1
|
Liu Y, Zhang Z, Kang Z, Zhou XJ, Liu S, Guo S, Jin Q, Li T, Zhou L, Wu X, Wang YN, Lu L, He Y, Li F, Zhang H, Liu Y, Xu H. Interleukin 4-driven reversal of self-reactive B cell anergy contributes to the pathogenesis of systemic lupus erythematosus. Ann Rheum Dis 2023; 82:1444-1454. [PMID: 37567607 DOI: 10.1136/ard-2023-224453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES Reactivation of anergic autoreactive B cells (BND cells) is a key aetiological process in systemic lupus erythematosus (SLE), yet the underlying mechanism remains largely elusive. This study aimed to investigate how BND cells participate in the pathogenesis of SLE and the underlying mechanism. METHODS A combination of phenotypical, large-scale transcriptome and B cell receptor (BCR) repertoire profiling were employed at molecular and single cell level on samples from healthy donors and patients with SLE. Isolated naïve B cells from human periphery blood were treated with anti-CD79b mAb in vitro to induce anergy. IgM internalisation was tracked by confocal microscopy and was qualified by flow cytometer. RESULTS We characterised the decrease and disruption of BND cells in SLE patients and demonstrated IL-4 as an important cytokine to drive such pathological changes. We then elucidated that IL-4 reversed B cell anergy by promoting BCR recycling to the cell surface via STAT6 signalling. CONCLUSIONS We demonstrated the significance of IL-4 in reversing B cell anergy and established the scientific rationale to treat SLE via blocking IL-4 signalling, also providing diagnostic and prognostic biomarkers to identify patients who are most likely going to benefit from such treatments.
Collapse
Affiliation(s)
- Yaoyang Liu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhiguo Zhang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zijian Kang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xu-Jie Zhou
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Shujun Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Qianmei Jin
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan-Na Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Liangjing Lu
- Department of Rheumatology and Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanran He
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, USA
| | - Fubin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University) Ministry of Education, Beijing, China
| | - Yuncai Liu
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Zhuo Z, Wang Q, Li C, Zhang L, Zhang L, You R, Gong Y, Hua Y, Miao L, Bai J, Zhang C, Feng R, Chen M, Su F, Qu C, Xiao F. IGH rod-like tracer: An AlphaFold2 structural similarity extraction-based predictive biomarker for MRD monitoring in pre-B-ALL. iScience 2023; 26:107107. [PMID: 37408685 PMCID: PMC10319212 DOI: 10.1016/j.isci.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Sequence variation resulting from the evolution of IGH clones and immunophenotypic drift makes it difficult to track abnormal B cells in children with precursor B cell acute lymphoblastic leukemia (pre-B-ALL) by flow cytometry, qPCR, or next-generation sequencing (NGS). The V-(D)-J regions of immunoglobulin and T cell receptor of 47 pre-B-ALL samples were sequenced using the Illumina NovaSeq platform. The IGH rod-like tracer consensus sequence was extracted based on its rod-like alpha-helices structural similarity predicted by AlphaFold2. Additional data from published 203 pre-B-ALL samples were applied for validation. NGS-IGH (+) patients with pre-B-ALL had a poor prognosis. Consistent CDR3-coded protein structures in NGS-IGH (+) samples could be extracted as a potential follow-up marker for pre-B-ALL children during treatment. IGH rod-like tracer from quantitative immune repertoire sequencing may serve as a class of biomarker with significant predictive values for the dynamic monitoring of MRD in pre-B-ALL children.
Collapse
Affiliation(s)
- Zhongling Zhuo
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, Peking University People’s Hospital, Beijing, China
| | - Qingchen Wang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanxin Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran You
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Yan Gong
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Ying Hua
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Linzi Miao
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Jiefei Bai
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxue Qu
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Fei Xiao
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Jacob M, Masood A, Shinwari Z, Abdel Jabbar M, Al-Mousa H, Arnaout R, AlSaud B, Dasouki M, Alaiya AA, Abdel Rahman AM. Proteomics Profiling to Distinguish DOCK8 Deficiency From Atopic Dermatitis. FRONTIERS IN ALLERGY 2021; 2:774902. [PMID: 35386989 PMCID: PMC8974780 DOI: 10.3389/falgy.2021.774902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 8 deficiency is an autosomal recessive primary immune deficiency disease belonging to the group of hyperimmunoglobulinemia E syndrome (HIES). The clinical phenotype of dedicator of cytokinesis 8 (DOCK8) deficiency, characterized by allergic manifestations, increased infections, and increased IgE levels, overlaps with the clinical presentation of atopic dermatitis (AD). Despite the identification of metabolomics and cytokine biomarkers, distinguishing between the two conditions remains clinically challenging. The present study used a label-free untargeted proteomics approach using liquid-chromatography mass spectrometry with network pathway analysis to identify the differentially regulated serum proteins and the associated metabolic pathways altered between the groups. Serum samples from DOCK8 (n = 10), AD (n = 9) patients and healthy control (Ctrl) groups (n = 5) were analyzed. Based on the proteomics profile, the PLS-DA score plot between the three groups showed a clear group separation and sample clustering (R2 = 0.957, Q2 = 0.732). Significantly differentially abundant proteins (p < 0.05, FC cut off 2) were identified between DOCK8-deficient and AD groups relative to Ctrl (n = 105, and n = 109) and between DOCK8-deficient and AD groups (n = 85). Venn diagram analysis revealed a differential regulation of 24 distinct proteins from among the 85 between DOCK8-deficient and AD groups, including claspin, haptoglobin-related protein, immunoglobulins, complement proteins, fibulin, and others. Receiver-operating characteristic curve (ROC) analysis identified claspin and haptoglobin-related protein, as potential biomarkers with the highest sensitivity and specificity (AUC = 1), capable of distinguishing between patients with DOCK8 deficiency and AD. Network pathway analysis between DOCK8-deficiency and AD groups revealed that the identified proteins centered around the dysregulation of ERK1/2 signaling pathway. Herein, proteomic profiling of DOCK8-deficiency and AD groups was carried out to determine alterations in the proteomic profiles and identify a panel of the potential proteomics biomarker with possible diagnostic applications. Distinguishing between DOCK8-deficiency and AD will help in the early initiation of treatment and preventing complications.
Collapse
Affiliation(s)
- Minnie Jacob
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zakiya Shinwari
- Proteomics Unit, Stem-Cell and Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abdel Jabbar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hamoud Al-Mousa
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rand Arnaout
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bandar AlSaud
- Section of Pediatric Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Majed Dasouki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayodele A. Alaiya
- Proteomics Unit, Stem-Cell and Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
- *Correspondence: Anas M. Abdel Rahman
| |
Collapse
|
4
|
Zhang Z, Jara CJ, Singh M, Xu H, Goodnow CC, Jackson KJ, Reed JH. Human transitional and IgM low mature naïve B cells preserve permissive B-cell receptors. Immunol Cell Biol 2021; 99:865-878. [PMID: 33988890 PMCID: PMC8453828 DOI: 10.1111/imcb.12478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/02/2022]
Abstract
The level of immunoglobulin M (IgM) displayed on the surface of peripheral blood B cells exhibits a broad dynamic range and has been associated with both development and selection. To determine whether IgM surface expression associates with distinct immunoglobulin heavy‐chain (IGH) repertoire properties, we performed deep IgM sequencing of peripheral blood transitional and mature naïve B cells in the upper and lower quartiles of surface IgM expression for 12 healthy donors. Mature naïve B cells within the lowest quartile for surface IgM expression displayed more diverse IGH features including increased complementarity‐determining region 3 length, IGHJ6 segment usage and aromatic amino acids compared with mature naïve B cells with high surface IgM. There were no differences between IGH repertoires for transitional B cells with high or low surface IgM. These findings suggest that a selection checkpoint during progression of transitional to mature naïve B cells reduces the breadth of the IGH repertoire among high surface IgM B cells but that diversity is preserved in B cells expressing low levels of surface IgM.
