1
|
Chaudhary S, Ali Z, Pantoja‐Angles A, Abdelrahman S, Juárez COB, Rao GS, Hong P, Hauser C, Mahfouz M. High-yield, plant-based production of an antimicrobial peptide with potent activity in a mouse model. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3392-3405. [PMID: 39264967 PMCID: PMC11606426 DOI: 10.1111/pbi.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Plants offer a promising chassis for the large-scale, cost-effective production of diverse therapeutics, including antimicrobial peptides (AMPs). However, key advances will reduce production costs, including simplifying the downstream processing and purification steps. Here, using Nicotiana benthamiana plants, we present an improved modular design that enables AMPs to be secreted via the endomembrane system and sequestered in an extracellular compartment, the apoplast. Additionally, we translationally fused an AMP to a mutated small ubiquitin-like modifier sequence, thereby enhancing peptide yield and solubilizing the peptide with minimal aggregation and reduced occurrence of necrotic lesions in the plant. This strategy resulted in substantial peptide accumulation, reaching around 2.9 mg AMP per 20 g fresh weight of leaf tissue. Furthermore, the purified AMP demonstrated low collateral toxicity in primary human skin cells, killed pathogenic bacteria by permeabilizing the membrane and exhibited anti-infective efficacy in a preclinical mouse (Mus musculus) model system, reducing bacterial loads by up to three orders of magnitude. A base-case techno-economic analysis demonstrated the economic advantages and scalability of our plant-based platform. We envision that our work can establish plants as efficient bioreactors for producing preclinical-grade AMPs at a commercial scale, with the potential for clinical applications.
Collapse
Affiliation(s)
- Shahid Chaudhary
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Aarón Pantoja‐Angles
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Cynthia Olivia Baldelamar Juárez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Pei‐Ying Hong
- Water Desalination and Reuse Center, Division of Biological Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Charlotte Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Computational Bioscience Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
- Red Sea Research CenterKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and Technology (KAUST)ThuwalJeddahSaudi Arabia
| |
Collapse
|
2
|
Nazarian-Firouzabadi F, Torres MDT, de la Fuente-Nunez C. Recombinant production of antimicrobial peptides in plants. Biotechnol Adv 2024; 71:108296. [PMID: 38042311 PMCID: PMC11537283 DOI: 10.1016/j.biotechadv.2023.108296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Classical plant breeding methods are limited in their ability to confer disease resistance on plants. However, in recent years, advancements in molecular breeding and biotechnological have provided new approaches to overcome these limitations and protect plants from disease. Antimicrobial peptides (AMPs) constitute promising agents that may be able to protect against infectious agents. Recently, peptides have been recombinantly produced in plants at scale and low cost. Because AMPs are less likely than conventional antimicrobials to elicit resistance of pathogenic bacteria, they open up exciting new avenues for agricultural applications. Here, we review recent advances in the design and production of bioactive recombinant AMPs that can effectively protect crop plants from diseases.
Collapse
Affiliation(s)
- Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box, 465, Khorramabad, Iran.
| | - Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
3
|
Li X, Jing X, Yu Z, Huang Y. Diverse Antibacterial Treatments beyond Antibiotics for Diabetic Foot Ulcer Therapy. Adv Healthc Mater 2023; 12:e2300375. [PMID: 37141030 DOI: 10.1002/adhm.202300375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Diabetic foot ulcer (DFU), a common complication of diabetes, has become a great burden to both patients and the society. The delayed wound closure of ulcer sites resulting from vascular damage and neutrophil dysfunction facilitates bacterial infection. Once drug resistance occurs or bacterial biofilm is formed, conventional therapy tends to fail and amputation is unavoidable. Therefore, effective antibacterial treatment beyond antibiotics is of utmost importance to accelerate the wound healing process and prevent amputation. Considering the complexity of multidrug resistance, biofilm formation, and special microenvironments (such as hyperglycemia, hypoxia, and abnormal pH value) at the infected site of DFU, several antibacterial agents and different mechanisms have been explored to achieve the desired outcome. The present review focuses on the recent progress of antibacterial treatments, including metal-based medications, natural and synthesized antimicrobial peptides, antibacterial polymers, and sensitizer-based therapy. This review provides a valuable reference for the innovation of antibacterial material design for DFU therapy.
Collapse
Affiliation(s)
- Xiaoyuan Li
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Xin Jing
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Ziqian Yu
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Renmin Street, Changchun, 130024, P. R. China
| |
Collapse
|
4
|
Tang R, Tan H, Dai Y, Li L, Huang Y, Yao H, Cai Y, Yu G. Application of antimicrobial peptides in plant protection: making use of the overlooked merits. FRONTIERS IN PLANT SCIENCE 2023; 14:1139539. [PMID: 37538059 PMCID: PMC10394246 DOI: 10.3389/fpls.2023.1139539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 08/05/2023]
Abstract
Pathogen infection is one of the major causes of yield loss in the crop field. The rapid increase of antimicrobial resistance in plant pathogens has urged researchers to develop both new pesticides and management strategies for plant protection. The antimicrobial peptides (AMPs) showed potential on eliminating plant pathogenic fungi and bacteria. Here, we first summarize several overlooked advantages and merits of AMPs, which includes the steep dose-response relations, fast killing ability, broad synergism, slow resistance selection. We then discuss the possible application of AMPs for plant protection with above merits, and highlight how AMPs can be incorporated into a more efficient integrated management system that both increases the crop yield and reduce resistance evolution of pathogens.
Collapse
|
5
|
Copling A, Akantibila M, Kumaresan R, Fleischer G, Cortes D, Tripathi RS, Carabetta VJ, Vega SL. Recent Advances in Antimicrobial Peptide Hydrogels. Int J Mol Sci 2023; 24:7563. [PMID: 37108725 PMCID: PMC10139150 DOI: 10.3390/ijms24087563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.
Collapse
Affiliation(s)
- Aryanna Copling
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Maxwell Akantibila
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Raaha Kumaresan
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Rahul S. Tripathi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
6
|
Roshanak S, Yarabbi H, Shahidi F, Tabatabaei Yazdi F, Movaffagh J, Javadmanesh A. Effects of adding poly-histidine tag on stability, antimicrobial activity and safety of recombinant buforin I expressed in periplasmic space of Escherichia coli. Sci Rep 2023; 13:5508. [PMID: 37015983 PMCID: PMC10073254 DOI: 10.1038/s41598-023-32782-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/02/2023] [Indexed: 04/06/2023] Open
Abstract
The lack of cost-effective methods for producing antimicrobial peptides has made it impossible to use their high potential as a new and powerful class of antimicrobial agents. In recent years, extensive research has been conducted to decrease the cost of recombinant proteins production through microorganisms, transgenic animals, and plants. Well-known genetic and physiological characteristics, short-term proliferation, and ease of manipulation make E. coli expression system a valuable host for recombinant proteins production. Expression in periplasmic space is recommended to reduce the inherently destructive behavior of antimicrobial peptides against the expressing microorganism and to decline susceptibility to proteolytic degradation. In this study, a pET-based expression system was used to express buforin I at E. coli periplasmic space, and its antimicrobial, hemolytic, and cell toxicity activities as well as structural stability were evaluated. The hemolysis activity and cytotoxicity of His-tagged buforin I were negligible and its antimicrobial activity did not show a significant difference compared to synthetic buforin I. In addition, in silico investigating of stability of native and His-tagged buforin I showed that RMSF, RMSD and Rg curves had followed a similar trend during 150 ns simulation. Furthermore, evaluating the modelled structures, FTIR and X-ray methods of both peptides indicated an insignificant structural difference. It was concluded that the recombinant buforin I could be a viable alternative to some currently used antibiotics by successfully expressing it in the pET-based expression system.
Collapse
Affiliation(s)
- Sahar Roshanak
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hanieh Yarabbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farideh Tabatabaei Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Jebraeil Movaffagh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Razavi Khorasan Province, Iran.
