1
|
Ulhaq ZS, You MS, Yabe T, Takada S, Chen JK, Ogino Y, Jiang YJ, Tse WKF. Fgf8 contributes to the pathogenesis of Nager syndrome. Int J Biol Macromol 2024; 280:135692. [PMID: 39288852 DOI: 10.1016/j.ijbiomac.2024.135692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Nager syndrome (NS, OMIM 154400) is a rare disease characterized by craniofacial and limb malformations due to variants in the gene encoding splicing factor 3B subunit 4 (SF3B4). Although various noncanonical functions of SF3B4 unrelated to splicing have been previously described, limited studies elucidate molecular mechanisms underlying NS pathogenesis. Here we showed that sf3b4-deficient fish displayed craniofacial and segmentation defects associated with suppression of fgf8 levels, which perturbed FGF signaling and neural crest cell (NCC) expression. Our finding also pointed out that oxidative stress-induced apoptosis was prominently detected in sf3b4-deficient fish and may further exaggerate the bone remodeling process. Notably, injection of exogenous FGF8 significantly rescued the demonstrated defects in sf3b4-deficient fish, which further supported the participation of Fgf8 in NS pathogenesis. Overall, our study provides valuable insights into the molecular mechanism underlying developmental abnormalities observed in NS and suggests future therapeutic strategies to protect against the pathogenesis of NS and possibilities for preventing severe outcomes.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Taijiro Yabe
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; The Graduate University for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Driscoll S, Merkuri F, Chain FJJ, Fish JL. Splicing is dynamically regulated during limb development. Sci Rep 2024; 14:19944. [PMID: 39198579 PMCID: PMC11358489 DOI: 10.1038/s41598-024-68608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Modifications to highly conserved developmental gene regulatory networks are thought to underlie morphological diversification in evolution and contribute to human congenital malformations. Relationships between gene expression and morphology have been extensively investigated in the limb, where most of the evidence for alterations to gene regulation in development consists of pre-transcriptional mechanisms that affect expression levels, such as epigenetic alterations to regulatory sequences and changes to cis-regulatory elements. Here we report evidence that alternative splicing (AS), a post-transcriptional process that modifies and diversifies mRNA transcripts, is dynamic during limb development in two mammalian species. We evaluated AS patterns in mouse (Mus musculus) and opossum (Monodelphis domestica) across the three key limb developmental stages: the ridge, bud, and paddle. Our data show that splicing patterns are dynamic over developmental time and suggest differences between the two mammalian taxa. Additionally, multiple key limb development genes, including Fgf8, are differentially spliced across the three stages in both species, with expression levels of the conserved splice variants, Fgf8a and Fgf8b, changing across developmental time. Our data demonstrates that AS is a critical mediator of mRNA diversity in limb development and provides an additional mechanism for evolutionary tweaking of gene dosage.
Collapse
Affiliation(s)
- Sean Driscoll
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
3
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate mesoderm development. Genes Dev 2024; 38:393-414. [PMID: 38834239 PMCID: PMC11216173 DOI: 10.1101/gad.351593.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
4
|
Gavazzi LM, Nair M, Suydam R, Usip S, Thewissen JGM, Cooper LN. Protein signaling and morphological development of the tail fluke in the embryonic beluga whale (Delphinapterus leucas). Dev Dyn 2024. [PMID: 38494595 DOI: 10.1002/dvdy.704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND During the land-to-sea transition of cetaceans (whales, dolphins, and porpoises), the hindlimbs were lost and replaced by an elaborate tail fluke that evolved 32 Ma. All modern cetaceans utilize flukes for lift-based propulsion, and nothing is known of this organ's molecular origins during embryonic development. This study utilizes immunohistochemistry to identify the spatiotemporal location of protein signals known to drive appendage outgrowth in other vertebrates (e.g., Sonic Hedgehog [SHH], GREMLIN [GREM], wingless-type family member 7a [WNT], and fibroblast growth factors [FGFs]) and to test the hypothesis that signals associated with outgrowth and patterning of the tail fluke are similar to a tetrapod limb. Specifically, this study utilizes an embryo of a beluga whale (Delphinapterus leucas) as a case study. RESULTS Results showed epidermal signals of WNT and FGFs, and mesenchymal/epidermal signals of SHH and GREM. These patterns are most consistent with vertebrate limb development. Overall, these data are most consistent with the hypothesis that outgrowth of tail flukes in cetaceans employs a signaling pattern that suggests genes essential for limb outgrowth and patterning shape this evolutionarily novel appendage. CONCLUSIONS While these data add insights into the molecular signals potentially driving the evolution and development of tail flukes in cetaceans, further exploration of the molecular drivers of fluke development is required.
Collapse
Affiliation(s)
- L M Gavazzi
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - M Nair
- Wright State University, Dayton, Ohio, USA
| | - R Suydam
- Department of Wildlife Management, North Slope Borough, Utqiaġvik, Alaska, USA
| | - S Usip
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - J G M Thewissen
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - L N Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
5
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
6
|
Zhang Y, Zeng J, Xu B. Phenotypic analysis with trans-recombination-based genetic mosaic models. J Biol Chem 2023; 299:105265. [PMID: 37734556 PMCID: PMC10587715 DOI: 10.1016/j.jbc.2023.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Mosaicism refers to the presence of genetically distinct cell populations in an individual derived from a single zygote, which occurs during the process of development, aging, and genetic diseases. To date, a variety of genetically engineered mosaic analysis models have been established and widely used in studying gene function at exceptional cellular and spatiotemporal resolution, leading to many ground-breaking discoveries. Mosaic analysis with a repressible cellular marker and mosaic analysis with double markers are genetic mosaic analysis models based on trans-recombination. These models can generate sibling cells of distinct genotypes in the same animal and simultaneously label them with different colors. As a result, they offer a powerful approach for lineage tracing and studying the behavior of individual mutant cells in a wildtype environment, which is particularly useful for determining whether gene function is cell autonomous or nonautonomous. Here, we present a comprehensive review on the establishment and applications of mosaic analysis with a repressible cellular marker and mosaic analysis with double marker systems. Leveraging the capabilities of these mosaic models for phenotypic analysis will facilitate new discoveries on the cellular and molecular mechanisms of development and disease.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
7
|
Cova G, Glaser J, Schöpflin R, Prada-Medina CA, Ali S, Franke M, Falcone R, Federer M, Ponzi E, Ficarella R, Novara F, Wittler L, Timmermann B, Gentile M, Zuffardi O, Spielmann M, Mundlos S. Combinatorial effects on gene expression at the Lbx1/Fgf8 locus resolve split-hand/foot malformation type 3. Nat Commun 2023; 14:1475. [PMID: 36928426 PMCID: PMC10020157 DOI: 10.1038/s41467-023-37057-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.
Collapse
Affiliation(s)
- Giulia Cova
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany.
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany.
- Department of Pathology, New York University School of Medicine, Langone Health Medical Center, New York, NY, 10016, USA.
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Cesar Augusto Prada-Medina
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
| | - Martin Franke
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, 41013, Spain
| | - Rita Falcone
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
| | - Miriam Federer
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany
- Universität Innsbruck, Innsbruck, 6020, Austria
| | - Emanuela Ponzi
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, Bari, 70131, Italy
| | - Romina Ficarella
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, Bari, 70131, Italy
| | | | - Lars Wittler
- Department of Developmental Genetics, Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Mattia Gentile
- Medical Genetics Unit, Department of Reproductive Medicine, ASL Bari, Bari, 70131, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, 27100, Italy
| | - Malte Spielmann
- Institute of Human Genetics, Universitätsklinikum Schleswig Holstein Campus Kiel and Christian-Albrechts-Universität, Kiel, 24118, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, 14195, Germany.
- Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, 13353, Germany.
| |
Collapse
|
8
|
Tanaka K, Matsumaru D, Suzuki K, Yamada G, Miyagawa S. The role of p63 in embryonic external genitalia outgrowth in mice. Dev Growth Differ 2023; 65:132-140. [PMID: 36680528 PMCID: PMC11520970 DOI: 10.1111/dgd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh-Wnt/Ctnnb1-Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.
Collapse
Affiliation(s)
- Kosei Tanaka
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular ToxicologyGifu Pharmaceutical UniversityGifuJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Gen Yamada
- Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
- Division of Biological Environment Innovation, Research Institute for Science and TechnologyTokyo University of ScienceKatsushikaJapan
| |
Collapse
|
9
|
Peserico A, Barboni B, Russo V, Bernabò N, El Khatib M, Prencipe G, Cerveró-Varona A, Haidar-Montes AA, Faydaver M, Citeroni MR, Berardinelli P, Mauro A. Mammal comparative tendon biology: advances in regulatory mechanisms through a computational modeling. Front Vet Sci 2023; 10:1175346. [PMID: 37180059 PMCID: PMC10174257 DOI: 10.3389/fvets.2023.1175346] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.