Collapse
Affiliation(s)
- Zhiguo Zhang
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Christopher J Jara
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW, Sydney, NSW, Australia
| | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW, Sydney, NSW, Australia
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences and Cellular Genomics Futures Institute, UNSW, Sydney, NSW, Australia
| | | | - Joanne H Reed
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW, Sydney, NSW, Australia
| |
Collapse
|
5
|
Kalinina O, Louzoun Y, Wang Y, Utset T, Weigert M. Origins and specificity of auto-antibodies in Sm+ SLE patients. J Autoimmun 2018; 90:94-104. [DOI: 10.1016/j.jaut.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/09/2018] [Accepted: 02/17/2018] [Indexed: 11/27/2022]
|
6
|
Ryherd M, Plassmeyer M, Alexander C, Eugenio I, Kleschenko Y, Badger A, Gupta R, Alpan O, Sønder SU. Improved panels for clinical immune phenotyping: Utilization of the violet laser. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:671-679. [DOI: 10.1002/cyto.b.21532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | | | | | - Raavi Gupta
- Amerimmune LLC; Fairfax Virginia
- Department of Pathology; SUNY; New York
| | | | | |
Collapse
|
7
|
Abstract
The induction of neutralizing antibodies directed against the human immunodeficiency virus (HIV) has received considerable attention in recent years, in part driven by renewed interest and opportunities for antibody-based strategies for prevention such as passive transfer of antibodies and the development of preventive vaccines, as well as immune-based therapeutic interventions. Advances in the ability to screen, isolate, and characterize HIV-specific antibodies have led to the identification of a new generation of potent broadly neutralizing antibodies (bNAbs). The majority of these antibodies have been isolated from B cells of chronically HIV-infected individuals with detectable viremia. In this review, we provide insight into the phenotypic and functional attributes of human B cells, with a focus on HIV-specific memory B cells and plasmablasts/cells that are responsible for sustaining humoral immune responses against HIV. We discuss the abnormalities in B cells that occur in HIV infection both in the peripheral blood and lymphoid tissues, especially in the setting of persisting viremia. Finally, we consider the opportunities and drawbacks of intensively interrogating antibodies isolated from HIV-infected individuals to guide strategies aimed at developing effective antibody-based vaccine and therapeutic interventions for HIV.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
8
|
El Bannoudi H, Anquetil C, Braunstein MJ, Pond SLK, Silverman GJ. Unbiased RACE-Based Massive Parallel Surveys of Human IgA Antibody Repertoires. Methods Mol Biol 2017; 1643:45-73. [PMID: 28667529 DOI: 10.1007/978-1-4939-7180-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
For investigations of human B-cell receptor (BCR) repertoires, we have developed a protocol for large-scale surveys of human antibody heavy chain (VH) rearrangements. Here we study IgA repertoires, as more IgA antibodies are synthesized in the human body on a daily level than all other isotypes combined. In fact, IgA is secreted at all mucosal surfaces, and it is also secreted in the perspiration that coats our cutaneous surfaces. In these studies we can characterize the IgA clonal diversity of B-cell populations obtained from any donor. To recover representative repertoire libraries, we make our libraries from antibody gene transcript templates (i.e., cDNA), as these are closer reflections of the immune repertoire expressed at the antibody protein level. To avoid biases potentially introduced by upstream oligonucleotide primers that hybridize to variable region framework regions, our approach also uses rapid amplification of cDNA ends (RACE) of antibody transcripts. For exploration of human IgA responses, we have designed a duplexing antisense constant region primer that efficiently amplifies, side-by-side, heavy chain transcripts of both the IgA1 and IgA2 subclasses. By these methods we have begun to define the molecular differences in the IgA1 and IgA2 responses occurring simultaneously in different donors. These methods will be used to investigate the effects of microbial virulence factors on host defenses, during autoimmune responses, and in B-cell malignancies.
Collapse
Affiliation(s)
- Hanane El Bannoudi
- Department of Medicine, NYU School of Medicine, 450 E. 29th Street, New York, NY, 10016, USA
| | - Céline Anquetil
- Department of Medicine, NYU School of Medicine, 450 E. 29th Street, New York, NY, 10016, USA
| | - Marc J Braunstein
- Department of Medicine, NYU School of Medicine, 450 E. 29th Street, New York, NY, 10016, USA
| | | | - Gregg J Silverman
- Department of Medicine, NYU School of Medicine, Alexandria Center for Life Science, 8th Floor, Rm 804, 450 E. 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Rivas JR, Ireland SJ, Chkheidze R, Rounds WH, Lim J, Johnson J, Ramirez DMO, Ligocki AJ, Chen D, Guzman AA, Woodhall M, Wilson PC, Meffre E, White C, Greenberg BM, Waters P, Cowell LG, Stowe AM, Monson NL. Peripheral VH4+ plasmablasts demonstrate autoreactive B cell expansion toward brain antigens in early multiple sclerosis patients. Acta Neuropathol 2017; 133:43-60. [PMID: 27730299 DOI: 10.1007/s00401-016-1627-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/24/2022]
Abstract
Plasmablasts are a highly differentiated, antibody secreting B cell subset whose prevalence correlates with disease activity in Multiple Sclerosis (MS). For most patients experiencing partial transverse myelitis (PTM), plasmablasts are elevated in the blood at the first clinical presentation of disease (known as a clinically isolated syndrome or CIS). In this study we found that many of these peripheral plasmablasts are autoreactive and recognize primarily gray matter targets in brain tissue. These plasmablasts express antibodies that over-utilize immunoglobulin heavy chain V-region subgroup 4 (VH4) genes, and the highly mutated VH4+ plasmablast antibodies recognize intracellular antigens of neurons and astrocytes. Most of the autoreactive, highly mutated VH4+ plasmablast antibodies recognize only a portion of cortical neurons, indicating that the response may be specific to neuronal subgroups or layers. Furthermore, CIS-PTM patients with this plasmablast response also exhibit modest reactivity toward neuroantigens in the plasma IgG antibody pool. Taken together, these data indicate that expanded VH4+ peripheral plasmablasts in early MS patients recognize brain gray matter antigens. Peripheral plasmablasts may be participating in the autoimmune response associated with MS, and provide an interesting avenue for investigating the expansion of autoreactive B cells at the time of the first documented clinical event.
Collapse
Affiliation(s)
- Jacqueline R Rivas
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Sara J Ireland
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Rati Chkheidze
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | - William H Rounds
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Joseph Lim
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Jordan Johnson
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Denise M O Ramirez
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Ann J Ligocki
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Ding Chen
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Alyssa A Guzman
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Mark Woodhall
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patrick C Wilson
- Department of Biomedical Sciences, University of Chicago, Chicago, IL, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Charles White
- Department of Pathology, UT Southwestern, Dallas, TX, USA
| | | | - Patrick Waters
- Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lindsay G Cowell
- Department of Clinical Science, UT Southwestern, Dallas, TX, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, UT Southwestern, Dallas, TX, USA.
- Department of Immunology, UT Southwestern, Dallas, TX, USA.
| |
Collapse
|
10
|
Martin VG, Wu YCB, Townsend CL, Lu GHC, O'Hare JS, Mozeika A, Coolen ACC, Kipling D, Fraternali F, Dunn-Walters DK. Transitional B Cells in Early Human B Cell Development - Time to Revisit the Paradigm? Front Immunol 2016; 7:546. [PMID: 27994589 PMCID: PMC5133252 DOI: 10.3389/fimmu.2016.00546] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023] Open
Abstract
The B cell repertoire is generated in the adult bone marrow by an ordered series of gene rearrangement processes that result in massive diversity of immunoglobulin (Ig) genes and consequently an equally large number of potential specificities for antigen. As the process is essentially random, the cells exhibiting excess reactivity with self-antigens are generated and need to be removed from the repertoire before the cells are fully mature. Some of the cells are deleted, and some will undergo receptor editing to see if changing the light chain can rescue an autoreactive antibody. As a consequence, the binding properties of the B cell receptor are changed as development progresses through pre-B ≫ immature ≫ transitional ≫ naïve phenotypes. Using long-read, high-throughput, sequencing we have produced a unique set of sequences from these four cell types in human bone marrow and matched peripheral blood, and our results describe the effects of tolerance selection on the B cell repertoire at the Ig gene level. Most strong effects of selection are seen within the heavy chain repertoire and can be seen both in gene usage and in CDRH3 characteristics. Age-related changes are small, and only the size of the CDRH3 shows constant and significant change in these data. The paucity of significant changes in either kappa or lambda light chain repertoires implies that either the heavy chain has more influence over autoreactivity than light chain and/or that switching between kappa and lambda light chains, as opposed to switching within the light chain loci, may effect a more successful autoreactive rescue by receptor editing. Our results show that the transitional cell population contains cells other than those that are part of the pre-B ≫ immature ≫ transitional ≫ naïve development pathway, since the population often shows a repertoire that is outside the trajectory of gene loss/gain between pre-B and naïve stages.