- Industrial Biotechnology Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
7
|
Buziashvili A, Yemets A. Lactoferrin and its role in biotechnological strategies for plant defense against pathogens. Transgenic Res 2023; 32:1-16. [PMID: 36534334 PMCID: PMC9761627 DOI: 10.1007/s11248-022-00331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Agricultural crops are susceptible to many diseases caused by various pathogens, such as viruses, bacteria and fungi. This paper reviews the general principles of plant protection against pathogens, as well as the role of iron and antimicrobial peptide metabolism in plant immunity. The article highlights the principles of antibacterial, fungicidal and antiviral action of lactoferrin, a mammalian secretory glycoprotein, and lactoferrin peptides, and their role in protecting plants from phytopathogens. This review offers a comprehensive analysis and shows potential prospects of using the lactoferrin gene to enhance plant resistance to various phytopathogens, as well as the advantages of this biotechnological approach over existing methods of protecting plants against various diseases.
Collapse
Affiliation(s)
- Anastasiia Buziashvili
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo Str., 2a, Kyiv, 04123 Ukraine
| | - Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Baidy-Vyshnevetskogo Str., 2a, Kyiv, 04123 Ukraine
| |
Collapse
|
8
|
Li X, Niu G, Fan Y, Liu W, Wu Q, Yu C, Wang J, Xiao Y, Hou L, Jin D, Chen S, Hu R, Yang Y, Pei Y. Synthetic dual hormone-responsive promoters enable engineering of plants with broad-spectrum resistance. PLANT COMMUNICATIONS 2023:100596. [PMID: 36998212 PMCID: PMC10363552 DOI: 10.1016/j.xplc.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/17/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In plant immunity, the mutually antagonistic hormones salicylic acid (SA) and jasmonic acid (JA) are implicated in resistance to biotrophic and necrotrophic pathogens, respectively. Promoters that can respond to both SA and JA signals are urgently needed to engineer plants with enhanced resistance to a broad spectrum of pathogens. However, few natural pathogen-inducible promoters are available for this purpose. To address this problem, we have developed a strategy to synthesize dual SA- and JA-responsive promoters by combining SA- and JA-responsive cis elements based on the interaction between their cognate trans-acting factors. The resulting promoters respond rapidly and strongly to both SA and Methyl Jasmonate (MeJA), as well as different types of phytopathogens. When such a synthetic promoter was used to control expression of an antimicrobial peptide, transgenic plants displayed enhanced resistance to a diverse range of biotrophic, necrotrophic, and hemi-biotrophic pathogens. A dual-inducible promoter responsive to the antagonistic signals auxin and cytokinin was generated in a similar manner, confirming that our strategy can be used for the design of other biotically or abiotically inducible systems.
Collapse
Affiliation(s)
- Xianbi Li
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Guoqing Niu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yanhua Fan
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Wenying Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Qian Wu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Chen Yu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Jian Wang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yuehua Xiao
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Lei Hou
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Dan Jin
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Song Chen
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Rongyu Hu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yumei Yang
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Beibei, Chongqing 400716, China; Biotechnology Research Center, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|
9
|
Hashemi S, Niazi A, Baghizadeh A, Taghizadeh MS. Successful use of Nicotiana tabacum hairy roots for the recombinant production of Cecropin A peptide. Biotechnol Appl Biochem 2022; 69:876-886. [PMID: 33788287 DOI: 10.1002/bab.2158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/15/2021] [Indexed: 12/29/2022]
Abstract
Cecropin A, as an antimicrobial peptide (AMP), is possible to use in medical and agricultural fields as a new and safe biocontrol agent. Therefore, it is highly necessary to find a cost-effective and scalable approach to generate a large scale of it. In this research, the Agrobacterium rhizogenes strain ATCC 15834 was used to transfer the Cecropin A gene to the Nicotiana tabacum. After confirmation of transgenic hairy roots, the antibacterial activity of purified Cecropin A peptide was measured using the agar gel diffusion method. Successful transforming of Cecropin A was confirmed at the RNA and protein levels in hairy root cells using RT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The highest Cecropin A amount was detected in line 4 of the transgenic lines using ELISA in comparison with the nontransgenic line. Subsequently, the antimicrobial activity of Cecropin A extracted from line 4 showed the highest inhibition activity against Aspergillus niger. Besides, this activity was stable against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans pathogens after 7 days. The recombinant production of Cecropin A AMP had a yield of 63.81 μg/g of fresh weight. According to a significant yield, this system can be used to produce the Cecropin A peptide for pharmacological and food science applications.
Collapse
Affiliation(s)
- Samaneh Hashemi
- Biotechnology Research Group, Institute of Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Niazi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Amin Baghizadeh
- Biotechnology Research Group, Institute of Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | | |
Collapse
|
10
|
Inhibitory Effect of CUSTOS, a Formulated Allium-Based Extract, on the Growth of Some Selected Plant Pathogens. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13020006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plants are in intimate association with a great diversity of pathogenic and mutualistic microbes that use host plants for proliferation. Plants, in turn, have evolved mechanisms that are contingent upon their innate immune system to resist perceived biotic stresses. The objective of this work is to determine the antimicrobial properties of an allium-based antimicrobial formulation named CUSTOS on the growth of plant pathogenic microorganisms such as fungi, oomycetes, and bacteria. Two anthracnose-related species of the fungal genus Colletotrichum, Colletotrichum gloeosporioides, the oomycete Phytophthora cactorum, and the bacterium Xanthomonas fragariae associated with strawberry plants were tested in vitro. Furthermore, two fungi Alternaria dauci and Botrytis cinerea, associated with carrot plants, were tested in planta. CUSTOS inhibited the growth of all plant pathogens tested. We found that both curative and preventive planta treatments with CUSTOS inhibited the growth of Alternaria dauci and Botrytis cinerea in carrots. Furthermore, the differential expression levels of the PR 10 genes were correlated with the magnitude of infection. We also found that the field application of CUSTOS on strawberry plants results in a reduction of fungal pathogens on strawberry fruits stored under refrigeration. In summary, CUSTOS may induce pathogen resistance in fruit and vegetable plants and can be used as both a curative and a preventive against rotting and disease.
Collapse
|
11
|
Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis. Int J Mol Sci 2021; 22:ijms222413261. [PMID: 34948059 PMCID: PMC8703302 DOI: 10.3390/ijms222413261] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.
Collapse
|
12
|
Turning Waste into Beneficial Resource: Implication of Ageratum conyzoides L. in Sustainable Agriculture, Environment and Biopharma Sectors. Mol Biotechnol 2021; 64:221-244. [PMID: 34628588 PMCID: PMC8502239 DOI: 10.1007/s12033-021-00409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
The annual herb, Ageratum conyzoides L. (Asteraceae), is distributed throughout the world. Although invasive, it can be very useful as a source of essential oils, pharmaceuticals, biopesticides, and bioenergy. However, very limited information exists on the molecular basis of its different utility as previous investigations were mainly focused on phytochemical/biological activity profiling. Here we have explored various properties of A. conyzoides that may offer environmental, ecological, agricultural, and health benefits. As this aromatic plant harbors many important secondary metabolites that may have various implications, biotechnological interventions such as genomics, metabolomics and tissue-culture can be indispensable tools for their mass-production. Further, A. conyzoides acts as a natural reservoir of begomoviruses affecting a wide range of plant species. As the mechanisms of disease spreading and crop infection are not fully clear, whole-genome sequencing and various advanced molecular technologies including RNAi, CRISPER/Cas9, multi-omics approaches, etc., may aid to decipher the molecular mechanism of such disease development and thus, can be useful in crop protection. Overall, improved knowledge of A. conyzoides is not only essential for developing sustainable weed control strategy but can also offer potential ways for biomedicinal, environment, safe and clean agriculture applications.
Collapse
|
13
|
Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, Kim SY, Wiedman GR, Hristova K, Wimley WC. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol 2021; 193:114769. [PMID: 34543656 DOI: 10.1016/j.bcp.2021.114769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.
