activity with stimulating local cytokine and chemokine expression for up to 7 days. T7-EA could induce Th1-type immune responses, as evidenced by an increased HBsAg-specific IgG2a titer and a T-cell response in normal mice compared to mice received traditional Alum-adjuvant HBV vaccine. Importantly, T7-EA could break immune tolerance and induce persistent HBsAg-specific antibody and T-cell responses in an HBV mouse model. Conclusions T7-EA might be a candidate adjuvant in a prophylactic and therapeutic HBV vaccine.
Collapse
Affiliation(s)
- Yunlong Hu
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China. .,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China. .,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| | - Li Tang
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhengyu Zhu
- Shenzhen Kang Tai Biological Products CO., Ltd, Shenzhen, 518060, China
| | - He Meng
- Department of Stomatology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China
| | - Tingting Chen
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Sheng Zhao
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Zhenchao Jin
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Zhulin Wang
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Guangyi Jin
- The Cancer Research Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China. .,National Engineering LAB of Synthetic Biology of Medicine, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Shinchi H, Yamaguchi T, Moroishi T, Yuki M, Wakao M, Cottam HB, Hayashi T, Carson DA, Suda Y. Gold Nanoparticles Coimmobilized with Small Molecule Toll-Like Receptor 7 Ligand and α-Mannose as Adjuvants. Bioconjug Chem 2019; 30:2811-2821. [PMID: 31560198 DOI: 10.1021/acs.bioconjchem.9b00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adjuvants enhance the immune response during vaccination. Among FDA-approved adjuvants, aluminum salts are most commonly used in vaccines. Although aluminum salts enhance humoral immunity, they show a limited effect for cell-mediated immune responses. Thus, further development of adjuvants that induce T-cell-mediated immune response is needed. Toll-like receptors (TLRs) recognizing specific pathogen-associated molecular patterns activate innate immunity, which is crucial to shape adaptive immunity. Using TLR ligands as novel adjuvants in vaccines has therefore attracted substantial attention. Among them a small molecule TLR7 ligand, imiquimod, has been approved for clinical use, but its use is restricted to local administration due to unwanted adverse side effects when used systematically. Since TLR7 is mainly located in the endosomal compartment of immune cells, efficient transport of the ligand into the cells is important for improving the potency of the TLR7 ligand. In this study we examined gold nanoparticles (GNPs) immobilized with α-mannose as carriers for a TLR7 ligand to target immune cells. The small molecule synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine (1V209), and α-mannose were coimmobilized via linker molecules consisting of thioctic acid on the GNP surface (1V209-αMan-GNPs). The in vitro cytokine production activity of 1V209-αMan-GNPs was higher than that of the unconjugated 1V209 derivative in mouse bone marrow-derived dendritic cells and in human peripheral blood mononuclear cells. In the in vivo immunization study, 1V209-αMan-GNPs induced significantly higher titers of IgG2c antibody specific to ovalbumin as an antigen than did unconjugated 1V209, and splenomegaly and weight loss were not observed. These results indicate that 1V209-αMan-GNPs could be useful as safe and effective adjuvants for development of vaccines against infectious diseases and cancer.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Toru Yamaguchi
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Toshiro Moroishi
- Department of Molecular Enzymology, Faculty of Life Sciences , Kumamoto University , 1-1-1 Honjo, Chuo-ku , Kumamoto 860-8556 , Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences , Kumamoto University , Kumamoto 860-8556 , Japan.,Precursory Research for Embryonic Science and Technology (PRESTO) , Japan Science and Technology Agency (JST) , Kawaguchi 332-0012 , Japan
| | - Masaharu Yuki
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Masahiro Wakao
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan
| | - Howard B Cottam
- Moores Cancer Center , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Tomoko Hayashi
- Moores Cancer Center , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Dennis A Carson
- Moores Cancer Center , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093-0695 , United States
| | - Yasuo Suda
- Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering , Kagoshima University , 1-21-40 Korimoto , Kagoshima 890-0065 , Japan.,SUDx-Biotec Corporation , 1-42-1 Shiroyama , Kagoshima 890-0013 , Japan
| |
Collapse
|
16
|
Li RJE, Hogervorst TP, Achilli S, Bruijns SC, Arnoldus T, Vivès C, Wong CC, Thépaut M, Meeuwenoord NJ, van den Elst H, Overkleeft HS, van der Marel GA, Filippov DV, van Vliet SJ, Fieschi F, Codée JDC, van Kooyk Y. Systematic Dual Targeting of Dendritic Cell C-Type Lectin Receptor DC-SIGN and TLR7 Using a Trifunctional Mannosylated Antigen. Front Chem 2019; 7:650. [PMID: 31637232 PMCID: PMC6787163 DOI: 10.3389/fchem.2019.00650] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/11/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion. We synthesized a library of well-defined mannosides (mono-, di-, and tri-mannosides), based on known "high mannose" structures, that we presented in a systematically increasing number of copies (n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance (SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four highest binding hexavalent mannoside structures were conjugated to a model melanoma gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly, DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen presentation enhancing properties and the α1,2-di-mannoside cluster with the highest binding affinity in our library even hampered T cell activation. Overall, this systematic study has demonstrated that multivalent glycan presentation can improve DC-SIGN binding but enhanced binding cannot be directly translated into enhanced antigen presentation and the sole assessment of binding affinity is thus insufficient to determine further functional biological activity. Furthermore, we show that well-defined antigen conjugates combining two different PRR ligands can be generated in a modular fashion to increase the effectiveness of vaccine constructs.
Collapse
Affiliation(s)
- Rui-Jun Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim P. Hogervorst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Silvia Achilli
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Sven C. Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim Arnoldus
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Corinne Vivès
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Chung C. Wong
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Nico J. Meeuwenoord
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans van den Elst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Gijs A. van der Marel
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Dmitri V. Filippov
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Song C, Li F, Wang S, Wang J, Wei W, Ma G. Recent Advances in Particulate Adjuvants for Cancer Vaccination. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cui Song
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
18
|
Hoshi K, Yamazaki T, Sugiyama Y, Tsukakoshi K, Tsugawa W, Sode K, Ikebukuro K. G-Quadruplex Structure Improves the Immunostimulatory Effects of CpG Oligonucleotides. Nucleic Acid Ther 2019; 29:224-229. [PMID: 30835633 DOI: 10.1089/nat.2018.0761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Single-strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-phosphate-guanine (CpG) are recognized by the toll-like receptor 9, a component of the innate immunity. Therefore, they could act as immunotherapeutic agents. Chemically modified CpG ODNs containing a phosphorothioate backbone instead of phosphodiester (PD) were developed as immunotherapeutic agents resistant to nuclease degradation. However, they cause adverse side effects, and so there is a necessity to generate novel CpG ODNs. In the present study, we designed a nuclease-resistant nonmodified CpG ODN that forms G-quadruplex structures. G-quadruplex formation in CpG ODNs increased nuclease resistance and cellular uptake. The CpG ODNs designed in this study induced interleukin-6 production in a human B lymphocyte cell line and human peripheral blood mononuclear cells. These results indicate that G-quadruplex formation can be used to increase the immunostimulatory activity of CpG ODNs having a natural PD backbone.
