1
|
Liang J, Yao L, Liu Z, Chen Y, Lin Y, Tian T. Nanoparticles in Subunit Vaccines: Immunological Foundations, Categories, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407649. [PMID: 39501996 DOI: 10.1002/smll.202407649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/12/2024] [Indexed: 01/11/2025]
Abstract
Subunit vaccines, significant in next-generation vaccine development, offer precise targeting of immune responses by focusing on specific antigens. However, this precision often comes at the cost of eliciting strong and durable immunity, posing a great challenge to vaccine design. To address this limitation, recent advancements in nanoparticles (NPs) are utilized to enhance antigen delivery efficiency and boost vaccine efficacy. This review examines how the physicochemical properties of NPs influence various stages of the immune response during vaccine delivery and analyzes how different NP types contribute to immune activation and enhance vaccine performance. It then explores the unique characteristics and immune activation mechanisms of these NPs, along with their recent advancements, and highlights their application in subunit vaccines targeting infectious diseases and cancer. Finally, it discusses the challenges in NP-based vaccine development and proposes future directions for innovation in this promising field.
Collapse
Affiliation(s)
- Jiale Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lan Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West ChinaHospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Taoran Tian
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Jeong H, Lee C, Lee J, Lee J, Hwang HS, Lee M, Na K. Hemagglutinin Nanoparticulate Vaccine with Controlled Photochemical Immunomodulation for Pathogenic Influenza-Specific Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100118. [PMID: 34693665 PMCID: PMC8655185 DOI: 10.1002/advs.202100118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Chung‐Sung Lee
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Division of Advanced ProsthodonticsUniversity of California Los AngelesLos AngelesCA90095USA
- Department of Pharmaceutical Engineering and BiotechnologySun Moon UniversityAsan‐siChungcheongnam‐do31460Republic of Korea
| | - Jangsu Lee
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Jonghwan Lee
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| | - Hee Sook Hwang
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of Pharmaceutical EngineeringDankook UniversityCheonan‐siChungcheongnam‐do31116Republic of Korea
| | - Min Lee
- Division of Advanced ProsthodonticsUniversity of California Los AngelesLos AngelesCA90095USA
- Department of BioengineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Kun Na
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon‐siGyeonggi‐do14662Republic of Korea
| |
Collapse
|
3
|
Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol 2021; 42:1143-1158. [PMID: 34743921 DOI: 10.1016/j.it.2021.10.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Monoclonal antibodies (mAbs) are often selected from antigen-specific single B cells derived from different hosts, which are notably short-lived in ex vivo culture conditions and hence, arduous to interrogate. The development of several new techniques and protocols has facilitated the isolation and retrieval of antibody-coding sequences of antigen-specific B cells by also leveraging miniaturization of reaction volumes. Alternatively, mAbs can be generated independently of antigen-specific B cells, comprising display technologies and, more recently, artificial intelligence-driven algorithms. Consequently, a considerable variety of techniques are used, raising the demand for better consolidation. In this review, we present and discuss the major techniques available to interrogate antigen-specific single B cells to isolate antigen-specific mAbs, including their main advantages and disadvantages.
Collapse
Affiliation(s)
- Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
4
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
5
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
7
|
Abstract
Tetracyclines have been used to treat many bacterial infections. The use of these antibiotics for the treatment of viral diseases dates to the 1960s to 1970s. Over the decades, the effect of tetracyclines on the pathogenesis of viral infections has been demonstrated both clinically and experimentally. Tetracyclines can act on viral infections either through their antibacterial properties or through direct antiviral action. This review focuses on clinical and experimental data that support the use of tetracycline in treating viral infections and highlights an important approach to slowing disease progression during viral infections. Tetracycline treatment might represent a strategy for eliminating the infection or inhibiting the progression of COVID-19.
Collapse
|
8
|
Abstract
Recent studies on vaccine delivery systems are exploring the possibility of replacing liquid vaccines with solid dose vaccines due to the many advantages that solid dose vaccines can offer. These include the prospect of a needle-free vaccine delivery system leading to better patient compliance, cold chain storage, less-trained vaccinators and fewer chances for needle stick injury hazards. Some studies also indicate that vaccines in a solid dosage form can result in a higher level of immunogenicity compared to the liquid form, thus providing a dose-sparing effect. This review outlines the different approaches in solid vaccine delivery using various routes of administration including, oral, pulmonary, intranasal, buccal, sublingual, and transdermal routes. The various techniques and their current advancements will provide a knowledge base for future work to be carried out in this arena.
Collapse
|
9
|
Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H, Williams RO, Cui Z. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release 2018; 292:111-118. [PMID: 30339906 PMCID: PMC6328263 DOI: 10.1016/j.jconrel.2018.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Intranasal vaccination using dry powder vaccine formulation represents an attractive, non-invasive vaccination modality with better storage stability and added protection at the mucosal surfaces. Herein we report that it is feasible to induce specific mucosal and systemic antibody responses by intranasal immunization with a dry powder vaccine adjuvanted with an insoluble aluminum salt. The dry powder vaccine was prepared by thin-film freeze-drying of a model antigen, ovalbumin, adsorbed on aluminum (oxy)hydroxide as an adjuvant. Special emphasis was placed on the characterization of the dry powder vaccine formulation that can be realistically used in humans by a nasal dry powder delivery device. The vaccine powder was found to have "passable" to "good" flow properties, and the vaccine was uniformly distributed in the dry powder. An in vitro nasal deposition study using nasal casts of adult humans showed that around 90% of the powder was deposited in the nasal cavity. Intranasal immunization of rats with the dry powder vaccine elicited a specific serum antibody response as well as specific IgA responses in the nose and lung secretions of the rats. This study demonstrates the generation of systemic and mucosal immune responses by intranasal immunization using a dry powder vaccine adjuvanted with an aluminum salt.