Collapse
Affiliation(s)
- Shantanu Guha
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA
| | - Ryan P Ferrie
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Jenisha Ghimire
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Cristina R Ventura
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Eric Wu
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Leisheng Sun
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Sarah Y Kim
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Gregory R Wiedman
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Kalina Hristova
- Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, MD, USA.
| | - Wimley C Wimley
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA.
| |
Collapse
|
14
|
Zhou Y, Yang K, Yan Q, Wang X, Cheng M, Si J, Xue X, Shen D, Jing M, Tyler BM, Dou D. Targeting of anti-microbial proteins to the hyphal surface amplifies protection of crop plants against Phytophthora pathogens. MOLECULAR PLANT 2021; 14:1391-1403. [PMID: 33965632 DOI: 10.1016/j.molp.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phytophthora pathogens are a persistent threat to the world's commercially important agricultural crops, including potato and soybean. Current strategies aim at reducing crop losses rely mostly on disease-resistance breeding and chemical pesticides, which can be frequently overcome by the rapid adaptive evolution of pathogens. Transgenic crops with intrinsic disease resistance offer a promising alternative and continue to be developed. Here, we explored Phytophthora-derived PI3P (phosphatidylinositol 3-phosphate) as a novel control target, using proteins that bind this lipid to direct secreted anti-microbial peptides and proteins (AMPs) to the surface of Phytophthora pathogens. In transgenic Nicotiana benthamiana, soybean, and potato plants, significantly enhanced resistance to different pathogen isolates was achieved by expression of two AMPs (GAFP1 or GAFP3 from the Chinese medicinal herb Gastrodia elata) fused with a PI3P-specific binding domain (FYVE). Using the soybean pathogen P. sojae as an example, we demonstrated that the FYVE domain could boost the activities of GAFPs in multiple independent assays, including those performed in vitro, in vivo, and in planta. Mutational analysis of P. sojae PI3K1 and PI3K2 genes of this pathogen confirmed that the enhanced activities of the targeted GAFPs were correlated with PI3P levels in the pathogen. Collectively, our study provides a new strategy that could be used to confer resistance not only to Phytophthora pathogens in many plants but also potentially to many other kinds of plant pathogens with unique targets.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing 100091, China
| | - Ming Cheng
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Xue
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Daolong Dou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, China Agricultural University, Beijing 100091, China.
| |
Collapse
|
15
|
Huynh L, Velásquez J, Rabara R, Basu S, Nguyen HB, Gupta G. Rational design of antimicrobial peptides targeting Gram-negative bacteria. Comput Biol Chem 2021; 92:107475. [PMID: 33813188 DOI: 10.1016/j.compbiolchem.2021.107475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023]
Abstract
Membrane-targeting host antimicrobial peptides (AMPs) can kill or inhibit the growth of Gram-negative bacteria. However, the evolution of resistance among microbes poses a substantial barrier to the long-term utility of the host AMPs. Combining experiment and molecular dynamics simulations, we show that terminal carboxyl capping enhances both membrane insertion and antibacterial activity of an AMP called P1. Furthermore, we show that a bacterial strain with evolved resistance to this peptide becomes susceptible to P1 variants with either backbone capping or lysine-to-arginine substitutions. Our results suggest that cocktails of closely related AMPs may be useful in overcoming evolved resistance.
Collapse
Affiliation(s)
- Loan Huynh
- New Mexico Consortium, Los Alamos, NM, 87544, USA
| | | | - Roel Rabara
- New Mexico Consortium, Los Alamos, NM, 87544, USA
| | | | - Hau B Nguyen
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Goutam Gupta
- New Mexico Consortium, Los Alamos, NM, 87544, USA.
| |
Collapse
|
16
|
Wei S, Xu P, Yao Z, Cui X, Lei X, Li L, Dong Y, Zhu W, Guo R, Cheng B. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater 2021; 124:205-218. [PMID: 33524559 DOI: 10.1016/j.actbio.2021.01.046] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023]
Abstract
Diabetic wound healing remains a major challenge due to its vulnerability to bacterial infection, as well as the less vascularization and prolonged inflammatory phase. In this study, we developed a hydrogel system for the treatment of chronic infected wounds, which can regulate inflammatory (through the use of antimicrobial peptides) and enhance collagen deposition and angiogenesis (through the addition of platelet-rich plasma (PRP)). Based on the formation of Schiff base linkage, the ODEX/HA-AMP/PRP hydrogel was prepared by mixing oxidized dextran (ODEX), antimicrobial peptide-modified hyaluronic acid (HA-AMP) and PRP under physiological conditions, which exhibited obvious inhibition zones against three pathogenic bacterial strains (E. coli, S. aureus and P. aeruginosa) and slow release ability of antimicrobials and growth factors. Moreover, CCK-8, live/dead fluorescent staining and scratch test confirmed that ODEX/HA-AMP/PRP hydrogel could facilitate the proliferation and migration of L929 fibroblast cells. More importantly, in vivo experiments further demonstrated that the prepared hydrogels could significantly improve wound healing in a diabetic mouse infection by regulating inflammation, accelerating collagen deposition and angiogenesis. In addition, prepared hydrogel showed a significant antibacterial activity against S. aureus and P. aeruginosa, inhibited pro-inflammatory factors (TNF-α, IL-1β and IL-6), enhanced anti-inflammatory factors (TGF-β1) and vascular endothelial growth factor (VEGF) production. The findings of this study suggested that the composite hydrogel with AMP and PRP controlled release ability could be used as a promising candidate for chronic wound healing and infection-related wound healing.
Collapse
Affiliation(s)
- Shikun Wei
- The Graduate School of Southern Medical University, Guangzhou 510515, China; The Second People's Hospital of Panyu Guangzhou, Guangzhou 510120, China
| | - Pengcheng Xu
- The Graduate School of Southern Medical University, Guangzhou 510515, China
| | - Zexin Yao
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China; The Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Cui
- The Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510010, China
| | - Xiaoxuan Lei
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Science, Amsterdam, The Netherlands
| | - Linlin Li
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Weidong Zhu
- Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou 510515, China; Department of Burn and Plastic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China.
| |
Collapse
|
17
|
Poveda J, Francisco M, Cartea ME, Velasco P. Development of Transgenic Brassica Crops Against Biotic Stresses Caused by Pathogens and Arthropod Pests. PLANTS 2020; 9:plants9121664. [PMID: 33261092 PMCID: PMC7761317 DOI: 10.3390/plants9121664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
The Brassica genus includes one of the 10 most agronomically and economically important plant groups in the world. Within this group, we can find examples such as broccoli, cabbage, cauliflower, kale, Brussels sprouts, turnip or rapeseed. Their cultivation and postharvest are continually threatened by significant stresses of biotic origin, such as pathogens and pests. In recent years, numerous research groups around the world have developed transgenic lines within the Brassica genus that are capable of defending themselves effectively against these enemies. The present work compiles all the existing studies to date on this matter, focusing in a special way on those of greater relevance in recent years, the choice of the gene of interest and the mechanisms involved in improving plant defenses. Some of the main transgenic lines developed include coding genes for chitinases, glucanases or cry proteins, which show effective results against pathogens such as Alternaria brassicae, Leptosphaeria maculans or Sclerotinia sclerotiorum, or pests such as Lipaphis erysimi or Plutella xylostella.
Collapse
Affiliation(s)
- Jorge Poveda
- Correspondence: ; Tel.: +34-986-85-48-00 (ext. 232)
| | | | | | | |
Collapse
|
18
|
Li X, Feng G, Wang W, Yi L, Deng L, Zeng K. Effects of Peptide C 12-OOWW-NH 2 on Transcriptome and Cell Wall of the Postharvest Fungal Pathogen Penicillium digitatum. Front Microbiol 2020; 11:574882. [PMID: 33042086 PMCID: PMC7527529 DOI: 10.3389/fmicb.2020.574882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, the transcriptional profiling of Penicillium digitatum after C12O3TR treatment was analyzed by RNA-Seq technology. A total of 2562 and 667 genes in P. digitatum were differentially expressed after 2 and 12 h treatment, respectively. These genes were respectively mapped to 91 and 79 KEGG pathways. The expression patterns of differentially expressed genes (DEGs) at 2 and 12 h were similar, mainly were the metabolic processes in cell wall, cell membrane, genetic information and energy. Particularly, the main metabolic process which was affected by C12O3TR stress for 2 and 12 h was cell integrity, including cell wall and cell membrane. The changes of chitin in cell wall was observed by Calcofluor White (CFW) staining assay. The weaker blue fluorescence in the cell wall septa, the decrease of β-1, 3-glucan synthase activity and the increase of chitinase and AKP activity showed that C12O3TR could damage the cell wall integrity. In conclusion, these results suggested that C12O3TR could inhibit the growth of P. digitatum through various mechanisms at transcriptional level, and could influence the cell wall permeability and integrity.