Collapse
Affiliation(s)
- Victoria G Martin
- Division of Infection, Immunity and Inflammatory Disease, Faculty of Life Sciences & Medicine, King's College London , London , UK
| | - Yu-Chang Bryan Wu
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London , London , UK
| | - Catherine L Townsend
- Division of Infection, Immunity and Inflammatory Disease, Faculty of Life Sciences & Medicine, King's College London , London , UK
| | - Grace H C Lu
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London , London , UK
| | - Joselli Silva O'Hare
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey , Guildford, Surrey , UK
| | - Alexander Mozeika
- Faculty of Life Sciences & Medicine, Institute for Mathematical and Molecular Biomedicine, King's College London , London , UK
| | - Anthonius C C Coolen
- Faculty of Life Sciences & Medicine, Institute for Mathematical and Molecular Biomedicine, King's College London , London , UK
| | - David Kipling
- Institute of Cancer and Genetics, School of Medicine, Cardiff University , Cardiff , UK
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, London, UK; Faculty of Life Sciences & Medicine, Institute for Mathematical and Molecular Biomedicine, King's College London, London, UK
| | - Deborah K Dunn-Walters
- Division of Infection, Immunity and Inflammatory Disease, Faculty of Life Sciences & Medicine, King's College London, London, UK; Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
11
|
Xue K, Song J, Yang Y, Li Z, Wu C, Jin J, Li W. PAX5 promotes pre-B cell proliferation by regulating the expression of pre-B cell receptor and its downstream signaling. Mol Immunol 2016; 73:1-9. [PMID: 27016671 DOI: 10.1016/j.molimm.2016.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
PAX5 is indispensable for the commitment of early lymphoid progenitors to the B cell lineage as well as for the development of B cells. Although previous studies have indicated that the Pax5-conditional-knockout mouse exhibited dedifferentiation of mature B cell and the development of aggressive lymphomas, the changes of Pax5 gene expressions in pre-B cells have not been analyzed. To understand the functional importance of Pax5 gene in the proliferation and survival of pre-B cells, we established a Pax5-knockdown model using 70Z/3 pre-B cell line. Pax5 knockdown 70Z/3 cells (70Z/3-KD cells) showed down-regulations of pre-BCR compounds such as CD19, BLNK, Id2 and λ5. The signaling via pre-BCRs was significantly diminished in the 70Z/3-KD cells, and this alteration was normalized by restored Pax5 gene expression. Loss of PAX5 reduced the growth rates in the 70Z/3-KD cells, compared to the mock cells. Meanwhile, the proliferation of pre-B cells was reduced by the knockdown of Pax5 gene. Moreover, further examinations showed that PAX5 was also activated in B cell acute lymphoblastic leukemia (B-ALL) as a cell proliferation enhancer. These findings suggested that pax5 is critically important for the proliferation and survival of pre-B cells.
Collapse
Affiliation(s)
- Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Yan Yang
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhi Li
- Clinical Laboratory, Dalian Municipal Central Hospital, 826-Xinan Road, Shahekou District, Dalian city, Liaoning 116003, China
| | - Chunhua Wu
- Dalian Academy of Agricultural Sciences, Dalian, Liaoning 116036, China
| | - Jinhua Jin
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China.
| |
Collapse
|
12
|
Sarantopoulos S, Blazar BR, Cutler C, Ritz J. Reprint of: B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21:S11-8. [PMID: 25620647 DOI: 10.1016/j.bbmt.2014.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell-directed agents that may be effective for prevention or treatment of cGVHD. Some B cell-directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell-directed therapies for cGVHD will now be evaluated in clinical trials.
Collapse
Affiliation(s)
- Stefanie Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Corey Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Kaur K, Zheng NY, Smith K, Huang M, Li L, Pauli NT, Henry Dunand CJ, Lee JH, Morrissey M, Wu Y, Joachims ML, Munroe ME, Lau D, Qu X, Krammer F, Wrammert J, Palese P, Ahmed R, James JA, Wilson PC. High Affinity Antibodies against Influenza Characterize the Plasmablast Response in SLE Patients After Vaccination. PLoS One 2015; 10:e0125618. [PMID: 25951191 PMCID: PMC4423960 DOI: 10.1371/journal.pone.0125618] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/24/2015] [Indexed: 11/19/2022] Open
Abstract
Breakdown of B cell tolerance is a cardinal feature of systemic lupus erythematosus (SLE). Increased numbers of autoreactive mature naïve B cells have been described in SLE patients and autoantibodies have been shown to arise from autoreactive and non-autoreactive precursors. How these defects, in the regulation of B cell tolerance and selection, influence germinal center (GC) reactions that are directed towards foreign antigens has yet to be investigated. Here, we examined the characteristics of post-GC foreign antigen-specific B cells from SLE patients and healthy controls by analyzing monoclonal antibodies generated from plasmablasts induced specifically by influenza vaccination. We report that many of the SLE patients had anti-influenza antibodies with higher binding affinity and neutralization capacity than those from controls. Although overall frequencies of autoreactivity in the influenza-specific plasmablasts were similar for SLE patients and controls, the variable gene repertoire of influenza-specific plasmablasts from SLE patients was altered, with increased usage of JH6 and long heavy chain CDR3 segments. We found that high affinity anti-influenza antibodies generally characterize the plasmablast responses of SLE patients with low levels of autoreactivity; however, certain exceptions were noted. The high-avidity antibody responses in SLE patients may also be correlated with cytokines that are abnormally expressed in lupus. These findings provide insights into the effects of dysregulated immunity on the quality of antibody responses following influenza vaccination and further our understanding of the underlying abnormalities of lupus.
Collapse
Affiliation(s)
- Kaval Kaur
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Kenneth Smith
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Min Huang
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lie Li
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Noel T. Pauli
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Carole J. Henry Dunand
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jane-Hwei Lee
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Michael Morrissey
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yixuan Wu
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Michelle L. Joachims
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Melissa E. Munroe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Denise Lau
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Xinyan Qu
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jens Wrammert
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rafi Ahmed
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Patrick C. Wilson
- Committee on Immunology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Rheumatology, The Knapp Center for Lupus and Immunology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
14
|
Smith MJ, Packard TA, O'Neill SK, Henry Dunand CJ, Huang M, Fitzgerald-Miller L, Stowell D, Hinman RM, Wilson PC, Gottlieb PA, Cambier JC. Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 2015; 64:1703-12. [PMID: 25524915 PMCID: PMC4407867 DOI: 10.2337/db13-1798] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/10/2014] [Indexed: 12/13/2022]
Abstract
Although dogma predicts that under normal circumstances, potentially offensive autoreactive cells are silenced by mechanisms of immune tolerance, islet antigen-reactive B lymphocytes are known to play a crucial role in the development of autoimmunity in type 1 diabetes (T1D). Thus, participation of these cells in T1D may reflect escape from silencing mechanisms. Consistent with this concept, we found that in healthy subjects, high-affinity insulin-binding B cells occur exclusively in the anergic naive IgD(+), IgM(-) B-cell (BND) compartment. Antigen receptors expressed by these cells are polyreactive and have N-region additions, Vh usage, and charged complementarity-determining region 3 consistent with autoreactivity. Consistent with a potential early role in autoimmunity, these high-affinity insulin-binding B cells are absent from the anergic compartment of some first-degree relatives and all prediabetic and new-onset (<1 year) T1D patients tested, but return to normal levels in individuals diabetic for >1 year. Interestingly, these changes were correlated by transient loss of the entire BND compartment. These findings suggest that environmental events such as infection or injury may, by disrupting B-cell anergy, dispose individuals toward autoimmunity, the precise nature of which is specified by genetic risk factors, such as HLA alleles.
Collapse
Affiliation(s)
- Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO
| | - Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Shannon K O'Neill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | | | - Min Huang
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL
| | | | - Daniel Stowell
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Patrick C Wilson
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, IL
| | - Peter A Gottlieb
- Barbara Davis Center, University of Colorado School of Medicine, Aurora, CO
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
15
|
Kil LP, Corneth OB, de Bruijn MJ, Asmawidjaja PS, Krause A, Lubberts E, van Loo PF, Hendriks RW. Surrogate light chain expression beyond the pre-B cell stage promotes tolerance in a dose-dependent fashion. J Autoimmun 2015; 57:30-41. [DOI: 10.1016/j.jaut.2014.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/20/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
|
16
|
Sarantopoulos S, Blazar BR, Cutler C, Ritz J. B cells in chronic graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21:16-23. [PMID: 25452031 PMCID: PMC4295503 DOI: 10.1016/j.bbmt.2014.10.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 12/18/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell-directed agents that may be effective for prevention or treatment of cGVHD. Some B cell-directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell-directed therapies for cGVHD will now be evaluated in clinical trials.
Collapse
Affiliation(s)
- Stefanie Sarantopoulos
- Division of Cell Therapy and Hematologic Malignancies, Department of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Corey Cutler
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals. Immunol Rev 2014; 254:207-24. [PMID: 23772622 DOI: 10.1111/imr.12067] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV) disease is associated with dysregulation and dysfunction involving all major lymphocyte populations, including B cells. Such perturbations occur early in the course of infection and are driven in large part by immune activation resulting from ongoing HIV replication leading to bystander effects on B cells. While most of the knowledge regarding immune cell abnormalities in HIV-infected individuals has been gained from studies conducted on the peripheral blood, it is clear that the virus is most active and most damaging in lymphoid tissues. Here, we discuss B-cell perturbations in HIV-infected individuals, focusing on the skewing of B-cell subsets that circulate in the peripheral blood and their counterparts that reside in lymphoid tissues. This review also highlights recent advances in evaluating HIV-specific B-cell responses both in the memory B-cell compartment, as well as in circulating antibody-secreting plasmablasts and the more differentiated plasma cells residing in tissues. Finally, we consider how knowledge gained by investigating B cells in HIV-infected individuals may help inform the development of an effective antibody-based HIV vaccine.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
18
|
Kil LP, Hendriks RW. Aberrant B cell selection and activation in systemic lupus erythematosus. Int Rev Immunol 2013; 32:445-70. [PMID: 23768157 DOI: 10.3109/08830185.2013.786712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detrimental role of B lymphocytes in systemic lupus erythematosus (SLE) is evident from the high levels of pathogenic antinuclear autoantibodies (ANAs) found in SLE patients. Affirming this causative role, additional antibody-independent roles of B cells in SLE were appreciated. In recent years, many defects in B cell selection and activation have been identified in murine lupus models and SLE patients that explain the increased emergence and persistence of autoreactive B cells and their lowered activation threshold. Therefore, clinical trials with B cell depletion regimens in SLE patients were initiated but disappointingly the efficacy of B cell depleting agents proved to be limited. Remarkably however, a major breakthrough in SLE therapy was accomplished by blocking B cell survival factors rather then eliminating B cells. This surprising finding indicates that although SLE is a B cell-driven disease, the amplifying crosstalk between B cells and other cells of the immune system likely evokes the observed tolerance breakdown in B cells. Moreover, this implies that intelligent interception of pro-inflammatory loops rather then selectively silencing B cells will be key to the development of new SLE therapies. In this review, we will not only highlight the intrinsic B cell defects that facilitate the persistence of autoreactive B cells and their activation, but in addition we will focus on B cell extrinsic signals derived from T cells and innate immune cells that lower the activation threshold for B cells.