Collapse
|
10
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Hudson DT, Bromell JS, Day RC, McInnes T, Ward JM, Beck CW. Gene expression analysis of the Xenopus laevis early limb bud proximodistal axis. Dev Dyn 2022; 251:1880-1896. [PMID: 35809036 PMCID: PMC9796579 DOI: 10.1002/dvdy.517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Limb buds develop as bilateral outgrowths of the lateral plate mesoderm and are patterned along three axes. Current models of proximal to distal patterning of early amniote limb buds suggest that two signals, a distal organizing signal from the apical epithelial ridge (AER, Fgfs) and an opposing proximal (retinoic acid [RA]) act early on pattern this axis. RESULTS Transcriptional analysis of stage 51 Xenopus laevis hindlimb buds sectioned along the proximal-distal axis showed that the distal region is distinct from the rest of the limb. Expression of capn8.3, a novel calpain, was located in cells immediately flanking the AER. The Wnt antagonist Dkk1 was AER-specific in Xenopus limbs. Two transcription factors, sall1 and zic5, were expressed in distal mesenchyme. Zic5 has no described association with limb development. We also describe expression of two proximal genes, gata5 and tnn, not previously associated with limb development. Differentially expressed genes were associated with Fgf, Wnt, and RA signaling as well as differential cell adhesion and proliferation. CONCLUSIONS We identify new candidate genes for early proximodistal limb patterning. Our analysis of RA-regulated genes supports a role for transient RA gradients in early limb bud in proximal-to-distal patterning in this anamniote model organism.
Collapse
Affiliation(s)
- Daniel T. Hudson
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Oritain GlobalDunedinNew Zealand
| | - Jessica S. Bromell
- Department of ZoologyUniversity of OtagoDunedinNew Zealand,Dairy Goat Co‐operativeHamiltonNew Zealand
| | - Robert C. Day
- Department of BiochemistryUniversity of OtagoDunedinNew Zealand
| | - Tyler McInnes
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Joanna M. Ward
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | | |
Collapse
|
12
|
Zbasnik N, Dolan K, Buczkowski SA, Green RM, Hallgrímsson B, Marcucio RS, Moon AM, Fish JL. Fgf8 dosage regulates jaw shape and symmetry through pharyngeal-cardiac tissue relationships. Dev Dyn 2022; 251:1711-1727. [PMID: 35618654 PMCID: PMC9529861 DOI: 10.1002/dvdy.501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Asymmetries in craniofacial anomalies are commonly observed. In the facial skeleton, the left side is more commonly and/or severely affected than the right. Such asymmetries complicate treatment options. Mechanisms underlying variation in disease severity between individuals as well as within individuals (asymmetries) are still relatively unknown. RESULTS Developmental reductions in fibroblast growth factor 8 (Fgf8) have a dosage dependent effect on jaw size, shape, and symmetry. Further, Fgf8 mutants have directionally asymmetric jaws with the left side being more affected than the right. Defects in lower jaw development begin with disruption to Meckel's cartilage, which is discontinuous. All skeletal elements associated with the proximal condensation are dysmorphic, exemplified by a malformed and misoriented malleus. At later stages, Fgf8 mutants exhibit syngnathia, which falls into two broad categories: bony fusion of the maxillary and mandibular alveolar ridges and zygomatico-mandibular fusion. All of these morphological defects exhibit both inter- and intra-specimen variation. CONCLUSIONS We hypothesize that these asymmetries are linked to heart development resulting in higher levels of Fgf8 on the right side of the face, which may buffer the right side to developmental perturbations. This mouse model may facilitate future investigations of mechanisms underlying human syngnathia and facial asymmetry.
Collapse
Affiliation(s)
- Nathaniel Zbasnik
- Department of Biological SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Katie Dolan
- Department of Biological SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| | - Stephanie A. Buczkowski
- Department of Molecular and Functional GenomicsGeisinger Medical CenterDanvillePennsylvaniaUSA
| | - Rebecca M. Green
- Center for Craniofacial and Dental Genetics and Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Benedikt Hallgrímsson
- Department of Cell Biology and AnatomyAlberta Chidren's Hospital Research Institute, University of CalgaryCalgaryAlbertaCanada
| | - Ralph S. Marcucio
- Orthopaedic Surgery, Orthopaedic Trauma InstituteUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Anne M. Moon
- Department of Molecular and Functional GenomicsGeisinger Medical CenterDanvillePennsylvaniaUSA,Departments of Pediatrics and Human GeneticsUniversity of UtahSalt Lake CityUtahUSA
| | - Jennifer L. Fish
- Department of Biological SciencesUniversity of Massachusetts LowellLowellMassachusettsUSA
| |
Collapse
|
13
|
Newton AH, Williams SM, Major AT, Smith CA. Cell lineage specification and signalling pathway use during development of the lateral plate mesoderm and forelimb mesenchyme. Development 2022; 149:276597. [DOI: 10.1242/dev.200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.
Collapse
Affiliation(s)
- Axel H. Newton
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University 1 , Victoria , Australia
- BioScience 4, School of BioSciences, The University of Melbourne 2 , Victoria , Australia
| | - Sarah M. Williams
- Monash University 3 Monash Bioinformatics Platform , , Victoria , Australia
- Queensland Cyber Infrastructure Foundation, University of Queensland 4 , Queensland , Australia
| | - Andrew T. Major
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University 1 , Victoria , Australia
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University 1 , Victoria , Australia
| |
Collapse
|
14
|
Glotzer GL, Tardivo P, Tanaka EM. Canonical Wnt signaling and the regulation of divergent mesenchymal Fgf8 expression in axolotl limb development and regeneration. eLife 2022; 11:e79762. [PMID: 35587651 PMCID: PMC9154742 DOI: 10.7554/elife.79762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
The expression of fibroblast growth factors (Fgf) ligands in a specialized epithelial compartment, the Apical Ectodermal Ridge (AER), is a conserved feature of limb development across vertebrate species. In vertebrates, Fgf 4, 8, 9, and 17 are all expressed in the AER. An exception to this paradigm is the salamander (axolotl) developing and regenerating limb, where key Fgf ligands are expressed in the mesenchyme. The mesenchymal expression of Amex.Fgf8 in axolotl has been suggested to be critical for regeneration. To date, there is little knowledge regarding what controls Amex.Fgf8 expression in the axolotl limb mesenchyme. A large body of mouse and chick studies have defined a set of transcription factors and canonical Wnt signaling as the main regulators of epidermal Fgf8 expression in these organisms. In this study, we address the hypothesis that alterations to one or more of these components during evolution has resulted in mesenchymal Amex.Fgf8 expression in the axolotl. To sensitively quantify gene expression with spatial precision, we combined optical clearing of whole-mount axolotl limb tissue with single molecule fluorescent in situ hybridization and a semiautomated quantification pipeline. Several candidate upstream components were found expressed in the axolotl ectoderm, indicating that they are not direct regulators of Amex.Fgf8 expression. We found that Amex.Wnt3a is expressed in axolotl limb epidermis, similar to chicken and mouse. However, unlike in amniotes, Wnt target genes are activated preferentially in limb mesenchyme rather than in epidermis. Inhibition and activation of Wnt signaling results in downregulation and upregulation of mesenchymal Amex.Fgf8 expression, respectively. These results implicate a shift in tissue responsiveness to canonical Wnt signaling from epidermis to mesenchyme as one step contributing to the unique mesenchymal Amex.Fgf8 expression seen in the axolotl.
Collapse
Affiliation(s)
- Giacomo L Glotzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| | - Pietro Tardivo
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus- Vienna-Biocenter 1ViennaAustria
| |
Collapse
|
15
|
Sharma D, Mirando AJ, Leinroth A, Long JT, Karner CM, Hilton MJ. HES1 is a novel downstream modifier of the SHH-GLI3 Axis in the development of preaxial polydactyly. PLoS Genet 2021; 17:e1009982. [PMID: 34928956 PMCID: PMC8726490 DOI: 10.1371/journal.pgen.1009982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/04/2022] [Accepted: 12/07/2021] [Indexed: 01/08/2023] Open
Abstract
Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD. Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in additional digits and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling within the developing limb regulates numerous genes critical for proper autopod (hand/foot) development, however not all target genes are known to be truly important for digit formation. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. We further propose a mechanistic model by which HES1 coordinates the expression of genes important for proper digit development. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Biomedical Genetics, University of Rochester School of Medicine, Rochester, New York, United States of America
| | - Anthony J. Mirando
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Abigail Leinroth
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Jason T. Long
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Courtney M. Karner
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Matthew J. Hilton
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Díaz-Hernández ME, Galván-Hernández CI, Marín-Llera JC, Camargo-Sosa K, Bustamante M, Wischin S, Chimal-Monroy J. Activation of the WNT-BMP-FGF Regulatory Network Induces the Onset of Cell Death in Anterior Mesodermal Cells to Establish the ANZ. Front Cell Dev Biol 2021; 9:703836. [PMID: 34820367 PMCID: PMC8606791 DOI: 10.3389/fcell.2021.703836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
The spatiotemporal control of programmed cell death (PCD) plays a significant role in sculpting the limb. In the early avian limb bud, the anterior necrotic zone (ANZ) and the posterior necrotic zone are two cell death regions associated with digit number reduction. In this study, we evaluated the first events triggered by the FGF, BMP, and WNT signaling interactions to initiate cell death in the anterior margin of the limb to establish the ANZ. This study demonstrates that in a period of two to 8 h after the inhibition of WNT or FGF signaling or the activation of BMP signaling, cell death was induced in the anterior margin of the limb concomitantly with the regulation of Dkk, Fgf8, and Bmp4 expression. Comparing the gene expression profile between the ANZ and the undifferentiated zone at 22HH and 25HH and between the ANZ of 22HH and 25HH stages correlates with functional programs controlled by the regulatory network FGF, BMP, and WNT signaling in the anterior margin of the limb. This work provides novel insights to recognize a negative feedback loop between FGF8, BMP4, and DKK to control the onset of cell death in the anterior margin of the limb to the establishment of the ANZ.