Collapse
Affiliation(s)
- Kazuaki Hoshi
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomohiko Yamazaki
- 2Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Yuuki Sugiyama
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kaori Tsukakoshi
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wakako Tsugawa
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Koji Sode
- 3Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Kazunori Ikebukuro
- 1Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
19
|
Clauson RM, Berg B, Chertok B. The Content of CpG-DNA in Antigen-CpG Conjugate Vaccines Determines Their Cross-Presentation Activity. Bioconjug Chem 2019; 30:561-567. [PMID: 30768262 DOI: 10.1021/acs.bioconjchem.9b00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cross-presentation, the process that facilitates display of exogenous antigens on MHC-I molecules, is a crucial step in the cascade of CD8 T cell activation. Potentiation of cross-presentation therefore represents an essential design criterion for development of subunit vaccines that target the induction of CD8 T cell immunity. Covalent conjugation of CpG-DNA to antigenic proteins has shown the potential to promote cross-presentation and has attracted great interest as a promising approach for vaccine development. However, heterogeneous product mixtures that result from typical conjugation schemes precluded identification of active conjugate species and impeded optimization of cross-presentation activity. In this report, we explore the effect of molecular composition of antigen-CpG conjugates on their cross-presentation activity using model Ovalbumin (OVA)-CpG conjugates. We developed a method to generate antigen-CpG conjugates with defined molecular compositions and leveraged this method to produce a series of OVA-CpG conjugates with one, two, and three CpG molecules linked to OVA. We observed that conjugates containing one CpG per OVA enhanced cross-presentation by 4-fold compared to native OVA, while conjugates with higher contents of CpG provided no cross-presentation enhancement. These differences are likely due to enhanced aggregation propensity observed for conjugates that carry more than one CpG per OVA. Our findings suggest that tuning molecular composition of antigen-CpG conjugates to maintain physical stability may be essential for achieving potent cross-presentation activity. Our method to generate defined conjugates could facilitate such molecular tuning and may be useful for continued development of antigen-CpG vaccines.
Collapse
|
20
|
Kimishima A, Olson ME, Janda KD. Investigations into the efficacy of multi-component cocaine vaccines. Bioorg Med Chem Lett 2018; 28:2779-2783. [PMID: 29317163 DOI: 10.1016/j.bmcl.2017.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Although cocaine addiction remains a serious health and societal problem in the United States, no FDA-approved treatment has been developed. Vaccines offer an exciting strategy for the treatment of cocaine addiction; however, vaccine formulations need to be optimized to improve efficacy. Herein, we examine the effectiveness of a tricomponent cocaine vaccine, defined as having its hapten (GNE) and adjuvant (cytosine-guanine oligodeoxynucleotide 1826, CpG ODN 1826) covalently linked via the immunogenic protein ovalbumin (OVA). The tricomponent vaccine (GNE-OVA-CpG 1826) and a vaccine of analogous, individual components (GNE-OVA+CpG ODN 1826) were found to similarly induce highly specific anticocaine antibody production in mice and block cocaine's stimulant effects in hyperlocomotor testing.
Collapse
Affiliation(s)
- Atsushi Kimishima
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Margaret E Olson
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Kim D Janda
- Department of Chemistry, Department of Immunology and Microbial Science, The Skaggs Institute for Chemical Biology and the Worm Institute of Research and Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
21
|
Tyrinova T, Leplina O, Mishinov S, Tikhonova M, Kalinovskiy A, Chernov S, Dolgova E, Stupak V, Voronina E, Bogachev S, Shevela E, Ostanin A, Chernykh E. Defective Dendritic Cell Cytotoxic Activity of High-Grade Glioma Patients' Results from the Low Expression of Membrane TNFα and Can Be Corrected In Vitro by Treatment with Recombinant IL-2 or Exogenic Double-Stranded DNA. J Interferon Cytokine Res 2018; 38:298-310. [PMID: 29932796 DOI: 10.1089/jir.2017.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Besides initiation of tumor-specific T cell immunity, dendritic cells (DCs) are endowed with tumoricidal activity. Previously, we showed that monocyte-derived DCs of high-grade glioma patients generated in the presence of interferon alpha (IFNα) (IFN-DCs) have impaired cytotoxic activity against tumor necrosis factor alpha (TNFα)-sensitive HEp-2 tumor cells. Herein, we demonstrate that decreased transmembrane TNFα (tmTNFα) expression, but not soluble TNFα (sTNFα) production by high-grade glioma patient IFN-DCs, determines the defective tumoricidal activity against TNFα-sensitive HEp-2 cells. Blocking TNFα-converting enzyme or stimulation of patient IFN-DCs with rIL-2 or dsDNA enhances tmTNFα expression on IFN-DCs and significantly increases their cytotoxicity. Decreased tmTNFα expression on patient IFN-DCs is not caused by downregulation of pNFκB. Neither rIL-2 nor dsDNA upregulates tmTNFα expression on patient IFN-DCs via an increase of pNFκB. The current study shows an important role of tmTNFα as mediator of IFN-DC tumoricidal activity and as molecular target for the restoration of defective DC killer activity in high-grade glioma patients.