Collapse
Affiliation(s)
- Xindan Li
- College of Food Science, Southwest University, Chongqing, China
| | - Guirong Feng
- College of Food Science, Southwest University, Chongqing, China
| | - Wenjun Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Lanhua Yi
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Navarro SA, Lanza L, Acuña L, Bellomio A, Chalón MC. Features and applications of Ent35-MccV hybrid bacteriocin: current state and perspectives. Appl Microbiol Biotechnol 2020; 104:6067-6077. [PMID: 32418126 DOI: 10.1007/s00253-020-10650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 11/28/2022]
Abstract
Bacteriocins are peptides of ribosomal synthesis that are active against bacteria related to the producing strain. They have been widely used in the food industry as biopreservatives. The generation of hybrid peptides by combining the genes that encode two different bacteriocins has made it possible to study the mechanisms of action of the bacteriocins that compose them and also develop new peptides with improved biotechnological applications. Hybrid bacteriocins may be obtained in several ways. In our laboratory, by combining enterocin CRL35 and microcin V (Ent35-MccV), we obtained a broad-spectrum peptide that is active against both Gram-positive and Gram-negative bacteria. Ent35-MccV is sensitive to the action of intestinal proteases and is heat resistant, which makes it a good candidate for use as a biopreservative. For this reason, the peptide was tested in skim milk and beef burgers as food models. We also obtained more potent variants of the hybrid by modifying the central amino acid of the hinge region that connects the two bacteriocins. This review also discusses future applications and perspectives regarding the Ent35-MccV and other hybrid peptides.Key Points• Ent35-MccV is a new broad-spectrum bacteriocin.• The mechanism of action of bacteriocins can be studied using hybrid peptides.• Genetic engineering allows obtaining improved bacteriocin derivatives.• Hybrid peptides can be used in the food, pharmaceutical, and veterinary applications.
Collapse
Affiliation(s)
- S A Navarro
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Lanza
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - L Acuña
- Instituto de Patología Experimental (IPE, CONICET-UNSa), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - A Bellomio
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina
| | - Miriam C Chalón
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) e Instituto de Química Biológica "Dr. Bernabé Bloj," Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco 461, San Miguel de Tucumán, T4000ILI, Argentina.
| |
Collapse
|
20
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
21
|
Yevtushenko DP, Misra S. Enhancing disease resistance in poplar through modification of its natural defense pathway. PLANT MOLECULAR BIOLOGY 2019; 100:481-494. [PMID: 31073810 DOI: 10.1007/s11103-019-00874-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/14/2019] [Indexed: 05/06/2023]
Abstract
Modification of the poplar defense pathway through pathogen-induced expression of an amphibian host defense peptide modulates plant innate immunity and confers robust and reliable resistance against a major poplar pathogen, Septoria musiva. Host defense peptides (HDPs), also known as cationic antimicrobial peptides, represent a diverse group of small membrane-active molecules that are part of the innate defense system of their hosts against pathogen invasion. Here we describe a strategy for development of poplar plants with enhanced HDP production and resistance to the commercially significant fungal pathogen Septoria musiva. The naturally occurring linear amphipathic α-helical HDP dermaseptin B1, which has 31 residues and originated from the skin secretion of arboreal frogs, was N-terminally modified (MsrA2) and evaluated in vitro for antifungal activity and phytotoxicity. The MsrA2 peptide inhibited germination of S. musiva conidia at physiologically relevant low micromolar concentrations that were non-toxic to poplar protoplasts. The nucleotide sequence of MsrA2, optimized for expression in plants, was introduced into the commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry (NM6) via Agrobacterium-mediated transformation. Transgene expression was regulated by the pathogen-inducible poplar promoter win3.12T, a part of the poplar innate defense system. Most importantly, the induced accumulation of MsrA2 peptide in poplar leaves was sufficient to confer resistance against S. musiva. The antifungal resistance of plants with high MsrA2 expression and MsrA2 accumulation was strong and reproducible, and without deleterious effects on plant growth and development. These results provide an insight into development of new technologies for engineering durable disease resistance against major pathogens of poplar and other plants.
Collapse
Affiliation(s)
- Dmytro P Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Santosh Misra
- Department of Biochemistry & Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
22
|
Silva RN, Monteiro VN, Steindorff AS, Gomes EV, Noronha EF, Ulhoa CJ. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biol 2019; 123:565-583. [PMID: 31345411 DOI: 10.1016/j.funbio.2019.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.
Collapse
Affiliation(s)
- Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Valdirene Neves Monteiro
- Campus of Exact Sciences and Technologies, Campus Henrique Santillo, Anapolis, Goiás State, Brazil
| | - Andrei Stecca Steindorff
- U.S. Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Eriston Vieira Gomes
- Department of Biofunctional, Center of Higher Education Morgana Potrich Eireli, Morgana Potrich College, Mineiros, Goiás, Brazil
| | | | - Cirano J Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Campus Samambaia, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
23
|
Han YC, Chen TT. A pathway-focused RT-qPCR array study on immune relevant genes in rainbow trout (Oncorhynchus mykiss) harboring cecropin P1 transgene. FISH & SHELLFISH IMMUNOLOGY 2019; 89:1-11. [PMID: 30902722 DOI: 10.1016/j.fsi.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Recently, our laboratory had produced five families of transgenic rainbow trout harboring cecropin P1 transgene, and via repeated challenge studies these fish exhibited a significant elevation of resistance to infection by microbial pathogens. By cDNA microarray and mRNA deep sequencing (mRNA-seq) analyses on two of the five families of cecropin P1 transgenic fish, differentially expressed genes (DEGs) relevant to the innate and adaptive immune pathways in three different immune-related tissues, (i.e. spleen, kidney and liver) were profiled. These results supported our hypothesis that in addition to its direct microbicidal activity, the transgene product of cecropin P1 induces immunomodulatory activity in the transgenic host. Here, we have adapted the technique of quantitative reverse transcription real time PCR (RT-qPCR) array to analyze the expression of genes relevant to the innate and adaptive immune pathways in the rest three families. A RT-qPCR array was constructed with oligonucleotide primers of fifty-two innate/adaptive immune relevant DEGs shown to be the most perturbed by cecropin P1 transgene product in previous studies. Messenger RNA isolated from the spleen, kidney and liver of transgenic fish and non-transgenic fish control were studied on this array. Results of RT-qPCR array revealed that statistically significant perturbations of gene expression were detected in pathways of cytokine/chemokine signaling, Toll-like receptor signaling, complement cascade, antigen processing/presentation, lysosomal phagocytosis and leukocyte trans-endothelial migration in the transgenic spleen; extracellular matrix (ECM) organization and leukocyte trans-endothelial migration pathways in the transgenic kidney; lysosomal activity pathway in the transgenic liver. Furthermore, genes related to the pathways of the peroxisome proliferator-activated receptors (PPAR) signaling, lipid metabolism process and arachidonic acid metabolism were also impacted in the transgenic liver. Findings of the current study are in good agreement with those discoveries in previous two transgenic families by cDNA microarray and mRNA-seq analyses.
Collapse
Affiliation(s)
- Yueh-Chiang Han
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, United States.
| | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
24
|
Shams MV, Nazarian-Firouzabadi F, Ismaili A, Shirzadian-Khorramabad R. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Mol Biotechnol 2019; 61:241-252. [PMID: 30649664 DOI: 10.1007/s12033-019-00153-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Expression of strong antimicrobial peptides in plants is of great interest to combat a wide range of plant pathogens. To bring the Dermaseptin B1 (DrsB1) peptide to the intimate contact of the plant pathogens cell wall surface, the DrsB1 encoding sequence was fused to the C-terminal part of the two copies of the chitin-binding domain (CBD) of the Avr4 effector protein and used for Agrobacterium rhizogenes-mediated transformation. The expression of the recombinant protein in the tobacco hairy roots (HRs) was confirmed by molecular analysis. Antimicrobial activity analysis of the recombinant protein purified from the transgenic HRs showed that the (CBD)2-DrsB1 recombinant protein had a significant (p < 0.01) antimicrobial effect on the growth of different fungal and bacterial pathogens. The results of this study indicated that the recombinant protein had a higher antifungal activity against chitin-producing Alternaria alternata than Pythium spp. Scanning electron microscopy images demonstrated that the recombinant protein led to fungal hypha deformation, fragmentation, and agglutination of growing hypha, possibly by dissociating fungal cell wall components. In vitro evidences suggest that the expression of the (CBD)2-DrsB1 recombinant protein in plants by generating transgenic lines is a promising approach to produce disease-resistant plants, resistance to chitin-producing pathogenic fungi.