Collapse
Affiliation(s)
- Martha Elena Díaz-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Claudio Iván Galván-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jessica Cristina Marín-Llera
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Karen Camargo-Sosa
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Marcia Bustamante
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Sabina Wischin
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| | - Jesús Chimal-Monroy
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Mexico
| |
Collapse
|
17
|
Abstract
INTRODUCTION Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase has been extensively studied due to its involvement in many biological processes. It has also been identified as the target for immunomodulatory drugs (IMiDs). CRBN ligands are also important components of proteolysis-targeting chimeras (PROTACs), special bifunctional constructs capable of targeted degradation of aberrantly acting proteins using the cell's ubiquitin-proteasome machinery. AREAS COVERED Due to upsurge of the PROTAC technology, the patenting activity of new CRBN ligands has been on the rise in the last 5 years. The present review covers two broadly defined areas of CRBN ligand design. One covers 'thalidomide-like' molecules representing modifications of various parts of classical IMiDs. The other areas - non-thalidomide-like compounds - are compounds that are structurally distinct from the classical IMiDs. Efforts toward creating new CRBN ligands reflected in non-patent literature are briefly discussed with emphasis on the rational, crystallography-driven approaches. EXPERT OPINION The chemical space of CRBN ligands which is related to the classical IMiDs (thalidomide/lenalidomide/pomalidomide) is comprehensively covered by the current patent literature. The promising area of research is in the identification of non-thalidomide-like chemotypes capable of binding to CRBN. Rational, crystallography-driven approaches currently exploited in academia will significantly aid in this endeavor.
Collapse
Affiliation(s)
- Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
18
|
Delgado I, Giovinazzo G, Temiño S, Gauthier Y, Balsalobre A, Drouin J, Torres M. Control of mouse limb initiation and antero-posterior patterning by Meis transcription factors. Nat Commun 2021; 12:3086. [PMID: 34035267 PMCID: PMC8149412 DOI: 10.1038/s41467-021-23373-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 04/21/2021] [Indexed: 12/31/2022] Open
Abstract
Meis1 and Meis2 are homeodomain transcription factors that regulate organogenesis through cooperation with Hox proteins. Elimination of Meis genes after limb induction has shown their role in limb proximo-distal patterning; however, limb development in the complete absence of Meis function has not been studied. Here, we report that Meis1/2 inactivation in the lateral plate mesoderm of mouse embryos leads to limb agenesis. Meis and Tbx factors converge in this function, extensively co-binding with Tbx to genomic sites and co-regulating enhancers of Fgf10, a critical factor in limb initiation. Limbs with three deleted Meis alleles show proximal-specific skeletal hypoplasia and agenesis of posterior skeletal elements. This failure in posterior specification results from an early role of Meis factors in establishing the limb antero-posterior prepattern required for Shh activation. Our results demonstrate roles for Meis transcription factors in early limb development and identify their involvement in previously undescribed interaction networks that regulate organogenesis.
Collapse
Affiliation(s)
- Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Giovanna Giovinazzo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Susana Temiño
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yves Gauthier
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Aurelio Balsalobre
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Jacques Drouin
- Laboratoire de Génétique Moléculaire, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
19
|
Castro J, Beviano V, Paço A, Leitão-Castro J, Cadete F, Francisco M, Freitas R. Hoxd13/Bmp2-mediated mechanism involved in zebrafish finfold design. Sci Rep 2021; 11:7165. [PMID: 33785799 PMCID: PMC8009906 DOI: 10.1038/s41598-021-86621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The overexpression of hoxd13a during zebrafish fin development causes distal endochondral expansion and simultaneous reduction of the finfold, mimicking the major events thought to have happened during the fin-to-limb transition in Vertebrates. We investigated the effect of hoxd13a overexpression on putative downstream targets and found it to cause downregulation of proximal fin identity markers (meis1 and emx2) and upregulation of genes involved in skeletogenesis/patterning (fbn1, dacha) and AER/Finfold maintenance (bmps). We then show that bmp2b overexpression leads to finfold reduction, recapitulating the phenotype observed in hoxd13a-overexpressing fins. In addition, we show that during the development of the long finfold in leot1/lofdt1 mutants, hoxd13a and bmp2b are downregulated. Our results suggest that modulation of the transcription factor Hoxd13 during evolution may have been involved in finfold reduction through regulation of the Bmp signalling that then activated apoptotic mechanisms impairing finfold elongation.
Collapse
Affiliation(s)
- João Castro
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Vanessa Beviano
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Ana Paço
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Joana Leitão-Castro
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Francisco Cadete
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Miguel Francisco
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal
| | - Renata Freitas
- grid.5808.50000 0001 1503 7226I3S, Institute for Innovation and Health Research, University of Porto, Porto, Portugal ,Cell Growth and Differentiation Group, IBMC/I3S, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
20
|
Dissection of the Fgf8 regulatory landscape by in vivo CRISPR-editing reveals extensive intra- and inter-enhancer redundancy. Nat Commun 2021; 12:439. [PMID: 33469032 PMCID: PMC7815712 DOI: 10.1038/s41467-020-20714-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Developmental genes are often regulated by multiple elements with overlapping activity. Yet, in most cases, the relative function of those elements and their contribution to endogenous gene expression remain poorly characterized. An example of this phenomenon is that distinct sets of enhancers have been proposed to direct Fgf8 in the limb apical ectodermal ridge and the midbrain-hindbrain boundary. Using in vivo CRISPR/Cas9 genome engineering, we functionally dissect this complex regulatory ensemble and demonstrate two distinct regulatory logics. In the apical ectodermal ridge, the control of Fgf8 expression appears distributed between different enhancers. In contrast, we find that in the midbrain-hindbrain boundary, one of the three active enhancers is essential while the other two are dispensable. We further dissect the essential midbrain-hindbrain boundary enhancer to reveal that it is also composed by a mixture of essential and dispensable modules. Cross-species transgenic analysis of this enhancer suggests that its composition may have changed in the vertebrate lineage.
Collapse
|
21
|
Newton AH, Smith CA. Regulation of vertebrate forelimb development and wing reduction in the flightless emu. Dev Dyn 2021; 250:1248-1263. [PMID: 33368781 DOI: 10.1002/dvdy.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The vertebrate limb is a dynamic structure which has evolved into many diverse forms to facilitate complex behavioral adaptations. The principle molecular and cellular processes that underlie development of the vertebrate limb are well characterized. However, how these processes are altered to drive differential limb development between vertebrates is less well understood. Several vertebrate models are being utilized to determine the developmental basis of differential limb morphogenesis, though these typically focus on later patterning of the established limb bud and may not represent the complete developmental trajectory. Particularly, heterochronic limb development can occur prior to limb outgrowth and patterning but receives little attention. This review summarizes the genetic regulation of vertebrate forelimb diversity, with particular focus on wing reduction in the flightless emu as a model for examining limb heterochrony. These studies highlight that wing reduction is complex, with heterochronic cellular and genetic events influencing the major stages of limb development. Together, these studies provide a broader picture of how different limb morphologies may be established during development.
Collapse
Affiliation(s)
- Axel H Newton
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Role of Retinoic Acid Signaling, FGF Signaling and Meis Genes in Control of Limb Development. Biomolecules 2021; 11:biom11010080. [PMID: 33435477 PMCID: PMC7827967 DOI: 10.3390/biom11010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
The function of retinoic acid (RA) during limb development is still debated, as loss and gain of function studies led to opposite conclusions. With regard to limb initiation, genetic studies demonstrated that activation of FGF10 signaling is required for the emergence of limb buds from the trunk, with Tbx5 and RA signaling acting upstream in the forelimb field, whereas Tbx4 and Pitx1 act upstream in the hindlimb field. Early studies in chick embryos suggested that RA as well as Meis1 and Meis2 (Meis1/2) are required for subsequent proximodistal patterning of both forelimbs and hindlimbs, with RA diffusing from the trunk, functioning to activate Meis1/2 specifically in the proximal limb bud mesoderm. However, genetic loss of RA signaling does not result in loss of limb Meis1/2 expression and limb patterning is normal, although Meis1/2 expression is reduced in trunk somitic mesoderm. More recent studies demonstrated that global genetic loss of Meis1/2 results in a somite defect and failure of limb bud initiation. Other new studies reported that conditional genetic loss of Meis1/2 in the limb results in proximodistal patterning defects, and distal FGF8 signaling represses Meis1/2 to constrain its expression to the proximal limb. In this review, we hypothesize that RA and Meis1/2 both function in the trunk to initiate forelimb bud initiation, but that limb Meis1/2 expression is activated proximally by a factor other than RA and repressed distally by FGF8 to generate proximodistal patterning.