Collapse
Affiliation(s)
- Tamara Tyrinova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Olga Leplina
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Sergey Mishinov
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Marina Tikhonova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Anton Kalinovskiy
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Sergey Chernov
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Evgeniya Dolgova
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Vyacheslav Stupak
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Evgeniya Voronina
- 5 Laboratory of Morphological and Molecular Biology Techniques, Regional Center of High Medical Technologies , Novosibirsk, Russia
| | - Sergey Bogachev
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Ekaterina Shevela
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Alexander Ostanin
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Elena Chernykh
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| |
Collapse
|
22
|
Li AW, Sobral MC, Badrinath S, Choi Y, Graveline A, Stafford AG, Weaver JC, Dellacherie MO, Shih TY, Ali OA, Kim J, Wucherpfennig KW, Mooney DJ. A facile approach to enhance antigen response for personalized cancer vaccination. NATURE MATERIALS 2018; 17:528-534. [PMID: 29507416 PMCID: PMC5970019 DOI: 10.1038/s41563-018-0028-2] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/19/2018] [Indexed: 05/16/2023]
Abstract
Existing strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations. Impressively, a single injection of the MSR-PEI vaccine using an E7 peptide completely eradicated large, established TC-1 tumours in about 80% of mice and generated immunological memory. When immunized with a pool of B16F10 or CT26 neoantigens, the MSR-PEI vaccine eradicated established lung metastases, controlled tumour growth and synergized with anti-CTLA4 therapy. Our findings from three independent tumour models suggest that the MSR-PEI vaccine approach may serve as a facile and powerful multi-antigen platform to enable robust personalized cancer vaccination.
Collapse
Affiliation(s)
- Aileen Weiwei Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Soumya Badrinath
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Youngjin Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Amanda Graveline
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Alexander G Stafford
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Omar A Ali
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
23
|
Suppression of Allergic Response by CpG Motif Oligodeoxynucleotide–House-Dust Mite Conjugate in Animal Model of Allergic Rhinitis. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240602000219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Although there have been many therapeutic options for allergic disease, the true allergen desensitization remains a challenging goal. The classic immunotherapy has a limited efficacy, is inconvenient, and has a risk of anaphylaxis. Recent reports revealed that immunostimulatory DNA sequences (ISS-oligdeoxynucleotide [ODN], CpG motif) act as a strong Th1 response–inducing adjuvants and that DNA-based vaccination might be an effective therapeutic option. In this study, we investigate whether ISS-ODN/Dermatophagoides farinae (Der f) conjugate has antiallergic effects in the allergic rhinitis mouse model, sensitive to house-dust mites. Der f is the most common allergen-inducing allergic rhinitis in Korea. Methods C57BL/6 mice were sensitized with crude extract of Der f. After injection of ISS-ODN or ISS-ODN/Der f conjugate, several parameters of allergic response were evaluated. Results Scratching and sneezing symptoms and eosinophilic infiltration into nasal mucosa were suppressed by injection with ISS-ODN only and ISS-ODN/Der f conjugate. Interleukin-5 level was decreased and interferon γ level was increased in nasal lavage fluid by injection of ISS-ODN/Der f conjugate. Der f–specific immunoglobulin E was decreased by injection of ISS-ODN or Der f /ISS-ODN conjugate; however, these were not statistically significant. Transforming growth factor β1 secreted by cultured splenocyte was increased significantly in ISS-ODN/Der f conjugate group. Conclusion These results suggest ISS-ODN/Der f conjugate induces an antiallergic effect and induces an increase in transforming growth factor β1 level in the allergic rhinitis model using Der f allergen. Allergic response developed by Der f allergen could be more effectively reduced by injection with ISS-ODN/Der f conjugate than by injection with ISS-ODN only.
Collapse
|
24
|
Dellacherie MO, Li AW, Lu BY, Mooney DJ. Covalent Conjugation of Peptide Antigen to Mesoporous Silica Rods to Enhance Cellular Responses. Bioconjug Chem 2018; 29:733-741. [PMID: 29318872 DOI: 10.1021/acs.bioconjchem.7b00656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Short peptides are the minimal modality of antigen recognized by cellular immunity and are therefore considered a safe and highly specific source of antigen for vaccination. Nevertheless, successful peptide immunotherapy is limited by the short half-life of peptide antigens in vivo as well as their weak immunogenicity. We recently reported a vaccine strategy based on dendritic cell-recruiting Mesoporous Silica Rod (MSR) scaffolds to enhance T-cell responses against subunit antigen. In this study, we investigated the effect of covalently conjugating peptide antigens to MSRs to increase their retention in the scaffolds. Using both stable thioether and reducible disulfide linkages, peptide conjugation greatly increased peptide loading compared to passive adsorption. In vitro, Bone Marrow derived Dendritic Cells (BMDCs) could present Ovalbumin (OVA)-derived peptides conjugated to MSRs and induce antigen-specific T-cell proliferation. Stable conjugation decreased presentation in vitro while reducible conjugation maintained levels of presentation as high as soluble peptide. Compared to soluble peptide, in vitro, expansion of OT-II T-cells was not affected by adsorption or stable conjugation to MSRs but was enhanced with reversible conjugation to MSRs. Both conjugation schemes increased peptide residence time in MSR scaffolds in vivo compared to standard bolus injections or a simple adsorption method. When MSR scaffolds loaded with GM-CSF and CpG-ODN were injected subcutaneously, recruited dendritic cells could present antigen in situ with the stable conjugation increasing presentation capacity. Overall, this simple conjugation approach could serve as a versatile platform to efficiently incorporate peptide antigens in MSR vaccines and potentiate cellular responses.
Collapse
Affiliation(s)
- Maxence O Dellacherie
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Aileen W Li
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Beverly Y Lu
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - David J Mooney
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
25
|
Chen P, Liu X, Sun Y, Zhou P, Wang Y, Zhang Y. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccin Immunother 2017; 12:612-22. [PMID: 26513200 DOI: 10.1080/21645515.2015.1105415] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.
Collapse
Affiliation(s)
- Pengfei Chen
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yuefeng Sun
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| |
Collapse
|
26
|
Xu Z, Moyle PM. Bioconjugation Approaches to Producing Subunit Vaccines Composed of Protein or Peptide Antigens and Covalently Attached Toll-Like Receptor Ligands. Bioconjug Chem 2017; 29:572-586. [PMID: 28891637 DOI: 10.1021/acs.bioconjchem.7b00478] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional vaccines derived from attenuated or inactivated pathogens are effective at inducing antibody-based protective immune responses but tend to be highly reactogenic, causing notable adverse effects. Vaccines with superior safety profiles can be produced by subunit approaches, utilizing molecularly defined antigens (e.g., proteins and polysaccharides). These antigens, however, often elicit poor immunological responses, necessitating the use of adjuvants. Immunostimulatory adjuvants have the capacity to activate antigen presenting cells directly through specific receptors (e.g., Toll-like receptors (TLRs)), resulting in enhanced presentation of antigens as well as the secretion of proinflammatory chemokines and cytokines. Consequently, innate immune responses are amplified and adaptive immunity is generated. Recently, site-specific conjugation of such immunostimulatory adjuvants (e.g., TLR ligands) onto defined antigens has shown superior efficacy over unconjugated mixtures, suggesting that the development of chemically characterized immunostimulatory adjuvants and optimized approaches for their conjugation with antigens may provide a better opportunity for the development of potent, novel vaccines. This review briefly summarizes various TLR agonists utilized as immunostimulatory adjuvants and focuses on the development of techniques (e.g., recombinant, synthetic, and semisynthetic) for generating adjuvant-antigen fusion vaccines incorporating peptide or protein antigens.