Collapse
Affiliation(s)
- Sachin G Thakkar
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zachary N Warnken
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Riyad F Alzhrani
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Solange A Valdes
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Abdulaziz M Aldayel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
10
|
Transdermal delivery of water‐soluble fluorescent antibody mediated by fractional Er:YAG laser for the diagnosis of lupus erythematosus in mice. Lasers Surg Med 2018; 51:268-277. [DOI: 10.1002/lsm.23047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2018] [Indexed: 12/31/2022]
|
11
|
Mueller KA, Glajch KE, Huizenga MN, Wilson RA, Granucci EJ, Dios AM, Tousley AR, Iuliano M, Weisman E, LaQuaglia MJ, DiFiglia M, Kegel-Gleason K, Vakili K, Sadri-Vakili G. Hippo Signaling Pathway Dysregulation in Human Huntington's Disease Brain and Neuronal Stem Cells. Sci Rep 2018; 8:11355. [PMID: 30054496 PMCID: PMC6063913 DOI: 10.1038/s41598-018-29319-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
The Hippo signaling pathway is involved in organ size regulation and tumor suppression. Although inhibition of Hippo leads to tumorigenesis, activation of Hippo may play a role in neurodegeneration. Specifically, activation of the upstream regulator, mammalian sterile 20 (STE20)-like kinase 1 (MST1), reduces activity of the transcriptional co-activator Yes-Associated Protein (YAP), thereby mediating oxidative stress-induced neuronal death. Here, we investigated the possible role of this pathway in Huntington's disease (HD) pathogenesis. Our results demonstrate a significant increase in phosphorylated MST1, the active form, in post-mortem HD cortex and in the brains of CAG knock-in HdhQ111/Q111 mice. YAP nuclear localization was also decreased in HD post-mortem cortex and in neuronal stem cells derived from HD patients. Moreover, there was a significant increase in phosphorylated YAP, the inactive form, in HD post-mortem cortex and in HdhQ111/Q111 brain. In addition, YAP was found to interact with huntingtin (Htt) and the chaperone 14-3-3, however this interaction was not altered in the presence of mutant Htt. Lastly, YAP/TEAD interactions and expression of Hippo pathway genes were altered in HD. Together, these results demonstrate that activation of MST1 together with a decrease in nuclear YAP could significantly contribute to transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Kaly A Mueller
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kelly E Glajch
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Megan N Huizenga
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Remi A Wilson
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Eric J Granucci
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Amanda M Dios
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Adelaide R Tousley
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Maria Iuliano
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Elizabeth Weisman
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Marian DiFiglia
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | - Kimberly Kegel-Gleason
- Cellular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA
| | | | - Ghazaleh Sadri-Vakili
- NeuroEpigenetics Laboratory, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital, Boston, MA, 02129-4404, USA.
| |
Collapse
|
12
|
Lee SW, Park HJ, Im W, Kim M, Hong S. Repeated immune activation with low-dose lipopolysaccharide attenuates the severity of Huntington's disease in R6/2 transgenic mice. Anim Cells Syst (Seoul) 2018; 22:219-226. [PMID: 30460101 PMCID: PMC6138304 DOI: 10.1080/19768354.2018.1473291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the huntingtin gene. Previously, therapeutic approaches using anti-inflammatory agents were reportedly not effective for preventing HD progression. Since whether immune responses contribute to the onset of HD is not entirely understood, we herein investigated the role of immune activation in HD using the R6/2 transgenic (Tg) HD model mouse. IL12 production and the expression of costimulatory molecules (e.g. CD86 and CD40) on innate immune cells (DCs and macrophages) were diminished in the disease stage of R6/2 Tg mice. Moreover, the number of adaptive T cells (CD4+ and CD8+ T cells) and the frequency of effector memory phenotype CD4+ T cells were decreased in these mice. These results suggest that the severity of HD is closely related to an impaired immune system and might be reversed by activation of the immune system. Since lipopolysaccharide (LPS), a potent TLR4 agonist, activates immune cells, we evaluated the effect of immune activation on the pathogenesis of HD using LPS. The repeated immune activation with low-dose LPS significantly recovered the impaired immune status back to normal levels and attenuated both severe weight loss and the increased clasping phenotype found in the disease stage of R6/2 Tg mice, consequently resulting in prolonged survival. Taken together, these results strongly indicate that immune activation has beneficial influences on alleviating HD pathology and could provide new therapeutic strategies for HD.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Korea
| |
Collapse
|
13
|
Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J Control Release 2018; 276:1-16. [PMID: 29496540 PMCID: PMC5967648 DOI: 10.1016/j.jconrel.2018.02.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 11/20/2022]
Abstract
The widely used influenza subunit vaccine would benefit from increased protection rates in vulnerable populations. Skin immunization by microneedle (MN) patch can increase vaccine immunogenicity, as well as increase vaccination coverage due to simplified administration. To further increase immunogenicity, we used granulocyte-macrophage colony stimulating factor (GM-CSF), an immunomodulatory cytokine already approved for skin cancer therapy and cancer support treatment. GM-CSF has been shown to be upregulated in skin following MN insertion. The GM-CSF-adjuvanted vaccine induced robust and long-lived antibody responses cross-reactive to homosubtypic and heterosubtypic influenza viruses. Addition of GM-CSF resulted in increased memory B cell persistence relative to groups given influenza vaccine alone and led to rapid lung viral clearance following lethal infection with homologous virus in the mouse model. Here we demonstrate that successful incorporation of the thermolabile cytokine GM-CSF into MN resulted in improved vaccine-induced protective immunity holding promise as a novel approach to improved influenza vaccination. To our knowledge, this is the first successful incorporation of a cytokine adjuvant into dissolvable MNs, thus advancing and diversifying the rapidly developing field of MN vaccination technology.
Collapse
|
14
|
Lim S, Chun Y, Lee JS, Lee SJ. Neuroinflammation in Synucleinopathies. Brain Pathol 2018; 26:404-9. [PMID: 26940152 DOI: 10.1111/bpa.12371] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The causes of most neurodegenerative diseases are attributed to multiple genetic and environmental factors interacting with one another. Above all, inflammation in the nervous system has been implicated in many neurodegenerative diseases. Still, the roles of neuroinflammation in disease mechanisms and the triggers of inflammatory responses in disease-inflicted brain tissues seem to remain unclear. This review will examine previous studies that had been done from genetic, pathological and epidemiological perspectives. These studies assess the involvement of neuroinflammation in synucleinopathies, a group of neurodegenerative diseases that are characterized by deposition of α-synuclein aggregates such as Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. The review will also discuss the role of α-synuclein aggregates in triggering inflammatory responses from glial cells. It is expected that a precise assessment of the roles and mechanisms of neuroinflammation in neurodegenerative diseases will pave the way for the development of disease-modifying drugs.