Collapse
|
23
|
Ratzan EM, Moon AM, Deans MR. Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle. Development 2020; 147:dev.192849. [PMID: 33046506 DOI: 10.1242/dev.192849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023]
Abstract
FGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8 mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8 mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.
Collapse
Affiliation(s)
- Evan M Ratzan
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anne M Moon
- Departments of Molecular and Functional Genomics and Pediatrics, Weis Center for Research, Geisinger Clinic and Geisinger Commonwealth School of Medicine, Danville, PA 17822, USA.,Departments of Pediatrics and Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Michael R Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA .,Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
24
|
Lai S, Zhang X, Feng L, He M, Wang S. The prenatal diagnosis and genetic counseling of chromosomal micro-duplication on 10q24.3 in a fetus: A case report and a brief review of the literature. Medicine (Baltimore) 2020; 99:e22533. [PMID: 33080687 PMCID: PMC7571886 DOI: 10.1097/md.0000000000022533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Split-hand/split-foot malformation (SHFM), also known as ectrodactyly, is a congenital limb malformation affecting the central rays of the autopod extending to syndactyly, median clefts of the hands and feet, aplasia/hypoplasia of phalanges, metacarpals and metatarsals. Duplication of this 10q24 region is associated with SHFM3. While the clinical and genetic heterogeneity of SHFM makes the prenatal diagnosis and genetic counseling more challenging and difficult. PATIENT CONCERNS A physically normal pregnant woman had a systemic ultrasound at the second trimester, only identified the deformity of both hands and feet on the fetus. DIAGNOSES The fetus was diagnosed as sporadic SHFM3. INTERVENTIONS After seeking advice from genetic counseling, she decided to terminate the pregnancy. The induction of infant was done after appearance of bipedal clefts, lobster-claw appearance and partial loss of phalanges and metacarpals, leaving behind 2nd finger in the left hand and the 5th in the right hand. Furthermore, collection of umbilical cord is recommended to this fetus for genome-wide detection. OUTCOMES An outcome of the gene detection from abortion shows that there is variation in copy number in genome of chromosome 1 and chromosome 10. LESSONS This case study confirms an association between SHFM3 and chromosomal micro-duplication on 10q24.3, and the extension of clinical spectrum of SHFM3. It also proposes some prenatal diagnosis and genetic counseling to help in planning and management in affected pregnancy. This will reduce the congenital and development abnormalities in birth rate, as well as relive the economic, psychological, and physical burden to the affected families.
Collapse
Affiliation(s)
- Shaoyang Lai
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhou He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Lin GH, Zhang L. Apical ectodermal ridge regulates three principal axes of the developing limb. J Zhejiang Univ Sci B 2020; 21:757-766. [PMID: 33043642 PMCID: PMC7606201 DOI: 10.1631/jzus.b2000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
Understanding limb development not only gives insights into the outgrowth and differentiation of the limb, but also has clinical relevance. Limb development begins with two paired limb buds (forelimb and hindlimb buds), which are initially undifferentiated mesenchymal cells tipped with a thickening of the ectoderm, termed the apical ectodermal ridge (AER). As a transitional embryonic structure, the AER undergoes four stages and contributes to multiple axes of limb development through the coordination of signalling centres, feedback loops, and other cell activities by secretory signalling and the activation of gene expression. Within the scope of proximodistal patterning, it is understood that while fibroblast growth factors (FGFs) function sequentially over time as primary components of the AER signalling process, there is still no consensus on models that would explain proximodistal patterning itself. In anteroposterior patterning, the AER has a dual-direction regulation by which it promotes the sonic hedgehog (Shh) gene expression in the zone of polarizing activity (ZPA) for proliferation, and inhibits Shh expression in the anterior mesenchyme. In dorsoventral patterning, the AER activates Engrailed-1 (En1) expression, and thus represses Wnt family member 7a (Wnt7a) expression in the ventral ectoderm by the expression of Fgfs, Sp6/8, and bone morphogenetic protein (Bmp) genes. The AER also plays a vital role in shaping the individual digits, since levels of Fgf4/8 and Bmps expressed in the AER affect digit patterning by controlling apoptosis. In summary, the knowledge of crosstalk within AER among the three main axes is essential to understand limb growth and pattern formation, as the development of its areas proceeds simultaneously.
Collapse
Affiliation(s)
- Guo-hao Lin
- Centre for Anatomy and Human Identification, University of Dundee, Dundee DD1 5EH, UK
- Collaborative Innovation Center for Sports Health Promotion, Shandong Sport University, Jinan 250102, China
| | - Lan Zhang
- Collaborative Innovation Center for Sports Health Promotion, Shandong Sport University, Jinan 250102, China
| |
Collapse
|
26
|
Urness LD, Wang X, Li C, Quadros RM, Harms DW, Gurumurthy CB, Mansour SL. Slc26a9P2ACre : a new CRE driver to regulate gene expression in the otic placode lineage and other FGFR2b-dependent epithelia. Development 2020; 147:dev.191015. [PMID: 32541002 DOI: 10.1242/dev.191015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022]
Abstract
Pan-otic CRE drivers enable gene regulation throughout the otic placode lineage, comprising the inner ear epithelium and neurons. However, intersection of extra-otic gene-of-interest expression with the CRE lineage can compromise viability and impede auditory analyses. Furthermore, extant pan-otic CREs recombine in auditory and vestibular brain nuclei, making it difficult to ascribe resulting phenotypes solely to the inner ear. We have previously identified Slc26a9 as an otic placode-specific target of the FGFR2b ligands FGF3 and FGF10. We show here that Slc26a9 is otic specific through E10.5, but is not required for hearing. We targeted P2ACre to the Slc26a9 stop codon, generating Slc26a9P2ACre mice, and observed CRE activity throughout the otic epithelium and neurons, with little activity evident in the brain. Notably, recombination was detected in many FGFR2b ligand-dependent epithelia. We generated Fgf10 and Fgf8 conditional mutants, and activated an FGFR2b ligand trap from E17.5 to P3. In contrast to analogous mice generated with other pan-otic CREs, these were viable. Auditory thresholds were elevated in mutants, and correlated with cochlear epithelial cell losses. Thus, Slc26a9P2ACre provides a useful complement to existing pan-otic CRE drivers, particularly for postnatal analyses.
Collapse
Affiliation(s)
- Lisa D Urness
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaofen Wang
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Chaoying Li
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donald W Harms
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suzanne L Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Asatsuma-Okumura T, Ito T, Handa H. Molecular Mechanisms of the Teratogenic Effects of Thalidomide. Pharmaceuticals (Basel) 2020; 13:ph13050095. [PMID: 32414180 PMCID: PMC7281272 DOI: 10.3390/ph13050095] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Thalidomide was sold worldwide as a sedative over 60 years ago, but it was quickly withdrawn from the market due to its teratogenic effects. Thalidomide was later found to have therapeutic effects in several diseases, although the molecular mechanisms remained unclear. The discovery of cereblon (CRBN), the direct target of thalidomide, a decade ago greatly improved our understanding of its mechanism of action. Accumulating evidence has shown that CRBN functions as a substrate of Cullin RING E3 ligase (CRL4CRBN), whose specificity is controlled by ligands such as thalidomide. For example, lenalidomide and pomalidomide, well-known thalidomide derivatives, degrade the neosubstrates Ikaros and Aiolos, resulting in anti-proliferative effects in multiple myeloma. Recently, novel CRBN-binding drugs have been developed. However, for the safe handling of thalidomide and its derivatives, a greater understanding of the mechanisms of its adverse effects is required. The teratogenic effects of thalidomide occur in multiple tissues in the developing fetus and vary in phenotype, making it difficult to clarify this issue. Recently, several CRBN neosubstrates (e.g., SALL4 (Spalt Like Transcription Factor 4) and p63 (Tumor Protein P63)) have been identified as candidate mediators of thalidomide teratogenicity. In this review, we describe the current understanding of molecular mechanisms of thalidomide, particularly in the context of its teratogenicity.