Collapse
Affiliation(s)
- Marzieh Varasteh Shams
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | | | - Ahmad Ismaili
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | - Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, 4199613776, Iran
| |
Collapse
|
25
|
Morais TP, Zaini PA, Chakraborty S, Gouran H, Carvalho CP, Almeida-Souza HO, Souza JB, Santos PS, Goulart LR, Luz JMQ, Nascimento R, Dandekar AM. The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:197-205. [PMID: 30823998 DOI: 10.1016/j.plantsci.2018.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Cecropin-B (CecB) is a peptide with well-established antimicrobial properties against different phytopathogenic bacteria. Despite modest action against Ralstonia solanacearum, its animal source limits the acceptance in transgenic applications. To overcome this, we selected eight alpha-helical (AH) cationic peptides derived from plant protein sequences and investigated their antimicrobial properties against R. solanacearum. Remarkably, PPC20 (a linear AH-peptide present in phosphoenolpyruvate carboxylase) has a three-fold lower lethal dose on R. solanacearum than CecB and lower toxicity to human intestinal epithelial cells. Linking PPC20 to SlP14a (part of a pathogenesis-related protein) established an apoplast-targeted protein providing a means of secreting and stabilizing the antimicrobial peptide in the plant compartment colonized by the pathogen. SlP14a is also a potential antimicrobial, homologous to a human elastase which likely targets outer membrane proteins in Gram-negative bacteria. Recombinant SlP14a-PPC20 showed antibacterial activity against R. solanacearum in vitro, making it a promising candidate for plant protection. This was confirmed with genetically-modified tomato plants engineered to express SlP14a-PPC20, in which bacterial populations in stems were reduced compared to inoculated wild-type control plants. Disease symptoms were also markedly less severe in SlP14a-PPC20-expressing plants, demonstrating a viable strategy to improve resistance against bacterial wilt in tomato.
Collapse
Affiliation(s)
- Tâmara P Morais
- Institute of Agricultural Sciences, University of Uberlândia, Uberlândia, 38410-337, MG, Brazil; Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Sandeep Chakraborty
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Hossein Gouran
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Camila P Carvalho
- Department of Plant Pathology, University of São Paulo, Piracicaba, SP, 13418-900 Brazil
| | - Hebréia O Almeida-Souza
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Jessica B Souza
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Paula S Santos
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil
| | - Luiz R Goulart
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil; Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - José M Q Luz
- Institute of Agricultural Sciences, University of Uberlândia, Uberlândia, 38410-337, MG, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, University of Uberlândia, Uberlândia, 38400-902, MG, Brazil; Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA.
| |
Collapse
|
26
|
Zhu X, Zhao J, Abbas HMK, Liu Y, Cheng M, Huang J, Cheng W, Wang B, Bai C, Wang G, Dong W. Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2145-2156. [PMID: 30006836 DOI: 10.1007/s00122-018-3143-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
Key message Nine transgenes from different categories, viz. plant defense response genes and anti-apoptosis genes, played combined roles in maize to inhibit the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Maize sheath blight and southern corn leaf blight are major global threats to maize production. The management of these necrotrophic pathogens has encountered limited success due to the characteristics of their lifestyle. Here, we presented a transgenic pyramiding breeding strategy to achieve nine different resistance genes integrated in one transgenic maize line to combat different aspects of necrotrophic pathogens. These nine genes, selected from two different categories, plant defense response genes (Chi, Glu, Ace-AMP1, Tlp, Rs-AFP2, ZmPROPEP1 and Pti4), and anti-apoptosis genes (Iap and p35), were successfully transferred into maize and further implicated in resistance against the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Furthermore, the transgenic maize line 910, with high expression levels of the nine integrated genes, was selected from 49 lines. Under greenhouse and field trial conditions, line 910 showed significant resistance against maize sheath blight and southern corn leaf blight diseases. Higher-level resistance was obtained after the pyramiding of more resistance transgenes from different categories that function via different mechanisms. The present study provides a successful strategy for the management of necrotrophic pathogens.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jinfeng Zhao
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, 046011, Shanxi Province, China
| | - Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Menglan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jue Huang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenjuan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Beibei Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Cuiying Bai
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
27
|
Badrhadad A, Nazarian-Firouzabadi F, Ismaili A. Fusion of a chitin-binding domain to an antibacterial peptide to enhance resistance to Fusarium solani in tobacco ( Nicotiana tabacum). 3 Biotech 2018; 8:391. [PMID: 30175028 DOI: 10.1007/s13205-018-1416-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
An antibacterial peptide-encoding gene from alfalfa seeds, alfAFP, was fused to the C-terminal part of chitin-binding domain (CBD) of the rice chitinase-encoding gene (CBD-alfAFP) and introduced to tobacco by Agrobacterium-mediated transformation. Polymerase chain reaction (PCR) technique was used to confirm the integration of the recombinant CBD-alfAFP encoding gene in transgenic tobacco plants. A number of transgenic lines and a non-transgenic control plant were selected for further molecular analyses. The result of analyzing the transgenic plants by semi-quantitative RT-PCR showed that the recombinant gene is expressed in transgenic plants and there is a difference between the transgenic plants in terms of the level of CBD-alfAFP expression. The total protein was extracted from a few selected transgenic plants and used to evaluate the antibacterial/antifungal of recombinant protein activity against some important plant and human pathogens. The results of this experiment showed that the total protein extract obtained from transgenic lines significantly (P < 0.05) inhibited the growth of various bacteria and fungi compared to the non-transgenic plants. Transgenic lines showed a significant (P < 0.01) difference considering their ability to inhibit bacterial and fungal pathogens growth. The recombinant CBD-alfAFP protein significantly (P < 0.01) increased the resistance of the transgenic plants against Fusarium solani. Transgenic lines showed no significant wilting symptoms and obvious wilting symptoms were not observed even 30 days post-inoculation (dpi) with Fusarium solani spores. These results suggest that transgenic tobacco plants are resistant to Fusarium solani wilt and fusion of CBD to the alfAFP antimicrobial peptide is an efficient approach to control fungal diseases.
Collapse
Affiliation(s)
- Azam Badrhadad
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| | | | - Ahmad Ismaili
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
| |
Collapse
|
28
|
Zhou C, Yuan Y, Zhou P, Wang F, Hong Y, Wang N, Xu S, Du J. Highly Effective Antibacterial Vesicles Based on Peptide-Mimetic Alternating Copolymers for Bone Repair. Biomacromolecules 2017; 18:4154-4162. [PMID: 29020450 DOI: 10.1021/acs.biomac.7b01209] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chuncai Zhou
- Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, 301
Middle Yanchang Road, Shanghai 200072, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yue Yuan
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Panyu Zhou
- Changhai
Hospital, Department of Emergency, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Fangyingkai Wang
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yuanxiu Hong
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Nuosha Wang
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shuogui Xu
- Changhai
Hospital, Department of Emergency, The Second Military Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Jianzhong Du
- Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, 301
Middle Yanchang Road, Shanghai 200072, China
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
29
|
Lipsky A, Joshi JR, Carmi N, Yedidia I. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. J Biotechnol 2016; 238:22-29. [PMID: 27639550 DOI: 10.1016/j.jbiotec.2016.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue.