Collapse
Affiliation(s)
- Laurens P Kil
- Department of Pulmonary Medicine, Erasmus MC, NL 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
19
|
Oleksyn D, Pulvino M, Zhao J, Misra R, Vosoughi A, Jenks S, Tipton C, Lund F, Schwartz G, Goldman B, Mohan C, Mehta K, Mehta M, Leitgets M, Sanz I, Chen L. Protein kinase Cβ is required for lupus development in Sle mice. ACTA ACUST UNITED AC 2013; 65:1022-31. [PMID: 23280626 DOI: 10.1002/art.37825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 12/07/2012] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the requirement for protein kinase Cβ (PKCβ) in the development of lupus in mice, and to explore the potential of targeting PKCβ as a therapeutic strategy in lupus. METHODS Congenic mice bearing the disease loci Sle1 or Sle1 and Sle3, which represent different stages of severity in the development of lupus, were crossed with PKCβ-deficient mice. The effect of PKCβ deficiency in lupus development was analyzed. In addition, the effects of the PKCβ-specific inhibitor enzastaurin on the survival of B cells from mice with lupus and human 9G4-positive B cells as well as the in vivo effect of enzastaurin treatment on the development of lupus in Sle mice were investigated. RESULTS In Sle mice, PKCβ deficiency abrogated lupus-associated phenotypes, including high autoantibody levels, proteinuria, and histologic features of lupus nephritis. Significant decreases in spleen size and in the peritoneal B-1 cell population, reduced numbers of activated CD4 T cells, and normalized CD4:CD8 ratios were observed. PKCβ deficiency induced an anergic B cell phenotype and preferentially inhibited autoreactive plasma cells and autoantibodies in mice with lupus. Inhibition of PKCβ enhanced apoptosis of both B cells from Sle mice and human autoreactive B cells (9G4 positive). Treatment of Sle mice with the PKCβ-specific inhibitor enzastaurin prevented the development of lupus. CONCLUSION This study identifies PKCβ as a central mediator of lupus pathogenesis, suggesting that PKCβ represents a promising therapeutic target for the treatment of systemic lupus erythematosus. Moreover, the results indicate the feasibility of using a PKCβ inhibitor for the treatment of lupus.
Collapse
Affiliation(s)
- David Oleksyn
- University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Humans with chronic granulomatous disease maintain humoral immunologic memory despite low frequencies of circulating memory B cells. Blood 2012; 120:4850-8. [PMID: 23074274 DOI: 10.1182/blood-2012-05-430959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD27(+) memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27(+) but also IgG(+) B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG(+) B cells, the ratio of CD27(-) to CD27(+) was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27(-)IgG(+) B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27(+) counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27(-)IgG(+) B-cell compartment. Together, these findings show that, despite reduced circulating CD27(+) memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27(-) B cells.
Collapse
|
21
|
Gachard N, Parrens M, Soubeyran I, Petit B, Marfak A, Rizzo D, Devesa M, Delage-Corre M, Coste V, Laforêt MP, de Mascarel A, Merlio JP, Bouabdhalla K, Milpied N, Soubeyran P, Schmitt A, Bordessoule D, Cogné M, Feuillard J. IGHV gene features and MYD88 L265P mutation separate the three marginal zone lymphoma entities and Waldenström macroglobulinemia/lymphoplasmacytic lymphomas. Leukemia 2012; 27:183-9. [DOI: 10.1038/leu.2012.257] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
B cell receptor light chain repertoires show signs of selection with differences between groups of healthy individuals and SLE patients. Mol Immunol 2012; 51:273-82. [PMID: 22516082 DOI: 10.1016/j.molimm.2012.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/01/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023]
Abstract
We have developed a microarray to study the expression of L-chain V genes (V(L) genes) in healthy and SLE patient peripheral κ- and λ-sorted B cells. In all repertoires tested, one V(L) gene accounts for over 10% of all gene V(L) expression, consistent with positive selection acting on L-chains. While a few V(L) genes were highly expressed in all individuals, most V(L) genes were expressed at different levels. Some V(L) genes (5 out of a total of 78) were not detected. We attribute their absence from the repertoire to negative selection. Positive selection and negative selection were also found in SLE repertoires, but expression of V(L) genes was different; the differences point to less regulation of V(L) gene repertoires in SLE. Our data shows that V(L) gene expression is variable and supports a model where the L-chain repertoire is generated by both positive and negative selection on L-chains.
Collapse
|
23
|
Palanichamy A, Muhammad K, Roll P, Kleinert S, Dörner T, Tony HP. Rituximab therapy leads to reduced imprints of receptor revision in immunoglobulin κ and λ light chains. J Rheumatol 2012; 39:1130-8. [PMID: 22505705 DOI: 10.3899/jrheum.111513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Transient B cell depletion by rituximab (RTX) has become a specific treatment of rheumatoid arthritis (RA). Although phenotypic repopulation kinetics of B cell subsets are well documented, precise molecular analyses of the reconstituting immunoglobulin (Ig) genes encoding the B cell receptor in RA are sparse. METHODS A total of 708 individual CD19+CD27+ (memory) and CD19+CD27- (naive) B cells from 2 patients with RA were analyzed at baseline and 7 months after RTX at B cell repopulation. Ig light chain variable kappa (Vκ) and lambda (Vλ) light chain gene rearrangements were amplified, sequenced, and analyzed with a focus on receptor revision. RESULTS The naive as well as the memory repertoire repopulated polyclonally with diverse use of variable light chain gene families and minigenes. During the reconstitution phase, B cells used significantly fewer Jκ distal Vκ genes (p = 0.0006), with a higher frequency of somatic hypermutation of rearrangements employing Jκ5 compared to baseline in memory B cells. The use of Vλ rearrangements in regenerating B cells was also biased toward use of Vλ genes of the proximal cassette. In general, reemerging CD27+ Ig light chain genes were substantially more highly mutated than before RTX therapy (p < 0.0001, baseline vs during reconstitution). CONCLUSION Our data indicate that RTX therapy leads to generation of distinct Vκ/Jκ and Vλ/Jλ gene repertoires consistent with replenishment of antigen-experienced B cells by germinal centers. At baseline, the imprints of receptor revision appeared to be more striking, which indicates that receptor revision is active in patients with RA and can be reduced by RTX.
Collapse
Affiliation(s)
- Arumugam Palanichamy
- Department of Rheumatology and Clinical Immunology, Medizinische Klinik und Poliklinik II, Oberdürrbacherstr. 6, 97080 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Chang A, Henderson SG, Brandt D, Liu N, Guttikonda R, Hsieh C, Kaverina N, Utset TO, Meehan SM, Quigg RJ, Meffre E, Clark MR. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:1849-60. [PMID: 21187439 PMCID: PMC3124090 DOI: 10.4049/jimmunol.1001983] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The most prevalent severe manifestation of systemic lupus erythematosus is nephritis, which is characterized by immune complex deposition, inflammation, and scarring in glomeruli and the tubulointerstitium. Numerous studies indicated that glomerulonephritis results from a systemic break in B cell tolerance, resulting in the local deposition of immune complexes containing Abs reactive with ubiquitous self-Ags. However, the pathogenesis of systemic lupus erythematosus tubulointerstitial disease is not known. In this article, we demonstrate that in more than half of a cohort of 68 lupus nephritis biopsies, the tubulointerstitial infiltrate was organized into well-circumscribed T:B cell aggregates or germinal centers (GCs) containing follicular dendritic cells. Sampling of the in situ-expressed Ig repertoire revealed that both histological patterns were associated with intrarenal B cell clonal expansion and ongoing somatic hypermutation. However, in the GC histology, the proliferating cells were CD138(-)CD20(+) centroblasts, whereas they were CD138(+)CD20(low/-) plasmablasts in T:B aggregates. The presence of GCs or T:B aggregates was strongly associated with tubular basement membrane immune complexes. These data implicate tertiary lymphoid neogenesis in the pathogenesis of lupus tubulointerstitial inflammation.
Collapse
Affiliation(s)
- Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 2011; 1217:96-121. [PMID: 21251012 DOI: 10.1111/j.1749-6632.2010.05877.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.