Collapse
Affiliation(s)
| | - Takumi Ito
- Correspondence: ; Tel.: +81-3-9323-3250; Fax: +81-3-9323-3251
| | | |
Collapse
|
28
|
Tejedor G, Laplace-Builhé B, Luz-Crawford P, Assou S, Barthelaix A, Mathieu M, Kissa K, Jorgensen C, Collignon J, Chuchana P, Djouad F. Whole embryo culture, transcriptomics and RNA interference identify TBX1 and FGF11 as novel regulators of limb development in the mouse. Sci Rep 2020; 10:3597. [PMID: 32107392 PMCID: PMC7046665 DOI: 10.1038/s41598-020-60217-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Identifying genes involved in vertebrate developmental processes and characterizing this involvement are daunting tasks, especially in the mouse where viviparity complicates investigations. Attempting to devise a streamlined approach for this type of study we focused on limb development. We cultured E10.5 and E12.5 embryos and performed transcriptional profiling to track molecular changes in the forelimb bud over a 6-hour time-window. The expression of certain genes was found to diverge rapidly from its normal path, possibly reflecting the activation of a stress-induced response. Others, however, maintained for up to 3 hours dynamic expression profiles similar to those seen in utero. Some of these resilient genes were known regulators of limb development. The implication of the others in this process was either unsuspected or unsubstantiated. The localized knockdown of two such genes, Fgf11 and Tbx1, hampered forelimb bud development, providing evidence of their implication. These results show that combining embryo culture, transcriptome analysis and RNA interference could speed up the identification of genes involved in a variety of developmental processes, and the validation of their implication.
Collapse
Affiliation(s)
| | | | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Said Assou
- IRMB, Univ Montpellier, INSERM, Paris, France
| | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Paris, France.,CHU Montpellier, Montpellier, France
| | - Jérôme Collignon
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | | | | |
Collapse
|
29
|
ITO T, HANDA H. Molecular mechanisms of thalidomide and its derivatives. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:189-203. [PMID: 32522938 PMCID: PMC7298168 DOI: 10.2183/pjab.96.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Thalidomide, originally developed as a sedative drug, causes multiple defects due to severe teratogenicity, but it has been re-purposed for treating multiple myeloma, and derivatives such as lenalidomide and pomalidomide have been developed for treating blood cancers. Although the molecular mechanisms of thalidomide and its derivatives remained poorly understood until recently, we identified cereblon (CRBN), a primary direct target of thalidomide, using ferrite glycidyl methacrylate (FG) beads. CRBN is a ligand-dependent substrate receptor of the E3 ubiquitin ligase complex cullin-RING ligase 4 (CRL4CRBN). When a ligand such as thalidomide binds to CRBN, it recognizes various 'neosubstrates' depending on the shape of the ligand. CRL4CRBN binds many neosubstrates in the presence of various ligands. CRBN has been utilized in a novel protein knockdown technology named proteolysis targeting chimeras (PROTACs). Heterobifunctional molecules such as dBET1 are being developed to specifically degrade proteins of interest. Herein, we review recent advances in CRBN research.
Collapse
Affiliation(s)
- Takumi ITO
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi HANDA
- Department of Chemical Biology, Tokyo Medical University, Tokyo, Japan
- Correspondence should be addressed: H. Handa, Department of Chemical Biology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan (e-mail: )
| |
Collapse
|
30
|
van de Putte R, Dworschak GC, Brosens E, Reutter HM, Marcelis CLM, Acuna-Hidalgo R, Kurtas NE, Steehouwer M, Dunwoodie SL, Schmiedeke E, Märzheuser S, Schwarzer N, Brooks AS, de Klein A, Sloots CEJ, Tibboel D, Brisighelli G, Morandi A, Bedeschi MF, Bates MD, Levitt MA, Peña A, de Blaauw I, Roeleveld N, Brunner HG, van Rooij IALM, Hoischen A. A Genetics-First Approach Revealed Monogenic Disorders in Patients With ARM and VACTERL Anomalies. Front Pediatr 2020; 8:310. [PMID: 32656166 PMCID: PMC7324789 DOI: 10.3389/fped.2020.00310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The VATER/VACTERL association (VACTERL) is defined as the non-random occurrence of the following congenital anomalies: Vertebral, Anal, Cardiac, Tracheal-Esophageal, Renal, and Limb anomalies. As no unequivocal candidate gene has been identified yet, patients are diagnosed phenotypically. The aims of this study were to identify patients with monogenic disorders using a genetics-first approach, and to study whether variants in candidate genes are involved in the etiology of VACTERL or the individual features of VACTERL: Anorectal malformation (ARM) or esophageal atresia with or without trachea-esophageal fistula (EA/TEF). Methods: Using molecular inversion probes, a candidate gene panel of 56 genes was sequenced in three patient groups: VACTERL (n = 211), ARM (n = 204), and EA/TEF (n = 95). Loss-of-function (LoF) and additional likely pathogenic missense variants, were prioritized and validated using Sanger sequencing. Validated variants were tested for segregation and patients were clinically re-evaluated. Results: In 7 out of the 510 patients (1.4%), pathogenic or likely pathogenic variants were identified in SALL1, SALL4, and MID1, genes that are associated with Townes-Brocks, Duane-radial-ray, and Opitz-G/BBB syndrome. These syndromes always include ARM or EA/TEF, in combination with at least two other VACTERL features. We did not identify LoF variants in the remaining candidate genes. Conclusions: None of the other candidate genes were identified as novel unequivocal disease genes for VACTERL. However, a genetics-first approach allowed refinement of the clinical diagnosis in seven patients, in whom an alternative molecular-based diagnosis was found with important implications for the counseling of the families.
Collapse
Affiliation(s)
- Romy van de Putte
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gabriel C Dworschak
- Department of Pediatrics, Children's Hospital, University Hospital Bonn, Bonn, Germany.,Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands.,Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko M Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology, Children's Hospital, University Hospital Bonn, Bonn, Germany
| | - Carlo L M Marcelis
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rocio Acuna-Hidalgo
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nehir E Kurtas
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Eberhard Schmiedeke
- Department of Pediatric Surgery and Urology, Centre for Child and Youth Health, Klinikum Bremen-Mitte, Bremen, Germany
| | - Stefanie Märzheuser
- Department of Pediatric Surgery, Campus Virchow Clinic, Charité University Hospital Berlin, Berlin, Germany
| | - Nicole Schwarzer
- SoMA e.V., Self-Help Organization for People With Anorectal Malformation, Munich, Germany
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Cornelius E J Sloots
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Giulia Brisighelli
- Department of Paediatric Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg, South Africa.,Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Morandi
- Department of Pediatric Surgery, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Michael D Bates
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Marc A Levitt
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, Center for Colorectal and Pelvic Reconstruction, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - Alberto Peña
- Division of Gastroenterology and Nutrition, Dayton Children's Hospital, Dayton, OH, United States.,Department of Pediatrics, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States.,Department of Surgery, International Center for Colorectal Care, Children's Hospital Colorado, University of Colorado, Aurora, CO, United States
| | - Ivo de Blaauw
- Department of Surgery-Pediatric Surgery, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nel Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, Netherlands
| | - Iris A L M van Rooij
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
31
|
p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol 2019; 15:1077-1084. [DOI: 10.1038/s41589-019-0366-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
|
32
|
Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. The LIS1/NDE1 Complex Is Essential for FGF Signaling by Regulating FGF Receptor Intracellular Trafficking. Cell Rep 2019; 22:3277-3291. [PMID: 29562183 DOI: 10.1016/j.celrep.2018.02.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022] Open
Abstract
Intracellular transport of membranous organelles and protein complexes to various destinations is fundamental to signaling transduction and cellular function. The cytoplasmic dynein motor and its regulatory proteins LIS1 and NDE1 are required for transporting a variety of cellular cargos along the microtubule network. In this study, we show that deletion of Lis1 in developing lung endoderm and limb mesenchymal cells causes agenesis of the lungs and limbs. In both mutants, there is increased cell death and decreased fibroblast growth factor (FGF) signaling activity. Mechanistically, LIS1 and its interacting protein NDE1/NDEL1 are associated with FGF receptor-containing vesicles and regulate FGF receptor intracellular trafficking and degradation. Notably, FGF signaling promotes NDE1 tyrosine phosphorylation, which leads to dissociation of LIS1/NDE1 complex. Thus, our studies identify the LIS1/NDE1 complex as an important FGF signaling regulator and provide insights into the bidirectional regulation of cell signaling and transport machinery for endocytosis.
Collapse
Affiliation(s)
- Liansheng Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Jinqiu Lu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qingzhe Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Mujun Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Tang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
33
|
Hasten E, Morrow BE. Tbx1 and Foxi3 genetically interact in the pharyngeal pouch endoderm in a mouse model for 22q11.2 deletion syndrome. PLoS Genet 2019; 15:e1008301. [PMID: 31412026 PMCID: PMC6709926 DOI: 10.1371/journal.pgen.1008301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/26/2019] [Accepted: 07/10/2019] [Indexed: 11/18/2022] Open
Abstract
We investigated whether Tbx1, the gene for 22q11.2 deletion syndrome (22q11.2DS) and Foxi3, both required for segmentation of the pharyngeal apparatus (PA) to individual arches, genetically interact. We found that all Tbx1+/-;Foxi3+/- double heterozygous mouse embryos had thymus and parathyroid gland defects, similar to those in 22q11.2DS patients. We then examined Tbx1 and Foxi3 heterozygous, null as well as conditional Tbx1Cre and Sox172A-iCre/+ null mutant embryos. While Tbx1Cre/+;Foxi3f/f embryos had absent thymus and parathyroid glands, Foxi3-/- and Sox172A-iCre/+;Foxi3f/f endoderm conditional mutant embryos had in addition, interrupted aortic arch type B and retroesophageal origin of the right subclavian artery, which are all features of 22q11.2DS. Tbx1Cre/+;Foxi3f/f embryos had failed invagination of the third pharyngeal pouch with greatly reduced Gcm2 and Foxn1 expression, thereby explaining the absence of thymus and parathyroid glands. Immunofluorescence on tissue sections with E-cadherin and ZO-1 antibodies in wildtype mouse embryos at E8.5-E10.5, revealed that multilayers of epithelial cells form where cells are invaginating as a normal process. We noted that excessive multilayers formed in Foxi3-/-, Sox172A-iCre/+;Foxi3f/f as well as Tbx1 null mutant embryos where invagination should have occurred. Several genes expressed in the PA epithelia were downregulated in both Tbx1 and Foxi3 null mutant embryos including Notch pathway genes Jag1, Hes1, and Hey1, suggesting that they may, along with other genes, act downstream to explain the observed genetic interaction. We found Alcam and Fibronectin extracellular matrix proteins were reduced in expression in Foxi3 null but not Tbx1 null embryos, suggesting that some, but not all of the downstream mechanisms are shared.