Collapse
Affiliation(s)
- Somin Lim
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yewon Chun
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jun Sung Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| |
Collapse
|
15
|
Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer's disease. Mol Neurodegener 2017; 12:89. [PMID: 29273078 PMCID: PMC5741956 DOI: 10.1186/s13024-017-0231-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.
Collapse
Affiliation(s)
- Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
The inhibitory effect of minocycline on radiation-induced neuronal apoptosis via AMPKα1 signaling-mediated autophagy. Sci Rep 2017; 7:16373. [PMID: 29180765 PMCID: PMC5703722 DOI: 10.1038/s41598-017-16693-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 10/11/2017] [Indexed: 12/14/2022] Open
Abstract
Due to an increasing concern about radiation-induced cognitive deficits for brain tumor patients receiving radiation therapy, developing and evaluating countermeasures has become inevitable. Our previous study has found that minocycline, a clinical available antibiotics that can easily cross the blood brain barrier, mitigates radiation-induced long-term memory loss in rats, accompanied by decreased hippocampal neuron apoptosis. Thus, in the present study, we report an unknown mechanism underlying the neuroprotective effect of minocycline. We demonstrated that minocycline prevented primary neurons from radiation-induced apoptosis and promoted radiation-induced autophagy in vitro. Moreover, using an immortalized mouse hippocampal neuronal cell line, HT22 cells, we found that the protective effect of minocycline on irradiated HT22 cells was not related to DNA damage repair since minocycline did not facilitate DNA DSB repair in irradiated HT22 cells. Further investigation showed that minocycline significantly enhanced X-irradiation-induced AMPKα1 activation and autophagy, thus resulting in decreased apoptosis. Additionally, although the antioxidant potential of minocycline might contribute to its apoptosis-inhibitory effect, it was not involved in its enhancive effect on radiation-induced AMPKα1-mediated autophagy. Taken together, we have revealed a novel mechanism for the protective effect of minocycline on irradiated neurons, e.g. minocycline protects neurons from radiation-induced apoptosis via enhancing radiation-induced AMPKα1-mediated autophagy.
Collapse
|
17
|
Affiliation(s)
- Abhijit Chaudhuri
- Department of Neurology, Essex Centre for Regional Neurosciences, Romford RM7 0BE.
| | | |
Collapse
|
18
|
Weissmueller NT, Marsay L, Schiffter HA, Carlisle RC, Rollier CS, Prud’homme RK, Pollard AJ. Alternative vaccine administration by powder injection: Needle-free dermal delivery of the glycoconjugate meningococcal group Y vaccine. PLoS One 2017; 12:e0183427. [PMID: 28837693 PMCID: PMC5570268 DOI: 10.1371/journal.pone.0183427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Powder-injectors use gas propulsion to deposit lyophilised drug or vaccine particles in the epidermal and sub epidermal layers of the skin. We prepared dry-powder (Tg = 45.2 ± 0.5°C) microparticles (58.1 μm) of a MenY-CRM197 glyconjugate vaccine (0.5% wt.) for intradermal needle-free powder injection (NFPI). SFD used ultrasound atomisation of the liquid vaccine-containing excipient feed, followed by lyophilisation above the glass transition temperature (Tg' = - 29.9 ± 0.3°C). This resulted in robust particles (density~ 0.53 ±0.09 g/cm3) with a narrow volume size distribution (mean diameter 58.1 μm, and span = 1.2), and an impact parameter (ρvr ~ 11.5 kg/m·s) sufficient to breach the Stratum corneum (sc). The trehalose, manitol, dextran (10 kDa), dextran (150 kDa) formulation, or TMDD (3:3:3:1), protected the MenY-CRM197 glyconjugate during SFD with minimal loss, no detectable chemical degradation or physical aggregation. In a capsular group Y Neisseria meningitidis serum bactericidal assay (SBA) with human serum complement, the needle free vaccine, which contained no alum adjuvant, induced functional protective antibody responses in vivo of similar magnitude to the conventional vaccine injected by hypodermic needle and syringe and containing alum adjuvant. These results demonstrate that needle-free vaccination is both technically and immunologically valid, and could be considered for vaccines in development.
Collapse
Affiliation(s)
- Nikolas T. Weissmueller
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Leanne Marsay
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Heiko A. Schiffter
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Robert C. Carlisle
- Institute of Biomedical Engineering, Biomedical Ultrasonics, Biotherapy & Biopharmaceuticals Laboratory (BUBBL), Oxford, Oxfordshire, United Kingdom
| | - Christine S. Rollier
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| | - Robert K. Prud’homme
- Department of Biological and Chemical Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew J. Pollard
- Department of Paediatrics, Oxford Vaccine Group, University of Oxford and the NIHR Oxford Biomedical Research Institute, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
19
|
Xia Z, Friedlander RM. Minocycline in Multiple Sclerosis - Compelling Results but Too Early to Tell. N Engl J Med 2017; 376:2191-2193. [PMID: 28564559 DOI: 10.1056/nejme1703230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zongqi Xia
- From the Program in Translational Neurology and Neuroinflammation, Pittsburgh Institute of Neurodegenerative Diseases (Z.X.), and the Institute of Multiple Sclerosis Care and Research, Department of Neurology (Z.X.), and the Neuroapoptosis Laboratory, Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center - all in Pittsburgh
| | - Robert M Friedlander
- From the Program in Translational Neurology and Neuroinflammation, Pittsburgh Institute of Neurodegenerative Diseases (Z.X.), and the Institute of Multiple Sclerosis Care and Research, Department of Neurology (Z.X.), and the Neuroapoptosis Laboratory, Department of Neurosurgery (R.M.F.), University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center - all in Pittsburgh
| |
Collapse
|
20
|
Pretreatment with minocycline restores neurogenesis in the subventricular zone and subgranular zone of the hippocampus after ketamine exposure in neonatal rats. Neuroscience 2017; 352:144-154. [DOI: 10.1016/j.neuroscience.2017.03.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 12/26/2022]
|
21
|
Qu W, Johnson A, Kim JH, Lukowicz A, Svedberg D, Cvetanovic M. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. J Neuroinflammation 2017; 14:107. [PMID: 28545543 PMCID: PMC5445366 DOI: 10.1186/s12974-017-0880-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/12/2017] [Indexed: 12/16/2022] Open
Abstract
Background Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Methods Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. Results PLX treatment resulted in the elimination of 70–80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. Conclusions A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0880-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenhui Qu
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Andrea Johnson
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Joo Hyun Kim
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Abigail Lukowicz
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Daniel Svedberg
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Evaluating the effectiveness of a novel atomized liquid needle-free transdermal delivery system. Drug Deliv Transl Res 2017; 7:609-616. [DOI: 10.1007/s13346-017-0382-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Nakatsukasa A, Kuruma K, Okamatsu M, Hiono T, Suzuki M, Matsuno K, Kida H, Oyamada T, Sakoda Y. Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice. Vaccine 2017; 35:2855-2861. [PMID: 28431812 DOI: 10.1016/j.vaccine.2017.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/26/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
Abstract
Transdermal vaccination using a microneedle (MN) confers enhanced immunity compared with subcutaneous (SC) vaccination. Here we developed a novel dissolving MN patch for the influenza vaccine. The potencies of split virion and whole virus particle (WVP) vaccines prepared from A/Puerto Rico/8/1934 (H1N1) and A/duck/Hokkaido/Vac-3/2007 (H5N1), respectively, were evaluated. MN vaccination induced higher neutralizing antibody responses than SC vaccination in mice. Moreover, MN vaccination with a lower dose of antigens conferred protective immunity against lethal challenges of influenza viruses than SC vaccination in mice. These results suggest that the WVP vaccines administered using MN are an effective combination for influenza vaccine to be further validated in humans.