Collapse
Affiliation(s)
- Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
26
|
Sun Y, Wang C, Wang Y, Zhang T, Ren L, Hu X, Zhang R, Meng Q, Guo Y, Fei J, Li N, Zhao Y. A comprehensive analysis of germline and expressed immunoglobulin repertoire in the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1009-1020. [PMID: 20466019 DOI: 10.1016/j.dci.2010.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/02/2010] [Accepted: 05/03/2010] [Indexed: 05/29/2023]
Abstract
Based on the recently released horse genome, we have characterized the genomic organization of the horse Ig gene loci. The horse IgH locus in genomic scaffold Un0011 contains 40 D(H) segments, 8 J(H) segments and 50 V(H) segments. The Igkappa locus contains only a single C(kappa) gene, 5 J(kappa) segments and a 60 V(kappa) segments, whereas the Iglambda locus contains 7 C(lambda) genes each preceded by a J(lambda) gene segment. A total of 110 V(lambda) segments with the same transcriptional polarity as J(lambda)-C(lambda) were identified upstream of the J(lambda)-C(lambda) cluster. However, 34 V(lambda) segments locating downstream of the J(lambda)-C(lambda) cluster showed an opposite transcriptional polarity. Our results reveal that the horse germline V repertoires were more complex than previously estimated. By analyzing the cloned IgH/L cDNA, we further showed that several selected V subgroups were utilized in the expressed V(H), V(kappa), or V(lambda) and a high frequency of nucleotide deletions and insertions were introduced by somatic hypermutation in these expressed V genes.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dörner T, Jacobi AM, Lee J, Lipsky PE. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J Immunol Methods 2010; 363:187-97. [PMID: 20598709 DOI: 10.1016/j.jim.2010.06.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/01/2010] [Accepted: 06/10/2010] [Indexed: 01/24/2023]
Abstract
The prototypic autoimmune disease, SLE, is known to be associated with polyclonal B cell hyperreactivity. Developing an understanding of the complex nature of human B cell differentiation, largely through the application of multiparameter flow cytometry to an analysis of circulating B cells has permitted an assessment of whether specific stages of B cell maturation are affected by the tendency for polyclonal B cell activation. Moreover, the analysis of perturbations of the specific stages of B cell maturation has generated new information on whether abnormalities in B cell differentiation are primarily involved in autoimmune disease immunopathology or, rather, are secondary to the inflammatory environment characteristic of subjects with this autoimmune disease. Multivariant analysis has begun to document abnormalities in B cell maturation that are primarily associated with lupus, or, alternatively related to disease duration, disease activity and concomitant medication. Together, these analyses have provided new insights on the role of B cell over-reactivity in SLE.
Collapse
Affiliation(s)
- Thomas Dörner
- Dept. Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin and Deutsches Rheumaforschungszentrum, Chariteplatz 01, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
B-cell development is tightly regulated, including the induction of B-cell memory and antibody-secreting plasmablasts and plasma cells. In the last decade, we have expanded our understanding of effector functions of B cells as well as their roles in human autoimmune diseases. The current review addresses the role of certain stages of B-cell development as well as plasmablasts/plasma cells in immune regulation under normal and autoimmune conditions with particular emphasis on systemic lupus erythematosus. Based on preclinical and clinical data, B cells have emerged increasingly as both effector cells as well as cells with immunoregulatory potential.
Collapse
Affiliation(s)
- Thomas Dörner
- Charite Center 12 and 14, Charite University Hospital and DRFZ Berlin, Chariteplatz 01, 10098 Berlin, Germany.
| | | | | |
Collapse
|
30
|
Rochas C, Hillion S, Saraux A, Mageed RA, Youinou P, Jamin C, Devauchelle V. Transmembrane BAFF from rheumatoid synoviocytes requires interleukin-6 to induce the expression of recombination-activating gene in B lymphocytes. ACTA ACUST UNITED AC 2009; 60:1261-71. [PMID: 19404965 DOI: 10.1002/art.24498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE B cells that accumulate in the synovial tissue of rheumatoid arthritis (RA) patients revise their receptors due to coordinate expression of recombination-activating gene 1 (RAG-1) and RAG-2 genes. The aim of this study was to determine the mechanisms that control this re-expression. METHODS B cells from healthy control subjects were cocultured with fibroblast-like synoviocytes (FLS) from patients with RA and osteoarthritis (OA). Re-expression of RAG messenger RNA (mRNA) and proteins was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and indirect immunofluorescence. Activity of RAG enzymes was evaluated by flow cytometry to measure variations in immunoglobulin kappa and lambda light chain expression and by ligation-mediated-PCR to assess specific DNA breaks. Blocking antibodies, short hairpin RNA, and recombinant cytokine were used to identify the molecules involved in RAG re-expression. RESULTS RA FLS, but not OA FLS, induced B cells to re-express RAG mRNA and proteins. Enzymes were functional, since the kappa-to-lambda ratios decreased and specific DNA breaks were detectable after coculture with RA FLS. Transmembrane BAFF provided the first signal of RAG re-expression, since its down-regulation in RA FLS prevented RAG gene transcription in B cells. The failure of transmembrane BAFF from OA FLS to induce RAG suggests that a second signal was provided by RA FLS. Interleukin-6 (IL-6) is a candidate, since blockade of its receptors precluded transcription of RAG genes by RA FLS. Unless supplemented with IL-6, OA FLS were unable to induce RAG gene expression in normal B cells. CONCLUSION Two independent signals are required for the induction of RAG gene expression in B cells that infiltrate the synovium of patients with RA.
Collapse
Affiliation(s)
- Caroline Rochas
- Université Européenne de Bretagne, Université de Brest, IFR 148 ScInBioS, and Laboratory of Immunology, Centre Hospitalier Universitaire, Brest Hôpital Morvan and Cavale Blanche, Brest, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Belessi C, Stamatopoulos K, Hadzidimitriou A, Hatzi K, Smilevska T, Stavroyianni N, Marantidou F, Paterakis G, Fassas A, Anagnostopoulos A, Laoutaris N. Analysis of expressed and non-expressed IGK locus rearrangements in chronic lymphocytic leukemia. Mol Med 2009; 11:52-8. [PMID: 16622520 PMCID: PMC1449522 DOI: 10.2119/2005-00044.belessi] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Accepted: 03/05/2006] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin kappa (IGK) locus rearrangements were analyzed in parallel on cDNA/genomic DNA in 188 kappa- and 103 lambda-chronic lymphocytic leukemia (CLL) cases. IGKV-KDE and IGKJ-C-intron-KDE rearrangements were also analyzed on genomic DNA. In kappa-CLL, only 3 of 188 cases carried double in-frame IGKV-J transcripts: in such cases, the possibility that leukemic cells expressed more than one kappa chain cannot be excluded. Twenty-eight kappa-CLL cases also carried nonexpressed (nontranscribed and/or out-of-frame) IGKV-J rearrangements. Taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 38% of kappa-CLL cases carried biallelic IGK locus rearrangements. In lambda-CLL, 69 IGKV-J rearrangements were detected in 64 of 103 cases (62%); 24 rearrangements (38.2%) were in-frame. Four cases carried in-frame IGKV-J transcripts but retained monotypic light-chain expression, suggesting posttranscriptional regulation of allelic exclusion. In all, taking IGKV-J, IGKV-KDE, and IGKJ-C-intron-KDE rearrangements together, 97% of lambda-CLL cases had at least 1 rearranged IGK allele, in keeping with normal cells. IG repertoire comparisons in kappa- versus lambda-CLL revealed that CLL precursor cells tried many rearrangements on the same IGK allele before they became lambda producers. Thirteen of 28 and 26 of 69 non-expressed sequences in, respectively, kappa- or lambda-CLL had < 100% homology to germline. This finding might be considered as evidence for secondary rearrangements occurring after the onset of somatic hypermutation, at least in some cases. The inactivation of potentially functional IGKV-J joints by secondary rearrangements indicates active receptor editing in CLL and provides further evidence for the role of antigen in CLL immunopathogenesis.