Collapse
Affiliation(s)
- Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Janak Raj Joshi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nir Carmi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
30
|
Herrera Diaz A, Kovacs I, Lindermayr C. Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria. PLoS One 2016; 11:e0164097. [PMID: 27706237 PMCID: PMC5051901 DOI: 10.1371/journal.pone.0164097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/20/2016] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small peptides with less than 50 amino acids and are part of the innate immune response in almost all organisms, including bacteria, vertebrates, invertebrates and plants. AMPs are active against a broad-spectrum of pathogens. The inducible expression of AMPs in plants is a promising approach to combat plant pathogens with minimal negative side effects, such as phytotoxicity or infertility. In this study, inducible expression of the de-novo designed AMP SP1-1 in Micro Tom tomato protected tomato fruits against bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria. The peptide SP1-1 was targeted to the apoplast which is the primary infection site for plant pathogens, by fusing SP1-1 peptide to the signal peptide RsAFP1 of radish (Raphanus sativus). The pathogen inducibility of the expression was enabled by using an optimized inducible 4XW2/4XS promoter. As a result, the tomato fruits of independently generated SP1-1 transgenic lines were significantly more resistant to X. campestris pv. vesicatoria than WT tomato fruits. In transgenic lines, bacterial infection was reduced up to 65% in comparison to the infection of WT plants. Our study demonstrates that the combination of the 4XW2/4XS cis-element from parsley with the synthetic antimicrobial peptide SP1-1 is a good alternative to protect tomato fruits against infections with X. campestris pv. vesicatoria.
Collapse
Affiliation(s)
- Areli Herrera Diaz
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764, München/Neuherberg, Germany
| | - Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764, München/Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München–German Research Center for Environmental Health, 85764, München/Neuherberg, Germany
- * E-mail:
| |
Collapse
|
31
|
Abstract
Many plants, both in nature and in agriculture, are resistant to multiple diseases. Although much of the plant innate immunity system provides highly specific resistance, there is emerging evidence to support the hypothesis that some components of plant defense are relatively nonspecific, providing multiple disease resistance (MDR). Understanding MDR is of fundamental and practical interest to plant biologists, pathologists, and breeders. This review takes stock of the available evidence related to the MDR hypothesis. Questions about MDR are considered primarily through the lens of forward genetics, starting at the organismal level and proceeding to the locus level and, finally, to the gene level. At the organismal level, MDR may be controlled by clusters of R genes that evolve under diversifying selection, by dispersed, pathogen-specific genes, and/or by individual genes providing MDR. Based on the few MDR loci that are well-understood, MDR is conditioned by diverse mechanisms at the locus and gene levels.
Collapse
Affiliation(s)
- Tyr Wiesner-Hanks
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| | - Rebecca Nelson
- School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
32
|
Zou HL. A New Multi-label Classifier for Identifying the Functional Types of Singleplex and Multiplex Antimicrobial Peptides. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-015-9511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Zhang Z, Zhao J, Ding L, Zou L, Li Y, Chen G, Zhang T. Constitutive expression of a novel antimicrobial protein, Hcm1, confers resistance to both Verticillium and Fusarium wilts in cotton. Sci Rep 2016; 6:20773. [PMID: 26856318 PMCID: PMC4746735 DOI: 10.1038/srep20773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium and Verticillium wilts, two of the most important diseases in cotton, pose serious threats to cotton production. Here we introduced a novel antimicrobial protein Hcm1, which comprised harpin protein from Xanthomonas oryzae pv. oryzicola (Xoc), and the chimeric protein, cecropin A-melittin, into cotton. The transgenic cotton lines with stable Hcm1 expression showed a higher resistance to Verticillium and Fusarium wilts both in greenhouse and field trials compared to controls. Hcm1 enabled the transgenic cotton to produced a microscopic hypersensitive response (micro-HR), reactive oxygen species (ROS) burst, and caused the activation of pathogenesis-related (PR) genes in response to biotic stress, indicating that the transgenic cotton was in a primed state and ready to protect the host from pathogenic infection. Simultaneously, Hcm1 protein inhibited the growth of Verticillium dahliae (V. dahliae) and Fusarium oxysporum (F. oxysporum) in vitro. The spread of fungal biomass was also inhibited in vivo since the V. dahliae biomass was decreased dramatically in transgenic cotton plants after inoculation with V. dahliae. Together, these results demonstrate that Hcm1 could activate innate immunity and inhibit the growth of V. dahliae and F. oxysporum to protect cotton against Verticillium and Fusarium wilts.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lingyun Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Yurong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South) by Ministry of Agriculture, Shanghai, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
34
|
Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies. PLoS One 2016; 11:e0146919. [PMID: 26760761 PMCID: PMC4711921 DOI: 10.1371/journal.pone.0146919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.
Collapse
|
35
|
Datta A, Kundu P, Bhunia A. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. J Colloid Interface Sci 2016; 461:335-345. [DOI: 10.1016/j.jcis.2015.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
|
36
|
Johnson ET, Evans KO, Dowd PF. Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species. THE PLANT PATHOLOGY JOURNAL 2015; 31:316-321. [PMID: 26361481 PMCID: PMC4564158 DOI: 10.5423/ppj.nt.04.2015.0061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/30/2015] [Indexed: 06/05/2023]
Abstract
A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 μg/ml, although one isolate of Fusarium oxysporum was inhibited at 5 μg/ml of JH8944. Most conidia of Fusarium graminearum were killed within 6 hours of treatment with 50 μg/ml of JH8944. Germinating F. graminearum conidia required 238 μg/ml of JH8944 for 90% growth inhibition. The peptide did not cause any damage to tissues surrounding maize leaf punctures when tested at a higher concentration of 250 μg/ml even after 3 days. Liposomes consisting of phosphatidylglycerol were susceptible to leakage after treatment with 25 and 50 μg/ml of JH8944. These experiments suggest this peptide destroys fungal membrane integrity and could be utilized for control of crop fungal pathogens.
Collapse
Affiliation(s)
- Eric T. Johnson
- Crop Bioprotection Research Unit, USDA Agricultural Research Service, Peoria, IL 61604-3902,
USA
| | - Kervin O. Evans
- Renewable Product Technology Research Unit, USDA Agricultural Research Service, Peoria, IL 61604-3902,
USA
| | - Patrick F. Dowd
- Crop Bioprotection Research Unit, USDA Agricultural Research Service, Peoria, IL 61604-3902,
USA
| |
Collapse
|
37
|
Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants. Funct Integr Genomics 2015; 16:19-27. [DOI: 10.1007/s10142-015-0463-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
38
|
Li ZT, Hopkins DL, Gray DJ. Overexpression of antimicrobial lytic peptides protects grapevine from Pierce's disease under greenhouse but not field conditions. Transgenic Res 2015; 24:821-36. [PMID: 25894660 DOI: 10.1007/s11248-015-9876-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Pierce's disease (PD) caused by Xylella fastidiosa prevents cultivation of grapevine (Vitis vinifera) and susceptible hybrids in the southeastern United States and poses a major threat to the grape industry of California and Texas. Genetic resistance is the only proven control of X. fastidiosa. Genetic engineering offers an alternative to heretofore ineffective conventional breeding in order to transfer only PD resistance traits into elite cultivars. A synthetic gene encoding lytic peptide LIMA-A was introduced into V. vinifera and a Vitis hybrid to assess in planta inhibition of X. fastidiosa. Over 1050 independent transgenic plant lines were evaluated in the greenhouse, among which nine lines were selected and tested under naturally-inoculated field conditions. These selected plant lines in the greenhouse remain disease-free for 10 years, to date, even with multiple manual pathogen inoculations. However, all these lines in the field, including a grafted transgenic rootstock, succumbed to PD within 7 years. We conclude that in planta production of antimicrobial lytic peptides does not provide durable PD resistance to grapevine under field conditions.