Collapse
Affiliation(s)
- Zhenghui Xu
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| | - Peter Michael Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba 4102 , Queensland , Australia
| |
Collapse
|
27
|
Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol 2017; 34:123-132. [PMID: 28887001 DOI: 10.1016/j.smim.2017.08.014] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023]
Abstract
Virus-like particles (VLPs) have made giant strides in the field of vaccinology over the last three decades. VLPs constitute versatile tools in vaccine development due to their favourable immunological characteristics such as their size, repetitive surface geometry, ability to induce both innate and adaptive immune responses as well as being safe templates with favourable economics. Several VLP-based vaccines are commercially available including vaccines against Human Papilloma Virus (HPV) such as Cervarix®, Gardasil® & Gardasil9® and Hepatitis B Virus (HBV) including the 3rd generation Sci-B-Vac™. In addition, the first licensed malaria-VLP-based vaccine Mosquirix™ has been recently approved by the European regulators. Several other VLP-based vaccines are currently undergoing preclinical and clinical development. This review summarizes some of the major findings and recent advances in VLP-based vaccine development and technologies and outlines general principles that may be harnessed for induction of targeted immune responses.
Collapse
Affiliation(s)
- Mona O Mohsen
- Jenner Institute, University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Qatar Foundation, Doha, State of Qatar
| | - Lisha Zha
- Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland
| | | | - Martin F Bachmann
- Jenner Institute, University of Oxford, Roosevelt Dr, Oxford OX3 7BN, UK; Inselspital, Universitatsklinik RIA, Immunologie, Sahlihaus 1, 3010 Bern, Switzerland.
| |
Collapse
|
28
|
An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy. Trends Pharmacol Sci 2017; 38:771-793. [PMID: 28668223 DOI: 10.1016/j.tips.2017.06.002] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 12/31/2022]
Abstract
Adjuvants incorporated in prophylactic and/or therapeutic vaccine formulations impact vaccine efficacy by enhancing, modulating, and/or prolonging the immune response. In addition, they reduce antigen concentration and the number of immunizations required for protective efficacy, therefore contributing to making vaccines more cost effective. Our better understanding of the molecular mechanisms of immune recognition and protection has led research efforts to develop new adjuvants that are currently at various stages of development or clinical evaluation. In this review, we focus mainly on several of these promising adjuvants, and summarize recent work conducted in various laboratories to develop novel lipid-containing adjuvants.
Collapse
|
29
|
Kramer K, Young SL, Walker GF. Comparative Study of 5'- and 3'-Linked CpG-Antigen Conjugates for the Induction of Cellular Immune Responses. ACS OMEGA 2017; 2:227-235. [PMID: 30023513 PMCID: PMC6044624 DOI: 10.1021/acsomega.6b00368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/12/2017] [Indexed: 06/08/2023]
Abstract
Conjugation of CpG to an antigen induces a stronger immune response compared to that of the mixture. This study compares the in vitro immunostimulatory activity of CpG conjugated via either its 5' or 3' end to the model antigen ovalbumin (OVA). CpG modified with an amine at either the 5' or 3' end was conjugated to OVA via a stable bis-aryl hydrazone bond. Similar levels of CpG conjugation to OVA were observed for both conjugates on the basis of the absorbance at 360 nm for the formation of the bis-aryl hydrazone bond, which determined 2.8 ± 0.3 CpGs linked per OVA. Both the 5' and 3' CpG-OVA conjugates had similar size-exclusion chromatography elution profiles. The immunostimulatory properties of the conjugates were determined by dendritic cells (DCs) and T-cells isolated from mice. The activation of DCs was determined by the upregulation of activation markers CD86 and CD40. T-cells were co-cultured with stimulated DCs, and the immunogenicity was determined by measuring T-cell proliferation and interferon γ production. Both the CpG 5'- and 3'-linked conjugates induced the same level (p > 0.5) of DC activation markers, which were significantly higher than those of the untreated control. Similarly, T-cell assays showed no significant difference (p > 0.5) between the 5' and 3' conjugates with respect to T-cell proliferation and interferon γ production. The 5' and 3' conjugates induced T-cell activation significantly higher than the mixture of CpG and OVA. This study showed that the end at which CpG is conjugated to an antigen has no influence on the generation of a T-cell-based immune response in vitro.
Collapse
Affiliation(s)
- Katrin Kramer
- School
of Pharmacy and Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Sarah L. Young
- School
of Pharmacy and Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Greg F. Walker
- School
of Pharmacy and Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
30
|
Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int J Nanomedicine 2017; 12:515-531. [PMID: 28144136 PMCID: PMC5248940 DOI: 10.2147/ijn.s114477] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide–CpG ODN conjugates, and nanomaterial–CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide–CpG ODN conjugates and nanomaterial–CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide–CpG ODN conjugates, and nanomaterial–CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.
Collapse
Affiliation(s)
- Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki; Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
31
|
Hassan HAFM, Smyth L, Wang JTW, Costa PM, Ratnasothy K, Diebold SS, Lombardi G, Al-Jamal KT. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 2016; 104:310-22. [PMID: 27475727 PMCID: PMC4993816 DOI: 10.1016/j.biomaterials.2016.07.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 12/14/2022]
Abstract
Although anti-cancer immuno-based combinatorial therapeutic approaches have shown promising results, efficient tumour eradication demands further intensification of anti-tumour immune response. With the emerging field of nanovaccinology, multi-walled carbon nanotubes (MWNTs) have manifested prominent potentials as tumour antigen nanocarriers. Nevertheless, the utilization of MWNTs in co-delivering antigen along with different types of immunoadjuvants to antigen presenting cells (APCs) has not been investigated yet. We hypothesized that harnessing MWNT for concurrent delivery of cytosine-phosphate-guanine oligodeoxynucleotide (CpG) and anti-CD40 Ig (αCD40), as immunoadjuvants, along with the model antigen ovalbumin (OVA) could potentiate immune response induced against OVA-expressing tumour cells. We initially investigated the effective method to co-deliver OVA and CpG using MWNT to the APC. Covalent conjugation of OVA and CpG prior to loading onto MWNTs markedly augmented the CpG-mediated adjuvanticity, as demonstrated by the significantly increased OVA-specific T cell responses in vitro and in C57BL/6 mice. αCD40 was then included as a second immunoadjuvant to further intensify the immune response. Immune response elicited in vitro and in vivo by OVA, CpG and αCD40 was significantly potentiated by their co-incorporation onto the MWNTs. Furthermore, MWNT remarkably improved the ability of co-loaded OVA, CpG and αCD40 in inhibiting the growth of OVA-expressing B16F10 melanoma cells in subcutaneous or lung pseudo-metastatic tumour models. Therefore, this study suggests that the utilization of MWNTs for the co-delivery of tumour-derived antigen, CpG and αCD40 could be a competent approach for efficient tumours eradication.