Collapse
MESH Headings
- Adult
- Aged
- Amino Acid Sequence
- Cells, Cultured
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Gene Rearrangement, B-Lymphocyte/immunology
- Humans
- Immunoglobulin Joining Region/biosynthesis
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Immunoglobulin kappa-Chains/biosynthesis
- Immunoglobulin kappa-Chains/genetics
- Immunoglobulin kappa-Chains/metabolism
- Immunoglobulin lambda-Chains/biosynthesis
- Immunoglobulin lambda-Chains/genetics
- Immunoglobulin lambda-Chains/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- RNA Editing/immunology
- Receptors, Antigen, B-Cell/genetics
- Recombination, Genetic/immunology
Collapse
|
32
|
Abstract
In recent years, intense research efforts have been dedicated to elucidating the pathogenic mechanisms of HIV-associated disease progression. In addition to the progressive depletion and dysfunction of CD4(+) T cells, HIV infection also leads to extensive defects in the humoral arm of the immune system. The lack of immune control of the virus in almost all infected individuals is a great impediment to the treatment of HIV-associated disease and to the development of a successful HIV vaccine. This Review focuses on advances in our understanding of the mechanisms of B-cell dysfunction in HIV-associated disease and discusses similarities with other diseases that are associated with B-cell dysfunction.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
33
|
Duty JA, Szodoray P, Zheng NY, Koelsch KA, Zhang Q, Swiatkowski M, Mathias M, Garman L, Helms C, Nakken B, Smith K, Farris AD, Wilson PC. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. ACTA ACUST UNITED AC 2008; 206:139-51. [PMID: 19103878 PMCID: PMC2626668 DOI: 10.1084/jem.20080611] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Self-reactive B cells not controlled by receptor editing or clonal deletion may become anergic. We report that fully mature human B cells negative for surface IgM and retaining only IgD are autoreactive and functionally attenuated (referred to as naive IgD+IgM− B cells [BND]). These BND cells typically make up 2.5% of B cells in the peripheral blood, have antibody variable region genes in germline (unmutated) configuration, and, by all current measures, are fully mature. Analysis of 95 recombinant antibodies expressed from the variable genes of single BND cells demonstrated that they are predominantly autoreactive, binding to HEp-2 cell antigens and DNA. Upon B cell receptor cross-linkage, BND cells have a reduced capacity to mobilize intracellular calcium or phosphorylate tyrosines, demonstrating that they are anergic. However, intense stimulation causes BND cells to fully respond, suggesting that these cells could be the precursors of autoantibody secreting plasma cells in autoimmune diseases such as systemic lupus erythematosus or rheumatoid arthritis. This is the first identification of a distinct mature human B cell subset that is naturally autoreactive and controlled by the tolerizing mechanism of functional anergy.
Collapse
Affiliation(s)
- J Andrew Duty
- Immunobiology and Cancer, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moir S, Malaspina A, Ho J, Wang W, Dipoto AC, O'Shea MA, Roby G, Mican JM, Kottilil S, Chun TW, Proschan MA, Fauci AS. Normalization of B cell counts and subpopulations after antiretroviral therapy in chronic HIV disease. J Infect Dis 2008; 197:572-9. [PMID: 18240953 DOI: 10.1086/526789] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Untreated human immunodeficiency virus (HIV) disease leads to abnormalities in all major lymphocyte populations, including CD4(+) T cells, CD8(+) T cells, and B cells. However, little is known regarding the effect of antiretroviral therapy (ART)-induced decrease in HIV viremia on B cell numbers and subpopulations. METHODS We conducted a longitudinal study to evaluate changes in B cell numbers and subpopulations that occur during the course of 12 months of effective ART in a group of individuals with chronic HIV infection. RESULTS ART-induced decrease in HIV viremia was associated with a significant increase in B cell counts, similar to increases in CD4(+) T cell counts yet distinct from the lack of increase in CD8(+) T cells. The increase in B cell counts was accompanied by a significant decrease in the frequency of apoptosis-prone B cell subpopulations, namely mature activated and immature transitional B cells, which are overrepresented in untreated HIV disease. The increase in B cell counts was reflected by a significant increase in naive and resting memory B cells, both of which represent populations that are essential for generating adequate humoral immunity. CONCLUSIONS Normalization of B cell counts and subpopulations may help to explain the improvement in humoral immunity reported to occur after an ART-induced decrease in HIV viremia.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zouali M. Receptor editing and receptor revision in rheumatic autoimmune diseases. Trends Immunol 2008; 29:103-9. [DOI: 10.1016/j.it.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022]
|
36
|
Affiliation(s)
- Stephen M Jackson
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
37
|
Lamoureux JL, Watson LC, Cherrier M, Skog P, Nemazee D, Feeney AJ. Reduced receptor editing in lupus-prone MRL/lpr mice. ACTA ACUST UNITED AC 2007; 204:2853-64. [PMID: 17967905 PMCID: PMC2118512 DOI: 10.1084/jem.20071268] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The initial B cell repertoire contains a considerable proportion of autoreactive specificities. The first major B cell tolerance checkpoint is at the stage of the immature B cell, where receptor editing is the primary mode of eliminating self-reactivity. The cells that emigrate from the bone marrow have a second tolerance checkpoint in the transitional compartment in the spleen. Although it is known that the second checkpoint is defective in lupus, it is not clear whether there is any breakdown in central B cell tolerance in the bone marrow. We demonstrate that receptor editing is less efficient in the lupus-prone strain MRL/lpr. In an in vitro system, when receptor-editing signals are given to bone marrow immature B cells by antiidiotype antibody or after in vivo exposure to membrane-bound self-antigen, MRL/lpr 3-83 transgenic immature B cells undergo less endogenous rearrangement and up-regulate recombination activating gene messenger RNA to a lesser extent than B10 transgenic cells. CD19, along with immunoglobulin M, is down-regulated in the bone marrow upon receptor editing, but the extent of down-regulation is fivefold less in MRL/lpr mice. Less efficient receptor editing could allow some autoreactive cells to escape from the bone marrow in lupus-prone mice, thus predisposing to autoimmunity.
Collapse
Affiliation(s)
- Jennifer L Lamoureux
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
38
|
Koelsch K, Zheng NY, Zhang Q, Duty A, Helms C, Mathias MD, Jared M, Smith K, Capra JD, Wilson PC. Mature B cells class switched to IgD are autoreactive in healthy individuals. J Clin Invest 2007; 117:1558-65. [PMID: 17510706 PMCID: PMC1866247 DOI: 10.1172/jci27628] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/27/2007] [Indexed: 11/17/2022] Open
Abstract
Determination of the origin and fate of autoreactive B cells is critical to understanding and treating autoimmune diseases. We report that, despite being derived from healthy people, antibodies from B cells that have class switched to IgD via genetic recombination (and thus become class switched to C delta [C delta-CS] cells) are highly reactive to self antigens. Over half of the antibodies from C delta-CS B cells bind autoantigens on human epithelioma cell line 2 (HEp-2) cells or antinuclear antigens, and a quarter bind double-stranded DNA; both groups of antibodies are frequently polyreactive. Intriguingly, some C delta-CS B cells have accumulated basic residues in the antibody variable regions that mediate anti-DNA reactivity via somatic hypermutation and selection, while other C delta-CS B cells are naturally autoreactive. Though the total percentage was appreciably less than for C delta-CS cells, a surprising 31% of IgG memory cell antibodies were somewhat autoreactive, and as expected, about 24% of naive cell antibodies were autoreactive. We interpret these findings to indicate either that autoreactive B cells can be induced to class switch to IgD or that autoreactive B cells that use IgD as the B cell receptor are not effectively deleted. Determination of the mechanism by which the majority of C delta-CS B cells are autoreactive may be important in understanding peripheral tolerance mechanisms and may provide insight into the enigmatic function of the IgD antibody.
Collapse
Affiliation(s)
- Kristi Koelsch
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nai-Ying Zheng
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Qingzhao Zhang
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Andrew Duty
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christina Helms
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Melissa D. Mathias
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mathew Jared
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kenneth Smith
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - J. Donald Capra
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Patrick C. Wilson
- Molecular Immunogenetics Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
Department of Pathology and
Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
39
|
|
40
|
Mazari L, Ouarzane M, Zouali M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci U S A 2007; 104:6317-22. [PMID: 17404230 PMCID: PMC1851062 DOI: 10.1073/pnas.0610434104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence indicates that epigenetic alterations contribute to exacerbated activation or deregulation of the mechanisms that maintain tolerance to self-antigens in patients with lupus, a systemic autoimmune disease that can be triggered by medications taken to treat a variety of conditions. Here, we tested the effect of hydralazine, an antihypertensive drug that triggers lupus, on receptor editing, a chief mechanism of B lymphocyte tolerance to self-antigens. Using mice expressing transgenic human Igs, we found that hydralazine impairs up-regulation of RAG-2 gene expression and reduces secondary Ig gene rearrangements. Receptor editing was also partially abolished in a dose-dependent manner by a specific inhibitor of MEK1/2. Adoptive transfer of bone marrow B cells pretreated with hydralazine or with a MEK inhibitor to naïve syngeneic mice resulted in autoantibody production. We conclude that, by disrupting receptor editing, hydralazine subverts B lymphocyte tolerance to self and contributes to generation of pathogenic autoreactivity. We also postulate that inhibition of the Erk signaling pathway contributes to the pathogenesis of hydralazine-induced lupus and idiopathic human lupus.