Collapse
Affiliation(s)
- Akihiro Nakatsukasa
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Koji Kuruma
- Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters, FUJIFILM Corporation, Kaisei 258-8577, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mizuho Suzuki
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Keita Matsuno
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan; Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takayoshi Oyamada
- Pharmaceutical & Healthcare Research Laboratories, Research & Development Management Headquarters, FUJIFILM Corporation, Kaisei 258-8577, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
24
|
Singh B, Mourya A, Sah SP, Kumar A. Protective effect of losartan and ramipril against stress induced insulin resistance and related complications: Anti-inflammatory mechanisms. Eur J Pharmacol 2017; 801:54-61. [DOI: 10.1016/j.ejphar.2017.02.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 01/11/2023]
|
25
|
Sambataro F, Pennuto M. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases. Front Mol Neurosci 2017; 10:82. [PMID: 28408866 PMCID: PMC5374214 DOI: 10.3389/fnmol.2017.00082] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of UdineUdine, Italy
| | - Maria Pennuto
- Centre for Integrative Biology, Dulbecco Telethon Institute, University of TrentoTrento, Italy
| |
Collapse
|
26
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Kuiper EFE, de Mattos EP, Jardim LB, Kampinga HH, Bergink S. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch. Front Neurosci 2017; 11:145. [PMID: 28386214 PMCID: PMC5362620 DOI: 10.3389/fnins.2017.00145] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/08/2017] [Indexed: 01/12/2023] Open
Abstract
Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level.
Collapse
Affiliation(s)
- E F E Kuiper
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Eduardo P de Mattos
- Department of Cell Biology, University Medical Center Groningen, University of GroningenGroningen, Netherlands; Programa de Pós-Graduação em Genética e Biologia Molecular, Department of Genetics, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto AlegrePorto Alegre, Brazil
| | - Laura B Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Department of Genetics, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto AlegrePorto Alegre, Brazil; Departamento de Medicina Interna, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| | - Steven Bergink
- Department of Cell Biology, University Medical Center Groningen, University of Groningen Groningen, Netherlands
| |
Collapse
|
28
|
Yuan H, Zhang X, Zheng W, Zhou H, Zhang BY, Zhao D. Minocycline Attenuates Kidney Injury in a Rat Model of Streptozotocin-Induced Diabetic Nephropathy. Biol Pharm Bull 2017; 39:1231-7. [PMID: 27476934 DOI: 10.1248/bpb.b15-00594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of minocycline on the development of diabetic nephropathy (DN) in streptozotocin (STZ) induced diabetic rats were evaluated in this study. The diabetes rats with DN were induced by STZ (55 mg/kg) injection. The experiment included 5 groups 1) normal, 2) normal plus minocycline for 16 weeks, 3) DN plus vehicle, 4) DN plus minocycline 16 weeks and 5) DN plus minocycline for 8 weeks. The pathological changes were analyzed by hematoxylin and eosin (H&E) staining and the apoptotic cells were stained by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining. The mRNA expression of caspase-3, Bax and Bcl-2 in the kidney tissues was detected by quantitative RT-PCR. The biochemical parameters of blood and urine were determined by biochemical analyzer. Treatment with minocycline reduced the urine volume, 24-h urine protein, serum creatinine (Scr), blood urea nitrogen (BUN) but not blood alanine aminotransferase (ALT) in the DN rats. Furthermore, treatment with minocycline improved the pathological score of STZ-injured kidney and reduced the numbers of apoptotic cells in the kidney of DN rats. Moreover, minocycline mitigated the expression of caspase-3 and Bax mRNA, but increased Bcl-2 expression in the kidney of DN rats. These data indicated that minocycline improved the STZ-induced kidney damages, at least partially by protection form long-term hyperglycemia-induced kidney cell apoptosis.
Collapse
|
29
|
Shultz RB, Zhong Y. Minocycline targets multiple secondary injury mechanisms in traumatic spinal cord injury. Neural Regen Res 2017; 12:702-713. [PMID: 28616020 PMCID: PMC5461601 DOI: 10.4103/1673-5374.206633] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Minocycline hydrochloride (MH), a semi-synthetic tetracycline derivative, is a clinically available antibiotic and anti-inflammatory drug that also exhibits potent neuroprotective activities. It has been shown to target multiple secondary injury mechanisms in spinal cord injury, via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The secondary injury mechanisms that MH can potentially target include inflammation, free radicals and oxidative stress, glutamate excitotoxicity, calcium influx, mitochondrial dysfunction, ischemia, hemorrhage, and edema. This review discusses the potential mechanisms of the multifaceted actions of MH. Its anti-inflammatory and neuroprotective effects are partially achieved through conserved mechanisms such as modulation of p38 mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways as well as inhibition of matrix metalloproteinases (MMPs). Additionally, MH can directly inhibit calcium influx through the N-methyl-D-aspartate (NMDA) receptors, mitochondrial calcium uptake, poly(ADP-ribose) polymerase-1 (PARP-1) enzymatic activity, and iron toxicity. It can also directly scavenge free radicals. Because it can target many secondary injury mechanisms, MH treatment holds great promise for reducing tissue damage and promoting functional recovery following spinal cord injury.