Collapse
Affiliation(s)
- Zhijian T Li
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, IFAS/University of Florida, 2725 Binion Road, Apopka, FL, 32703-8504, USA
| | - Donald L Hopkins
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, IFAS/University of Florida, 2725 Binion Road, Apopka, FL, 32703-8504, USA
| | - Dennis J Gray
- Grape Biotechnology Core Laboratory, Mid-Florida Research and Education Center, IFAS/University of Florida, 2725 Binion Road, Apopka, FL, 32703-8504, USA.
| |
Collapse
|
39
|
Żaczek M, Weber-Dąbrowska B, Górski A. Phages in the global fruit and vegetable industry. J Appl Microbiol 2014; 118:537-56. [DOI: 10.1111/jam.12700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/02/2014] [Accepted: 11/15/2014] [Indexed: 01/06/2023]
Affiliation(s)
- M. Żaczek
- Laboratory of Bacteriophages; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
| | - B. Weber-Dąbrowska
- Laboratory of Bacteriophages; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
- Phage Therapy Unit; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
| | - A. Górski
- Laboratory of Bacteriophages; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
- Phage Therapy Unit; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wrocław Poland
- Department of Clinical Immunology; Transplantation Institute; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
40
|
Rustagi A, Kumar D, Shekhar S, Yusuf MA, Misra S, Sarin NB. Transgenic Brassica juncea plants expressing MsrA1, a synthetic cationic antimicrobial peptide, exhibit resistance to fungal phytopathogens. Mol Biotechnol 2014; 56:535-45. [PMID: 24452332 DOI: 10.1007/s12033-013-9727-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cationic antimicrobial peptides (CAPs) have shown potential against broad spectrum of phytopathogens. Synthetic versions with desirable properties have been modeled on these natural peptides. MsrA1 is a synthetic chimera of cecropin A and melittin CAPs with antimicrobial properties. We generated transgenic Brassica juncea plants expressing the msrA1 gene aimed at conferring fungal resistance. Five independent transgenic lines were evaluated for resistance to Alternaria brassicae and Sclerotinia sclerotiorum, two of the most devastating pathogens of B. juncea crops. In vitro assays showed inhibition by MsrA1 of Alternaria hyphae growth by 44-62 %. As assessed by the number and size of lesions and time taken for complete leaf necrosis, the Alternaria infection was delayed and restricted in the transgenic plants with the protection varying from 69 to 85 % in different transgenic lines. In case of S. sclerotiorum infection, the lesions were more severe and spread profusely in untransformed control compared with transgenic plants. The sclerotia formed in the stem of untransformed control plants were significantly more in number and larger in size than those present in the transgenic plants where disease protection of 56-71.5 % was obtained. We discuss the potential of engineering broad spectrum biotic stress tolerance by transgenic expression of CAPs in crop plants.
Collapse
Affiliation(s)
- Anjana Rustagi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | | | | | |
Collapse
|
41
|
Company N, Nadal A, Ruiz C, Pla M. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters. PLoS One 2014; 9:e109990. [PMID: 25387106 PMCID: PMC4227650 DOI: 10.1371/journal.pone.0109990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022] Open
Abstract
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.
Collapse
Affiliation(s)
- Nuri Company
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Anna Nadal
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Cristina Ruiz
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Maria Pla
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
42
|
Meiyalaghan S, Latimer JM, Kralicek AV, Shaw ML, Lewis JG, Conner AJ, Barrell PJ. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes 2014; 7:777. [PMID: 25367168 PMCID: PMC4228058 DOI: 10.1186/1756-0500-7-777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022] Open
Abstract
Background The Gibberellin Stimulated-Like (GSL) or Snakin peptides from higher plants are cysteine-rich, with broad spectrum activity against a range of bacterial and fungal pathogens. To detect GSL peptides in applications such as western blot analysis and enzyme-linked immunosorbent assays (ELISA), specific antibodies that recognise GSL peptides are required. However, the intrinsic antimicrobial activity of these peptides is likely to prevent their expression alone in bacterial or yeast expression systems for subsequent antibody production in animal hosts. Results To overcome this issue we developed an Escherichia coli expression strategy based on the expression of the GSL1 peptide as a His-tagged thioredoxin fusion protein. The DNA sequence for the mature GSL1 peptide from potato (Solanum tuberosum L.) was cloned into the pET-32a expression vector to produce a construct encoding N-terminally tagged his6-thioredoxin-GSL1. The fusion protein was overexpressed in E. coli to produce soluble non-toxic protein. The GSL1 fusion protein could be easily purified by using affinity chromatography to yield ~1.3 mg of his6-thioredoxin-GSL1 per L of culture. The fusion protein was then injected into rabbits for antibody production. Western blot analysis showed that the antibodies obtained from rabbit sera specifically recognised the GSL1 peptide that had been expressed in a wheat germ cell-free expression system. Conclusion We present here the first report of a GSL1 peptide expressed as a fusion protein with thioredoxin that has resulted in milligram quantities of soluble protein to be produced. We have also demonstrated that a wheat germ system can be used to successfully express small quantities of GSL1 peptide useful as positive control in western blot analysis. To our knowledge this is the first report of antibodies being produced against GSL1 peptide. The antibodies will be useful for analysis of GSL1peptides in western blot, localization by immunohistochemistry (IHC) and quantitation by ELISA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Philippa J Barrell
- The New Zealand Institute for Plant & Food Research Ltd, Private Bag 4704, Christchurch, New Zealand.
| |
Collapse
|
43
|
Lipsky A, Cohen A, Ion A, Yedidia I. Genetic transformation of Ornithogalum via particle bombardment and generation of Pectobacterium carotovorum-resistant plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:150-158. [PMID: 25438795 DOI: 10.1016/j.plantsci.2014.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/08/2014] [Accepted: 02/03/2014] [Indexed: 06/04/2023]
Abstract
Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most devastating diseases of Ornithogalum species. No effective control measures are currently available to use against this pathogen; thus, introduction of resistant genes via genetic transformation into this crop is a promising approach. Tachyplesin I, an antimicrobial peptide, has been shown to effectively control numerous pathogenic bacteria, including Pcc. In this study, liquid-grown cell clusters of Ornithogalum dubium and Ornithogalum thyrsoides were bombarded with a pCAMBIA2301 vector containing a celI leader sequence fused to a gene encoding tachyplesin I, a neomycin phosphotransferase (nptII) gene that served as a selectable marker and a β-glucuronidase (GUS) gene that served as a reporter. Selection was carried out in the dark in liquid medium containing 80mg/L kanamycin. Regeneration was executed in the light after 6-14 months depending on the cultivar. Hundreds of transgenic plantlets were produced and their identity was confirmed through GUS activity assays. PCR and RT-PCR were used to confirm the presence of the target, reporter and selection genes in the divergent lines of plantlets. The resistance of the O. dubium plants to Pcc was evaluated in vitro, following infection with a highly virulent isolate from calla lily. Although control plantlets were completely macerated within a week, 87 putative transgenic subclones displayed varying levels of disease resistance. During three growing seasons in the greenhouse, the transgenic O. dubium lines grew poorly, whereas the transgenic O. thyrsoides plants grew similarly to non-transgenic plants.
Collapse
Affiliation(s)
- Alexander Lipsky
- Department of Ornamental Horticulture, ARO, The Volcani Center, Derech Hamacabim 20, P.O. Box 6, Bet Dagan 50250, Israel
| | - Avner Cohen
- Department of Ornamental Horticulture, ARO, The Volcani Center, Derech Hamacabim 20, P.O. Box 6, Bet Dagan 50250, Israel
| | - Aurel Ion
- Department of Ornamental Horticulture, ARO, The Volcani Center, Derech Hamacabim 20, P.O. Box 6, Bet Dagan 50250, Israel
| | - Iris Yedidia
- Department of Ornamental Horticulture, ARO, The Volcani Center, Derech Hamacabim 20, P.O. Box 6, Bet Dagan 50250, Israel.
| |
Collapse
|
44
|
Goyal RK, Mattoo AK. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:135-49. [PMID: 25438794 DOI: 10.1016/j.plantsci.2014.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 05/20/2023]
Abstract
Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense against a pathogen including the use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AMPs). Unlike a complex R gene-mediated immunity, AMPs directly target diverse microbial pathogens. Many a times, R-mediated immunity breaks down and plant defense is compromised. Although R-gene dependent pathogen resistance has been well studied, comparatively little is known about the interactions of AMPs with host defense and physiology. AMPs are ubiquitous, low molecular weight peptides that display broad spectrum resistance against bacteria, fungi and viruses. In plants, AMPs are mainly classified into cyclotides, defensins, thionins, lipid transfer proteins, snakins, and hevein-like vicilin-like and knottins. Genetic distance lineages suggest their conservation with minimal effect of speciation events during evolution. AMPs provide durable resistance in plants through a combination of membrane lysis and cellular toxicity of the pathogen. Plant hormones - gibberellins, ethylene, jasmonates, and salicylic acid, are among the physiological regulators that regulate the expression of AMPs. Transgenically produced AMP-plants have become a means showing that AMPs are able to mitigate host defense responses while providing durable resistance against pathogens.