Collapse
Affiliation(s)
- Hatem A F M Hassan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Lesley Smyth
- Immunoregulation Laboratory, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Julie T-W Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Pedro M Costa
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom
| | - Kulachelvy Ratnasothy
- Immunoregulation Laboratory, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Sandra S Diebold
- Division of Immunology, Infection, and Inflammatory Diseases, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Giovanna Lombardi
- Immunoregulation Laboratory, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom.
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, London SE1 9NH, United Kingdom.
| |
Collapse
|
32
|
Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 2016; 28:329-38. [PMID: 27006304 PMCID: PMC4922024 DOI: 10.1093/intimm/dxw015] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence obtained from various clinical trials and animal studies suggested that cancer vaccines need better adjuvants than those that are currently licensed, which include the most commonly used alum and incomplete Freund's adjuvant, because of either a lack of potent anti-tumor immunity or the induction of undesired immunity. Several clinical trials using immunostimulatory adjuvants, particularly agonistic as well as non-agonistic ligands for TLRs, C-type lectin receptors, retinoic acid-inducible gene I-like receptors and stimulator of interferon genes, have revealed their therapeutic potential not only as vaccine adjuvants but also as anti-tumor agents. Recently, combinations of such immunostimulatory or immunomodulatory adjuvants have shown superior efficacy over their singular use, suggesting that seeking optimal combinations of the currently available or well-characterized adjuvants may provide a better chance for the development of novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi, Saito, Ibaraki-City, Osaka 567-0085, Japan
| |
Collapse
|
33
|
Tao Y, Li M, Ren J, Qu X. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 2016; 44:8636-63. [PMID: 26400655 DOI: 10.1039/c5cs00607d] [Citation(s) in RCA: 481] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal nanoclusters, composed of several to a few hundred metal atoms, have received worldwide attention due to their extraordinary physical and chemical characteristics. Recently, great efforts have been devoted to the exploration of the potential diagnostic and therapeutic applications of metal nanoclusters. Here we focus on the recent advances and new horizons in this area, and introduce the rising progress on the use of metal nanoclusters for biological analysis, biological imaging, therapeutic applications, DNA assembly and logic gate construction, enzyme mimic catalysis, as well as thermometers and pH meters. Furthermore, the future challenges in the construction of biofunctional metal nanoclusters for diagnostic and therapeutic applications are also discussed. We expect that the rapidly growing interest in metal nanocluster-based theranostic applications will certainly not only fuel the excitement and stimulate research in this highly active field, but also inspire broader concerns across various disciplines.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China. and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mingqiang Li
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| |
Collapse
|
34
|
Santone M, Aprea S, Wu TYH, Cooke MP, Mbow ML, Valiante NM, Rush JS, Dougan S, Avalos A, Ploegh H, De Gregorio E, Buonsanti C, D'Oro U. A new TLR2 agonist promotes cross-presentation by mouse and human antigen presenting cells. Hum Vaccin Immunother 2016; 11:2038-50. [PMID: 26024409 DOI: 10.1080/21645515.2015.1027467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cross-presentation is the process by which professional APCs load peptides from an extracellularly derived protein onto class I MHC molecules to trigger a CD8(+) T cell response. The ability to enhance this process is therefore relevant for the development of antitumor and antiviral vaccines. We investigated a new TLR2-based adjuvant, Small Molecule Immune Potentiator (SMIP) 2.1, for its ability to stimulate cross-presentation. Using OVA as model antigen, we demonstrated that a SMIP2.1-adjuvanted vaccine formulation induced a greater CD8(+) T cell response, in terms of proliferation, cytokine production and cytolytic activity, than a non-adjuvanted vaccine. Moreover, using an OVA-expressing tumor model, we showed that the CTLs induced by the SMIP2.1 formulated vaccine inhibits tumor growth in vivo. Using a BCR transgenic mouse model we found that B cells could cross-present the OVA antigen when stimulated with SMIP2.1. We also used a flow cytometry assay to detect activation of human CD8(+) T cells isolated from human PBMCs of cytomegalovirus-seropositive donors. Stimulation with SMIP2.1 increased the capacity of human APCs, pulsed in vitro with the pp65 CMV protein, to activate CMV-specific CD8(+) T cells. Therefore, vaccination with an exogenous antigen formulated with SMIP2.1 is a successful strategy for the induction of a cytotoxic T cell response along with antibody production.
Collapse
Key Words
- APC, antigen presenting cell
- B cells
- BCR, B cell receptor
- CMV, cytomegalovirus
- CTL, cytotoxic t lymphocyte
- DC, dendritic cell
- HCMV, human CMV
- KO, knock out
- LN, lymph node
- MHC, major histocompatibility complex
- OVA, avalbumin
- PBMC, peripheral blood mononuclear cell
- SMIP, Small Molecule Immune Potentiator
- TLR, toll like receptor
- cross presentation/priming
- cytotoxic T cells
- dendritic cells
- vaccination
Collapse
Affiliation(s)
- Melissa Santone
- a Novartis Vaccines and Diagnostics s.r.l. (a GlaxoSmithKline Company) ; Siena , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Talmadge JE. Natural product derived immune-regulatory agents. Int Immunopharmacol 2016; 37:5-15. [PMID: 26968760 DOI: 10.1016/j.intimp.2016.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
We can now declare that the clinical goal of immune intervention as a therapeutic strategy for neoplastic, infectious, autoimmune and inflammatory diseases, has been achieved and in many instances obtained regulatory approval. Although, interest in and optimism for this approach has fluctuated, in the last 20years, immunotherapy has progressed from trials with crude microbial mixtures and extracts to the sophisticated use of pure cultured bacterial, synthetized active moieties identified from crude extracts, analogues therefrom and agonists and antagonists identified during screening resulting in reproducible pharmacologically active compounds with multiple mechanisms of action. Our current understanding of the mechanism of action for immunoregulatory agents contributes to the future discovery of improved strategies to use these and future immunotherapies. In this review we have identified and discussed, those drugs that have been approved and or are in clinical development as immunoregulatory agents, emphasizing those derived from or associated with natural product.