Collapse
Affiliation(s)
- Robert B Shultz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yinghui Zhong
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
30
|
Colpo GD, Stimming EF, Rocha NP, Teixeira AL. Promises and pitfalls of immune-based strategies for Huntington's disease. Neural Regen Res 2017; 12:1422-1425. [PMID: 29089980 PMCID: PMC5649455 DOI: 10.4103/1673-5374.215245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disease characterized by the selective loss of neurons in the striatum and cortex, leading to progressive motor dysfunction, cognitive decline and behavioral symptoms. HD is caused by a trinucleotide (CAG) repeat expansion in the gene encoding for huntingtin. Several studies have suggested that inflammation is an important feature of HD and it is already observed in the early stages of the disease. Recently, new molecules presenting anti-inflammatory and/or immunomodulatory have been investigated for HD. The objective of this review is to discuss the data obtained so far on the immune-based therapeutic strategies for HD.
Collapse
Affiliation(s)
- Gabriela Delevati Colpo
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erin Furr Stimming
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Natalia Pessoa Rocha
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio Lucio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
31
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
32
|
Esteves S, Duarte-Silva S, Maciel P. Discovery of Therapeutic Approaches for Polyglutamine Diseases: A Summary of Recent Efforts. Med Res Rev 2016; 37:860-906. [PMID: 27870126 DOI: 10.1002/med.21425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Polyglutamine (PolyQ) diseases are a group of neurodegenerative disorders caused by the expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the coding region of specific genes. This leads to the production of pathogenic proteins containing critically expanded tracts of glutamines. Although polyQ diseases are individually rare, the fact that these nine diseases are irreversibly progressive over 10 to 30 years, severely impairing and ultimately fatal, usually implicating the full-time patient support by a caregiver for long time periods, makes their economic and social impact quite significant. This has led several researchers worldwide to investigate the pathogenic mechanism(s) and therapeutic strategies for polyQ diseases. Although research in the field has grown notably in the last decades, we are still far from having an effective treatment to offer patients, and the decision of which compounds should be translated to the clinics may be very challenging. In this review, we provide a comprehensive and critical overview of the most recent drug discovery efforts in the field of polyQ diseases, including the most relevant findings emerging from two different types of approaches-hypothesis-based candidate molecule testing and hypothesis-free unbiased drug screenings. We hereby summarize and reflect on the preclinical studies as well as all the clinical trials performed to date, aiming to provide a useful framework for increasingly successful future drug discovery and development efforts.
Collapse
Affiliation(s)
- Sofia Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, University of Minho, Guimarães, Braga, Portugal
| |
Collapse
|
33
|
Kunkanjanawan T, Carter RL, Prucha MS, Yang J, Parnpai R, Chan AWS. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington's Disease Monkey Neural Cells. PLoS One 2016; 11:e0162788. [PMID: 27631085 PMCID: PMC5025087 DOI: 10.1371/journal.pone.0162788] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/29/2016] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics.
Collapse
Affiliation(s)
- Tanut Kunkanjanawan
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Richard L. Carter
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Melinda S. Prucha
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Jinjing Yang
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anthony W. S. Chan
- Yerkes National Primate Research Center, 954 Gatewood Rd. N.E., Atlanta, GA, 39329, United States of America
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, United States of America
| |
Collapse
|
34
|
Leem E, Jeong KH, Won SY, Shin WH, Kim SR. Prothrombin Kringle-2: A Potential Inflammatory Pathogen in the Parkinsonian Dopaminergic System. Exp Neurobiol 2016; 25:147-55. [PMID: 27574481 PMCID: PMC4999420 DOI: 10.5607/en.2016.25.4.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 01/04/2023] Open
Abstract
Although accumulating evidence suggests that microglia-mediated neuroinflammation may be crucial for the initiation and progression of Parkinson's disease (PD), and that the control of neuroinflammation may be a useful strategy for preventing the degeneration of nigrostriatal dopaminergic (DA) projections in the adult brain, it is still unclear what kinds of endogenous biomolecules initiate microglial activation, consequently resulting in neurodegeneration. Recently, we reported that the increase in the levels of prothrombin kringle-2 (pKr-2), which is a domain of prothrombin that is generated by active thrombin, can lead to disruption of the nigrostriatal DA projection. This disruption is mediated by neurotoxic inflammatory events via the induction of microglial Toll-like receptor 4 (TLR4) in vivo , thereby resulting in less neurotoxicity in TLR4-deficient mice. Moreover, inhibition of microglial activation following minocycline treatment, which has anti-inflammatory activity, protects DA neurons from pKr-2-induced neurotoxicity in the substantia nigra (SN) in vivo. We also found that the levels of pKr-2 and microglial TLR4 were significantly increased in the SN of PD patients compared to those of age-matched controls. These observations suggest that there may be a correlation between pKr-2 and microglial TLR4 in the initiation and progression of PD, and that inhibition of pKr-2-induced microglial activation may be protective against the degeneration of the nigrostriatal DA system in vivo. To describe the significance of pKr-2 overexpression, which may have a role in the pathogenesis of PD, we have reviewed the mechanisms of pKr-2-induced microglial activation, which results in neurodegeneration in the SN of the adult brain.