Collapse
Affiliation(s)
- Erica Hasten
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
34
|
Sundaresan L, Kumar P, Manivannan J, Balaguru UM, Kasiviswanathan D, Veeriah V, Anishetty S, Chatterjee S. Thalidomide and Its Analogs Differentially Target Fibroblast Growth Factor Receptors: Thalidomide Suppresses FGFR Gene Expression while Pomalidomide Dampens FGFR2 Activity. Chem Res Toxicol 2019; 32:589-602. [PMID: 30834740 DOI: 10.1021/acs.chemrestox.8b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Thalidomide is an infamous teratogen and it is continuously being explored for its anticancer properties. Fibroblast growth factor receptors (FGFRs) are implicated in embryo development and cancer pathophysiology. With striking similarities observed between FGFR implicated conditions and thalidomide embryopathy, we hypothesized thalidomide targets FGFRs. We utilized three different cell lines and chicken embryo model to investigate the effects of thalidomide and analogs on FGFR expression. We performed molecular docking, KINOMEscan analysis, and kinase activity assays to study the drug-protein interactions. The expression of FGFR1 and FGFR2 was differentially regulated by all the three drugs in cells as well as in developing organs. Transcriptome analysis of thalidomide-treated chick embryo strongly suggests the modulation of FGFR signaling and key transcription factors. Corroboration with previous studies suggests that thalidomide might affect FGFR expression through the transcription factor, E2F1. At the protein level, molecular docking predicted all three analogs to interact with lysine residue at 517th and 508th positions of FGFR2 and FGFR3, respectively. This lysine coordinates the ATP binding site of FGFR, thus hinting at the possible perturbation of FGFR activity by thalidomide. Kinome analysis revealed that kinase activities of FGFR2 and FGFR3 (G697C) reduced by 31% and 65%, respectively, in the presence of 10 μM thalidomide. Further, we checked and confirmed that the analogs inhibited the FGFR2 kinase activity in a dose-dependent manner. This study suggests that FGFRs could be potential targets of thalidomide and the two analogs, and also endorses the link between the teratogenicity and antitumor activities of the drugs.
Collapse
|
35
|
Kirchgeorg L, Felker A, van Oostrom M, Chiavacci E, Mosimann C. Cre/lox-controlled spatiotemporal perturbation of FGF signaling in zebrafish. Dev Dyn 2018; 247:1146-1159. [PMID: 30194800 DOI: 10.1002/dvdy.24668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/13/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Spatiotemporal perturbation of signaling pathways in vivo remains challenging and requires precise transgenic control of signaling effectors. Fibroblast growth factor (FGF) signaling guides multiple developmental processes, including body axis formation and cell fate patterning. In zebrafish, mutants and chemical perturbations affecting FGF signaling have uncovered key developmental processes; however, these approaches cause embryo-wide perturbations, rendering assessment of cell-autonomous vs. non-autonomous requirements for FGF signaling in individual processes difficult. RESULTS Here, we created the novel transgenic line fgfr1-dn-cargo, encoding dominant-negative Fgfr1a with fluorescent tag under combined Cre/lox and heatshock control to perturb FGF signaling spatiotemporally. Validating efficient perturbation of FGF signaling by fgfr1-dn-cargo primed with ubiquitous CreERT2, we established that primed, heatshock-induced fgfr1-dn-cargo behaves similarly to pulsed treatment with the FGFR inhibitor SU5402. Priming fgfr1-dn-cargo with CreERT2 in the lateral plate mesoderm triggered selective cardiac and pectoral fin phenotypes without drastic impact on overall embryo patterning. Harnessing lateral plate mesoderm-specific FGF inhibition, we recapitulated the cell-autonomous and temporal requirement for FGF signaling in pectoral fin outgrowth, as previously inferred from pan-embryonic FGF inhibition. CONCLUSIONS As a paradigm for rapid Cre/lox-mediated signaling perturbations, our results establish fgfr1-dn-cargo as a genetic tool to define the spatiotemporal requirements for FGF signaling in zebrafish. Developmental Dynamics 247:1146-1159, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lucia Kirchgeorg
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Anastasia Felker
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Marek van Oostrom
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Spatial and Quantitative Detection of BMP Activity in Mouse Embryonic Limb Buds. Methods Mol Biol 2018. [PMID: 30414135 DOI: 10.1007/978-1-4939-8904-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Modulation of bone morphogenetic protein (BMP) activity is essential to the progression of limb development in the mouse embryo. Genetic disruption of BMP signaling at various stages of limb development causes defects ranging from complete limb agenesis to oligodactyly, polydactyly, webbing, and chondrodysplasia. To probe the state of BMP signaling in early limb buds, we designed two sets of primers to measure both spatially and quantitatively the transcription of nine key genes indicative of canonical BMP activity. One set is used to generate digoxigenin (DIG)-labeled antisense RNA probes for whole-mount mRNA in situ hybridization, while the second set is used for SYBR® Green-based quantitative PCR on limb bud cDNA. Here we describe step-by-step protocols for both methods around this specific set of genes.
Collapse
|
37
|
Kawane T, Qin X, Jiang Q, Miyazaki T, Komori H, Yoshida CA, Matsuura-Kawata VKDS, Sakane C, Matsuo Y, Nagai K, Maeno T, Date Y, Nishimura R, Komori T. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci Rep 2018; 8:13551. [PMID: 30202094 PMCID: PMC6131145 DOI: 10.1038/s41598-018-31853-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023] Open
Abstract
Runx2 and Sp7 are essential transcription factors for osteoblast differentiation. However, the molecular mechanisms responsible for the proliferation of osteoblast progenitors remain unclear. The early onset of Runx2 expression caused limb defects through the Fgfr1–3 regulation by Runx2. To investigate the physiological role of Runx2 in the regulation of Fgfr1–3, we compared osteoblast progenitors in Sp7−/− and Runx2−/− mice. Osteoblast progenitors accumulated and actively proliferated in calvariae and mandibles of Sp7−/− but not of Runx2−/− mice, and the number of osteoblast progenitors and their proliferation were dependent on the gene dosage of Runx2 in Sp7−/− background. The expression of Fgfr2 and Fgfr3, which were responsible for the proliferation of osteoblast progenitors, was severely reduced in Runx2−/− but not in Sp7−/− calvariae. Runx2 directly regulated Fgfr2 and Fgfr3, increased the proliferation of osteoblast progenitors, and augmented the FGF2-induced proliferation. The proliferation of Sp7−/− osteoblast progenitors was enhanced and strongly augmented by FGF2, and Runx2 knockdown reduced the FGF2-induced proliferation. Fgfr inhibitor AZD4547 abrogated all of the enhanced proliferation. These results indicate that Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation, at least partly, by regulating Fgfr2 and Fgfr3 expression.