Collapse
Affiliation(s)
- Lynda Mazari
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
| | - Meryem Ouarzane
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
| | - Moncef Zouali
- Institut National de la Santé et de la Recherche Médicale, U430, University of Paris 6, F-75674 Paris, France
- *To whom correspondence should be addressed at:
Institut National de la Santé et de la Recherche Médicale U606, Centre Viggo Petersen, Hôpital Lariboisière, 2, Rue Ambroise Paré, 75475 Paris Cedex 10, France. E-mail:
| |
Collapse
|
41
|
Rochas C, Hillion S, Youinou P, Jamin C, Devauchelle-Pensec V. RAG-mediated secondary rearrangements of B-cell antigen receptors in rheumatoid synovial tissue. Autoimmun Rev 2007; 7:155-9. [PMID: 18035327 DOI: 10.1016/j.autrev.2007.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) induces major changes in synovial tissue (ST) and cartilage and bone destruction. Still, its pathogenesis is poorly understood. Accumulating evidence points to an important role for B lymphocytes. Rheumatoid-ST is characterized by activation of the synoviocytes and infiltrated by various inflammatory cells such as B and T lymphocytes. The infiltrate is diffuse or organized as germinal centers (GCs). These accommodate the immune response and favor self-tolerance breakdown. Receptor revision in B cells results from re-expression of the recombination activating genes (RAGs) which reinitiate immunoglobulin gene recombination, and modify the B-cell antigen receptor accordingly. In rheumatoid ST, secondary VDJ rearrangements occur and RAG proteins are detected. The mechanism that triggers and controls this revision remains elusive. We favor the hypothesis that such an uncontrolled process leads to autoimmunity.
Collapse
Affiliation(s)
- Caroline Rochas
- Laboratory of Immunology, Brest University Medical School Hospital, BP 824, F 29609 Brest, France
| | | | | | | | | |
Collapse
|
42
|
Low JM, Chauhan AK, Moore TL. Abnormal kappa:lambda light chain ratio in circulating immune complexes as a marker for B cell activity in juvenile idiopathic arthritis. Scand J Immunol 2007; 65:76-83. [PMID: 17212770 DOI: 10.1111/j.1365-3083.2006.01859.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Patients with juvenile idiopathic arthritis (JIA) have been shown to have elevated levels of circulating immune complexes (CICs) which correlated with disease activity. Our aim was to assess B cell activity by measuring the amount of and the kappa:lambda chain immunoglobulin light (L) chain ratio in CICs from JIA patients and to determine potential evidence for either an antigen-driven response or B-cell receptor editing. We used an enzyme-linked immunosorbent assay to measure kappa and lambda chains present in the CICs from the sera of patients with JIA. Statistical analysis was performed using Pearson's correlation, one-way ANOVA and Bonferroni post hoc analysis. Sera from 44 JIA patients were examined for the concentration of L chains in CICs. Healthy controls had a kappa:lambda chain ratio of 1.2:1, whereas this ratio was reversed among JIA subgroups with RF-positive polyarthritis (1:1.2), RF-negative polyarthritis (1:1.3), oligoarthritis (1:2.3) and systemic-onset arthritis (1:2.5). In addition, overall lambda chain selection was not significantly associated with a particular immunoglobulin heavy (H) chain and occurred with all immunoglobulin isotypes. We showed preferential selection of lambda chains contributing to the formation of potentially pathogenic CICs from JIA patients, of all onset types compared to healthy controls, in an H chain-independent manner. The reversal of kappa:lambda chain ratio within the JIA CICs and association with all immunoglobulin isotypes demonstrated the potential for L chain editing. Furthermore, we conclude that a reversal of the normal kappa:lambda chain ratio in JIA CICs may be used as a marker for increased B-cell activity.
Collapse
Affiliation(s)
- J M Low
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | | | |
Collapse
|
43
|
García-Carrasco M, Fuentes-Alexandro S, Escárcega RO, Salgado G, Riebeling C, Cervera R. Pathophysiology of Sjögren's syndrome. Arch Med Res 2007; 37:921-32. [PMID: 17045106 DOI: 10.1016/j.arcmed.2006.08.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/30/2006] [Indexed: 11/21/2022]
Abstract
The term Sjögren's syndrome refers to keratoconjunctivitis sicca and xerostomia due to lymphocytic infiltrates of lachrymal and salivary glands. The current used criteria for diagnosis of primary Sjögren's syndrome is the American-European consensus. Primary Sjögren's syndrome is an autoimmune disorder characterized by lymphocytic infiltrates and destruction of the salivary and lachrymal glands and systemic production of autoantibodies to the ribonucleoprotein particles SS-A/Ro and SS-B/La. The infiltrating cells (T- and B-cells, dendritic cells) interfere with glandular function at several points: destruction of glandular elements by cell-mediated mechanisms; secretion of cytokines that activate pathways bearing the signature of type 1 and 2 interferons; production of autoantibodies that interfere with muscarinic receptors; and secretion of metalloproteinases (MMPs) that interfere with the interaction of the glandular cell with its extracellular matrix, which is necessary for efficient glandular function. As the process progresses, the mucosal surfaces become sites of chronic inflammation and the start of a vicious circle. Despite extensive study of the underlying cause of Sjögren's syndrome, the pathogenesis remains obscure. In broad terms, pathogenesis is multifactorial; environmental factors are thought to trigger inflammation in individuals with a genetic predisposition to the disorder.
Collapse
Affiliation(s)
- Mario García-Carrasco
- Systemic Autoimmune Disease Research Unit, HGZ #36 CMN Manuel Avila Camacho, IMSS, Puebla, Mexico.
| | | | | | | | | | | |
Collapse
|
44
|
Ho J, Moir S, Malaspina A, Howell ML, Wang W, DiPoto AC, O'Shea MA, Roby GA, Kwan R, Mican JM, Chun TW, Fauci AS. Two overrepresented B cell populations in HIV-infected individuals undergo apoptosis by different mechanisms. Proc Natl Acad Sci U S A 2006; 103:19436-41. [PMID: 17158796 PMCID: PMC1748244 DOI: 10.1073/pnas.0609515103] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Indexed: 11/18/2022] Open
Abstract
Perturbations of B cells in HIV-infected individuals are associated with the overrepresentation of distinct B cell populations. Here we describe high extrinsic CD95 ligand (CD95L)-mediated apoptosis in CD10-/CD21lo mature/activated B cells that likely arise from HIV-induced immune activation. In addition, high intrinsic apoptosis was observed in CD10+ immature/transitional B cells that likely arise as a result of HIV-induced lymphopenia. CD10+ B cells expressed low levels of Bcl-2 and Bcl-xL, consistent with their high susceptibility to intrinsic apoptosis. Higher levels of activated Bax and Bak were induced in CD10+ B cells compared with CD95L-treated CD10- B cells, consistent with the greater involvement of mitochondria in intrinsic vs. extrinsic apoptosis. Of interest, both extrinsic apoptosis in CD95L-treated CD10- B cells and intrinsic apoptosis in CD10+ B cells were associated with caspase-8 activation. Our data suggest that two distinct mechanisms of apoptosis are associated with B cells of HIV-infected individuals, and both may contribute to the depletion and dysfunction of B cells in these individuals.
Collapse
Affiliation(s)
- Jason Ho
- *Laboratory of Immunoregulation and
| | | | | | | | - Wei Wang
- *Laboratory of Immunoregulation and
| | | | | | | | | | - JoAnn M. Mican
- Office of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892
| | | | | |
Collapse
|
45
|
Malaspina A, Moir S, Chaitt DG, Rehm CA, Kottilil S, Falloon J, Fauci AS. Idiopathic CD4+ T lymphocytopenia is associated with increases in immature/transitional B cells and serum levels of IL-7. Blood 2006; 109:2086-8. [PMID: 17053062 PMCID: PMC1801046 DOI: 10.1182/blood-2006-06-031385] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Idiopathic CD4+ T lymphocytopenia (ICL) is a rare heterogeneous disorder defined by CD4+ T-cell counts below 300 cells/muL in the absence of human immunodeficiency virus (HIV) infection or other known immune deficiency disorders. Here, we report the expansion of immature/transitional B cells in patients with ICL, which is associated with elevated serum levels of IL-7. Both the percentage of immature/transitional B cells and levels of IL-7 were inversely correlated with levels of CD4+ T-cell counts and directly correlated to each other. Further analyses of B cells indicated that, in contrast to the activating effects of HIV disease on mature B cells, the expansion of immature/transitional B cells in patients with ICL occurred at the expense of memory B cells. These findings extend previous reports on primary immunodeficiencies as well as HIV disease by suggesting that CD4+ T-cell lymphopenia has an impact on human B-cell development either directly or indirectly via the associated elevation of IL-7 levels.
Collapse
Affiliation(s)
- Angela Malaspina
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Watson LC, Moffatt-Blue CS, McDonald RZ, Kompfner E, Ait-Azzouzene D, Nemazee D, Theofilopoulos AN, Kono DH, Feeney AJ. Paucity of V-D-D-J rearrangements and VH replacement events in lupus prone and nonautoimmune TdT-/- and TdT+/+ mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:1120-8. [PMID: 16818769 DOI: 10.4049/jimmunol.177.2.1120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CDR3 regions containing two D segments, or containing the footprints of V(H) replacement events, have been reported in both mice and humans. However, the 12-23 bp rule for V(D)J recombination predicts that D-D rearrangements, which would occur between 2 recombination signal sequences (RSSs) with 12-bp spacers, should be extremely disfavored, and the cryptic RSS used for V(H) replacement is very inefficient. We have previously shown that newborn mice, which lack TdT due to the late onset of its expression, do not contain any CDR3 with D-D rearrangements. In the present study, we test our hypothesis that most D-D rearrangements are due to fortuitous matching of the second apparent D segment by TdT-introduced N nucleotides. We analyzed 518 sequences from adult MRL/lpr- and C57BL/6 TdT-deficient B cell precursors and found only two examples of CDR3 with D-D rearrangements and one example of a potential V(H) replacement event. We examined rearrangements from pre-B cells, marginal zone B cells, and follicular B cells from mice congenic for the Lbw5 (Sle3/5) lupus susceptibility loci and from other strains of mice and found very few examples of CDR3 with D-D rearrangements. We assayed B progenitor cells, and cells enriched for receptor editing, for DNA breaks at the "cryptic heptamer" but such breaks were rare. We conclude that many examples of apparent D-D rearrangements in the mouse are likely due to N additions that fortuitously match short stretches of D genes and that D-D rearrangements and V(H) replacement are rare occurrences in the mouse.