Collapse
Affiliation(s)
- James E Talmadge
- University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, United States
| |
Collapse
|
36
|
Sun W, Fang M, Chen Y, Yang Z, Xiao Y, Wan M, Wang H, Yu Y, Wang L. Delivery System of CpG Oligodeoxynucleotides through Eliciting an Effective T cell Immune Response against Melanoma in Mice. J Cancer 2016; 7:241-50. [PMID: 26918036 PMCID: PMC4747877 DOI: 10.7150/jca.12899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023] Open
Abstract
Purpose: In order to improve the immunogenicity of whole tumor cell lysate for tumor vaccine, we have designed a series of CpG ODNs to study their transport and to evaluate their anti-tumor activity in B16 melanoma mouse models. Methods: In this study, we investigated whether C-class CpG ODN (CpG ODN-685) could facilitate tumor cell lysate to induce vigorous anti-tumor activity against tumors in mice both prophylactically and therapeutically. Results: It was found that the combination of tumor cell lysate and CpG ODN-685 could inhibit the growth of B16 melanoma and prolong the survival of tumor-bearing mice. Moreover CpG ODN-685 with the addition of tumor cell lysate can also cause the generation of tumor specific immune memory by inducing specific cytotoxic T lymphocytes and helper T lymphocytes in mice. Conclusion: The results suggest that CpG ODN-685 could be developed as an efficient adjuvant for tumor vaccines against melanoma.
Collapse
Affiliation(s)
- Wei Sun
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Mingli Fang
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yajing Chen
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhaogang Yang
- 3. NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA
| | - Yue Xiao
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Min Wan
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hua Wang
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yongli Yu
- 2. Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Liying Wang
- 1. Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
37
|
Brodin JD, Sprangers AJ, McMillan JR, Mirkin CA. DNA-Mediated Cellular Delivery of Functional Enzymes. J Am Chem Soc 2015; 137:14838-41. [PMID: 26587747 DOI: 10.1021/jacs.5b09711] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a strategy for creating a new class of protein transfection materials composed of a functional protein core chemically modified with a dense shell of oligonucleotides. These materials retain the native structure and catalytic ability of the hydrolytic enzyme β-galactosidase, which serves as the protein core, despite the functionalization of its surface with ∼25 DNA strands. The covalent attachment of a shell of oligonucleotides to the surface of β-galactosidase enhances its cellular uptake of by up to ∼280-fold and allows for the use of working concentrations as low as 100 pM enzyme. DNA-functionalized β-galactosidase retains its ability to catalyze the hydrolysis of β-glycosidic linkages once endocytosed, whereas equal concentrations of protein show little to no intracellular catalytic activity.
Collapse
Affiliation(s)
- Jeffrey D Brodin
- International Institute of Nanotechnology, ‡Department of Chemistry, and §Department of Biomedical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anthony J Sprangers
- International Institute of Nanotechnology, ‡Department of Chemistry, and §Department of Biomedical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Janet R McMillan
- International Institute of Nanotechnology, ‡Department of Chemistry, and §Department of Biomedical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute of Nanotechnology, ‡Department of Chemistry, and §Department of Biomedical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. J Immunol Res 2015; 2015:785634. [PMID: 26583156 PMCID: PMC4637118 DOI: 10.1155/2015/785634] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.
Collapse
|
39
|
Tao Y, Zhang Y, Ju E, Ren H, Ren J. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. NANOSCALE 2015; 7:12419-12426. [PMID: 26129929 DOI: 10.1039/c5nr02240a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.
| | | | | | | | | |
Collapse
|
40
|
Shinchi H, Crain B, Yao S, Chan M, Zhang SS, Ahmadiiveli A, Suda Y, Hayashi T, Cottam HB, Carson DA. Enhancement of the Immunostimulatory Activity of a TLR7 Ligand by Conjugation to Polysaccharides. Bioconjug Chem 2015; 26:1713-23. [PMID: 26193334 DOI: 10.1021/acs.bioconjchem.5b00285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) in the innate immune system recognize specific pathogen-associated molecular patterns derived from microbes. Synthetic small molecule TLR7 agonists have been extensively evaluated as topical agents for antiviral and anticancer therapy, and as adjuvants for vaccine. However, safe and reproducible administration of synthetic TLR7 ligands has been difficult to achieve due to undesirable pharmacokinetics and unacceptable side effects. Here, we conjugated a versatile low molecular weight TLR7 ligand to various polysaccharides in order to improve its water solubility, enhance its potency, and maintain low toxicity. The synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine, designated 1V209, was stably conjugated to primary amine functionalized Ficoll or dextran using benzoic acid functional groups. The conjugation ratios using specified equivalents of TLR7 ligand were dose responsive and reproducible. The zeta potential value of the polysaccharides was decreased in inverse proportion to the ratio of conjugated TLR7 ligand. These conjugates were highly water-soluble, stable for at least 6 months at room temperature in aqueous solution, and easy to lyophilize and reconstitute without altering potency. In vitro studies with murine mononuclear leukocytes showed that the TLR7 agonist conjugated to polysaccharides had 10- to 1000-fold higher potencies than the unconjugated TLR7 ligand. In vivo pharmacodynamics studies after injection indicate that the conjugates induced systemic cytokine production. When the conjugates were used as vaccine adjuvants, they enhanced antigen specific humoral and cellular immune responses to a much greater extent than did unconjugated TLR7 ligands. These results indicated that small molecule TLR7 ligands conjugated to polysaccharides have improved immunostimulatory potency and pharmacodynamics. Polysaccharides can be conjugated to a variety of molecules such as antigens, peptides, and TLR ligands. Therefore, such conjugates could represent a versatile platform for the development of vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Hiroyuki Shinchi
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States.,‡Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Brian Crain
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Shiyin Yao
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Michael Chan
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Shannon S Zhang
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Alast Ahmadiiveli
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Yasuo Suda
- ‡Department of Chemistry, Biotechnology and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Kohrimoto, Kagoshima 890-0065, Japan
| | - Tomoko Hayashi
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Howard B Cottam
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| | - Dennis A Carson
- †Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0695, United States
| |
Collapse
|
41
|
Szeto GL, Van Egeren D, Worku H, Sharei A, Alejandro B, Park C, Frew K, Brefo M, Mao S, Heimann M, Langer R, Jensen K, Irvine DJ. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Sci Rep 2015; 5:10276. [PMID: 25999171 PMCID: PMC4441198 DOI: 10.1038/srep10276] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 12/02/2022] Open
Abstract
B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.