Collapse
Affiliation(s)
- Eunju Leem
- School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Kyoung Hoon Jeong
- School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Won-Ho Shin
- Predictive Research Center, Korea Institute of Toxicology, Daejeon 34114, Korea
| | - Sang Ryong Kim
- School of Life Sciences & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.; Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.; Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
35
|
Meliopoulos VA, Karlsson EA, Schultz-Cherry S. What can imaging tell us about influenza virus transmission and protection? Future Virol 2016. [DOI: 10.2217/fvl-2016-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of zoonotic influenza infections is a constant threat to public health. One of the major determinants of pandemic potential is the ability to transmit from animal to human and/or human to human via respiratory droplets. Understanding viral tropism and spread is crucial for predicting which viruses represent the most threatening to human health. Recently, a replication-competent influenza reporter virus was described that permitted in vivo imaging and visualization of infection in ferrets for the first time. This review will focus on the applications of luminescent reporter viruses toward understanding transmission of influenza viruses and development of therapeutic interventions.
Collapse
Affiliation(s)
- Victoria A Meliopoulos
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erik A Karlsson
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Crichton ML, Muller DA, Depelsenaire ACI, Pearson FE, Wei J, Coffey J, Zhang J, Fernando GJP, Kendall MAF. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization. Sci Rep 2016; 6:27217. [PMID: 27251567 PMCID: PMC4890175 DOI: 10.1038/srep27217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022] Open
Abstract
Micro-device use for vaccination has grown in the past decade, with the promise of ease-of-use, painless application, stable solid formulations and greater immune response generation. However, the designs of the highly immunogenic devices (e.g. the gene gun, Nanopatch or laser adjuvantation) require significant energy to enter the skin (30-90 mJ). Within this study, we explore a way to more effectively use energy for skin penetration and vaccination. These modifications change the Nanopatch projections from cylindrical/conical shapes with a density of 20,000 per cm(2) to flat-shaped protrusions at 8,000 per cm(2), whilst maintaining the surface area and volume that is placed within the skin. We show that this design results in more efficient surface crack initiations, allowing the energy to be more efficiently be deployed through the projections into the skin, with a significant overall increase in penetration depth (50%). Furthermore, we measured a significant increase in localized skin cell death (>2 fold), and resultant infiltrate of cells (monocytes and neutrophils). Using a commercial seasonal trivalent human influenza vaccine (Fluvax 2014), our new patch design resulted in an immune response equivalent to intramuscular injection with approximately 1000 fold less dose, while also being a practical device conceptually suited to widespread vaccination.
Collapse
Affiliation(s)
- Michael Lawrence Crichton
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia
| | - David Alexander Muller
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Alexandra Christina Isabelle Depelsenaire
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Frances Elizabeth Pearson
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Jonathan Wei
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Jacob Coffey
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Jin Zhang
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Germain J P Fernando
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia
| | - Mark Anthony Fernance Kendall
- The University of Queensland, Delivery of Drugs and Genes Group (D2G2), The Australian Institute for Bioengineering and Nanotechnology, St Lucia, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Australia.,The University of Queensland, Faculty of Medicine and Biomedical Sciences, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
37
|
Tomar J, Born PA, Frijlink HW, Hinrichs WLJ. Dry influenza vaccines: towards a stable, effective and convenient alternative to conventional parenteral influenza vaccination. Expert Rev Vaccines 2016; 15:1431-1447. [DOI: 10.1080/14760584.2016.1182869] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Kim KS, Kim H, Park Y, Kong WH, Lee SW, Kwok SJJ, Hahn SK, Yun SH. Noninvasive Transdermal Vaccination Using Hyaluronan Nanocarriers and Laser Adjuvant. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2512-2522. [PMID: 27833475 PMCID: PMC5098559 DOI: 10.1002/adfm.201504879] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Vaccines are commonly administered by injection using needles. Although transdermal microneedles are less-invasive promising alternatives, needle-free topical vaccination without involving physical damage to the natural skin barrier is still sought after as it can further reduce needle-induced anxiety and simply administration. However, this long-standing goal has been elusive since the intact skin is impermeable to most macromolecules. Here, we show an efficient, non-invasive transdermal vaccination in mice by employing two key innovations: first, the use of hyaluronan (HA) as vaccine carriers and, second, non-ablative laser adjuvants. Conjugates of a model vaccine ovalbumin (OVA) and HA-HA-OVA conjugates-induced more effective maturation of dendritic cells in vitro, compared to OVA or HA alone, through synergistic HA receptor-mediated effects. Following topical administration in the back skin, HA-OVA conjugates penetrated into the epidermis and dermis in murine and porcine skins up to 30% of the total applied quantity, as revealed by intravital microscopy and quantitative fluorescence assay. Topical administration of HA-OVA conjugates significantly elevated both anti-OVA IgG antibody levels in serum and IgA antibody levels in bronchioalveolar lavage, with peak levels at 4 weeks, while OVA alone had a negligible effect. An OVA challenge at week 8 elicited strong immune-recall humoral responses. With pre-treatment of the skin using non-ablative fractional laser beams (1410 nm wavelength, 10 ms pulse duration, 0.2 mJ/pulse) as laser adjuvant, strong immunization was achieved with much reduced doses of HA-OVA (1 mg/kg OVA). Our results demonstrate the potential of the non-invasive patch-type transdermal vaccination platform.