Collapse
Affiliation(s)
- Lisa C Watson
- The Scripps Research Institute, Department of Immunology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Malaspina A, Moir S, Ho J, Wang W, Howell ML, O’Shea MA, Roby GA, Rehm CA, Mican JM, Chun TW, Fauci AS. Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci U S A 2006; 103:2262-7. [PMID: 16461915 PMCID: PMC1413756 DOI: 10.1073/pnas.0511094103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Progression of HIV disease is associated with the appearance of numerous B cell defects. We describe herein a population of immature/transitional B cells that is overly represented in the peripheral blood of individuals with advancing HIV disease. These B cells, identified by the expression of CD10, were unresponsive by proliferation to B cell receptor triggering and possessed a phenotype and an Ig diversity profile that confirmed their immature/transitional stage of differentiation. Consistent with an immature status, their lack of proliferation to B cell receptor triggering was reversed with CD40 ligand, but not B cell activation factor. Finally, levels of CD10 expression on B cells were directly correlated with serum levels of IL-7, suggesting that increased levels of IL-7 modulate human B cell maturation either directly or indirectly by means of a homeostatic effect on lymphopenia. Taken together, these data offer insight into human B cell development as well as B cell dysfunction in advanced HIV disease that may be linked to IL-7-dependent homeostatic events.
Collapse
Affiliation(s)
| | | | - Jason Ho
- *Laboratory of Immunoregulation, and
| | - Wei Wang
- *Laboratory of Immunoregulation, and
| | | | | | | | | | - JoAnn M. Mican
- Office of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892
| | | | | |
Collapse
|
48
|
Knight AK, Cunningham-Rundles C. Inflammatory and autoimmune complications of common variable immune deficiency. Autoimmun Rev 2005; 5:156-9. [PMID: 16431351 DOI: 10.1016/j.autrev.2005.10.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2005] [Accepted: 10/01/2005] [Indexed: 10/25/2022]
Abstract
Common variable immune deficiency (CVID) is associated with autoimmune and inflammatory complications in addition to recurrent infections. The most common conditions are idiopathic thrombocytopenia purpura, autoimmune hemolytic anemia, sarcoid-like granulomatous disease and gastrointestinal inflammation. IVIG administration reduces the frequency of infections, but does not always prevent autoimmunity or inflammation. TNF antagonists and anti-CD20 immunomodulators have shown some efficacy in CVID in a few patients; further controlled studies are needed to determine the best management of these conditions in the setting of immunodeficiency.
Collapse
MESH Headings
- Adult
- Anemia, Hemolytic, Autoimmune/drug therapy
- Anemia, Hemolytic, Autoimmune/etiology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/etiology
- Dysgammaglobulinemia/complications
- Dysgammaglobulinemia/drug therapy
- Female
- Granuloma/drug therapy
- Granuloma/etiology
- Humans
- Hydroxychloroquine/therapeutic use
- Immunoglobulins, Intravenous/therapeutic use
- Immunosuppressive Agents/therapeutic use
- Inflammation/drug therapy
- Inflammation/etiology
- Inflammatory Bowel Diseases/etiology
- Pneumonia/etiology
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Rituximab
- Sinusitis/etiology
Collapse
Affiliation(s)
- Adina Kay Knight
- Clinical Immunology, Mount Sinai School of Medicine, Room 1120, Box 1089, 1425 Madison Ave, New York 10029, USA.
| | | |
Collapse
|
49
|
Morbach H, Singh SK, Faber C, Lipsky PE, Girschick HJ. Analysis of RAG expression by peripheral blood CD5+ and CD5- B cells of patients with childhood systemic lupus erythematosus. Ann Rheum Dis 2005; 65:482-7. [PMID: 16126793 PMCID: PMC1798085 DOI: 10.1136/ard.2005.040840] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The assembly of immunoglobulin genes during B cell development in the bone marrow is dependent on the expression of recombination activating genes (RAG) 1 and 2. Recently, RAG expression in peripheral blood IgD+ B cells outside the bone marrow has been demonstrated and is associated with the development of autoimmune diseases. OBJECTIVE To investigate RAG expression in the CD5+ or CD5- IgD+ B cell compartment in childhood systemic lupus erythematosus (SLE). METHODS Using a combination of flow cytometric cell sorting and reverse transcriptase polymerase chain reaction analysis of cDNA libraries generated from individual cells, the expression of RAG, VpreB, and CD154 mRNA by individual peripheral blood B cells of three paediatric SLE patients was examined in detail. RESULTS While only one patient had a significantly increased frequency of RAG+ B cells in the CD5- B cell population, all patients showed higher frequencies of RAG+ B cells in the CD5+IgD+ B cell population. The frequency of RAG+ IgD+CD5+/- B cells was reduced during intravenous cyclophosphamide treatment. In healthy age matched children, RAG expressing IgD+ B cells were hardly detectable. Coexpression of RAG and VpreB or CD154 mRNA could only be found in SLE B cells. CONCLUSIONS RAG expression in peripheral blood B cells of SLE patients is particularly increased in the IgD+CD5+ B cell population. CD5+ and CD5- B cells in SLE have the potential to undergo receptor revision leading to the generation of high affinity pathogenic autoantibodies.
Collapse
Affiliation(s)
- H Morbach
- Section of Paediatric Rheumatology, Children's Hospital, University of Würzburg, Josef-Schneider-Str 2, 97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Stamatopoulos K, Belessi C, Hadzidimitriou A, Smilevska T, Kalagiakou E, Hatzi K, Stavroyianni N, Athanasiadou A, Tsompanakou A, Papadaki T, Kokkini G, Paterakis G, Saloum R, Laoutaris N, Anagnostopoulos A, Fassas A. Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood 2005; 106:3575-83. [PMID: 16076869 DOI: 10.1182/blood-2005-04-1511] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin kappa (IGK) and immunoglobulin lambda (IGL) light chain repertoire was analyzed in 276 chronic lymphocytic leukemia (CLL) cases and compared with the relevant repertoires from normal, autoreactive, and neoplastic cells. Twenty-one functional IGKV genes were used in IGKV-J rearrangements of 179 kappa-CLL cases; the most frequent genes were IGKV3-20(A27), IGKV1-39/1D-39(O2/O12), IGKV1-5(L12), IGKV4-1(B3), and IGKV2-30(A17); 90 (50.3%) of 179 IGK sequences were mutated (similarity < 98%). Twenty functional IGLV genes were used in IGLV-J rearrangements of 97 lambda-CLL cases; the most frequent genes were IGLV3-21(VL2-14), IGLV2-8(VL1-2), and IGLV2-14(VL1-4); 44 of 97 IGL sequences (45.4%) were mutated. Subsets with "CLL-biased" homologous complementarity-determining region 3 (CDR3) were identified: (1) IGKV2-30-IGKJ2, 7 sequences with homologous kappa CDR3 (KCDR3), 5 of 7 associated with homologous IGHV4-34 heavy chains; (2) IGKV1-39/1D-39-IGKJ1/4, 4 unmutated sequences with homologous KCDR3, 2 of 4 associated with homologous IGHV4-39 heavy chains; (3) IGKV1-5-IGKJ1/3, 4 sequences with homologous KCDR3, 2 of 4 associated with unmutated nonhomologous IGHV4-39 heavy chains; (4) IGLV1-44-IGLJ2/3, 2 sequences with homologous lambda CDR3 (LCDR3), associated with homologous IGHV4-b heavy chains; and (5) IGLV3-21-IGLJ2/3, 9 sequences with homologous LCDR3, 3 of 9 associated with homologous IGHV3-21 heavy chains. The existence of subsets that comprise given IGKV-J/IGLV-J domains associated with IGHV-D-J domains that display homologous CDR3 provides further evidence for the role of antigen in CLL pathogenesis.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Complementarity Determining Regions/genetics
- Female
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Gene Rearrangement, B-Lymphocyte, Light Chain/genetics
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin kappa-Chains/genetics
- Immunoglobulin lambda-Chains/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Somatic Hypermutation, Immunoglobulin/genetics
Collapse
Affiliation(s)
- Kostas Stamatopoulos
- Hematology Department and Hematopoietic Cell Transplantation (HCT) Unit, G. Papanicolaou Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|