Collapse
Affiliation(s)
- Gregory Lee Szeto
- 1] Department of Materials Science &Engineering, MIT [2] Department of Biological Engineering, MIT [3] David. H. Koch Institute for Integrative Cancer Research, MIT [4] The Ragon Institute of Harvard, MIT, and MGH
| | | | | | - Armon Sharei
- 1] David. H. Koch Institute for Integrative Cancer Research, MIT [2] Department of Chemical Engineering, MIT [3] The Ragon Institute of Harvard, MIT, and MGH
| | | | - Clara Park
- Department of Biological Engineering, MIT
| | | | - Mavis Brefo
- Department of Materials Science &Engineering, MIT
| | | | - Megan Heimann
- David. H. Koch Institute for Integrative Cancer Research, MIT
| | - Robert Langer
- 1] David. H. Koch Institute for Integrative Cancer Research, MIT [2] Department of Chemical Engineering, MIT
| | | | - Darrell J Irvine
- 1] Department of Materials Science &Engineering, MIT [2] Department of Biological Engineering, MIT [3] David. H. Koch Institute for Integrative Cancer Research, MIT [4] The Ragon Institute of Harvard, MIT, and MGH [5] Howard Hughes Medical Institute
| |
Collapse
|
42
|
Shirota H, Tross D, Klinman DM. CpG Oligonucleotides as Cancer Vaccine Adjuvants. Vaccines (Basel) 2015; 3:390-407. [PMID: 26343193 PMCID: PMC4494345 DOI: 10.3390/vaccines3020390] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 12/16/2022] Open
Abstract
Adjuvants improve host responsiveness to co-delivered vaccines through a variety of mechanisms. Agents that trigger cells expressing Toll-like receptors (TLR) activate an innate immune response that enhances the induction of vaccine-specific immunity. When administered in combination with vaccines designed to prevent or slow tumor growth, TLR agonists have significantly improved the generation of cytotoxic T lymphocytes. Unfortunately, vaccines containing TLR agonists have rarely been able to eliminate large established tumors when administered systemically. To improve efficacy, attention has focused on delivering TLR agonists intra-tumorally with the intent of altering the tumor microenvironment. Agonists targeting TLRs 7/8 or 9 can reduce the frequency of Tregs while causing immunosuppressive MDSC in the tumor bed to differentiate into tumoricidal macrophages thereby enhancing tumor elimination. This work reviews pre-clinical and clinical studies concerning the utility of TLR 7/8/9 agonists as adjuvants for tumor vaccines.
Collapse
Affiliation(s)
- Hidekazu Shirota
- Department of Clinical Oncology, Tohoku University Hospital, Sendai 980-8577, Japan.
| | - Debra Tross
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
43
|
Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, Aoshi T, Ishii KJ. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol 2015; 45:1159-69. [PMID: 25529558 PMCID: PMC4671267 DOI: 10.1002/eji.201445132] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022]
Abstract
Agonists for TLR9 and Stimulator of IFN Gene (STING) act as vaccine adjuvants that induce type-1 immune responses. However, currently available CpG oligodeoxynucleotide (ODN) (K-type) induces IFNs only weakly and STING ligands rather induce type-2 immune responses, limiting their potential therapeutic applications. Here, we show a potent synergism between TLR9 and STING agonists. Together, they make an effective type-1 adjuvant and an anticancer agent. The synergistic effect between CpG ODN (K3) and STING-ligand cyclic GMP-AMP (cGAMP), culminating in NK cell IFN-γ (type-II IFN) production, is due to the concurrent effects of IL-12 and type-I IFNs, which are differentially regulated by IRF3/7, STING, and MyD88. The combination of CpG ODN with cGAMP is a potent type-1 adjuvant, capable of inducing strong Th 1-type responses, as demonstrated by enhanced antigen-specific IgG2c and IFN-γ production, as well as cytotoxic CD8(+) T-cell responses. In our murine tumor models, intratumoral injection of CpG ODN and cGAMP together reduced tumor size significantly compared with the singular treatments, acting as an antigen-free anticancer agent. Thus, the combination of CpG ODN and a STING ligand may offer therapeutic application as a potent type-II IFN inducer.
Collapse
Affiliation(s)
- Burcu Temizoz
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kastenmüller W, Kastenmüller K, Kurts C, Seder RA. Dendritic cell-targeted vaccines--hope or hype? Nat Rev Immunol 2014; 14:705-11. [PMID: 25190285 DOI: 10.1038/nri3727] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer is a challenge. One strategy to enhance the effectiveness of vaccination is by targeting dendritic cells (DCs). In this Opinion article, we discuss existing DC-targeting approaches that induce adaptive immunity. We highlight the crucial issues that need to be addressed to move the field forward and discuss whether targeting DCs could be better than current vaccine approaches.
Collapse
Affiliation(s)
| | - Kathrin Kastenmüller
- Institute of Experimental Immunology and the Department of General Practice and Family Medicine, University of Bonn, 53105 Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, 53105 Bonn, Germany
| | - Robert A Seder
- Cellular Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-3005, USA
| |
Collapse
|
45
|
Zom GG, Khan S, Britten CM, Sommandas V, Camps MGM, Loof NM, Budden CF, Meeuwenoord NJ, Filippov DV, van der Marel GA, Overkleeft HS, Melief CJM, Ossendorp F. Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates. Cancer Immunol Res 2014; 2:756-64. [PMID: 24950688 DOI: 10.1158/2326-6066.cir-13-0223] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemical conjugates comprising synthetic Toll-like receptor ligands (TLR-L) covalently bound to antigenic synthetic long peptides (SLP) are attractive vaccine modalities, which can induce robust CD8(+) T-cell immune responses. Previously, we have shown that the mechanism underlying the power of TLR-L SLP conjugates is improved delivery of the antigen together with a dendritic cell activation signal. In the present study, we have expanded the approach to tumor-specific CD4(+) as well as CD8(+) T-cell responses and in vivo studies in two nonrelated aggressive tumor models. We show that TLR2-L SLP conjugates have superior mouse CD8(+) and CD4(+) T-cell priming capacity compared with free SLPs injected together with a free TLR2-L. Vaccination with TLR2-L SLP conjugates leads to efficient induction of antitumor immunity in mice challenged with aggressive transplantable melanoma or lymphoma. Our data indicate that TLR2-L SLP conjugates are suitable to promote integrated antigen-specific CD8(+) and CD4(+) T-cell responses required for the antitumor effects. Collectively, these data show that TLR2-L SLP conjugates are promising synthetic vaccine candidates for active immunotherapy against cancer.