Collapse
Affiliation(s)
- Ki Su Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
| | - Hyemin Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Won Ho Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Seung Woo Lee
- Division of Integrative Biosciences and Biotechnology, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
- Department of Life Science, POSTECH, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Sheldon J. J. Kwok
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
| | - Sei Kwang Hahn
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 790-784, Korea
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne St., UP-5, Cambridge, Massachusetts 02139, USA
- Department of Dermatology, Harvard Medical School, 40 Blossom St., Boston, Massachusetts 02140, USA
| |
Collapse
|
39
|
|
40
|
Kumar R, Basu A, Sinha S, Das M, Tripathi P, Jain A, Kumar C, Atam V, Khan S, Singh AS. Role of oral Minocycline in acute encephalitis syndrome in India - a randomized controlled trial. BMC Infect Dis 2016; 16:67. [PMID: 26847071 PMCID: PMC4743094 DOI: 10.1186/s12879-016-1385-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 01/26/2016] [Indexed: 11/29/2022] Open
Abstract
Background Acute encephalitis syndrome (AES) is a public health problem in India. Neuroinfections are believed to be the most important etiology. Minocycline is a semisythetic tetracycline having excellent penetration into cerebrospinal fluid, established neuroprotective and antiviral properties besides action on nonviral causes of AES. It has been shown to be effective in animal model of Japanese encephalitis (JE). A randomized, controlled trial of nasogastric/oral minocycline in JE and AES at a single centre in Uttar Pradesh, northern India, was therefore conducted. Methods Patients beyond 3 years of age - but excluding women aged 16–44 years - hospitalized with AES of < =7 days duration were enrolled and block randomized to receive nasogastric/oral minocycline or placebo suspension and followed up. Patients, study personnel and those entering data were blinded as to drug or placebo received. Primary outcome was cumulative mortality at 3 months from hospitalization. Analysis was by intention to treat. Results 281 patients were enrolled, 140 received drug and 141 placebo. While there was no overall statistically significant difference in 3 month mortality between drug and placebo groups [RR = 0 · 83 (0 · 6-1 · 1)], there were encouraging trends in patients older than 12 years [RR = 0.70 (0.41-1.18)] and in Glasgow Outcome Score (GOS) at 3 months (χ2 = 7 · 44, p = 0 · 059). These trends were further accentuated if patients dying within one day of reaching hospital were excluded [OR for 3 month mortality =0 · 70 (0 · 46-1 · 07), p = 0.090; 3 month GOS p = 0 · 028]. Conclusions A trend towards better outcomes was observed with minocycline, especially in those patients who survived the initial day in hospital. These findings should form the basis for planning a larger study and possibly including minocycline in the initial management of AES as seen here. Trial registration The trial was registered with Clinical Trials Registry of India (CTRI) - CTRI/2010/091/006143
Collapse
Affiliation(s)
- Rashmi Kumar
- Departments of Pediatrics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| | - Subrata Sinha
- National Brain Research Centre, Manesar, Haryana, 122051, India.
| | - Manoj Das
- INCLEN Trust International, Okhla Industrial Area, Phase-1, New Delhi, 110020, India.
| | - Piyush Tripathi
- Departments of Pediatrics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Amita Jain
- Departments of Microbiology, King George's Medical University, Lucknow, UP, 226003, India.
| | - Chandrakanta Kumar
- Departments of Pediatrics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Virendra Atam
- Departments of Medicine, King George's Medical University, Lucknow, UP, 226003, India.
| | - Saima Khan
- Departments of Pediatrics, King George's Medical University, Lucknow, UP, 226003, India.
| | - Amit Shanker Singh
- Departments of Pediatrics, King George's Medical University, Lucknow, UP, 226003, India.
| |
Collapse
|
41
|
Scholz R, Sobotka M, Caramoy A, Stempfl T, Moehle C, Langmann T. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinflammation 2015; 12:209. [PMID: 26576678 PMCID: PMC4650866 DOI: 10.1186/s12974-015-0431-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. Methods LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Results Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer retina and down-regulated the expression of the microglial activation marker translocator protein (18 kDa) (TSPO), CD68, and activated microglia/macrophage whey acidic protein (AMWAP) already 1 day after light exposure. Furthermore, RNA-seq analyses revealed the potential of minocycline to globally counter-regulate pro-inflammatory gene transcription in the light-damaged retina. The severe thinning of the outer retina and the strong induction of photoreceptor apoptosis induced by light challenge were nearly completely prevented by minocycline treatment as indicated by a preserved retinal structure and a low number of apoptotic cells. Conclusions Minocycline potently counter-regulates microgliosis and light-induced retinal damage, indicating a promising concept for the treatment of retinal pathologies. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0431-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Markus Sobotka
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Albert Caramoy
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| | - Thomas Stempfl
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Christoph Moehle
- Center of Excellence for Fluorescent Bioanalytics, University of Regensburg, 93053, Regensburg, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
42
|
Drenger B, Fellig Y, Ben-David D, Mintz B, Idrees S, Or O, Kaplan L, Ginosar Y, Barzilay Y. Minocycline Effectively Protects the Rabbit's Spinal Cord From Aortic Occlusion-Related Ischemia. J Cardiothorac Vasc Anesth 2015; 30:282-90. [PMID: 26853309 DOI: 10.1053/j.jvca.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. DESIGN An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. SETTING Tertiary medical center and school of medicine laboratory. PARTICIPANTS Laboratory animals-rabbits. INTERVENTIONS Balloon obstruction of infrarenal aorta introduced via femoral artery incision. RESULTS Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). CONCLUSIONS In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord.
Collapse
Affiliation(s)
| | - Yakov Fellig
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Ben-David
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bella Mintz
- Department of Anesthesiology and Critical Care Medicine
| | - Suhel Idrees
- Department of Anesthesiology and Critical Care Medicine
| | - Omer Or
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Leon Kaplan
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Yair Barzilay
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
43
|
Xian B, Huang B. The immune response of stem cells in subretinal transplantation. Stem Cell Res Ther 2015; 6:161. [PMID: 26364954 PMCID: PMC4568575 DOI: 10.1186/s13287-015-0167-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stem cell transplantation is a potential curative treatment for degenerative diseases of the retina. Among cell injection sites, the subretinal space (SRS) is particularly advantageous as it is maintained as an immune privileged site by the retinal pigment epithelium (RPE) layer. Thus, the success of subretinal transplantation depends on maintenance of RPE integrity. Moreover, both embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have negligible immunogenicity and in fact are immunosuppressive. Indeed, many studies have demonstrated that immunosuppressive drugs are not necessary for subretinal transplantation of stem cells if the blood-retinal barrier is not breached during surgery. The immunogenicity of induced pluripotent stem cells (iPSCs) appears more complex, and requires careful study before clinical application. Despite low rates of graft rejection in animal models, survival rates for ESCs, MSCs, and iPSCs in retina are generally poor, possibly due to resident microglia activated by cell transplantation. To improve graft survival in SRS transplantation, damage to the blood-retinal barrier must be minimized using appropriate surgical techniques. In addition, agents that inhibit microglial activation may be required. Finally, immunosuppressants may be required, at least temporarily, until the blood-retinal barrier heals. We review surgical methods and drug regimens to enhance the likelihood of graft survival after SRS transplantation.