Collapse
Affiliation(s)
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, ARS's Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
45
|
Agrobacterium-mediated plant transformation: Factors, applications and recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Chiou PP, Chen MJ, Lin CM, Khoo J, Larson J, Holt R, Leong JA, Thorgarrd G, Chen TT. Production of homozygous transgenic rainbow trout with enhanced disease resistance. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:299-308. [PMID: 24085608 PMCID: PMC3996360 DOI: 10.1007/s10126-013-9550-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/16/2013] [Indexed: 06/02/2023]
Abstract
Previous studies conducted in our laboratory showed that transgenic medaka expressing cecropin B transgenes exhibited resistant characteristic to fish bacterial pathogens, Pseudomonas fluorescens and Vibrio anguillarum. To confirm whether antimicrobial peptide gene will also exhibit anti-bacterial and anti-viral characteristics in aquaculture important fish species, we produced transgenic rainbow trout expressing cecropin P1 or a synthetic cecropin B analog, CF-17, transgene by sperm-mediated gene transfer method. About 30 % of fish recovered from electroporation were shown to carry the transgene as determined by polymerase chain reaction (PCR) amplification assay. Positive P₁ transgenic fish were crossed to non-transgenic fish to establish F₁ transgenic founder families, and subsequently generating F₂, and F₃ progeny. Expression of cecropin P1 and CF-17 transgenes was detected in transgenic fish by reverse transcription (RT)-PCR analysis. The distribution of body sizes among F₁ transgenic fish were not significantly different from those of non-transgenic fish. Results of challenge studies revealed that many families of F₂ and F₃ transgenic fish exhibited resistance to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). All-male homozygous cecropin P1 transgenic families were produced by androgenesis from sperm of F₃ heterozygous transgenic fish in one generation. The resistant characteristic to A. salmonicida was confirmed in progeny derived from the outcross of all-male fish to non-transgenic females. Results of our current studies confirmed the possibility of producing disease-resistant homozygous rainbow trout strains by transgenesis of cecropin P1 or CF-17 gene and followed by androgenesis.
Collapse
Affiliation(s)
- Pinwen Peter Chiou
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, U-3125, Storrs, CT 06269 USA
- Present Address: Marine Research Station, Academia Sinica, Jiaushi, Ilan 262 Taiwan
| | - Maria J. Chen
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, U-3125, Storrs, CT 06269 USA
| | - Chun-Mean Lin
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, U-3125, Storrs, CT 06269 USA
| | - Jenny Khoo
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, U-3125, Storrs, CT 06269 USA
- Present Address: Environmental Protection Authority, Private Bag 63002, Wellington, 6140 New Zealand
| | - Jon Larson
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, U-3125, Storrs, CT 06269 USA
| | - Rich Holt
- Department of Microbiology, State University of Oregon, Corvallis, OR 97331 USA
| | - Jo-Ann Leong
- Hawaii Institute of Marine Biology, University of Hawaii, Coconut Island, P.O. Box 1346, Kaneohe, HI 96744 USA
| | - Gary Thorgarrd
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - Thomas T. Chen
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, U-3125, Storrs, CT 06269 USA
| |
Collapse
|
47
|
Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 2014; 98:5807-22. [PMID: 24811407 DOI: 10.1007/s00253-014-5792-6] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20-50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.
Collapse
Affiliation(s)
- Hui-Yu Yi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | | | | | | |
Collapse
|
48
|
de Souza Cândido E, e Silva Cardoso MH, Sousa DA, Viana JC, de Oliveira-Júnior NG, Miranda V, Franco OL. The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 2014; 55:65-78. [PMID: 24548568 DOI: 10.1016/j.peptides.2014.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
Abstract
Plant immune responses involve a wide diversity of physiological reactions that are induced by the recognition of pathogens, such as hypersensitive responses, cell wall modifications, and the synthesis of antimicrobial molecules including antimicrobial peptides (AMPs). These proteinaceous molecules have been widely studied, presenting peculiar characteristics such as conserved domains and a conserved disulfide bond pattern. Currently, many AMP classes with diverse modes of action are known, having been isolated from a large number of organisms. Plant AMPs comprise an interesting source of studies nowadays, and among these there are reports of different classes, including defensins, albumins, cyclotides, snakins and several others. These peptides have been widely used in works that pursue human disease control, including nosocomial infections, as well as for agricultural purposes. In this context, this review will focus on the relevance of the structural-function relations of AMPs derived from plants and their proper use in applications for human health and agribusiness.
Collapse
Affiliation(s)
- Elizabete de Souza Cândido
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique e Silva Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Daniel Amaro Sousa
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliane Cançado Viana
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Nelson Gomes de Oliveira-Júnior
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Brasília, DF, Brazil
| | - Vívian Miranda
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
49
|
Bundó M, Montesinos L, Izquierdo E, Campo S, Mieulet D, Guiderdoni E, Rossignol M, Badosa E, Montesinos E, San Segundo B, Coca M. Production of cecropin A antimicrobial peptide in rice seed endosperm. BMC PLANT BIOLOGY 2014; 14:102. [PMID: 24755305 PMCID: PMC4032361 DOI: 10.1186/1471-2229-14-102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/14/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cecropin A is a natural antimicrobial peptide that exhibits rapid, potent and long-lasting lytic activity against a broad spectrum of pathogens, thus having great biotechnological potential. Here, we report a system for producing bioactive cecropin A in rice seeds. RESULTS Transgenic rice plants expressing a codon-optimized synthetic cecropin A gene drived by an endosperm-specific promoter, either the glutelin B1 or glutelin B4 promoter, were generated. The signal peptide sequence from either the glutelin B1 or the glutelin B4 were N-terminally fused to the coding sequence of the cecropin A. We also studied whether the presence of the KDEL endoplasmic reticulum retention signal at the C-terminal has an effect on cecropin A subcellular localization and accumulation. The transgenic rice plants showed stable transgene integration and inheritance. We show that cecropin A accumulates in protein storage bodies in the rice endosperm, particularly in type II protein bodies, supporting that the glutelin N-terminal signal peptides play a crucial role in directing the cecropin A to this organelle, independently of being tagged with the KDEL endoplasmic reticulum retention signal. The production of cecropin A in transgenic rice seeds did not affect seed viability or seedling growth. Furthermore, transgenic cecropin A seeds exhibited resistance to infection by fungal and bacterial pathogens (Fusarium verticillioides and Dickeya dadantii, respectively) indicating that the in planta-produced cecropin A is biologically active. CONCLUSIONS Rice seeds can sustain bioactive cecropin A production and accumulation in protein bodies. The system might benefit the production of this antimicrobial agent for subsequent applications in crop protection and food preservation.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Esther Izquierdo
- Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Cedex 1, Montpellier 34060, France
| | - Sonia Campo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - Delphine Mieulet
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, Cedex 5, Montpellier 34398, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Genetic Improvement and Adaptation of Mediterranean and Tropical Plants, Cedex 5, Montpellier 34398, France
| | - Michel Rossignol
- Mass Spectrometry Proteomics Platform-MSPP, Laboratoire de Protéomique Fonctionnelle, INRA, Cedex 1, Montpellier 34060, France
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona 17071, Spain
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Campus de la UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
50
|
Ghosh P, Roy A, Chakraborty J, Das S. Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11858-11864. [PMID: 24219138 DOI: 10.1021/jf403660e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Genetic engineering has established itself to be an important tool for crop improvement. Despite the success, there is always a risk of food allergy induced by alien gene products. The present study assessed the biosafety of mutant Allium sativum leaf agglutinin (mASAL), a potent antifungal protein generated by site directed mutagenesis of Allium sativum leaf agglutinin (ASAL). mASAL was cloned in pET28a+ and expressed in E. coli, and the safety assessment was carried out according to the FAO/WHO guideline (2001). Bioinformatics analysis, pepsin digestion, and thermal stability assay showed the protein to be nonallergenic. Targeted sera screening revealed no significant IgE affinity of mASAL. Furthermore, mASAL sensitized Balb/c mice showed normal histopathology of lung and gut tissue. All results indicated the least possibility of mASAL being an allergen. Thus, mASAL appears to be a promising antifungal candidate protein suitable for agronomical biotechnology.
Collapse
Affiliation(s)
- Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus , P1/12, CIT Scheme, VIIM, Kankurgachi, Kolkata 700054, West Bengal, India
| | | | | | | |
Collapse
|