Collapse
Affiliation(s)
- Gijs G Zom
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Selina Khan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Cedrik M Britten
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Vinod Sommandas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Nikki M Loof
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | - Christina F Budden
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre
| | | | | | | | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre; ISA Pharmaceuticals BV, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre;
| |
Collapse
|
46
|
Shirota H, Klinman DM. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Expert Rev Vaccines 2013; 13:299-312. [PMID: 24308579 DOI: 10.1586/14760584.2014.863715] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides designed to specifically agonize Toll-like receptor 9. Here, we review recent progress in understanding the mechanism of action of CpG ODN and provide an overview of human clinical trial results using CpG ODN to improve the vaccines for cancer, allergy and infectious disease.
Collapse
|
47
|
Wilson JT, Keller S, Manganiello MJ, Cheng C, Lee CC, Opara C, Convertine A, Stayton PS. pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. ACS NANO 2013; 7:3912-25. [PMID: 23590591 PMCID: PMC4042837 DOI: 10.1021/nn305466z] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Protein subunit vaccines offer important potential advantages over live vaccine vectors but generally elicit weaker and shorter-lived cellular immune responses. Here we investigate the use of pH-responsive, endosomolytic polymer nanoparticles that were originally developed for RNA delivery as vaccine delivery vehicles for enhancing cellular and humoral immune responses. Micellar nanoparticles were assembled from amphiphilic diblock copolymers composed of an ampholytic core-forming block and a redesigned polycationic corona block doped with thiol-reactive pyridyl disulfide groups to enable dual-delivery of antigens and immunostimulatory CpG oligodeoxynucleotide (CpG ODN) adjuvants. Polymers assembled into 23 nm particles with simultaneous packaging of CpG ODN and a thiolated protein antigen, ovalbumin (ova). Conjugation of ova to nanoparticles significantly enhanced antigen cross-presentation in vitro relative to free ova or an unconjugated, physical mixture of the parent compounds. Subcutaneous vaccination of mice with ova-nanoparticle conjugates elicited a significantly higher CD8(+) T cell response (0.5% IFN-γ(+) of CD8(+)) compared to mice vaccinated with free ova or a physical mixture of the two components. Significantly, immunization with ova-nanoparticle conjugates electrostatically complexed with CpG ODN (dual-delivery) enhanced CD8(+) T cell responses (3.4% IFN-γ(+) of CD8(+)) 7-, 18-, and 8-fold relative to immunization with conjugates, ova administered with free CpG, or a formulation containing free ova and CpG complexed to micelles, respectively. Similarly, dual-delivery carriers significantly increased CD4(+)IFN-γ(+) (Th1) responses and elicited a balanced IgG1/IgG2c antibody response. Intradermal administration further augmented cellular immune responses, with dual-delivery carriers inducing ∼7% antigen-specific CD8(+) T cells. This work demonstrates the ability of pH-responsive, endosomolytic nanoparticles to actively promote antigen cross-presentation and augment cellular and humoral immune responses via dual-delivery of protein antigens and CpG ODN. Hence, pH-responsive polymeric nanoparticles offer promise as a delivery platform for protein subunit vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick S. Stayton
- Corresponding Author Box 355061, University of Washington, Seattle, WA 98195- 1721. Tel: (206) 685-8148.
| |
Collapse
|
48
|
Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJM. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182-90. [PMID: 23706598 DOI: 10.1016/j.smim.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 01/15/2023]
Abstract
The insight that the immune system is involved in tumor resistance is gaining momentum and this has led to the development of immunotherapeutic strategies aiming at enhancement of immune-mediated tumor destruction. Although some of these strategies have moderate clinical benefit, most stand-alone therapies fail to significantly affect progressive disease and survival or do so only in a minority of patients. Research on the mechanisms underlying the generation of immune responses against tumors and the immune evasion by tumors has emphasized that various mechanisms simultaneously prevent effective immunity against cancer including inefficient presentation of tumor antigens by dendritic cells and induction of negative immune regulation by regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs). Thus the design of therapies that simultaneously improve effective tumor immunity and counteract immune evasion by tumors seems most desirable for clinical efficacy. As it is unlikely that a single immunotherapeutic strategy addresses all necessary requirements, combinatorial strategies that act synergistically need to be developed. Here we discuss the current knowledge and prospects of treatment with synthetic peptide vaccines that stimulate tumor-specific T-cell responses combined with adjuvants, immune modulating antibodies, cytokines and chemotherapy. We conclude that combinatorial approaches have the best potency to accomplish the most significant tumor destruction but further research is required to optimize such approaches.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Abstract
Vaccination is among the most efficient forms of immunotherapy. Although sometimes inducing lifelong protective B-cell responses, T-cell–mediated immunity remains challenging. Targeting antigen to dendritic cells (DCs) is an extensively explored concept aimed at improving cellular immunity. The identification of various DC subsets with distinct functional characteristics now allows for the fine-tuning of targeting strategies. Although some of these DC subsets are regarded as superior for (cross-) priming of naive T cells, controversies still remain about which subset represents the best target for immunotherapy. Because targeting the antigen alone may not be sufficient to obtain effective T-cell responses, delivery systems have been developed to target multiple vaccine components to DCs. In this Perspective, we discuss the pros and cons of targeting DCs: if targeting is beneficial at all and which vaccine vehicles and immunization routes represent promising strategies to reach and activate DCs.
Collapse
|
50
|
Paulis LE, Mandal S, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 2013; 25:389-95. [PMID: 23571027 DOI: 10.1016/j.coi.2013.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy critically relies on the efficient presentation of tumor antigens to T-cells to elicit a potent anti-tumor immune response aimed at life-long protection against cancer recurrence. Recent advances in the nanovaccine field have now resulted in formulations that trigger strong anti-tumor responses. Nanovaccines are assemblies that are able to present tumor antigens and appropriate immune-stimulatory signals either directly to T-cells or indirectly via antigen-presenting dendritic cells. This review focuses on important aspects of nanovaccine design for dendritic cells, including the synergistic and cytosolic delivery of immunogenic compounds, as well as their passive and active targeting to dendritic cells. In addition, nanoparticles for direct T-cell activation are discussed, addressing features necessary to effectively mimic dendritic cell/T-cell interactions.
Collapse
Affiliation(s)
- Leonie E Paulis
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | | | | |
Collapse
|