Collapse
Affiliation(s)
- Tetsuya Kawane
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Xin Qin
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Qing Jiang
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Toshihiro Miyazaki
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Hisato Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Carolina Andrea Yoshida
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | | | - Chiharu Sakane
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Yuki Matsuo
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Takafumi Maeno
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.,Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Yuki Date
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.,Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan. .,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
38
|
Newman SA, Glimm T, Bhat R. The vertebrate limb: An evolving complex of self-organizing systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:12-24. [PMID: 29325895 DOI: 10.1016/j.pbiomolbio.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/28/2022]
Abstract
The paired appendages (fins or limbs) of jawed vertebrates contain an endoskeleton consisting of nodules, bars and, in some groups, plates of cartilage, or bone arising from replacement of cartilaginous templates. The generation of the endoskeletal elements occurs by processes involving production and diffusion of morphogens, with, variously, positive and negative feedback circuits, adhesion, and receptor dynamics with similarities to the mechanism for chemical pattern formation proposed by Alan Turing. This review presents a unified interpretation of the evolution and functioning of these mechanisms. Studies are described indicating that protocondensations, compacted mesenchymal cell aggregates that prefigure the appendicular skeleton, arise through the adhesive activity of galectin-1, a matricellular protein with skeletogenic homologs in all jawed vertebrates. In the cartilaginous and lobe-finned fishes (and to a variable extent in ray-finned fishes) it additionally cooperates with an isoform of galectin-8 to constitute a self-organizing network capable of generating arrays of preskeletal nodules, bars and plates. Further, in the tetrapods, a putative galectin-8 control module was acquired that may have enabled proximodistal increase in the number of protocondensations. In parallel to this, other self-organizing networks emerged that acted, via Bmp, Wnt, Sox9 and Runx2, as well as transforming factor-β and fibronectin, to convert protocondensations into skeletal tissues. The progressive appearance and integration of these skeletogenic networks over evolution occurred in the context of an independently evolved system of Hox protein and Shh gradients that interfaced with them to tune the spatial wavelengths and refine the identities of the resulting arrays of elements.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| | - Tilmann Glimm
- Department of Mathematics, Western Washington University, Bellingham, WA, 98229, USA
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Biological Sciences Division, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
39
|
Kataoka K, Matsushima T, Ito Y, Sato T, Yokoyama S, Asahara H. Bhlha9 regulates apical ectodermal ridge formation during limb development. J Bone Miner Metab 2018; 36:64-72. [PMID: 28324176 PMCID: PMC6324935 DOI: 10.1007/s00774-017-0820-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/25/2017] [Indexed: 10/19/2022]
Abstract
Split hand/foot malformation (SHFM) and SHFM combined with long-bone deficiency (SHFLD) are congenital dysgeneses of the limb. Although six different loci/mutations (SHFM1-SHFM6) have been found from studies on families with SHFM, the causes and associated pathogenic mechanisms for a large number of patients remain unidentified. On the basis of the identification of a duplicated gene region involving BHLHA9 in some affected families, BHLHA9 was identified as a novel SHFM/SHFLD-related gene. Although Bhlha9 is predicted to participate in limb development as a transcription factor, its precise function is unclear. Therefore, to study its physiological function, we generated a Bhlha9-knockout mouse and investigated gene expression and the associated phenotype in the limb bud. Bhlha9-knockout mice showed syndactyly and poliosis in the limb. Moreover, some apical ectodermal ridge (AER) formation related genes, including Trp63, exhibited an aberrant expression pattern in the limb bud of Bhlha9-knockout mice; TP63 (Trp63) was regulated by Bhlha9 on the basis of in vitro analysis. These observations suggest that Bhlha9 regulates AER formation during limb/finger development by regulating the expression of some AER-formation-related genes and abnormal expression of Bhlha9 leads to SHFM and SHFLD via dysregulation of AER formation and associated gene expression.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takahide Matsushima
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tempei Sato
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigetoshi Yokoyama
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-0074, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Department of Systems Biomedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-0074, Japan.
| |
Collapse
|
40
|
Carter TC, Sicko RJ, Kay DM, Browne ML, Romitti PA, Edmunds ZL, Liu A, Fan R, Druschel CM, Caggana M, Brody LC, Mills JL. Copy-number variants and candidate gene mutations in isolated split hand/foot malformation. J Hum Genet 2017; 62:877-884. [PMID: 28539665 PMCID: PMC5612852 DOI: 10.1038/jhg.2017.56] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022]
Abstract
Split hand/foot malformation (SHFM) is a congenital limb deficiency with missing or shortened central digits. Some SHFM genes have been identified but the cause of many SHFM cases is unknown. We used single-nucleotide polymorphism (SNP) microarray analysis to detect copy-number variants (CNVs) in 25 SHFM cases without other birth defects from New York State (NYS), prioritized CNVs absent from population CNV databases, and validated these CNVs using quantitative real-time polymerase chain reaction (qPCR). We tested for the validated CNVs in seven cases from Iowa using qPCR, and also sequenced 36 SHFM candidate genes in all the subjects. Seven NYS cases had a potentially deleterious variant: two had a p.R225H or p.R225L mutation in TP63, one had a 17q25 microdeletion, one had a 10q24 microduplication and three had a 17p13.3 microduplication. In addition, one Iowa case had a de novo 10q24 microduplication. The 17q25 microdeletion has not been reported previously in SHFM and included two SHFM candidate genes (SUMO2 and GRB2), while the 10q24 and 17p13.3 CNVs had breakpoints within genomic regions that contained putative regulatory elements and a limb development gene. In SHFM pathogenesis, the microdeletion may cause haploinsufficiency of SHFM genes and/or deletion of their regulatory regions, and the microduplications could disrupt regulatory elements that control transcription of limb development genes.
Collapse
Affiliation(s)
- Tonia C. Carter
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Building, Room 3117, Bethesda, MD 20892, USA
| | - Robert J. Sicko
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12201-2002, USA
| | - Denise M. Kay
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12201-2002, USA
| | - Marilyn L. Browne
- Congenital Malformations Registry, New York State Department of Health, Empire State Plaza-Corning Tower, Albany, NY 12237, USA
- University at Albany School of Public Health, One University Place, Rensselaer, NY 12144, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, 145 N. Riverside Drive, Iowa City, IA 52242, USA
| | - Zoë L. Edmunds
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12201-2002, USA
| | - Aiyi Liu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Building, Room 3117, Bethesda, MD 20892, USA
| | - Ruzong Fan
- Department of Biostatistics, Bioinformatics, and Biomathematics, 4000 Reservoir Road NW, Building D-180, Georgetown University Medical Center, Washington DC 20057, USA
| | - Charlotte M. Druschel
- Congenital Malformations Registry, New York State Department of Health, Empire State Plaza-Corning Tower, Albany, NY 12237, USA
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, NY 12201-2002, USA
| | - Lawrence C. Brody
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Building 50, 50 South Drive, MSC 8004, Bethesda, MD 20892, USA
| | - James L. Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B Building, Room 3117, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Cereblon: A Protein Crucial to the Multiple Functions of Immunomodulatory Drugs as well as Cell Metabolism and Disease Generation. J Immunol Res 2017; 2017:9130608. [PMID: 28894755 PMCID: PMC5574216 DOI: 10.1155/2017/9130608] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/02/2017] [Accepted: 07/16/2017] [Indexed: 12/27/2022] Open
Abstract
It is well known that cereblon is a key protein in autosomal recessive nonsyndromic mental retardation. Studies have reported that it has an intermediary role in helping immunomodulatory drugs perform their immunomodulatory and tumoricidal effects. In addition, cereblon also regulates the expression, assembly, and activities of other special proteins related to cell proliferation and metabolism, resulting in the occurrence and development of metabolic diseases. This review details the multiple functions of cereblon and the underlying mechanisms. We also put forward some unsolved problems, including the intrinsic mechanism of cereblon function and the possible regulatory mechanisms of its expression.
Collapse
|
42
|
Shahi M, Peymani A, Sahmani M. Regulation of Bone Metabolism. Rep Biochem Mol Biol 2017; 5:73-82. [PMID: 28367467 PMCID: PMC5346273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/14/2016] [Indexed: 06/07/2023]
Abstract
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation, and bone homeostasis are controlled by various markers and signaling pathways. Bone needs to be remodeled to maintain integrity with osteoblasts, which are bone-forming cells, and osteoclasts, which are bone-degrading cells.In this review we considered the major factors and signaling pathways in bone formation; these include fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), wingless-type (Wnt) genes, runt-related transcription factor 2 (RUNX2) and osteoblast-specific transcription factor (osterix or OSX).
Collapse
Affiliation(s)
- Maryam Shahi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amir Peymani
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mehdi Sahmani
- Department of Clinical Biochemistry and Medical Genetics, Cellular and Molecular Research Center, Qazvin University of
Medical Sciences, Qazvin, Iran.
| |
Collapse
|
43
|
Mariani FV, Fernandez-Teran M, Ros MA. Ectoderm-mesoderm crosstalk in the embryonic limb: The role of fibroblast growth factor signaling. Dev Dyn 2017; 246:208-216. [PMID: 28002626 PMCID: PMC8262604 DOI: 10.1002/dvdy.24480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/27/2023] Open
Abstract
In this commentary we focus on the function of FGFs during limb development and morphogenesis. Our goal is to understand, interpret and, when possible, reconcile the interesting findings and conflicting results that remain unexplained. For example, the cell death pattern observed after surgical removal of the AER versus genetic removal of the AER-Fgfs is strikingly different and the field is at an impasse with regard to an explanation. We also discuss the idea that AER function may involve signaling components in addition to the AER-FGFs and that signaling from the non-AER ectoderm may also have a significant contribution. We hope that a re-evaluation of current studies and a discussion of outstanding questions will motivate new experiments, especially considering the availability of new technologies, that will fuel further progress toward understanding the intricate ectoderm-to-mesoderm crosstalk during limb development. Developmental Dynamics 246:208-216, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesca V Mariani
- Department of Cell and Neurobiology, Broad CIRM Center for Regenerative Medicine & Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marian Fernandez-Teran
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
| | - Maria A Ros
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, 39011, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-SODERCAN-Universidad de Cantabria, 39011, Santander, Spain
| |
Collapse
|
44
|
Integration of Shh and Fgf signaling in controlling Hox gene expression in cultured limb cells. Proc Natl Acad Sci U S A 2017; 114:3139-3144. [PMID: 28270602 DOI: 10.1073/pnas.1620767114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During embryonic development, fields of progenitor cells form complex structures through dynamic interactions with external signaling molecules. How complex signaling inputs are integrated to yield appropriate gene expression responses is poorly understood. In the early limb bud, for instance, Sonic hedgehog (Shh) is expressed in the distal posterior mesenchyme, where it acts as a mediator of anterior to posterior (AP) patterning, whereas fibroblast growth factor 8 (Fgf8) is produced by the apical ectodermal ridge (AER) at the distal tip of the limb bud to direct outgrowth along the proximal to distal (PD) axis. Here we use cultured limb mesenchyme cells to assess the response of the target Hoxd genes to these two factors. We find that they act synergistically and that both factors are required to activate Hoxd13 in limb mesenchymal cells. However, the analysis of the enhancer landscapes flanking the HoxD cluster reveals that the bimodal regulatory switch observed in vivo is only partially achieved under these in vitro conditions, suggesting an additional requirement for other factors.