Collapse
Affiliation(s)
- Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
44
|
Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem J 2015; 471:323-33. [PMID: 26272943 DOI: 10.1042/bj20150617] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is an age-related movement disorder characterized by a progressive degeneration of dopaminergic neurons in the midbrain. Although the presence of amyloid deposits of α-synuclein (α-syn) is the main pathological feature, PD brains also present a severe permanent inflammation, which largely contributes to neuropathology. Although α-syn has recently been implicated in this process, the molecular mechanisms underlying neuroinflammation remain unknown. In the present study, we investigated the ability of different α-syn aggregates to trigger inflammatory responses. We showed that α-syn induced inflammation through activation of Toll-like receptor 2 (TLR2) and the nucleotide oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome only when folded as amyloid fibrils. Oligomeric species, thought to be the primary species responsible for the disease, were surprisingly unable to trigger the same cascades. As neuroinflammation is a key player in PD pathology, these results put fibrils back to the fore and rekindles discussions about the primary toxic species contributing to the disease. Our data also suggest that the inflammatory properties of α-syn fibrils are linked to their intrinsic structure, most probably to their cross-β structure. Since fibrils of other amyloids induce similar immunological responses, we propose that the canonical fibril-specific cross-β structure represents a new generic motif recognized by the innate immune system.
Collapse
|
45
|
Nagarakanti S, Bishburg E. Is Minocycline an Antiviral Agent? A Review of Current Literature. Basic Clin Pharmacol Toxicol 2015; 118:4-8. [PMID: 26177421 DOI: 10.1111/bcpt.12444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022]
Abstract
Minocycline is a second-generation semi-synthetic derivative of tetracycline and has well-known anti-bacterial effects. The drug possesses anti-inflammatory, anti-oxidant, anti-apoptotic and immunomodulatory effects. The drug is widely used in bacterial infections and non-infectious conditions such as acne, dermatitis, periodontitis and neurodegenerative conditions. Minocycline was shown to have antiviral activity in vitro and also against different viruses in some animal models. Some studies have been done on human patients infected with Human Immunodeficiency Virus. We have review the available data regarding minocycline activity as an antiviral agent.
Collapse
|
46
|
Yoon JM, Koppula S, Huh SJ, Hur SJ, Kim CG. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells. Biol Res 2015. [PMID: 26205793 PMCID: PMC4511997 DOI: 10.1186/s40659-015-0025-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10–40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. Methods The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. Results and conclusion In the present findings we showed that low concentration of DC (<2.0 µg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1–2 µg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01–16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway. Electronic supplementary material The online version of this article (doi:10.1186/s40659-015-0025-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jung Mi Yoon
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Sushruta Koppula
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Se Jong Huh
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Republic of Korea.
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 456-756, South Korea.
| | - Chan Gil Kim
- Department of Biotechnology, Konkuk University, Chungju, 380-701, Republic of Korea.
| |
Collapse
|
47
|
Ko JC, Wang TJ, Chang PY, Syu JJ, Chen JC, Chen CY, Jian YT, Jian YJ, Zheng HY, Chen WC, Lin YW. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells. Biochem Pharmacol 2015. [PMID: 26212550 DOI: 10.1016/j.bcp.2015.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan, Department of Nursing, Yuanpei University, Hsinchu, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jhan-Jhang Syu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jyh-Cheng Chen
- Department of Food Science, National Chiayi University, Chiayi, Taiwan
| | - Chien-Yu Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Ting Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Jun Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Hao-Yu Zheng
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Wen-Ching Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
48
|
Elbekai R, Paranjpe M, Contreras P, Spada A. Carcinogenicity assessment of the pan-caspase inhibitor, emricasan, in Tg.rasH2 mice. Regul Toxicol Pharmacol 2015; 72:169-78. [DOI: 10.1016/j.yrtph.2015.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
|
49
|
Meng Q, Liu G, Liu Y, Deng X, Wang W, Xu K, Zheng X, Zhang D, Pang H, Chen H. A broad protection provided by matrix protein 2 (M2) of avian influenza virus. Vaccine 2015; 33:3758-65. [DOI: 10.1016/j.vaccine.2015.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 05/19/2015] [Indexed: 12/09/2022]
|
50
|
Ji ES, Kim YM, Shin MS, Kim CJ, Lee KS, Kim K, Ha J, Chung YR. Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington's disease rats. J Exerc Rehabil 2015; 11:133-9. [PMID: 26171378 PMCID: PMC4492422 DOI: 10.12965/jer.150212] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023] Open
Abstract
Huntington’s disease is a chronic neurodegenerative disorder inherited in an autosomal dominant fashion, and characterized as involuntary movement. Quinolinic acid has been used to produce an animal model of Huntington’s disease. In the present study, the effect of treadmill exercise on spatial-learning ability and motor coordination focusing on the apoptosis in the hippocampus was investigated using quinolinic acid-induced Huntington’s disease rats. Huntington’s disease was induced by unilateral intrastriatal injection of quinolinic acid (2 μL of 100 nmol) using stereotaxic instrument. The rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 14 days. Spatial learning ability and motor coordination were determined by radial 8-arm maze test and rota-rod test. Immunohistochemistry for caspase-3 and western blot for Bax and Bcl-2 were also conducted for the detection of apoptosis. In the present results, spatial learning ability and motor coordination were deteriorated by intrastriatal injection of quinolinic acid. In contrast, treadmill exercise exerted ameliorating effect on quinolinic acid-induced deterioration of spatial learning ability and motor coordination. Bcl-2 expression in the hippocampus was de-creased and expressions of casepase-3 and Bax in the hippocampus were increased in the quinolinic acid-induced Huntington’s disease rats. Treadmill exercise increased Bcl-2 expression and decreased expressions of casepase-3 and Bax in the Huntington’s disease rats. The present results showed that treadmill exercise might ameliorate quinolinic acid-induced loss of spatial learning ability and motor coordination by suppressing apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Eun-Sang Ji
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - You-Mi Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Mal-Soon Shin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Kwang-Sik Lee
- Research Institute of Sports Science, National University of Incheon, Incheon, Korea
| | - Kijeong Kim
- Department of Exercise & Sport Science, College of Natural Sciences, University of Ulsan, Ulsan, Korea
| | - Jonglin Ha
- Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yong-Rak Chung
- Department of Golf Mapping, College of Arts Physical Education, Joongbu University, Geumsan-gun, Chungcheongnam-do, Korea
| |
Collapse
|