Collapse
|
45
|
Verheyden JM, Sun X. Embryology meets molecular biology: Deciphering the apical ectodermal ridge. Dev Biol 2017; 429:387-390. [PMID: 28131856 DOI: 10.1016/j.ydbio.2017.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 01/28/2023]
Abstract
More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field.
Collapse
Affiliation(s)
- Jamie M Verheyden
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, United States
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
46
|
Dowling A, Doroba C, Maier JA, Cohen L, VandeBerg J, Sears KE. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica. Dev Genes Evol 2016; 226:235-43. [PMID: 27194412 DOI: 10.1007/s00427-016-0549-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
47
|
FGF8 and SHH substitute for anterior–posterior tissue interactions to induce limb regeneration. Nature 2016; 533:407-10. [DOI: 10.1038/nature17972] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 04/05/2016] [Indexed: 01/06/2023]
|
48
|
Emechebe U, Kumar P P, Rozenberg JM, Moore B, Firment A, Mirshahi T, Moon AM. T-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number. eLife 2016; 5. [PMID: 27046536 PMCID: PMC4829432 DOI: 10.7554/elife.07897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 03/05/2016] [Indexed: 12/17/2022] Open
Abstract
Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts limb initiation, causing limb defects that phenocopy Sonic Hedgehog (Shh) mutants. Later ablation of T-box3 in posterior limb mesenchyme causes digit loss. In contrast, loss of anterior T-box3 results in preaxial polydactyly, as seen with dysfunction of primary cilia or Gli3-repressor. Remarkably, T-box3 is present in primary cilia where it colocalizes with Gli3. T-box3 interacts with Kif7 and is required for normal stoichiometry and function of a Kif7/Sufu complex that regulates Gli3 stability and processing. Thus, T-box3 controls digit number upstream of Shh-dependent (posterior mesenchyme) and Shh-independent, cilium-based (anterior mesenchyme) Hedgehog pathway function. DOI:http://dx.doi.org/10.7554/eLife.07897.001 Mutations in the gene that encodes a protein called T-box3 cause serious birth defects, including deformities of the hands and feet, via poorly understood mechanisms. Several other proteins are also important for ensuring that limbs develop correctly. These include the Sonic Hedgehog protein, which controls a signaling pathway that determines whether a protein called Gli3 is converted into its “repressor” form. The hair-like structures called primary cilia that sit on the surface of animal cells also contain Gli3, and processes within these structures control the production of the Gli3-repressor. Emechebe, Kumar et al. have now studied genetically engineered mice in which the production of the T-box3 protein was stopped at different stages of mouse development. This revealed that turning off T-box3 production early in development causes many parts of the limb not to form. This type of defect appears to be the same as that seen in mice that lack the Sonic Hedgehog protein. If the production of T-box3 is turned off later in mouse development in the rear portion of the developing limb, the limb starts to develop but doesn’t develop enough rear toes. When T-box3 production is turned off in the front portion of the developing limbs, mice are born with too many front toes. This latter problem mimics the effects seen in mice that are unable to produce Gli3-repressor or that have defective primary cilia. Further investigation unexpectedly revealed that T-box3 is found in primary cilia and localizes to the same regions of the cilia as the Gli3-repressor. Furthermore, T-box3 also interacts with a protein complex that controls the stability of Gli3 and processes it into the Gli3-repressor form. In the future, it will be important to determine how T-box3 controls the stability of Gli3 and whether that process occurs in the primary cilia or in other parts of the cell where T-box3 and Gli3 coexist, such as the nucleus. This could help us understand how T-box3 and Sonic Hedgehog signaling contribute to other aspects of development and to certain types of cancer. DOI:http://dx.doi.org/10.7554/eLife.07897.002
Collapse
Affiliation(s)
- Uchenna Emechebe
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | | | - Bryn Moore
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Ashley Firment
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Tooraj Mirshahi
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Anne M Moon
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States.,Weis Center for Research, Geisinger Clinic, Danville, United States.,Department of Human Genetics, University of Utah, Salt Lake City, United States.,Department of Pediatrics, University of Utah, Salt Lake City, United States
| |
Collapse
|
49
|
Don EK, de Jong-Curtain TA, Doggett K, Hall TE, Heng B, Badrock AP, Winnick C, Nicholson GA, Guillemin GJ, Currie PD, Hesselson D, Heath JK, Cole NJ. Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biol Open 2016; 5:359-66. [PMID: 26892237 PMCID: PMC4810746 DOI: 10.1242/bio.016295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Here we genetically characterise pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures, which are homologous to tetrapod hindlimbs, but displays no other abnormalities. Using a hybrid positional cloning and next generation sequencing approach, we identified mutations in the nuclear localisation signal (NLS) of T-box transcription factor 4 (Tbx4) that impair nuclear localisation of the protein, resulting in altered gene expression patterns during pelvic fin development and the failure of pelvic fin development. Using a TALEN-induced tbx4 knockout allele we confirm that mutations within the Tbx4 NLS (A78V; G79A) are sufficient to disrupt pelvic fin development. By combining histological, genetic, and cellular approaches we show that the hindlimb initiation gene tbx4 has an evolutionarily conserved, essential role in pelvic fin development. In addition, our novel viable model of hindlimb deficiency is likely to facilitate the elucidation of the detailed molecular mechanisms through which Tbx4 functions during pelvic fin and hindlimb development. Summary: Here we genetically characterise mutations in tbx4 which underlie pelvic finless, a naturally occurring model of hindlimb loss in zebrafish that lacks pelvic fin structures.
Collapse
Affiliation(s)
- Emily K Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Department of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Benjamin Heng
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Andrew P Badrock
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Claire Winnick
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gilles J Guillemin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Hesselson
- Garvan Institute of Medical Research, Diabetes and Metabolism Division, Sydney, New South Wales 2010, Australia St. Vincent's Clinical School, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Department of Anatomy & Histology, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
50
|
Kouwenhoven WM, Veenvliet JV, van Hooft JA, van der Heide LP, Smidt MP. Engrailed 1 shapes the dopaminergic and serotonergic landscape through proper isthmic organizer maintenance and function. Biol Open 2016; 5:279-88. [PMID: 26879466 PMCID: PMC4810741 DOI: 10.1242/bio.015032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The isthmic organizer (IsO) is a signaling center that specifies the correct and distinct embryonic development of the dopaminergic midbrain and serotonergic hindbrain. The IsO is a linear boundary between the two brain regions, emerging at around embryonic day 7-8 of murine embryonic development, that shapes its surroundings through the expression of instructive signals such as Wnt and growth factors. Homeobox transcription factor engrailed 1 (En1) is present in midbrain and rostral hindbrain (i.e. rhombomere 1, R1). Its expression spans the IsO, and it is known to be an important survival factor for both dopaminergic and serotonergic neurons. Erroneous composition of dopaminergic neurons in the midbrain or serotonergic neurons in the hindbrain is associated with severe pathologies such as Parkinson's disease, depression or autism. Here we investigated the role of En1 in early mid-hindbrain development, using multiple En1-ablated mouse models as well as lineage-tracing techniques, and observed the appearance of ectopic dopaminergic neurons, indistinguishable from midbrain dopaminergic neurons based on molecular profile and intrinsic electrophysiological properties. We propose that this change is the direct result of a caudal relocation of the IsO as represented by ectopic presence of Fgf8, Otx2, Wnt1 and canonical Wnt-signalling. Our work suggests a newly-discovered role for En1: the repression of Otx2, Wnt1 and canonical Wnt-signaling in R1. Overall, our results suggest that En1 is essential for proper IsO maintenance and function. Summary: Local molecular coding under the influence of En1 is essential for proper spatiotemporal expression of key factors involved in the maintenance and function of the isthmic organizer.
Collapse
Affiliation(s)
- Willemieke M Kouwenhoven
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Jesse V Veenvliet
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Johannes A van Hooft
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - L P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|